
Under review as a conference paper at ICLR 2024

POLYNET: LEARNING DIVERSE SOLUTION STRATE-
GIES FOR NEURAL COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, learning-based approaches have made remarkable strides in tack-
ling combinatorial optimization problems. Reinforcement learning-based con-
struction methods, in particular, have shown promise in producing high-quality
solutions, often surpassing established operations research heuristics for simple
routing problems. Nonetheless, inherent limitations, such as a lack of solu-
tion diversity and limited applicability to complex problems, have hindered their
widespread adoption. This paper introduces PolyNet, a novel approach that uses
a single-decoder model to learn complementary solution strategies for combina-
torial optimization problems, allowing the rapid creation of diverse solutions for
a given instance. Moreover, PolyNet’s diversity mechanism enhances training
exploration without relying on solution space symmetries, enabling it to effec-
tively tackle more complex problems. We evaluate PolyNet on three combinato-
rial optimization problems of varying difficulty. Our comprehensive experiments
consistently demonstrate significant improvements over state-of-the-art machine
learning methods, both in terms of swift solution generation and extensive search.

1 INTRODUCTION

In recent years, there have been remarkable advancements in the field of learning-based approaches
for solving combinatorial optimization (CO) problems (Bello et al., 2016; Kool et al., 2019; Kwon
et al., 2020). Notably, reinforcement learning (RL) methods have emerged that build a solution
to a problem step-by-step in a sequential decision making process. Initially, these construction
techniques struggled to produce high-quality solutions. However, recent methods have surpassed
even established operations research heuristics, such as LKH3, for simpler, smaller-scale routing
problems. Learning-based approaches thus now have the potential to become versatile tools, capable
of learning specialized heuristics tailored to unique business-specific problems. Moreover, with
access to sufficiently large training datasets, they may consistently outperform off-the-shelf solvers
in numerous scenarios. This work aims to tackle some of the remaining challenges that currently
impede the widespread adoption of learning-based heuristic methods in practical applications.

A key limitation of learning-based approaches is that they often struggle to produce diverse solu-
tions, leading to diminishing returns when generating more than a few hundred solutions per in-
stance, as noted in Grinsztajn et al. (2022). This limitation is especially problematic when decision
makers are willing to accept longer runtimes for better results. To address this issue, Xin et al. (2021)
propose a transformer model with multiple decoders that encourage distinct solution strategies dur-
ing training by maximizing the Kullback-Leibler divergence between decoder output probabilities.
However, to manage computational costs, diversity is only promoted in the initial construction step.
In contrast, Grinsztajn et al. (2022) introduce Poppy, a training procedure for multi-decoder models
that increases diversity without relying on Kullback-Leibler divergence. Poppy specializes a popu-
lation (i.e., a set) of decoders during the learning phase by training only the best-performing decoder
for each problem instance. While effective, Poppy is computationally intensive, requiring a separate
decoder for each policy, thus limiting the number learnable policies per problem.

Another significant limitation of existing neural CO approaches is their focus on relatively simple
problems with a limited number of constraints. For example, many recent publications have made
considerable progress solving the traveling salesperson problem (TSP) (e.g., Jin et al. (2023); Xiao
et al. (2023)). However, the majority of real-world optimization problems are significantly more

1

Under review as a conference paper at ICLR 2024

complex than the TSP, involving a greater number of constraints that must be satisfied. Further-
more, approaches tailored exclusively to the TSP are unlikely to be effective for these more complex
problems. Even techniques evaluated on both the TSP and the significantly more complex capac-
itated vehicle routing problem (CVRP) do not seamlessly extend to other routing problems. For
example, many recent neural construction methods (e.g., Li et al. (2023); Choo et al. (2022)) build
on the POMO approach (Kwon et al., 2020) that enhances exploration during training by forcing
diverse first actions during solution construction. This assumes that the first construction action has
a negligible impact on solution quality, which is true for the TSP and CVRP due to symmetries in
the solution space. However, in more complex optimization problems the initial action often signif-
icantly influences solution quality, rendering these methods less effective at generating solutions.

In this paper, we introduce PolyNet, which effectively addresses the previously discussed limitations
through the following innovations:

1. PolyNet learns a diverse and complementary set of solution strategies for optimization
problems using a single decoder, a departure from existing diversity-focused approaches.

2. PolyNet eliminates the requirement to enforce the first construction action, broadening its
applicability to a wider range of CO problems.

By utilizing a single decoder to learn multiple strategies, PolyNet allows to quickly generate a set
of diverse solutions for a problem instance. This significantly enhances exploration, allowing us to
find better solution during training and testing. Furthermore, by abandoning the concept of forcing
diverse first actions, we exclusively rely on PolyNet’s inherent diversity mechanism to facilitate
exploration during the search process. This fundamental change not only enhances the method’s
adaptability to new problems but also leads to substantial performance enhancements, particularly
in solving complex problems such as the capacitated vehicle routing problem (CVRP).

We assess PolyNet’s performance across three problems: the TSP, the CVRP, and the CVRP with
time windows (CVRPTW), each involving instances with up to 300 nodes. We search for high-
quality solutions with PolyNet by either quickly sampling a set of diverse solutions or by a synergis-
tic combination of PolyNet with the efficient active search (EAS) technique (Hottung et al., 2022).
EAS fine-tunes a subset of model parameters during testing and works exceptionally well with
PolyNet. This synergy arises from PolyNet’s capability to generate diverse solutions, which em-
powers EAS to explore a broader spectrum of potential solutions during the search process. Across
all problems, PolyNet consistently demonstrates a significant advancement over the state-of-the-art
in both swift solution generation and comprehensive search efforts.

2 LITERATURE REVIEW

Neural CO In their seminal work, Vinyals et al. (2015) introduce the novel pointer network archi-
tecture, an early application of modern machine learning methods to solve CO problems. Pointer
networks autoregressively generate discrete outputs corresponding to input positions. When trained
via supervised learning, they can produce near-optimal solutions for the TSP with up to 50 nodes.
Bello et al. (2016) propose training pointer networks using reinforcement learning instead and illus-
trate the efficacy of this method in solving larger instances of the TSP.

Nazari et al. (2018) use the pointer network architecture to solve the CVRP with 100 nodes. Kool
et al. (2019) improve on this architecture by utilizing a transformer-based encoder with self-attention
(Vaswani et al., 2017). Recognizing that many CO problems contain symmetries, Kwon et al. (2020)
propose POMO, a method that leverages such symmetries to generate better solutions. Kim et al.
(2022) extend these ideas and propose a general-purpose symmetric learning scheme. Drakulic et al.
(2023) use bisimulation quotienting (Givan et al., 2003) to improve out-of-distribution generaliza-
tion of neural CO methods. Only few works, including (Falkner & Schmidt-Thieme, 2020; Kool
et al., 2022a), propose neural CO approaches for routing problems with time windows.

Instead of constructing solutions autoregressively, some methods predict a heat-map that outlines
promising edges. This is subsequently used in a post-hoc search for solution construction (Joshi
et al., 2019; Fu et al., 2021; Kool et al., 2022b). Another class of methods iteratively improves
initial yet complete solutions. For instance, Hottung & Tierney (2020) propose a framework that it-
eratively destroys parts of a solution using handcrafted procedures and then repairs it using a learned

2

Under review as a conference paper at ICLR 2024

operator to explore the solution space. Similarly, Ma et al. (2021) learn to iteratively improve an
initial solution by performing local adjustments, while Chen & Tian (2019) pose CO as a sequential
rewriting problem in which parts of a solution are iteratively changed using a learned routine.

Hottung et al. (2022) introduce EAS, a method that guides the search by updating a subset of the pol-
icy parameters during inference. Similarly, Choo et al. (2022) propose SGBS, a post-hoc inference
mechanism that combines Monte-Carlo tree search with beam search to provide search guidance.
When used in combination with EAS, it achieves state-of-the-art performance on several problems.

Diversity mechanisms in RL In RL, skill-learning algorithms aim to discover a set of policies with
diverse behaviors (defined by the visited states) to accelerate task-specific training. For instance,
Eysenbach et al. (2018) and Sharma et al. (2019) learn skills that exhibit predictable behavior and
are as diverse as possible. Here, a skill corresponds to the policy conditioned on some latent context.

In contrast to implicitly maintaining a collection of agents through context, population-based RL
techniques explicitly maintain a finite agent population and use diversity mechanisms to discover
diverse strategies for solving RL tasks. The population could be constructed iteratively. For exam-
ple, Zhang et al. (2019) learn a collection of policies that solve a task using distinct action sequences.
Alternatively, agents can be trained in a population-based setup (PIERROT & Flajolet, 2023). Re-
cently, Wu et al. (2023) focus on task-specific diversity defined according to user-specified behavior
descriptors and employ population-based training to maximize diversity at different quality levels.

Diversity mechanisms are also used in single and multi-agent setups to learn diverse problem-solving
strategies. For instance, in neural program synthesis, Bunel et al. (2018) optimize the expected
reward when sampling a pool of solutions and keeping the best one. This encourages the policy to
diversify its choices by assigning probability mass to several solutions. In multi-agent RL, Li et al.
(2021) use the mutual information between agents’ identities and trajectories as an intrinsic reward
to promote diversity, and solve cooperative tasks requiring diverse strategies among the agents.

Diversity mechanisms in neural CO Kim et al. (2021) present a hierarchical strategy for solving
routing problems, where a learned seeder policy maximizes solution diversity through entropy re-
wards and generates diverse candidate solutions. These are then modified by a learned reviser policy
to improve solution quality. As previously discussed, Xin et al. (2021) encourage diverse solutions
using multiple decoders and KL-divergence regularization, while Grinsztajn et al. (2022) use a pop-
ulation of agents through multiple decoders to learn complementary strategies, updating exclusively
the best-performing agent at each iteration. This objective shares similarities with (Bunel et al.,
2018), in which also only the best solution is considered.

3 POLYNET

3.1 BACKGROUND

Neural CO approaches seek to train a neural network denoted as πθ with learnable weights θ. The
network’s purpose is to generate a solution τ when provided with an instance l. To achieve this,
we employ RL techniques and model the problem as a Markov decision process (MDP), wherein a
solution is sequentially constructed in T discrete time steps. At each step t ∈ (1, . . . , T), an action
at is selected based on the probability distribution πθ(at|st) defined by the neural network where
st is the current state. The initial state s1 encapsulates the information about the problem instance
l, while subsequent states st+1 are derived by applying the action at to the previous state st. A
(partial) solution denoted as τ̄t is defined by the sequence of selected actions (a1, a2, . . . , at). Once
a complete solution τ = τ̄T satisfying all problem constraints is constructed, we can compute its
associated reward R(τ, l). The overall policy of generating a solution τ for an instance l is defined
as πθ(τ | l) =

∏T
t=1 πθ(at | st).

3.2 OVERVIEW

PolyNet is a learning-based approach designed to learn a set of diverse solution strategies for CO
problems. During training, each strategy is allowed to specialize on a subset of the training data,
and thus need not be the best strategy for the entire dataset. This essentially results in a portfolio
of strategies, which are known to be highly effective for solving CO problems (Bischl et al., 2016).

3

Under review as a conference paper at ICLR 2024

Figure 1: PolyNet solution generation.

Our pursuit of diversity is fundamentally a means to enhance exploration and consequently solution
quality. Note that PolyNet not only enhances performance at test time (where we sample multiple
solutions for each strategy and keep only the best one), but also improves exploration during training.

PolyNet aims to learn K different solution strategies π1, . . . , πK using a single neural network. To
achieve this, we condition the solution generation process on an additional input vi ∈ {v1, . . . , vK}
that defines which of the strategies should be used to sample a solution so that

π1, . . . , πK = πθ(τ1 | l, v1), . . . , πθ(τK | l, vK). (1)

We use a set of unique bit vectors for {v1, . . . , vK}. Alternative representations should also be
feasible as long as they are easily distinguishable by the network.

PolyNet uses a neural network that builds on the established transformer architecture for neural CO
(Kool et al., 2019). The model consists of an encoder that creates an embedding of a problem in-
stance, and a decoder that generates multiple solutions for an instance based on the embedding. To
generate solutions quickly, we only insert the bit vector v into the decoder, allowing us to gener-
ate multiple diverse solutions for an instance with only a single pass through the computationally
expensive encoder. Figure 1 shows the overall solution generation process of the model where bit
vectors of size 4 are used to generate to generate K = 16 different solutions for a CVRP instance.

3.3 TRAINING

During training we (repeatedly) sample K solutions {τ1, . . . , τK} for an instance l based on K
different vectors {v1, . . . , vK}, where the solution τi is sampled from the probability distribution
πθ(τi | l, vi). To allow the network to learn K different solution strategies, we follow the Poppy
method (Grinsztajn et al., 2022) and only update the model weights with respect to the best of the
K solutions. Let τ∗ be the best solution, i.e., τ∗ = argminτi∈{τ1,...,τK} R(τi, l), and let v∗ be the
corresponding vector (ties are broken arbitrarily). We then update the model using the gradient

∇θL = Eτ∗
[
(R(τ∗, l)− b◦)∇θ log πθ(τ

∗ | l, v∗)
]
, (2)

where b◦ is a baseline (which we discuss in detail below). Updating the model weights only based
on the best found solution allows the network to learn specialized strategies that do not have to work
well on all instances from the training set. While this approach does not explicitly enforce diversity,
it incentivizes the model to learn diverse strategies in order to optimize overall performance. We
show experimentally that this is the case. Grinsztajn et al. (2022) discuss this loss in more detail.

Exploration & Baseline Most recent neural construction heuristics follow the POMO approach
and rollout N solutions from N different starting nodes per instance to increase exploration. This is
possible because many CO problems contain symmetries in the solution space that allow an optimal
solution to be found from all N starting nodes. In practice, this mechanism is implemented by
forcing a different first construction action for each of the N rollouts. Forcing diverse rollouts not
only improves exploration, but also allows the average reward of all N rollouts to be used as a
baseline. However, this exploration mechanism should not be used when the first action can not be
freely chosen without impacting the solution quality.

In PolyNet, we do not use an exploration mechanism or a baseline that assumes symmetries in
the solution space. Instead, we only rely on the exploration provided by our conditional solution
generation. This allows us to solve a wider range of optimization problems. As a baseline we
simply use the average reward of all K rollouts for an instance, i.e., b◦ = 1

K

∑K
i=1 R(τi, l).

4

Under review as a conference paper at ICLR 2024

3.4 NETWORK ARCHITECTURE

PolyNet extends the neural network architecture of the POMO approach by a new residual block
in the decoder. This design allows us to start PolyNet’s training from an already trained POMO
model, which significantly reduces the amount of training time needed. Figure 2 shows the overall
architecture of the modified decoder including the new PolyNet layers. The new layers accept the bit
vector v as input and use it to calculate an update for the output of the masked multi-head attention
mechanism. They consist of a concatenation operation followed by two linear layers with a ReLU
activation function in between. See Kwon et al. (2020) for more details on the encoder and decoder.

Figure 2: Decoder architecture.

The output of the new layers directly impacts
the final pointer mechanism that is used to cal-
culate a probability distribution over all avail-
able actions, allowing the new layers to signifi-
cantly influence the solution generation based
on v. However, the model can also learn to
completely ignore v by setting all weights of the
second linear layer to zero. This is intentional,
as our objective is to increase diversity via the
loss function, rather than force unproductive di-
versity through the network architecture. Addi-
tionally, it’s worth noting that the dimensions of
the linear layers naturally constrain the achiev-
able diversity within the learned strategies.

3.5 SEARCH

A simple and fast search procedure given an unseen test instance l is to sample multiple solutions
in parallel and return the best one. Specifically, to construct a set of M distinct solutions, we
initially draw M binary vectors from the set v1, . . . , vK , allowing for replacement if M exceeds
the size of K. Subsequently, we employ each of these M vectors to sample individual solutions.
This approach generates a diverse set of instances in a parallel and independent manner, making it
particularly suitable for real-world decision support settings where little time is available.

To facilitate a more extensive, guided search, we combine PolyNet with EAS. EAS is a simple
technique to fine-tune a subset of model parameters for a single instance in an iterative process
driven by gradient descent. In contrast to the EAS variants described in Hottung et al. (2022), we do
not insert any new layers into the network or update the instance embeddings. Instead, we only fine-
tune the new PolyNet layers during search. Since PolyNet is specifically trained to create diverse
solutions based on these layers, EAS can easily explore a wide variety of solutions during the search
while modifying only a portion of the model’s parameters.

4 EXPERIMENTS

We compare PolyNet’s search performance to state-of-the-art methods on three established prob-
lems. Additionally, we explore solution diversity during the training and testing phases and analyze
the impact of the free first move selection. Our experiments are conducted on a GPU cluster utilizing
a single Nvidia A100 GPU per run. In all experiments, the new PolyNet layers comprise two linear
layers, each with a dimensionality of 256. PolyNet will be made publicly available upon acceptance.

4.1 PROBLEMS

TSP The TSP is a thoroughly researched routing problem in which the goal is to find the shortest
tour among a set of n nodes. The tour must visit each node exactly once and then return to the
initial starting node. We consider the TSP due to its significant attention from the machine learning
(ML) community, making it a well-established benchmark for ML-based optimization approaches.
However, it is important to note that instances with n ≤ 300 can be quickly solved to optimality by
CO solvers that have been available for many years. To generate problem instances, we adhere to
the methodology outlined in Kool et al. (2019).

5

Under review as a conference paper at ICLR 2024

Figure 3: Validation performance during training (log scale).

CVRP The objective of the CVRP is to determine the shortest routes for a fleet of vehicles tasked
with delivering goods to a set of n customers. These vehicles start and conclude their routes at a
central depot and have a limited capacity of goods that they can carry. CVRP instances are con-
siderably more difficult to solve than TSP instances of equivalent size (despite both problems being
of the same computational complexity class). Even cutting-edge CO methods struggle to reliably
find optimal solutions for instances of moderate size with n ≤ 300 customers. To generate problem
instances, we again adopt the approach outlined in Kool et al. (2019), where we assign vehicle ca-
pacities of 50, 60, 70, and 80 for instances involving 100, 150, 200, and 300 customers, respectively.

CVRPTW The CVRPTW is an extension of the CVRP that introduces temporal constraints limit-
ing when a customer can receive deliveries from a vehicle. Each customer i is associated with a time
window, comprising an earliest arrival time ei and a latest allowable arrival time li. Vehicles may
arrive early at a customer i, but they must wait until the specified earliest arrival time ei before mak-
ing a delivery. The travel duration between customer i and customer j is calculated as the Euclidean
distance between their locations, and each delivery has a fixed duration. All vehicles initiate their
routes from the depot at time 0. We use the CVRP instance generator outlined in Queiroga et al.
(2021) to generate customer positions and demands, and we adhere to the methodology established
in Solomon (1987) for generating the time windows. It’s essential to note that customer positions are
not sampled from a uniform distribution; instead, they are clustered to replicate real-world scenarios.
Further details for instance generation for the CVRPTW are given in Appendix C.

4.2 TRAINING

To assess the effectiveness of our diversity mechanism, we conduct short training runs of PolyNet
with varying values of K. As a baseline we report results for the training of the POMO model.
For all runs, we use a batch size of 480 and a learning rate set at 10−4. To ensure a stable initial
state for training runs, we start all runs from a trained POMO model. For PolyNet, we initialize the
PolyNet layer weights to zero, minimizing initial randomness. During training, we perform regular
evaluations on a separate validation set of 10, 000 instances, sampling 800 solutions per instance.

Our evaluation tracks the cost of the best solution and the percentage of unique solutions among
the 800 solutions per instance. Figure 3 presents the evaluation results. Across all three problems,
we observe a clear trend: higher values of K lead to a more rapid reduction in average costs on the
validation set and are associated with a greater percentage of unique solutions. Note that POMO
does not benefit from further training. These results underscore the effectiveness of our approach in
promoting solution diversity and improving solution quality.

6

Under review as a conference paper at ICLR 2024

Table 1: Search performance results for TSP.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.765 - 82m 10.687 - 31m 9.346 - 17m 12.949 - 83m
LKH3 7.765 0.000% 8h 10.687 0.000% 3h 9.346 0.000% 99m 12.949 0.000% 5h

U
ng

ui
de

d POMO greedy 7.775 0.135% 1m 10.770 0.780% <1m 9.393 0.494% <1m 13.216 2.061% 1m
sampling 7.772 0.100% 3m 10.759 0.674% 2m 9.385 0.411% 1m 13.257 2.378% 7m

Poppy 7.766 0.015% 4m 10.711 0.226% 2m 9.362 0.164% 1m 13.052 0.793% 7m

PolyNet 7.765 0.000% 4m 10.690 0.032% 2m 9.352 0.055% 1m 12.995 0.351% 8m

G
ui

de
d

DPDP 7.765 0.004% 2h - - - 9.434 0.937% 44m - - -
MDAM 7.781 0.208% 4h - - - 9.403 0.603% 1h - - -
POMO EAS 7.769 0.053% 3h 10.720 0.310% 3h 9.363 0.172% 1h 13.048 0.761% 8h

SGBS 7.769 0.058% 9m 10.727 0.380% 24m 9.367 0.220% 8m 13.073 0.951% 77m
SGBS+EAS 7.767 0.035% 3h 10.719 0.300% 3h 9.359 0.136% 1h 13.050 0.776% 8h

PolyNet EAS 7.765 0.000% 3h 10.687 0.001% 2h 9.347 0.001% 1h 12.952 0.018% 7h

4.3 SEARCH PERFORMANCE

We conduct an extensive evaluation of PolyNet’s search performance, benchmarking it against state-
of-the-art neural CO methods. To this end, we train separate models for problem instances of size
100 and 200, and then evaluate the models trained on n= 100 using instances with 100 and 150
nodes, and the models trained on n= 200 using instances with 200 and 300 nodes. We can thus assess
the model’s capability to generalize to instances that diverge from the training data. Throughout our
evaluation, we employ the instance augmentation technique introduced in Kwon et al. (2020).

For the training of PolyNet models, we set the parameter K to 128 across all problems. For instances
of size n=100, we train our models for 300 epochs (200 for the TSP), with each epoch comprising
4× 108 solution rollouts. For instances with n=200, we start training based on the n= 100 models,
running 40 additional training epochs (20 for the TSP). To optimize GPU memory utilization, we
adjust the batch size separately for each problem and its dimensions.

We categorize the evaluated algorithms into two groups: unguided and guided methods. Unguided
algorithms generate solutions independently, while guided methods incorporate a high-level search
component capable of navigating the search space. For a comparison to unguided algorithms, we
compare PolyNet to POMO and the Poppy approach with a population size of 8. To ensure fairness
we retrain Poppy using the same training setup as for Poppy. Note that POMO has already been
trained to full convergence and does not benefit from additional training (see Figure 3). For all
approaches, we sample 64 × n solutions per instance (except for POMO using greedy solution
generation). For our comparison to guided algorithms, we use PolyNet with EAS and compare
it with POMO combined with EAS (Hottung et al., 2022) and SGBS (Choo et al., 2022). In the
case of PolyNet, we sample 200 × 8 × n solutions per instance over the course of 200 iterations.
Furthermore, we compare to some problem-specific approaches that are explained below. Note that
we provide additional search trajectory plots in Appendix B.

TSP We use the 10,000 test instances with n= 100 from Kool et al. (2019) and test sets consisting
of 1, 000 instances from Hottung et al. (2021) for n= 150 and n= 200. For n= 300, we generate new
instances. As a baseline, we use the exact solver Concorde (Applegate et al., 2006) and the heuristic
solver LKH3 (Helsgaun, 2017). Additionally, we also compare to DPDP (Kool et al., 2022b) and
the diversity-focused method MDAM (Xin et al., 2021) with a beam search width of 256.

Table 1 provides our results on the TSP, showing clear performance improvements of PolyNet during
fast solution generation and extensive search with EAS for all considered instance sets. For TSP
instances with 100 nodes, PolyNet achieves a gap that is practically zero while being roughly 120
times faster than LKH3. Furthermore, on all four instance sets, PolyNet with unguided solution
sampling finds solutions with significantly lower costs in comparison to guided learning approaches
while reducing the runtime by a factor of more than 100 in many cases.

CVRP Similar to the TSP, we use the test sets from Kool et al. (2019) and Hottung et al. (2021).
As a baseline, we use LKH3 (Helsgaun, 2000) and the state-of-the-art (OR) solver HGS (Vidal et al.,

7

Under review as a conference paper at ICLR 2024

Table 2: Search performance results for CVRP.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

HGS 15.563 - 54h 21.766 - 17h 19.055 - 9h 27.737 - 46h
LKH3 15.646 0.53% 6d 22.003 1.09% 25h 19.222 0.88% 20h 28.157 1.51% 34h

U
ng

ui
de

d POMO greedy 15.754 1.23% 1m 22.194 1.97% <1m 19.684 3.30% <1m 28.627 3.21% 1m
sampling 15.705 0.91% 5m 22.136 1.70% 3m 20.109 5.53% 1m 28.613 3.16% 9m

Poppy 15.685 0.78% 5m 22.040 1.26% 3m 19.578 2.74% 1m 28.648 3.28% 8m

PolyNet 15.640 0.49% 5m 21.957 0.88% 3m 19.501 2.34% 1m 28.552 2.94% 8m

G
ui

de
d

DACT 15.747 1.18% 22h - - - 19.594 2.83% 16h - - -
DPDP 15.627 0.41% 23h - - - 19.312 1.35% 5h - - -
MDAM 15.885 2.07% 5h - - - 19.686 3.31% 1h - - -
POMO EAS 15.618 0.35% 6h 21.900 0.61% 3h 19.205 0.79% 2h 28.053 1.14% 12h

SGBS 15.659 0.62% 10m 22.016 1.15% 7m 19.426 1.95% 4m 28.293 2.00% 22m
SGBS+EAS 15.594 0.20% 6h 21.866 0.46% 4h 19.168 0.60% 2h 28.015 1.00% 12h

PolyNet EAS 15.584 0.14% 4h 21.821 0.25% 2h 19.166 0.59% 1h 27.993 0.92% 9h

Table 3: Search performance results for CVRPTW.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

PyVRP 12,534 - 39h 18,422 - 11h 17,408 - 9h 25,732 - 26h

U
ng

ui
de

d POMO greedy 13,120 4.67% 1m 19,656 6.70% 1m 18,670 7.25% <1m 28,022 8.90% 2m
sampling 13,019 3.87% 7m 19,531 6.02% 4m 18,571 6.68% 2m 28,017 8.88% 13m

Poppy 12,969 3.47% 5m 19,406 5.34% 3m 18,612 6.91% 2m 28,104 9.22% 10m

PolyNet 12,876 2.73% 5m 19,232 4.40% 3m 18,429 5.86% 2m 27,807 8.07% 10m

G
ui

de
d POMO EAS 12,762 1.81% 6h 18,966 2.96% 4h 17,851 2.54% 2h 26,608 3.40% 14h

SGBS 12,897 2.89% 12m 19,240 4.44% 8m 18,201 4.55% 4m 27,264 5.95% 25m
SGBS+EAS 12,714 1.43% 7h 18,912 2.66% 4h 17,835 2.45% 2h 26,651 3.57% 15h

PolyNet EAS 12,654 0.96% 5h 18,739 1.72% 3h 17701 1.68% 1h 26,504 3.00% 10h

2012; Vidal, 2022). We compare to the same learning methods as for the TSP with the addition of
DACT (Ma et al., 2021).

The CVRP results in Table 2 once again indicate consistent improvement across all considered
problem sizes. Especially on the instances with 100 and 200 customers, PolyNet improves upon
the state-of-the-art learning-based approaches by reducing the gap by more than 30% during fast
solution generation and extensive search. Also note that PolyNet significantly outperforms the other
diversity-focused approaches Poppy and MDAM.

CVRPTW For the CVRPTW, we use the state-of-the-art CO solver PyVRP (Wouda et al., 2023)
as a baseline stopping the search after 1,000 iterations without improvement. We compare to a
POMO implementation that we adjusted to solve the CVRPTW by extending the node features with
the time windows and the context information used at each decoding step by the current time point.
These models are trained for 50,000 epochs, mirroring the training setup used for the CVRP.

Table 3 presents the CVRPTW results, demonstrating PolyNet’s consistent and superior perfor-
mance across all settings compared to Poppy and POMO (with SGBS and EAS). Notably, for in-
stances with 100 customers, PolyNet matches almost the CO solver PyVRP with a gap below 1%.

4.4 SEARCH DIVERSITY

To evaluate the diversity mechanism of PolyNet, we compare the diversity of solutions generated by
PolyNet to those generated by POMO. More specifically, for a subset of test instances, we sample
100 solutions per instance with both approaches and compare the solutions found on the basis of
their uniqueness and their cost. We calculate the uniqueness of a solution by using the average of
the broken pairs distance (Prins, 2009) to all other 99 generated solutions.

8

Under review as a conference paper at ICLR 2024

14.8 15.2 15.6
Cost

16

19

22

25

S
ol

u
ti

on
U

n
iq

u
en

es
s

Instance 1

14.4 15.0
Cost

16.0

18.5

21.0

23.5
Instance 2

14.8 15.2 15.6
Cost

15

17

19

21

Instance 3

POMO

PolyNet

Figure 4: Solution diversity vs. costs for three CVRP instances.

Table 4: Ablation results for free first move selection.

Method TSP CVRP CVRPTW
Obj. Gap Time Obj. Gap Time Obj. Gap Time

PolyNet Free first move 7.765 0.000% 4m 15.640 0.49% 5m 12,876 2.73% 5m
Forced first move 7.765 0.006% 4m 15.655 0.59% 5m 12,909 3.00% 6m

Poppy 7.766 0.015% 4m 15.685 0.78% 5m 12,969 3.47% 5m

Figure 4 shows the results for the first three CVRP instances from the test set. Ideally, we seek
solutions with low costs and high uniqueness (i.e., solutions positioned in the top-left corner of the
plot). Notably, the majority of solutions laying on the Pareto front of these two objectives originate
from PolyNet. In summary, PolyNet is consistently able to generate solutions with higher uniqueness
and lower costs, demonstrating its ability to learn strategies that generate not only diverse solutions
but also high-quality solutions. See Appendix A for additional visualizations of all three problems.

4.5 ABLATION STUDY: FORCING THE FIRST MOVE

In contrast to most state-of-the-art methods, PolyNet does not force diverse first construction ac-
tions to enhance exploration during training and testing. Instead, PolyNet relies solely on its built-in
diversity mechanism, which does not assume symmetries in the solution space. To assess the effi-
cacy of this approach, we compare the performance of PolyNet with and without forced first move
selection when sampling 64× 100 solutions per instance.

Table 4 shows the results for all problems with n= 100. Remarkably, across all scenarios, allowing
PolyNet to select the first move yields superior performance compared to forcing the first move.
This finding is particularly striking for the TSP, where the first move does not affect solution quality.
Furthermore, PolyNet with forced first move selection outperforms Poppy (which also enforces
the first move), underscoring that PolyNet’s single-decoder architecture delivers better results than
PolyNet’s multi-decoder approach.

5 CONCLUSION

We introduced the novel approach PolyNet, which is capable of learning diverse solution strategies
using a single-decoder model. PolyNet deviates from the prevailing trend in neural construction
methods, in which diverse first construction steps are forced to improve exploration. Instead, it re-
lies on its diverse strategies for exploration, enabling its seamless adaptation to problems where the
first move significantly impacts solution quality. In our comprehensive evaluation across three prob-
lems, including the more challenging CVRPTW, PolyNet consistently demonstrates performance
improvements over all other learning-based methods, particularly those focused on diversity.

Regarding our approach’s limitations, we acknowledge that the computational complexity of the at-
tention mechanism we employ restricts its applicability to instances with more than 1,000 nodes.
However, it is essential to emphasize that the problem sizes examined in this paper for the
CVRP(TW) remain challenging for traditional CO solvers and are highly significant in real-world
applications. Furthermore, we note that the black-box nature of the PolyNet’s decision-making may
be unacceptable in certain decision contexts.

9

Under review as a conference paper at ICLR 2024

REFERENCES

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde TSP solver, 2006.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural Combinatorial
Optimization with Reinforcement Learning. ArXiv, abs/1611.0, 2016.

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre Fréchette,
Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, et al. ASlib: A benchmark
library for algorithm selection. Artificial Intelligence, 237:41–58, 2016.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
Grammar and Reinforcement Learning for Neural Program Synthesis. ICLR, 2018.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. In Advances in Neural Information Processing Systems, pp. 6278–6289, 2019.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:8760–8772, 2022.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-
NCO: Bisimulation Quotienting for Generalizable Neural Combinatorial Optimization. ArXiv,
abs/2301.03313, 2023.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is All You Need:
Learning Skills without a Reward Function. ArXiv, abs/1802.06070, 2018.

Jonas K Falkner and Lars Schmidt-Thieme. Learning to Solve Vehicle Routing Problems with Time
Windows through Joint Attention. arXiv preprint arXiv:2006.09100, 2020.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence notions and model minimization
in Markov decision processes. Artif. Intell., 147:163–223, 2003.

Nathan Grinsztajn, Daniel Furelos-Blanco, and Thomas D Barrett. Population-Based Reinforcement
Learning for Combinatorial Optimization. arXiv preprint arXiv:2210.03475, 2022.

Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman heuristic.
European Journal of Operational Research, 126:106–130, 2000.

Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

André Hottung and Kevin Tierney. Neural Large Neighborhood Search for the Capacitated Vehicle
Routing Problem. In European Conference on Artificial Intelligence, pp. 443–450, 2020.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a Latent Search Space for Routing
Problems using Variational Autoencoders. In International Conference on Learning Representa-
tions, 2021.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient Active Search for Combinatorial
Optimization Problems. International Conference on Learning Representations, 2022.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem.
arXiv preprint arXiv:2304.09407, 2023.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An Efficient Graph Convolutional Net-
work Technique for the Travelling Salesman Problem. arXiv preprint arXiv:1906.01227, 2019.

10

Under review as a conference paper at ICLR 2024

Minsu Kim, Jinkyoo Park, and Joungho Kim. Learning Collaborative Policies to Solve NP-hard
Routing Problems. In Neural Information Processing Systems, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging Symmetricity for Neural
Combinatorial Optimization. In NeurIPS, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! In
International Conference on Learning Representations, 2019.

Wouter Kool, Laurens Bliek, Danilo Numeroso, Yingqian Zhang, Tom Catshoek, Kevin Tierney,
Thibaut Vidal, and Joaquim Gromicho. The EURO Meets NeurIPS 2022 Vehicle Routing Com-
petition. In Proceedings of the NeurIPS 2022 Competitions Track, 2022a.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep Policy Dynamic Pro-
gramming for Vehicle Routing Problems. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, 2022b.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Chenghao Li, Chengjie Wu, Tonghan Wang, Jun Yang, Qianchuan Zhao, and Chongjie Zhang. Cel-
ebrating Diversity in Shared Multi-Agent Reinforcement Learning. In Neural Information Pro-
cessing Systems, 2021.

Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, and Yeow Meng Chee.
Learning feature embedding refiner for solving vehicle routing problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer. In
Neural Information Processing Systems, 2021.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pp. 9839–9849, 2018.

Thomas PIERROT and Arthur Flajolet. Evolving Populations of Diverse RL Agents with MAP-
Elites. In ICLR, 2023.

Christian Prins. Two memetic algorithms for heterogeneous fleet vehicle routing problems. Engi-
neering Applications of Artificial Intelligence, 22(6):916–928, 2009.

Eduardo Queiroga, Ruslan Sadykov, Eduardo Uchoa, and Thibaut Vidal. 10,000 optimal CVRP so-
lutions for testing machine learning based heuristics. In AAAI-22 Workshop on Machine Learning
for Operations Research (ML4OR), 2021.

Archit Sharma, Shixiang Shane Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
Aware Unsupervised Discovery of Skills. ArXiv, abs/1907.01657, 2019.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254–265, 1987.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Thibaut Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP*
Neighborhood. Computers & Operations Research, 140:105643, 2022.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A Hybrid
Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems. Operations Research,
60(3):611–624, 2012.

11

Under review as a conference paper at ICLR 2024

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In C Cortes, N D Lawrence,
D D Lee, M Sugiyama, and R Garnett (eds.), Advances in Neural Information Processing Systems
28, pp. 2692–2700. Curran Associates, Inc., 2015.

Niels Wouda, Leon Lan, and Wouter Kool. PyVRP Solver (Version 0.5.0), 2023. URL https:
//github.com/PyVRP/PyVRP.

Shuang Wu, Jian Yao, Haobo Fu, Ye Tian, Chao Qian, Yaodong Yang, QIANG FU, and Yang
Wei. Quality-Similar Diversity via Population Based Reinforcement Learning. In The Eleventh
International Conference on Learning Representations, 2023.

Yubin Xiao, Di Wang, Huanhuan Chen, Boyang Li, Wei Pang, Xuan Wu, Hao Li, Dong Xu, Yanchun
Liang, and You Zhou. Reinforcement learning-based non-autoregressive solver for traveling sales-
man problems. arXiv preprint arXiv:2308.00560, 2023.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Yunbo Zhang, Wenhao Yu, and Greg Turk. Learning Novel Policies For Tasks. ArXiv,
abs/1905.05252, 2019.

12

https://github.com/PyVRP/PyVRP
https://github.com/PyVRP/PyVRP

Under review as a conference paper at ICLR 2024

A ADDITIONAL SOLUTION DIVERSITY VS. COSTS PLOTS

We provide additional plots that show the diversity and costs of solutions sampled with PolyNet and
POMO for the TSP, CVRP, and CVRPTW in Figures 5-7. For each problem we report results for
the first 6 test set instances. The results further reinforce the notion that PolyNet generates solutions
with higher diversity and lower costs than POMO.

7.5 8.0 8.5 9.0

Cost

2

4

6

S
ol

u
ti

o
n

U
n

iq
u

en
es

s

POMO PolyNet

(a) Instance 1

8.5 9.0 9.5 10.0

Cost

2

4

6

8

S
o
lu

ti
o
n

U
n

iq
u

en
es

s

POMO PolyNet

(b) Instance 2

8.0 8.5 9.0 9.5

Cost

2

4

6

8

S
ol

u
ti

o
n

U
n

iq
u

en
es

s

POMO PolyNet

(c) Instance 3

8 9 10 11 12

Cost

2

4

6

8

10

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(d) Instance 4

9 10 11

Cost

2

4

6

8

10

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(e) Instance 5

7.6 7.8 8.0 8.2 8.4

Cost

1

2

3

4

5

6

S
o
lu

ti
o
n

U
n

iq
u

en
es

s

POMO PolyNet

(f) Instance 6

Figure 5: Solution diversity vs. costs for the TSP.

13

Under review as a conference paper at ICLR 2024

14.8 15.0 15.2 15.4 15.6

Cost

16

18

20

22

24
S

ol
u

ti
o
n

U
n

iq
u

en
es

s

POMO PolyNet

(a) Instance 1

14.5 15.0 15.5

Cost

16

18

20

22

S
ol

u
ti

o
n

U
n

iq
u

en
es

s

POMO PolyNet

(b) Instance 2

14.8 15.0 15.2 15.4 15.6

Cost

14

16

18

20

S
ol

u
ti

o
n

U
n

iq
u

en
es

s

POMO PolyNet

(c) Instance 3

15.4 15.6 15.8 16.0 16.2 16.4

Cost

16

18

20

22

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(d) Instance 4

19.0 19.5 20.0 20.5

Cost

12

14

16

18

20

22

24

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(e) Instance 5

13.75 14.00 14.25 14.50

Cost

10

12

14

16

18

20

22

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(f) Instance 6

Figure 6: Solution diversity vs. costs for the CVRP

16000 17000 18000 19000

Cost

14

16

18

20

22

24

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(a) Instance 1

12500 13000 13500 14000 14500

Cost

15.0

17.5

20.0

22.5

25.0

27.5

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(b) Instance 2

13500 14000 14500

Cost

12

14

16

18

20

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(c) Instance 3

9750 10000 10250 10500 10750

Cost

18

20

22

24

26

S
o
lu

ti
o
n

U
n

iq
u

en
es

s

POMO PolyNet

(d) Instance 4

15000 15500 16000 16500

Cost

16

18

20

22

24

S
o
lu

ti
o
n

U
n

iq
u

en
es

s

POMO PolyNet

(e) Instance 5

11000 11500 12000 12500

Cost

12

14

16

18

20

22

24

S
o
lu

ti
o
n

U
n

iq
u

en
es

s

POMO PolyNet

(f) Instance 6

Figure 7: Solution diversity vs. costs for the CVRPTW

14

Under review as a conference paper at ICLR 2024

B SEARCH TRAJECTORY ANALYSIS

In Figure 8 we show the search trajectories for models trained with varying values of K across all
three problems featuring 100 nodes. The search process employs solution sampling without EAS
and without the use of instance augmentations. These models used for the search have undergone
training for 150 epochs (except for the CVRP, where the training spanned 200 epochs).

It is evident across all three problems that the search does not achieve full convergence within
10,000 iterations. This observation once again underscores PolyNet’s capability to discover diverse
solutions, enabling it to yield improved results with extended search budgets. It’s important to
note that this experiment, including model training, has not been replicated with multiple seeds.
Nevertheless, the results suggest that models trained with larger K values benefit more from longer
search budgets compared to models trained with smaller values.

0 2500 5000 7500 10000

Search Progress (in Sampled Solutions)

7.7655

7.7660

7.7665

C
os

t

TSP

0 2500 5000 7500 10000

Search Progress (in Sampled Solutions)

15.67

15.68

15.69

CVRP

0 2500 5000 7500 10000

Search Progress (in Sampled Solutions)

12900

12940

12980

CVRPTW

K

32

64

128

Figure 8: Search trajectories.

C CVRPTW INSTANCE GENERATION

We generate instances for the CVRPTW with the goal of including real-world structures. To achieve
this, we employ a two-step approach. First, we use the CVRP instance generator developed by
Queiroga et al. (2021) to produce the positions and demands of customers. Subsequently, we follow
the methodology outlined by Solomon (1987) to create the time windows. We generate different
instance sets for training, validation, and testing.

Customer positions are generated using the clustered setting (configuration 2) and customer de-
mands are based on the small, large variance setting (configuration 2). The depot is always centered
(configuration 2). It is worth noting that the instance generator samples customer positions within
the 2D space defined by [0, 999]2. Independently from the instance generator, vehicle capacities are
set at 50 for instances involving fewer than 200 customers and increased to 70 for instances with
200 or more customers.

To generate the time windows, we adhere to the procedure outlined by Solomon (1987) for instances
with randomly clustered customers (i.e., we do not utilize the 3-opt technique to create reference
routes). We randomly generate time windows (ei, li) for all customers, and set 2400 as the latest
possible time for a vehicle to return to the depot. The time window generation process, as described
in Solomon (1987), limits the time windows to ensure feasibility (e.g., by selecting li so that there is
always sufficient time for servicing the customer and returning to the depot). The center of the time
window is uniformly sampled from range defined by these limits. We set the maximum width of the
time window to 500 and the service duration to 50. These parameter values have been deliberately
chosen to strike a balance between the constraints of vehicle capacity and time windows, requiring
both aspects to be considered during the solution generation process.

15

	Introduction
	Literature review
	PolyNet
	Background
	Overview
	Training
	Network architecture
	Search

	Experiments
	Problems
	Training
	Search performance
	Search diversity
	Ablation study: Forcing the first move

	Conclusion
	Additional solution diversity vs. costs plots
	Search trajectory analysis
	CVRPTW instance generation

