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Abstract
In this work, we describe a generic approach
to show convergence with high probability for
both stochastic convex and non-convex optimiza-
tion with sub-Gaussian noise. In previous works
for convex optimization, either the convergence
is only in expectation or the bound depends on
the diameter of the domain. Instead, we show
high probability convergence with bounds de-
pending on the initial distance to the optimal
solution. The algorithms use step sizes analo-
gous to the standard settings and are universal
to Lipschitz functions, smooth functions, and
their linear combinations. The method can be
applied to the non-convex case. We demonstrate
anO((1+σ2 log(1/δ))/T+σ/

√
T ) convergence

rate when the number of iterations T is known
and an O((1 + σ2 log(T/δ))/

√
T ) convergence

rate when T is unknown for SGD, where 1− δ is
the desired success probability. These bounds im-
prove over existing bounds in the literature. We
also revisit AdaGrad-Norm (Ward et al., 2019)
and show a new analysis to obtain a high prob-
ability bound that does not require the bounded
gradient assumption made in previous works. The
full version of our paper contains results for the
standard per-coordinate AdaGrad.

1. Introduction
Stochastic optimization is a fundamental area with extensive
applications in many domains, ranging from machine learn-
ing to algorithm design and beyond. The design and analysis
of iterative methods for stochastic optimization has been the
focus of a long line of work, leading to a rich understanding
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of the convergence of paradigmatic iterative methods such
as stochastic gradient descent, mirror descent, and acceler-
ated methods for both convex and non-convex optimization.
However, most of these works only establish convergence
guarantees that hold only in expectation. Although very
meaningful, these results do not fully capture the conver-
gence behaviors of the algorithms when we perform only
a small number of runs of the algorithm, as it is typical in
modern machine learning applications where there are sig-
nificant computational and statistical costs associated with
performing multiple runs of the algorithm (Harvey et al.,
2019; Madden et al., 2020; Davis et al., 2021). Thus an im-
portant direction is to establish convergence guarantees for a
single run of the algorithm that hold not only in expectation
but also with high probability.

Compared to the guarantees that hold in expectation, high
probability guarantees are significantly harder to obtain and
they hold in more limited settings with stronger assumptions
on the problem settings and the stochastic noise distribution.
Most existing works that establish high probability guaran-
tees focus on the setting where the length of the stochastic
noise follows a light-tail (sub-Gaussian) distribution (Ju-
ditsky et al., 2011; Lan, 2012; 2020; Li & Orabona, 2020;
Madden et al., 2020; Kavis et al., 2021). Recent works also
study the more challenging heavy-tail setting, notably under
a bounded variance (Nazin et al., 2019; Gorbunov et al.,
2020; Cutkosky & Mehta, 2021) or bounded p-moment as-
sumption (Cutkosky & Mehta, 2021) on the length of the
stochastic noise. Both settings are highly relevant in practice
(Zhang et al., 2020).

Despite this important progress, the convergence of cor-
nerstone methods is not fully understood even in the more
structured light-tailed noise setting. Specifically, the exist-
ing works for both convex and non-convex optimization
with light-tailed noise rely on strong assumptions on the op-
timization domain and the gradients that significantly limit
their applicability:

The problem domain is restricted to either the unconstrained
domain or a constrained domain with bounded Bregman
diameter. The convergence guarantees established depend
on the Bregman diameter of the domain instead of the initial
distance to the optimum. Even for compact domains, since
the diameter can be much larger than the initial distance,
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these guarantees are pessimistic and diminish the benefits of
good initializations. Thus an important direction remains to
establish high probability guarantees for general optimiza-
tion that scale only with the initial Bregman distance.

The gradients or stochastic gradients are assumed to be
bounded even in the smooth setting. These additional as-
sumptions are very restrictive and they significantly limit
the applicability of the algorithm, e.g., they do not apply to
important settings such as quadratic optimization. Moreover,
the stochastic gradient assumption is more restrictive than
other commonly studied assumptions, such as the gradients
and the stochastic noise being bounded almost surely.

The above assumptions are not merely a technical artifact,
and they stem from very important considerations. The
high probability convergence guarantees are established
via martingale concentration inequalities that impose nec-
essary conditions on how much the martingale sequence
can change in each step. However, the natural martingale
sequences that arise in optimization depend on quantities
such as the distance between the iterates and the optimum
and the stochastic gradients, which are not a priori bounded.
The aforementioned assumptions ensure that the concentra-
tion inequalities can be readily applied due to the relevant
stochastic terms being all bounded almost surely. These
difficulties are even more pronounced for the analysis of
adaptive algorithms in the AdaGrad family that set the step
sizes based on the stochastic gradients. The adaptive step
sizes introduce correlations between the step sizes and the
update directions, and a crucial component is the analysis of
the evolution of the adaptive step sizes and the cumulative
stochastic noise. If the gradients are bounded, both of these
challenges can be overcome by paying error terms propor-
tional to the lengths of the gradients and stochastic gradients.
Removing the bounded gradient assumptions requires new
technical insights and tools.

In addition to requiring stronger assumptions, due to the
technical challenges involved, several of the prior works are
only able to establish convergence guarantees that do not
match the ideal sub-Gaussian rates. For example, a com-
mon approach is to control the relevant quantities across all
T iterations of the algorithm via repeated applications of
the concentration inequalities, leading to convergence rates
that have additional factors that are poly-logarithmic in T .
Additionally, achieving noise-adaptive rates that smoothly
interpolate between the faster rate in the deterministic set-
ting and the state of the art rate in the stochastic setting is
very challenging with existing techniques.

This work aims to contribute to this line of work and over-
come the aforementioned challenges. To this end, we intro-
duce a novel generic approach to show convergence with
high probability under sub-Gaussian gradient noise. Our ap-
proach is very general and flexible, and it can be used both

in the convex and non-convex setting. Using our approach,
we establish high-probability convergence guarantees for
several fundamental settings:

In the convex setting, we analyze stochastic mirror descent
and stochastic accelerated mirror descent for general opti-
mization domains and Bregman distances, and we analyze
the classical algorithms without any changes. These well
studied algorithms encompass the main algorithmic frame-
works for convex optimization with non-adaptive step sizes
(Lan, 2020). Our convergence guarantees scale with only
the Bregman distance between the initial point and the opti-
mum, and thus they can leverage good initializations. Our
high-probability convergence rates are analogous to known
results for convergence in expectation (Juditsky et al., 2011;
Lan, 2012). The algorithms are universal for both Lipschitz
functions and smooth functions.

In the non-convex setting, we analyze the SGD as well as the
AdaGrad-Norm algorithm (Ward et al., 2019). Compared to
existing works for SGD (Madden et al., 2020; Li & Orabona,
2020), our rates have better dependency on the time hori-
zon and the success probability. For AdaGrad-Norm, our
approach allows us to remove the restrictive assumption on
the gradients as made in previous work (Kavis et al., 2021).
In the full version of our paper1, using a slightly different
technique, we give a high probability convergence of the
standard per-coordinate AdaGrad (Duchi et al., 2011). To
the best of our knowledge, this is the first result for high
probability convergence of AdaGrad.

1.1. Our techniques

Compared to prior works that rely on black-box applications
of martingale concentration inequalities such as Freedman’s
inequality and its extensions (Harvey et al., 2019; Mad-
den et al., 2020), in this work we introduce a “white-box”
concentration argument that leverages existing convergence
analyses for first-order methods. More precisely, the high-
level approach is to define a novel martingale sequence
derived from the standard convergence analyses and derive
concentration results for this sequence from first principles.
By leveraging the structure of the optimization problem,
we are able to overcome the aforementioned key difficul-
ties associated with black-box applications of martingale
concentration results: these concentration results require
certain important conditions on how much the martingale
sequence can change, which are generally not a priori sat-
isfied for the natural martingales that arise in optimization.
By seamlessly combining the optimization and probability
toolkits, we obtain a flexible analysis template that allows
us to handle general optimization domains with very large
or even unbounded diameter, general objectives that are not
globally Lipschitz, and adaptive step sizes.

1Available at https://arxiv.org/abs/2302.14843
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Our technique is inspired by classical works in concen-
tration inequalities, specifically a type of martingale in-
equalities where the variance of the martingale difference
is bounded by a linear function of the previous value. This
technique is first applied to showing high probability con-
vergence by Harvey et al. (2019) in the strongly convex
setting. Our proof is inspired by the proof of Theorem 7.3
by Chung & Lu (2006). In each time step with iterate xt,
let ξt := ∇̂f (xt) − ∇f (xt) be the error in our gradient
estimate. Classical proofs of convergence evolve around
analyzing the sum of 〈ξt, x∗ − xt〉, which can be viewed as
a martingale sequence. Assuming a bounded domain, the
concentration of the sum can be shown via classical mar-
tingale inequalities. The key new insight is that instead of
analyzing this sum, we analyze a related sum where the co-
efficients decrease over time to account for the fact that we
have a looser grip on the distance to the optimal solution as
time increases. Nonetheless, the coefficients are kept within
a constant factor of each other and the same asymptotic
convergence is attained with high probability.

1.2. Related work

Convex optimization: Nemirovski et al. (2009); Lan (2012)
establish high probability bounds for stochastic mirror de-
scent and accelerated stochastic mirror descent with sub-
Gaussian noise. The rates shown in these works match the
best rates known in expectation, but they depend on the Breg-
man diameter maxx,y∈X Dψ (x, y) of the domain, which
can be unbounded. Our work complements the analysis with
a novel concentration argument that allows us to establish
convergence with respect to the distance Dψ (x∗, x1) from
the initial point. Our analysis applies to the general setting
considered in (Lan, 2020) and we use the same sub-Gaussian
assumption on the noise.

The works by Nazin et al. (2019); Gorbunov et al. (2020)
and Parletta et al. (2022) consider the more general set-
ting of bounded variance noise. However, their problem
settings are more restricted than ours. Specifically, Nazin
et al. (2019) analyze stochastic mirror descent only in the
setting where the optimization domain has bounded Breg-
man diameter. Parletta et al. (2022) analyze modifications
of stochastic gradient descent, but only for problems with
bounded domains. The work by Gorbunov et al. (2020) for
smooth functions and by Gorbunov et al. (2021) for non-
smooth functions, analyze stochastic gradient descent and
accelerated stochastic gradient descent with gradient clip-
ping, for unconstrained optimization with the `2 setup. In
contrast, our work addresses the sub-Gaussian noise setting
but it applies to general optimization, and we analyze the
classical stochastic mirror descent and accelerated mirror de-
scent without any modifications and with general Bregman
distances and optimization domains.

The algorithm of Davis et al. (2021) is restricted to well-
conditioned objectives that are both smooth and strongly
convex, and do not apply to general convex optimization.
Additionally, compared to classical methods such as SGD
and stochastic mirror descent, the proposed algorithm solves
an auxiliary optimization problem in each iteration and is
thus more computationally expensive. The high-probability
convergence of SGD is studied in Kakade & Tewari (2008);
Rakhlin et al. (2011); Hazan & Kale (2014); Harvey et al.
(2019); Dvurechensky & Gasnikov (2016). These works
either assume that the function is strongly convex or the
domain is compact. In contrast, our work applies to non-
strongly convex optimization with a general domain.

Non-convex optimization: Li & Orabona (2020) demon-
strate a high probability bound for an SGD algorithm with
momentum while Madden et al. (2020) and Li & Liu (2022)
show for the vanilla SGD and generalize to the family of
sub-Weibull noise. However, the existing bounds are not op-
timal, which we improve in our work, using a very different
approach. Convergence in high probability of algorithms
with adaptive step sizes for non-convex problems has also
been studied, for example, by Li & Orabona (2020); Kavis
et al. (2021). We note that the algorithm in (Li & Orabona,
2020) is not fully adaptive due to the dependence of the ini-
tial step size on the problem parameters, whereas in (Kavis
et al., 2021) the gradients or stochastic gradients are required
to be uniformly bounded almost surely. Using techniques
from Liu et al. (2022) and extending the argument for SGD
in Section 4.1, we are able to establish convergence in high
probability of the vanilla version of AdaGrad-Norm (Ward
et al., 2019; Faw et al., 2022) without any of these additional
assumptions. We provide a more detailed comparison with
prior work in the subsequent sections.

High probability convergence in the heavy-tail noise regime
has also been studied. However, instead of analyzing exist-
ing algorithms, most works propose new algorithms which
usually require gradient clipping to ensure convergence.
Zhang et al. (2020) propose a gradient clipping algorithm
that converges in expectation for noise distributions with
heavier tails that satisfy the assumption that the p-moments
are bounded for 1 < p ≤ 2. Cutkosky & Mehta (2021)
propose a more complex clipped SGD algorithm with mo-
mentum under the same noise assumption, for which they
show a high probability convergence. In another line of
works, Zhang & Cutkosky (2022) consider parameter-free
algorithms that adapt to the initial distance in the heavy tail
regime. In contrast, we focus here on vanilla algorithms that
have been successfully employed, including stochastic mir-
ror descent, stochastic gradient descent and AdaGrad-Norm
with sub-Gaussian noise, and fill in the missing pieces in the
literature. We believe our techniques are general and they
may lead to further progress in the heavy tailed setting, and
we leave this direction to future work.
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2. Preliminaries
We consider the problem minx∈X f(x) where f : Rd → R
is the objective function and X is the domain of the problem.
In the convex case, we consider the general setting where
f is potentially not strongly convex and the domain X is
convex but not necessarily compact. The distance between
solutions in X is measured by a general norm ‖·‖. Let ‖·‖∗
denote the dual norm of ‖·‖. In the non-convex case, we
consider the setting where X is Rd and ‖·‖ is the `2 norm.

In this paper, we use the following assumptions:

(1) Existence of a minimizer: There exists x∗ =
arg minx∈X f(x).

(2) Unbiased estimator: We assume to have access to a
history independent, unbiased gradient estimator ∇̂f(x) for
any x ∈ X , that is, E

[
∇̂f(x) | x

]
= ∇f(x).

(3) Sub-Gaussian noise:
∥∥∥∇̂f(x)−∇f(x)

∥∥∥
∗

is a σ-sub-
Gaussian random variable (Definition 2.1).

There are several equivalent definitions of sub-Gaussian ran-
dom variables up to an absolute constant scaling (see, e.g.,
Proposition 2.5.2 in (Vershynin, 2018)). For convenience,
we use the following property as the definition.

Definition 2.1. A random variable X is σ-sub-Gaussian if

E
[
exp

(
λ2X2

)]
≤ exp

(
λ2σ2

)
∀λ such that |λ| ≤ 1

σ
.

We will also use the following helper lemma whose proof
we defer to the Appendix.

Lemma 2.2. For any a ≥ 0, 0 ≤ b ≤ 1
2σ and an σ-sub-

Gaussian random variable X ,

E
[
1 + b2X2 +

∞∑
i=2

(aX + b2X2)i

i!

]
≤ exp

(
3
(
a2 + b2

)
σ2
)
.

When b = 0, the upper bound improves to exp
(
2a2σ2

)
.

3. Convex case: Stochastic Mirror Descent and
Accelerated Stochastic Mirror Descent

In this section, we analyze the Stochastic Mirror Descent
algorithm (Algorithm 1) and Accelerated Stochastic Mirror
Descent algorithm (Algorithm 2) for convex optimization.
We define the Bregman divergence Dψ (x, y) = ψ (x) −
ψ (y)−〈∇ψ (y) , x− y〉 where ψ : Rd → R is a 1-strongly
convex mirror map with respect to ‖·‖ on X . We remark
that the domain of ψ is defined as Rd for simplicity, though
it is not necessary.

Algorithm 1 Stochastic Mirror Descent Algorithm
Parameters: initial point x1 ∈ X , step sizes {ηt}, strongly
convex mirror map ψ
for t = 1 to T :
xt+1 = arg minx∈X

{
ηt

〈
∇̂f (xt) , x

〉
+ Dψ (x, xt)

}
return 1

T

∑T
t=1 xt

3.1. Analysis of Stochastic Mirror Descent

The end result of this section is the convergence guaran-
tee of Algorithm 1 for constant step sizes (when the time
horizon T is known) and time-varying step sizes (when
T is unknown) presented in Theorem 3.1. However, we
will emphasize presenting the core idea of our approach,
which will serve as the basis for the analysis in subsequent
sections. For simplicity, here we consider the non-smooth
setting, and assume that f is G-Lipschitz continuous, i.e.,
we have ‖∇f(x)‖∗ ≤ G for all x ∈ X . However, this is
not necessary. The analysis for the smooth setting follows
via a simple modification to the analysis presented here as
well as the analysis for the accelerated setting given in the
next section.

Theorem 3.1. Assume f is G-Lipschitz continuous and
satisfies Assumptions (1), (2), (3), with probability at least
1 − δ, the iterate sequence (xt)t≥1 output by Algorithm 1
satisfies

(1) Setting ηt =

√
Dψ(x∗,x1)

6(G2+σ2(1+log( 1
δ )))T

, then

Dψ (x∗, xT+1) ≤ 4Dψ (x∗, x1), and

1

T

T∑
t=1

(f (xt)− f (x∗))

≤4
√

6√
T

√
Dψ (x∗, x1)

(
G2 + σ2

(
1 + log

(
1

δ

)))
,

(2) Setting ηt =

√
Dψ(x∗,x1)

6(G2+σ2(1+log( 1
δ )))t

, then

Dψ (x∗, xT+1) ≤ 2(2 + log T )Dψ (x∗, x1), and

1

T

T∑
t=1

(f (xt)− f (x∗)) ≤ 2
√

6√
T

(2 + log T )

×

√
Dψ (x∗, x1)

(
G2 + σ2

(
1 + log

(
1

δ

)))
.

We define ξt := ∇̂f (xt) − ∇f (xt) and let Ft =
σ (ξ1, . . . , ξt−1) denote the natural filtration. Note that xt is
Ft-measurable. The starting point of our analysis is the fol-
lowing inequality that follows from the standard stochastic
mirror descent analysis (see, e.g., (Lan, 2020)). We include
the proof in the Appendix for completeness.
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Lemma 3.2. (Lan, 2020) For every iteration t, we have

At := ηt (f (xt)− f (x∗))− η2
tG

2

+ Dψ (x∗, xt+1)−Dψ (x∗, xt)

≤ ηt 〈ξt, x∗ − xt〉+ η2
t ‖ξt‖

2
∗ .

We now turn our attention to our main concentration argu-
ment. Towards our goal of obtaining a high-probability con-
vergence rate, we analyze the moment generating function
for a random variable that is closely related to the left-hand
side of the inequality above. We let {wt} be a sequence
where wt ≥ 0 for all t. We define

Zt = wtAt − vtDψ (x∗, xt) , ∀ 1 ≤ t ≤ T,
where vt = 6σ2η2

tw
2
t ,

and St =

T∑
i=t

Zi, ∀ 1 ≤ t ≤ T + 1.

Before proceeding with the analysis, we provide intuition
for our approach. If we consider S1, we see that it com-
bines the gains in function value gaps with weights given
by the sequence {wt} and the losses given by the Bregman
divergence terms Dψ (x∗, xt) with coefficients vt chosen
based on the step size ηt and wt. The intuition here is that
we want to transfer the error from the stochastic error terms
on the RHS of Lemma 3.2 into the loss term vtDψ (x∗, xt)
then leverage the progression of the Bregman divergence
Dψ (x∗, xt+1) − Dψ (x∗, xt) to absorb this loss. For the
first step, we can do that by setting the coefficient vt to equal-
ize coefficient of divergence term that will appear from the
RHS of Lemma 3.2. For the second step, we can aim at
making all the divergence terms telescope, by selecting vt
and wt such that wt + vt ≤ wt−1 to have a telescoping sum
of the terms wtDψ (x∗, xt+1) − wt−1Dψ (x∗, xt). In the
end we will obtain a bound for the function value gaps in
terms of only the deterministic quantities, namely ηt, wt, G
and the initial distance. In Theorem 3.3, we upper bound
the moment generating function of S1 and derive a set of
conditions for the weights {wt} that allow us to absorb the
stochastic errors. In Corollary 3.4, we show how to choose
the weights {wt} and obtain a convergence rate that matches
the standard rates that hold in expectation.

We now give our main concentration argument that bounds
the moment generating function of St inspired by the proof
of Theorem 7.3 in (Chung & Lu, 2006).
Theorem 3.3. Suppose that wtη2

t ≤ 1
4σ2 for every 1 ≤ t ≤

T . For every 1 ≤ t ≤ T + 1, we have

E [exp (St) | Ft] ≤ exp

(
3σ2

T∑
i=t

wiη
2
i

)
.

Proof. We proceed by induction on t. Consider the base
case t = T + 1. We have the inequality holds true trivially.

Next, we consider 1 ≤ t ≤ T . We have

E [exp (St) | Ft] = E [exp (Zt + St+1) | Ft]
= E [E [exp (Zt + St+1) | Ft+1] | Ft] . (1)

We now analyze the inner expectation. Conditioned on
Ft+1, Zt is fixed. Using the inductive hypothesis, we obtain

E [exp (Zt + St+1) | Ft+1]

≤ exp (Zt) exp

(
3σ2

T∑
i=t+1

wiη
2
i

)
. (2)

Plugging into (1), we obtain

E [exp (St) | Ft]

≤ E [exp (Zt) | Ft] exp

(
3σ2

T∑
i=t+1

wiη
2
i

)
. (3)

By Lemma 3.2

exp (Zt) = exp

(
wt
(
ηt (f (xt)− f (x∗))− η2

tG
2

+ Dψ (x∗, xt+1)−Dψ (x∗, xt)
)
− vtDψ (x∗, xt)

)
≤ exp

(
wtηt 〈ξt, x∗ − xt〉+ wtη

2
t ‖ξt‖

2
∗

)
× exp (−vtDψ (x∗, xt)) .

Next, we analyze the first term in the last line of the above
inequality in expectation. Let Xt = 〈ξt, x∗ − xt〉. Using
Taylor expansion of ex, and that E [Xt | Ft] = 0, we have

E
[
exp

(
wtXt + wtη

2
t ‖ξt‖

2
∗

)
| Ft

]
=E

[
1 + wtη

2
t ‖ξt‖

2
∗

+

∞∑
i=2

1

i!

(
wtXt + wtη

2
t ‖ξt‖

2
∗

)i
| Ft

]
(a)

≤E

[
1 + wtη

2
t ‖ξt‖

2
∗

+

∞∑
i=2

1

i!

(
wtηt ‖x∗ − xt‖ ‖ξt‖∗ + wtη

2
t ‖ξt‖

2
∗

)i
| Ft

]
(b)

≤ exp
(

3σ2
(
w2
t η

2
t ‖x∗ − xt‖

2
+ wtη

2
t

))
(c)

≤ exp
(
3σ2

(
2w2

t η
2
tDψ (x∗, xt) + wtη

2
t

))
. (4)

For (a), we use Cauchy-Schwartz and obtain Xt =
ηt 〈ξt, x∗ − xt〉 ≤ ηt ‖ξt‖∗ ‖x∗ − xt‖. For (b), we apply
Lemma 2.2 with X = ‖ξt‖∗, a = wtηt ‖x∗ − xt‖, and
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b2 = wtη
2
t ≤ 1

4σ2 . For (c), we use that Dψ (x∗, xt) ≥
1
2 ‖x

∗ − xt‖2 from the strong convexity of ψ.

Plugging back into (3) and using that vt = 6σ2η2
tw

2
t , we

obtain the desired inequality

E [exp (St) | Ft]

≤ exp

((
6σ2η2

tw
2
t − vt

)
Dψ (x∗, xt) + 3σ2

T∑
i=t

wiη
2
i

)

= exp

(
3σ2

T∑
i=t

wiη
2
i

)
.

Using Markov’s inequality, we obtain the following conver-
gence guarantee.
Corollary 3.4. Suppose the sequence {wt} satisfies the
conditions of Theorem 3.3 and that wt + 6σ2η2

tw
2
t ≤ wt−1.

For any δ > 0, with probability at least 1− δ:

T∑
t=1

wtηt (f (xt)− f (x∗)) + wTDψ (x∗, xT+1)

≤ w0Dψ (x∗, x1) +
(
G2 + 3σ2

) T∑
t=1

wtη
2
t + log

(
1

δ

)
.

With the above result in hand, we complete the convergence
analysis by showing how to define the sequence {wt} with
the desired properties. Below we give the choice of ηt and
wt for fixed step sizes. The choice for time-varying step
sizes can be found in Corollary B.1 in the appendix.
Corollary 3.5. Suppose we run the Stochastic Mirror De-
scent algorithm with fixed step sizes ηt = η√

T
. Let wT =

1
12σ2η2 and wt−1 = wt + 6

T σ
2η2w2

t for all 1 ≤ t ≤ T . The
sequence {wt} satisfies the conditions required by Corollary
3.4. By Corollary 3.4, for any δ > 0, the following events
hold with probability at least 1 − δ: Dψ (x∗, xT+1) ≤
2Dψ (x∗, x1) + 12

(
G2 + σ2

(
1 + log

(
1
δ

)))
η2, and

1

T

T∑
t=1

(f (xt)− f (x∗)) ≤ 1√
T

2Dψ (x∗, x1)

η

+
12√
T

(
G2 + σ2

(
1 + log

(
1

δ

)))
η.

In particular, setting ηt =

√
Dψ(x∗,x1)

6(G2+σ2(1+log( 1
δ )))T

we ob-

tain the first case of Theorem 3.1.

Proof. Recall from Corollary 3.4 that the sequence {wt}
needs to satisfy the following conditions for all 1 ≤ t ≤ T :

wt + 6σ2η2
tw

2
t ≤ wt−1; and wtη

2
t ≤

1

4σ2
.

Algorithm 2 Accelerated Stochastic Mirror Descent Algo-
rithm (Lan, 2020).
Parameters: initial point x0 = y0 = z0 ∈ X , step size η,
strongly convex mirror map ψ
for t = 1 to T :

Set αt = 2
t+1

xt = (1− αt) yt−1 + αtzt−1

zt = arg minx∈X

(
ηt

〈
∇̂f(xt), x

〉
+ Dψ (x, zt−1)

)
yt = (1− αt) yt−1 + αtzt

return yT

Let C = 6σ2η2. We set wT = 1
C+6σ2η2 = 1

2C . For
1 ≤ t ≤ T , we set wt so that the first condition holds with
equality

wt−1 = wt + 6σ2w2
t η

2
t = wt +

6

T
σ2η2w2

t .

We can show by induction that, for every 1 ≤ t ≤ T ,

wt ≤
1

C + 6
T σ

2η2t
.

The base case t = T follows from the definition of wT .
Consider 1 ≤ t ≤ T . Using the definition of wt−1 and the
inductive hypothesis, we obtain

wt−1 = wt +
6

T
σ2η2w2

t

≤ 1

C + 6
T σ

2η2t
+

6σ2η2

T
(
C + 6

T σ
2η2t

)2
≤ 1

C + 6
T σ

2η2t

+

(
C + 6

T σ
2η2t

)
−
(
C + 6

T σ
2η2(t− 1)

)(
C + 6

T σ
2η2 (t− 1)

) (
C + 6

T σ
2η2t

)
=

1

C + 6
T σ

2η2 (t− 1)

as needed. This fact implies the second condition as follows:

wtη
2
t = wt

η2

T
≤ η2

6σ2η2t
=

1

6σ2
.

Thus, using Corollary 3.4, wT = 1
2C , and 1

2C ≤ wt ≤ 1
C

for all 0 ≤ t ≤ T , we obtain the desired inequalities.

3.2. Analysis of Accelerated Stochastic Mirror Descent

In this section, we extend the analysis detailed in the pre-
vious section to analyze the Accelerated Stochastic Mirror
Descent Algorithm (Algorithm 2). We assume that f satis-
fies the following condition: for all x, y ∈ X

f(y) ≤ f(x) + 〈∇f (x) , y − x〉

+G ‖y − x‖+
L

2
‖y − x‖2 . (5)
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Note that L-smooth functions, G-Lipschitz functions, and
their sums all satisfy the above condition. Here, we obtain
the following guarantees in Theorem 3.6.

Theorem 3.6. Assume f satisfies Assumptions (1), (2), (3)
and condition (5). Then, with probability at least 1 − δ,
the output yT of the Accelerated Stochastic Mirror Descent
algorithm (Algorithm 2) satisfies

(1) Setting ηt = min

{
t

4L ,

√
Dψ(x∗,z0)t

√
6
√
G2+σ2(1+log( 1

δ ))T 3/2

}
,

then Dψ (x∗, zT ) ≤ 4Dψ (x∗, z0) and

f (yT )− f (x∗) ≤ 16LDψ (x∗, z0)

T 2

+
8
√

6√
T

√
Dψ (x∗, z0)

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
.

(2) Setting ηt = min

{
t

4L ,

√
Dψ(x∗,z0)

√
6
√
G2+σ2(1+log( 1

δ ))t1/2

}
,

then Dψ (x∗, zT ) ≤ 2(2 + log T )Dψ (x∗, z0) and

f (yT )− f (x∗) ≤ 16LDψ (x∗, z0)

T 2
+

4
√

6(2 + log T )√
T

×

√
Dψ (x∗, z0)

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
.

We will only highlight the application of the previous anal-
ysis here. Define ξt := ∇̂f (xt)−∇f (xt). We start with
the inequalities shown in the standard analysis, e.g, from
(Lan, 2020) (proof in the Appendix).

Lemma 3.7. (Lan, 2020) For every iteration t, we have

Bt :=
ηt
αt

(f (yt)− f (x∗))

− ηt (1− αt)
αt

(f (yt−1)− f (x∗))

− η2
t

1− Lαtηt
G2

+ Dψ (x∗, zt)−Dψ (x∗, zt−1)

≤ ηt 〈ξt, x∗ − zt−1〉+
η2
t

1− Lαtηt
‖ξt‖2∗ .

We now turn our attention to our main concentration argu-
ment. Similar to the previous section, we define

Zt = wtBt − vtDψ (x∗, zt−1) , ∀ 1 ≤ t ≤ T,
where vt = 6σ2w2

t η
2
t ,

and St =

T∑
i=t

Zi, ∀ 1 ≤ t ≤ T + 1.

Notice that we are following the same steps as in the
previous section. By transferring the error terms in the

RHS of Lemma 3.7 into the Bregman divergence terms
Dψ (x∗, zt−1), we can absorb them by setting the coeffi-
cients appropriately. In the same manner, we can show the
following Theorem:

Theorem 3.8. Suppose that wtη
2
t

1−Lαtηt ≤
1

4σ2 for every 0 ≤
t ≤ T . Then, for every 1 ≤ t ≤ T + 1, we have

E [exp (St) | Ft] ≤ exp

(
3σ2

T∑
i=t

wi
η2
i

1− Lαiηi

)
.

Corollary 3.9. Suppose the sequence {wt} satisfies the
conditions of Theorem 3.8. For any δ > 0, the following
event holds with probability at least 1− δ:

T∑
t=1

wt

(
ηt
αt

(f (yt)− f (x∗))

− ηt (1− αt)
αt

(f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0)

+
(
G2 + 3σ2

) T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.

With the above result in hand, we can complete the con-
vergence analysis by showing how to define the sequence
{wt} with the desired properties. For the algorithm with
known T , we set αt = 2

t+1 , ηt = ηt for η ≤ 1
4L ,

wT = 1
3σ2η2T (T+1)(2T+1) and wt−1 = wt + 6σ2η2

tw
2
t for

all 1 ≤ t ≤ T . For the algorithm with unknown T , we
set αt = 2

t+1 , ηt = min{ t
4L ,

η√
t
}, wT = 1

12σ2(
∑T
t=1 η

2
t )

and wt−1 = wt + 6σ2η2
tw

2
t for all 1 ≤ t ≤ T . In the

Appendix, we show that these choices have the desired prop-
erties (Corollaries B.2 and B.3).

4. Nonconvex case: Stochastic Gradient
Descent and AdaGrad-Norm

In this section, we analyze the Stochastic Gradient Descent
(SGD) algorithm (Algorithm 3) and the adaptive version,
commonly known as AdaGrad-Norm (Algorithm 4) for non-
convex optimization, where we look to find an approximate
stationary point of f . Here, we assume that the optimization
problem has domain X = Rd, and that f is an L-smooth
function, i.e., the gradients of f is L-Lipschitz:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

This implies the following inequality on f at any x, y ∈ Rd:

f(y)− f(x) ≤ 〈∇f(x), y − x〉+
L

2
‖y − x‖2 . (6)

7
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Algorithm 3 Stochastic Gradient Descent (SGD)
Parameters: initial point x1, step sizes {ηt}
for t = 1 to T do
xt+1 = xt − ηt∇̂f(xt)

4.1. Analysis of Stochastic Gradient Descent

In this section, we provide a high probability analysis of
SGD (Algorithm 3) that is tighter than previous works. Our
main result is presented in Theorem 4.1.
Theorem 4.1. Assume that f is L-smooth and satisfies
Assumptions (1), (2), (3), and let ∆1 := f(x1) − f(x∗).
Then, with probability at least 1 − δ, the iterate sequence
(xt)t≥1 output by Algorithm 3 satisfies

(1) Setting ηt = min

{
1
L ;
√

∆1

σ2LT

}
,

1

T

T∑
t=1

‖∇f(xt)‖2 ≤
2∆1L

T
+ 5σ

√
∆1L

T
+

12σ2 log 1
δ

T
.

(2) Setting ηt = 1
L
√
t
,

1

T

T∑
t=1

‖∇f(xt)‖2

≤
2∆1L+ 3σ2 (1 + log T ) + 12σ2 log 1

δ√
T

.

Comparison with prior work: When the time horizon T
is known to the algorithm, by choosing the step size η in
part (1) of Theorem 4.1, the bound is adaptive to noise,
i.e, when σ = 0 we recover O( 1

T ) convergence rate of
the (deterministic) gradient descent algorithm. Notice that
the bound in this case does not have a log T term incurred.
When T is unknown, the extra log T appears as a result
of setting a time-varying step size ηt = 1

L
√
t
. This log T

appears as an additive term to the log 1
δ term, as opposed to

being multiplicative, i.e, log T log 1
δ as in previous works

(Li & Orabona, 2020; Madden et al., 2020; Li & Liu, 2022).

To proceed to the analysis, we define for t ≥ 1

∆t := f(xt)− f(x∗); ξt := ∇̂f(xt)−∇f(xt).

We let Ft := σ (ξ1, . . . , ξt−1) denote the natural filtration.
Note that xt is Ft-measurable. The following lemma serves
as the fundamental step of our analysis, the proof of which
can be found in the appendix.
Lemma 4.2. For t ≥ 1, we have

Ct := ηt

(
1− Lηt

2

)
‖∇f(xt)‖2 + ∆t+1 −∆t

≤
(
Lη2

t − ηt
)
〈∇f(xt), ξt〉+

Lη2
t

2
‖ξt‖2 . (7)

Now we can follow the similar concentration argument from
the convex setting. The difference now is the error term in
the RHS of (7) can be transferred into the gradient term
‖∇f(xt)‖2 instead of a function value gap term. This ac-
tually makes things easier since this term can be readily
absorbed by the gradient term in Ct, and we do not have to
carefully impose an additional condition on wt to make a
telescoping sum. For wt ≥ 0, we define

Zt = wtCt − vt ‖∇f(xt)‖2 , ∀ 1 ≤ t ≤ T,
where vt = 3σ2w2

t η
2
t (ηtL− 1)2,

and St =

T∑
i=t

Zi, ∀ 1 ≤ t ≤ T + 1.

Using the same technique as in the previous section, we can
prove the following key inequality.
Theorem 4.3. Suppose that ηt and wt satisfy 0 ≤ wtη2

tL ≤
1

2σ2 for all 1 ≤ t ≤ T . Then

E [exp (St) | Ft] ≤ exp

(
3σ2

T∑
s=t

wtη
2
tL

2

)
. (8)

Markov’s inequality gives us the following guarantee.
Corollary 4.4. For all 1 ≤ t ≤ T , if ηtL ≤ 1 and 0 ≤
wtη

2
tL ≤ 1

2σ2 , then

T∑
t=1

[
wtηt

(
1− ηtL

2

)
− vt

]
‖∇f(xt)‖2 + wT∆T+1

≤w1∆1 +

T∑
t=2

(wt − wt−1)∆t + 3σ2
T∑
t=1

wtη
2
tL

2
+ log

1

δ
.

(9)

Equipped with Lemmas 4.2 and 4.3, we are ready to prove
Theorem 4.1 by specifying the choice of wt that satisfy the
condition of Lemma 4.3. In the first case, we choose ηt = η,

wt = w = 1
6σ2η where η = min{ 1

L ;
√

∆1

σ2LT }. In the

second case, we set ηt = η√
t

and wt = w = 1
6σ2η , where

η = 1
L . We show the full proof in the Appendix.

4.2. Analysis of AdaGrad-Norm

In this section, we show that AdaGrad-Norm (Algorithm 4)
converges with high probability under minimal assumptions.
Our main result is presented in Theorem 4.5.

Algorithm 4 AdaGrad-Norm
Parameters: x1, η, b0
for t = 1 to T do

bt =

√
b20 +

∑t
i=1

∥∥∥∇̂f(xi)
∥∥∥2

xt+1 = xt − η
bt
∇̂f(xi)

8
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Theorem 4.5. Assume f is L-smooth and satisfies Assump-
tions (1), (2), (3). With probability at least 1−3δ, the iterate
sequence (xt)t≥1 output by Algorithm 4 satisfies

1

T

T∑
t=1

‖∇f(xt)‖2

≤ 4

T

√
4σ2T + r(δ)

(
ηL log

4σ2T + r(δ)

b20
+ g(δ)

)
+

1

T

(
32ηL log

64ηL

b0
+ 16g(δ)

)2

,

where r(δ) = 2b20 + 4σ2 log 1
δ = O(1 + σ2 log 1

δ )

and g(δ) = ∆1

η + ‖∇f(x1)‖2
4b20

+ 8σ2

b0

(
1 + ηL

b0

)
log 1

δ +

ηLσ2

b20

(
1 + log T

δ

)
= O(1 + σ2 log T

δ ).

Comparison with prior work: (Ward et al., 2019; Faw
et al., 2022) show the convergence of this algorithm with
polynomial dependency on 1

δ where 1 − δ is the success
probability. The latter relaxes several assumptions made
in the former, including the boundedness of the gradients
and noise variance. When assuming a sub-Gaussian noise,
(Kavis et al., 2021) show a convergence in high probability,
but still assume that the gradients are bounded. We remove
this assumption and establish the convergence of Algorithm
4 in the following theorem. We highlight that the bound in
4.5 is adaptive to noise. When σ = 0, we obtain the O( 1

T )
convergence of the deterministic AdaGrad-Norm.

We next give an overview of the technique. We will start
from Lemma 4.6 (proof in the Appendix) and proceed to
bound each term in the RHS of (10). In contrast to the
techniques used in (Kavis et al., 2021), in which they mul-
tiply both sides of (23) by bt to separate bt from the term
〈∇f(xt), ξt〉, we rely on the insight from (Liu et al., 2022)
and multiply by bt

2bt−b0 . This factor is but a small devia-
tion from a constant, which helps us obtain a coefficient
for 〈∇f(xt), ξt〉 that depends on bt−1. This makes the
term 〈∇f(xt),ξt〉

2bt−1−b0 a sub-Gaussian random variable. To bound∑T
t=1

〈∇f(xt),ξt〉
2bt−1−b0 , we follow an argument similar to the

proof of Lemma 4.3. Finally, by bounding
∑T
t=1 ‖ξt‖

2 via a
simple concentration argument, we can obtain a relationship
between bT and

∑T
t=1 ‖∇f(xt)‖2. Combining this with

Lemma 4.6, we arrive at Theorem 4.5 via a self-bounding
argument as used in (Li & Orabona, 2019).

Lemma 4.6. For t ≥ 1, let ξt = ∇̂f(xt) − ∇f(xt), and
Mt = maxi≤t ‖ξi‖2 then we have

T∑
t=1

‖∇f(xt)‖2

2bt − b0
≤ ηLMT

b20
+

∆1

η
− bT∆T+1

η (2bT − b0)

+
ηL

2
log

b2T
b20
−

T∑
t=1

〈∇f(xt), ξt〉
2bt−1 − b0

. (10)

Now, notice that 〈∇f(xt),ξt〉
2bt−1−b0 follows a sub-Gaussian dis-

tribution with mean 0, we can obtain a bound for∑T
t=1−

〈∇f(xt),ξt〉
2bt−1−b0 in the next lemma. The choice of the

coefficient w is crucial but will be specified later.
Lemma 4.7. For any w > 0, with probability at least 1− δ

T∑
t=1

−〈∇f(xt), ξt〉
2bt−1 − b0

≤ 4wη2L2σ2

b20
log

b2T
b20

+

T∑
t=2

4wσ2 ‖∇f(xt−1)‖2

(2bt−1 − b0)
2

+
2wσ2 ‖∇f(x1)‖2

b20
+

1

w
log

1

δ
. (11)

Returning to Lemma 4.6, by choosing an appropriate co-
efficient w in Lemma 4.7, we can use a fraction of the
LHS of (10) to cancel out the term

∑T
t=2

4wσ2‖∇f(xt−1)‖2

(2bt−1−b0)2

in (11). It is also known that with probability at least
1 − δ, MT ≤ σ2

(
1 + log T

δ

)
(Li & Orabona, 2020; Liu

et al., 2022). Further, we have a relationship between∑T
t=1 ‖∇f(xt)‖2 and bT :

bT ≤

√√√√b20 + 2

T∑
t=1

‖ξt‖2 +

T∑
t=1

2 ‖∇f(xt)‖2. (12)

The term
∑T
t=1 ‖ξt‖

2 can be bounded by σ2T + σ2 log 1
δ

with high probability as in Lemma C.1.

Finally for the LHS of 4.6, we have
∑T
t=1

‖∇f(xt)‖2
2bt−b0 ≥

1
bT

∑T
t=1 ‖∇f(xt)‖2. Now we can solve a system combin-

ing the two relationships between
∑T
t=1 ‖∇f(xt)‖2 and bT

to obtain the desired bound.

5. Conclusion
In this work, we present a generic approach to prove high
probability convergence of stochastic gradient methods un-
der sub-Gaussian noise. In the convex case, we show high
probability bounds for (accelerated) SMD that depend on
the distance from the initial solution to the optimal solution
and do not require the bounded domain or bounded Bregman
divergence assumption. In the non-convex case, we apply
the same approach and obtain a high probability bound for
SGD that improves over existing works. We also show that
the boundedness of the gradients can be removed when
showing high probability convergence of AdaGrad-Norm.
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A. Proof of Lemma 2.2
Proof. Consider two cases either a ≥ 1/(2σ) or a ≤ 1/(2σ). First suppose a ≥ 1/(2σ). We use the inequality uv ≤ u2

4 +v2

here to first obtain

(
aX + b2X2

)i ≤ ∣∣aX + b2X2
∣∣i ≤ (a |X|+ b2X2

)i ≤ ( 1

4σ2
X2 + a2σ2 + b2X2

)i
.

Thus, we have

E

[
1 + b2X2 +

∞∑
i=2

1

i!

(
aX + b2X2

)i] ≤ E

[
1 + b2X2 +

∞∑
i=2

1

i!

(
1

4σ2
X2 + a2σ2 + b2X2

)i]

= E
[
b2X2 + exp

((
1

4σ2
+ b2

)
X2 + a2σ2

)
−
(

1

4σ2
+ b2

)
X2 − a2σ2

]
= E

[
exp

((
1

4σ2
+ b2

)
X2 + a2σ2

)
− 1

4σ2
X2 − a2σ2

]
≤ exp

((
1

4σ2
+ b2

)
σ2 + a2σ2

)
≤ exp

(
2a2σ2 + b2σ2

)
≤ exp

(
3
(
a2 + b2

)
σ2
)
.

Next, let c = max(a, b) ≤ 1/(2σ). We have

E

[
1 + b2X2 +

∞∑
i=2

1

i!

(
aX + b2X2

)i]
= E

[
exp

(
aX + b2X2

)
− aX

]
≤ E

[(
aX + exp

(
a2X2

))
exp

(
b2X2

)
− aX

]
= E

[
exp

((
a2 + b2

)
X2
)

+ aX
(
exp

(
b2X2

)
− 1
)]

≤ E
[
exp

((
a2 + b2

)
X2
)

+ c |X|
(
exp

(
c2X2

)
− 1
)]

≤ E
[
exp

((
a2 + b2

)
X2
)

+ exp
(
2c2X2

)
− 1
]

≤ E
[
exp

((
a2 + b2 + 2c2

)
X2
)]

≤ exp
((
a2 + b2 + 2c2

)
σ2
)

≤ exp
(
3
(
a2 + b2

)
σ2
)
.

In the first inequality, we use the inequality ex − x ≤ ex
2∀x. In the third inequality, we use x

(
ex

2 − 1
)
≤ e2x2 − 1 ∀x.

This inequality can be proved with the Taylor expansion.

x
(
ex

2

− 1
)

=

∞∑
i=1

1

i!
x2i+1 ≤

∞∑
i=1

1

i!

x2i + x2i+2

2

=
x2

2
+
∞∑
i=2

(
1 + i

2i!

)
x2i ≤ x2

2
+
∞∑
i=2

(
2i

i!

)
x2i

≤ e2x2

− 1.

The case when b = 0 simply follows from the above proof.

12
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B. Missing Proofs from Section 3
B.1. Stochastic Mirror Descent

Proof of Lemma 3.2. By the optimality condition, we have〈
ηt∇̂f(xt) +∇xDψ (xt+1, xt) , x

∗ − xt+1

〉
≥ 0

and thus 〈
ηt∇̂f(xt), xt+1 − x∗

〉
≤ 〈∇xDψ (xt+1, xt) , x

∗ − xt+1〉 .

Note that

〈∇xDψ (xt+1, xt) , x
∗ − xt+1〉 = 〈∇ψ (xt+1)−∇ψ (xt) , x

∗ − xt+1〉
= Dψ (x∗, xt)−Dψ (xt+1, xt)−Dψ (x∗, xt+1)

and thus

ηt

〈
∇̂f(xt), xt+1 − x∗

〉
≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)−Dψ (xt+1, xt)

≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)− 1

2
‖xt+1 − xt‖2 ,

where we have used that Dψ (xt+1, xt) ≥ 1
2 ‖xt+1 − xt‖2 by the strong convexity of ψ.

By convexity,

f (xt)− f (x∗) ≤ 〈∇f (xt) , xt − x∗〉 = 〈ξt, x∗ − xt〉+
〈
∇̂f (xt) , xt − x∗

〉
.

Combining the two inequalities, we obtain

ηt (f (xt)− f (x∗)) + Dψ (x∗, xt+1)−Dψ (x∗, xt)

≤ ηt 〈ξt, x∗ − xt〉+ ηt

〈
∇̂f(xt), xt − xt+1

〉
− 1

2
‖xt+1 − xt‖2

≤ ηt 〈ξt, x∗ − xt〉+
η2
t

2

∥∥∥∇̂f(xt)
∥∥∥2

∗
.

Using the triangle inequality and the bounded gradient assumption ‖∇f(x)‖∗ ≤ G, we obtain∥∥∥∇̂f(xt)
∥∥∥2

∗
= ‖ξt +∇f(xt)‖2∗ ≤ 2 ‖ξt‖2∗ + 2 ‖∇f(xt)‖2∗ ≤ 2

(
‖ξt‖2∗ +G2

)
.

Thus
ηt (f (xt)− f (x∗)) + Dψ (x∗, xt+1)−Dψ (x∗, xt) ≤ ηt 〈ξt, x∗ − xt〉+ η2

t

(
‖ξt‖2∗ +G2

)
as needed.

Proof of Corollary 3.4. Let

K = 3σ2
T∑
t=1

wtη
2
t + log

(
1

δ

)
.

By Theorem 3.3 and Markov’s inequality, we have

Pr [S1 ≥ K] ≤ Pr [exp (S1) ≥ exp (K)]

≤ exp (−K)E [exp (S1)]

≤ exp (−K) exp

(
3σ2

T∑
t=1

wtη
2
t

)
= δ.

13
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Note that since vt + wt ≤ wt−1

S1 =

T∑
t=1

Zt =

T∑
t=1

wtηt (f (xt)− f (x∗))−G2
T∑
t=1

wtη
2
t +

T∑
t=1

(wtDψ (x∗, xt+1)− (vt + wt)Dψ (x∗, xt))

≥
T∑
t=1

wtηt (f (xt)− f (x∗))−G2
T∑
t=1

wtη
2
t +

T∑
t=1

(wtDψ (x∗, xt+1)− wt−1Dψ (x∗, xt))

=

T∑
t=1

wtηt (f (xt)− f (x∗))−G2
T∑
t=1

wtη
2
t + wTDψ (x∗, xT+1)− w0Dψ (x∗, x1) .

Therefore, with probability at least 1− δ, we have

T∑
t=1

wtηt (f (xt)− f (x∗)) + wTDψ (x∗, xT+1) ≤ w0Dψ (x∗, x1) +
(
G2 + 3σ2

) T∑
t=1

wt+1η
2
t + log

(
1

δ

)
.

Next we extend the analysis to the setting where the T is not known and we use the step sizes ηt = η√
t

to complete the proof
of Theorem 3.1.

Corollary B.1. Suppose we run the Stochastic Mirror Descent algorithm with time-varying step sizes ηt = η√
t
. Let

wT = 1

12σ2η2(
∑T
t=1

1
t )

and wt−1 = wt + 6σ2η2
tw

2
t for all 1 ≤ t ≤ T . The sequence {wt} satisfies the conditions

required by Corollary 3.4. By Corollary 3.4, for any δ > 0, the following events hold with probability at least 1 − δ:
Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) + 12

(
G2 + σ2

(
1 + log

(
1
δ

)))
η2(1 + log T ), and

1

T

T∑
t=1

(f (xt)− f (x∗)) ≤ 1√
T

2Dψ (x∗, x1)

η

+
12√
T

(
G2 + σ2

(
1 + log

(
1

δ

)))
η(1 + log T ).

In particular, setting ηt =

√
Dψ(x∗,x1)

6(G2+σ2(1+ln( 1
δ )))t

we obtain the second case of Theorem 3.1.

Proof of Corollary B.1. Recall from Corollary 3.4 that the sequence {wt} needs to satisfy the following conditions for all
1 ≤ t ≤ T :

wt + 6σ2η2
tw

2
t ≤ wt−1 and wtη

2
t ≤

1

4σ2
.

Let Mt = 6σ2
∑t
i=1 η

2
i and C = MT = 6σ2η2

(∑T
t=1

1
t

)
. We set wT = 1

C+MT
. For 1 ≤ t ≤ T , we set wt so that the

first condition holds with equality

wt−1 = wt + 6σ2η2
tw

2
t .

We can show by induction that, for every 1 ≤ t ≤ T , we have

wt ≤
1

C +Mt
.

The base case t = T follows from the definition of wT . Consider 1 ≤ t ≤ T . Using the definition of wt and the inductive

14
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hypothesis, we obtain

wt−1 = wt + 6σ2η2
tw

2
t

≤ 1

C +Mt
+

6σ2η2
t

(C +Mt)
2

≤ 1

C +Mt
+

(C +Mt)− (C +Mt−1)

(C +Mt) (C +Mt−1)

=
1

C +Mt−1

as needed.

Using this fact, we now show that {wt} satisfies the second condition. For every 1 ≤ t ≤ T , we have

wtη
2
t ≤

η2
t

C
≤ η2

t

6σ2η2
t

=
1

6σ2

as needed.

Thus, by Corollary 3.4, with probability ≥ 1− δ, we have

T∑
t=1

wtηt (f (xt)− f (x∗)) + wTDψ (x∗, xT+1) ≤ w0Dψ (x∗, x1) +
(
G2 + 3σ2

) T∑
t=1

wtη
2
t + log

(
1

δ

)
.

Note that wT = 1
2C and 1

2C ≤ wt ≤
1
C for all 1 ≤ t ≤ T . Thus, we obtain

1

2C
ηT

T∑
t=1

(f (xt)− f (x∗)) +
1

2C
Dψ (x∗, xT+1) ≤ 1

C
Dψ (x∗, x1) +

(
G2 + 3σ2

) 1

C

T∑
t=1

η2
t + log

(
1

δ

)
.

Plugging in ηt = η√
t

and simplifying, we obtain

η√
T

T∑
t=1

(f (xt)− f (x∗)) + Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) +
(
2G2 + 6σ2

)
η2

(
T∑
t=1

1

t

)
+ 2C log

(
1

δ

)

= 2Dψ (x∗, x1) +

(
2G2 + 6σ2

(
1 + 2 log

(
1

δ

)))
η2

(
T∑
t=1

1

t

)
.

Thus, we have

1

T

T∑
t=1

(f (xt)− f (x∗)) ≤ 1√
T

(
2Dψ (x∗, x1)

η
+

(
2G2 + 6σ2

(
1 + 2 log

(
1

δ

)))
η

(
T∑
t=1

1

t

))
,

and

Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) +

(
2G2 + 6σ2

(
1 + 2 log

(
1

δ

)))
η2

(
T∑
t=1

1

t

)
.
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B.2. Accelerated Stochastic Mirror Descent

Proof of Lemma 3.7. Starting with smoothness, we obtain

f (yt) ≤ f (xt) + 〈∇f (xt) , yt − xt〉+G ‖yt − xt‖+
L

2
‖yt − xt‖2 ∀x ∈ X

= f (xt) + 〈∇f (xt) , yt−1 − xt〉+ 〈∇f (xt) , yt − yt−1〉+G ‖yt − xt‖+
L

2
‖yt − xt‖2

= (1− αt) (f (xt) + 〈∇f (xt) , yt−1 − xt〉)︸ ︷︷ ︸
convexity

+αt (f (xt) + 〈∇f (xt) , yt−1 − xt〉)︸ ︷︷ ︸
convexity

+ αt 〈∇f (xt) , zt − yt−1〉+G ‖yt − xt‖+
L

2
‖yt − xt‖2

≤ (1− αt) f (yt−1) + αtf (xt) + αt 〈∇f (xt) , zt − xt〉+G ‖yt − xt‖︸ ︷︷ ︸
=αt‖zt−zt−1‖

+
L

2
‖yt − xt‖2︸ ︷︷ ︸

=α2
t‖zt−zt−1‖2

= (1− αt) f (yt−1) + αtf (xt) + αt 〈∇f (xt) , zt − xt〉+Gαt ‖zt − zt−1‖+
L

2
α2
t ‖zt − zt−1‖2 .

By the optimality condition for zt,

ηt

〈
∇̂f(xt), zt − x∗

〉
≤ 〈∇xDψ (zt, zt−1) , x∗ − zt〉 = Dψ (x∗, zt−1)−Dψ (zt, zt−1)−Dψ (x∗, zt) .

Rearranging, we obtain

Dψ (x∗, zt)−Dψ (x∗, zt−1) + Dψ (zt, zt−1) ≤ ηt
〈
∇̂f (xt) , x

∗ − zt
〉

= ηt 〈∇f (xt) + ξt, x
∗ − zt〉 .

By combining the two inequalities, we obtain

f (yt) +
αt
ηt

(Dψ (x∗, zt)−Dψ (x∗, zt−1) + Dψ (zt, zt−1))

≤ (1− αt) f (yt−1) + αt (f (xt) + 〈∇f (xt) , x
∗ − xt〉)︸ ︷︷ ︸

convexity

+Gαt ‖zt − zt−1‖+
L

2
α2
t ‖zt − zt−1‖2 + αt 〈ξt, x∗ − zt〉

≤ (1− αt) f (yt−1) + αtf (x∗) +Gαt ‖zt − zt−1‖+
L

2
α2
t ‖zt − zt−1‖2 + αt 〈ξt, x∗ − zt〉 .

Subtracting f (x∗) from both sides, rearranging, and using that Dψ (zt, zt−1) ≥ 1
2 ‖zt − zt−1‖2, we obtain

f (yt)− f (x∗) +
αt
ηt

(Dψ (x∗, zt)−Dψ (x∗, zt−1))

≤ (1− αt) (f (yt−1)− f (x∗)) + αt 〈ξt, x∗ − zt〉+Gαt ‖zt − zt−1‖ − αt
1− Lαtηt

2ηt
‖zt − zt−1‖2

= (1− αt) (f (yt−1)− f (x∗)) + αt 〈ξt, x∗ − zt−1〉+ αt 〈ξt, zt − zt−1〉

+Gαt ‖zt − zt−1‖ − αt
1− Lαtηt

2ηt
‖zt − zt−1‖2

≤ (1− αt) (f (yt−1)− f (x∗)) + αt 〈ξt, x∗ − zt−1〉+ αt ‖zt − zt−1‖ (‖ξt‖∗ +G)− αt
1− Lαtηt

2ηt
‖zt − zt−1‖2

≤ (1− αt) (f (yt−1)− f (x∗)) + αt 〈ξt, x∗ − zt−1〉+
αtηt

2 (1− Lαtηt)
(‖ξt‖∗ +G)

2
.
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Finally, we divide by αt
ηt

, and obtain

ηt
αt

(f (yt)− f (x∗)) + Dψ (x∗, zt)−Dψ (x∗, zt−1)

≤ ηt
αt

(1− αt) (f (yt−1)− f (x∗)) + ηt 〈ξt, x∗ − zt−1〉+
η2
t

2 (1− Lαtηt)
(‖ξt‖∗ +G)

2

≤ ηt
αt

(1− αt) (f (yt−1)− f (x∗)) + ηt 〈ξt, x∗ − zt−1〉+
η2
t

1− Lαtηt

(
‖ξt‖2∗ +G2

)
.

Proof of Theorem 3.8. We proceed by induction on t. Consider the base case t = T + 1, the inequality trivially holds. Next,
we consider t ≤ T . We have

E [exp (St) | Ft] = E [exp (Zt + St+1) | Ft] = E [E [exp (Zt + St+1) | Ft+1] | Ft] . (13)

We now analyze the inner expectation. Conditioned on Ft+1, Zt is fixed. Using the inductive hypothesis, we obtain

E [exp (Zt + St+1) | Ft+1] ≤ exp (Zt) exp

(
3σ2

T∑
i=t+1

wi
η2
i

1− Lαiηi

)
. (14)

Let Xt = ηt 〈ξt, x∗ − zt−1〉. By Lemma 3.7, we have

ηt
αt

(f (yt)− f (x∗))− ηt
αt

(1− αt) (f (yt−1)− f (x∗))− η2
t

1− Lαtηt
G2

+ Dψ (x∗, zt)−Dψ (x∗, zt−1)

≤ Xt +
η2
t

(1− Lαtηt)
‖ξt‖2∗ ,

and thus

Zt ≤ wtXt + wt
η2
t

1− Lαtηt
‖ξt‖2∗ − vtDψ (x∗, zt−1) .

Plugging into (14), we obtain

E [exp (Zt + St+1) | Ft+1]

≤ exp

(
wtXt − vtDψ (x∗, zt−1) + wt

η2
t

1− Lαtηt
‖ξt‖2∗ + 3σ2

T∑
i=t+1

wi
η2
i

1− Lαiηi

)
.

Plugging into (13), we obtain

E [exp (St) | Ft]

≤ exp

(
−vtDψ (x∗, zt−1) + 3σ2

T∑
i=t+1

wi
η2
i

1− Lαiηi

)
E
[
exp

(
wtXt + wt

η2
t

1− Lαtηt
‖ξt‖2∗

)
| Ft

]
. (15)
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Next, we analyze the expectation on the RHS of the above inequality. We have

E
[
exp

(
wtXt + wt

η2
t

1− Lαtηt
‖ξt‖2∗

)
| Ft

]
= E

[ ∞∑
i=0

1

i!

(
wtXt + wt

η2
t

1− Lαtηt
‖ξt‖2∗

)i
| Ft

]

= E

[
1 + wt

η2
t

1− Lαtηt
‖ξt‖2∗ +

∞∑
i=2

1

i!

(
wtXt + wt

η2
t

1− Lαtηt
‖ξt‖2∗

)i
| Ft

]

≤ E

[
1 + wt

η2
t

1− Lαtηt
‖ξt‖2∗ +

∞∑
i=2

1

i!

(
wtηt ‖x∗ − zt−1‖ ‖ξt‖∗ + wt

η2
t

1− Lαtηt
‖ξt‖2∗

)i
| Ft

]

≤ exp

(
3

(
w2
t η

2
t ‖x∗ − zt−1‖2 + wt

η2
t

1− Lαtηt

)
σ2

)
≤ exp

(
3

(
2w2

t η
2
tDψ (x∗, zt−1) + wt

η2
t

1− Lαtηt

)
σ2

)
. (16)

On the first line we used the Taylor expansion of ex, and on the second line we used that E [Xt | Ft] = 0. On the third line,
we used Cauchy-Schwartz and obtained

Xt = ηt 〈ξt, x∗ − zt−1〉 ≤ ηt ‖ξt‖∗ ‖x
∗ − zt−1‖ .

On the fourth line, we applied Lemma 2.2 with X = ‖ξt‖∗, a = wtηt ‖x∗ − zt−1‖, and b2 = wt
η2t

1−Lαtηt ≤
1

4σ2 . On the

fifth line, we used that Dψ (x∗, zt−1) ≥ 1
2 ‖x

∗ − zt−1‖2, which follows from the strong convexity of ψ.

Plugging in (16) into (15) and using that vt = 6σ2w2
t η

2
t , we obtain

E [exp (St) | Ft] ≤ exp

(
3σ2

T∑
i=t

wi
η2
i

1− Lαiηi

)

as needed.

Proof of Corollary 3.9. Let

K = 3σ2
T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.

By Theorem 3.8 and Markov’s inequality, we have

Pr [S1 ≥ K] ≤ Pr [exp (S1) ≥ exp (K)]

≤ exp (−K)E [exp (S1)]

≤ exp (−K) exp

(
3σ2

T∑
t=1

wt
η2
t

1− Lαtηt

)
= δ.
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Note that since vt + wt ≤ wt−1

S1 =

T∑
t=1

Zt

=

T∑
t=1

wt

(
ηt
αt

(f (yt)− f (x∗))− ηt (1− αt)
αt

(f (yt−1)− f (x∗))

)

+

T∑
t=1

wtDψ (x∗, zt)− (vt + wt)Dψ (x∗, zt−1)−G2
T∑
t=1

wt
η2
t

1− Lαtηt

≥
T∑
t=1

wt

(
ηt
αt

(f (yt)− f (x∗))− ηt (1− αt)
αt

(f (yt−1)− f (x∗))

)

+

T∑
t=1

wtDψ (x∗, zt)− wt−1Dψ (x∗, zt−1)−G2
T∑
t=1

wt
η2
t

1− Lαtηt

=

T∑
t=1

wt

(
ηt
αt

(f (yt)− f (x∗))− ηt (1− αt)
αt

(f (yt−1)− f (x∗))

)

+ wTDψ (x∗, zT )− w0Dψ (x∗, z0)−G2
T∑
t=1

wt
η2
t

1− Lαtηt
.

Therefore, with probability at least 1− δ, we have

T∑
t=1

wt

(
ηt
αt

(f (yt)− f (x∗))− ηt (1− αt)
αt

(f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.

Corollary B.2. Suppose we run the Accelerated Stochastic Mirror Descent algorithm with the standard choices αt = 2
t+1

and ηt = ηt with η ≤ 1
4L . Let wT = 1

3σ2η2T (T+1)(2T+1) and wt−1 = wt + 6σ2η2
tw

2
t for all 1 ≤ t ≤ T . The

sequence {wt}0≤t≤T satisfies the conditions required by Corollary 3.9. By Corollary 3.9, with probability at least 1− δ,
Dψ (x∗, zT ) ≤ 2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1
δ

))
σ2
)
η2T 3 and

f (yT )− f (x∗) ≤4Dψ (x∗, z0)

ηT 2
+ 24

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
ηT.

In particular, setting η = min

{
1

4L ,

√
Dψ(x∗,z0)

√
6
√
G2+σ2(1+log( 1

δ ))T 3/2

}
, we obtain the first case of Theorem 3.6.

Proof of Corollary B.2. Recall from Corollary 3.9 that the sequence {wt} needs to satisfy the following conditions:

wt + 6σ2η2
tw

2
t ≤ wt−1, ∀1 ≤ t ≤ T, (17)

wtη
2
t

1− Lαtηt
≤ 1

4σ2
, ∀0 ≤ t ≤ T. (18)

We will set {wt} so that it satisfies the following additional condition, which will allow us to telescope the sum on the RHS
of Corollary 3.9:

wt−1
ηt−1

αt−1
≥ wt

ηt (1− αt)
αt

, ∀1 ≤ t ≤ T. (19)
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Given wT , we set wt−1 for every 1 ≤ t ≤ T so that the first condition (17) holds with equality:

wt−1 = wt + 6σ2η2
tw

2
t = wt + 6σ2η2t2w2

t .

Let C = σ2η2T (T + 1) (2T + 1). We set

wT =
1

C + 6σ2η2
∑T
i=1 i

2
=

1

C + σ2η2T (T + 1) (2T + 1)
=

1

2σ2η2T (T + 1) (2T + 1)
.

Given this choice for wT , we now verify that, for all 0 ≤ t ≤ T , we have

wt ≤
1

C + 6σ2η2
∑t
i=1 i

2
=

1

C + σ2η2t (t+ 1) (2t+ 1)
.

We proceed by induction on t. The base case t = T follows from the definition of wT . Consider t ≤ T . Using the definition
of wt−1 and the inductive hypothesis, we obtain

wt−1 = wt + 6σ2η2t2w2
t

≤ 1

C + 6σ2η2
∑t
i=1 i

2
+

6σ2η2t2(
C + 6σ2η2

∑t
i=1 i

2
)2

≤ 1

C + 6σ2η2
∑t
i=1 i

2
+

(
C + 6σ2η2

∑t
i=1 i

2
)
−
(
C + 6σ2η2

∑t−1
i=1 i

2
)

(
C + 6σ2η2

∑t
i=1 i

2
)(

C + 6σ2η2
∑t−1
i=1 i

2
)

=
1

C + 6σ2η2
∑t−1
i=1 i

2

as needed. Let us now verify that the second condition (18) also holds. Using that 2t
t+1 ≤ 2, Lη ≤ 1

4 , and T ≥ 2, we obtain

wtη
2
t

1− Lαtηt
=

wtη
2t2

1− Lη 2t
t+1

≤ 2wtη
2t2 ≤ 2η2t2

C + 6σ2η2t2

=
t2

σ2T (T + 1) (2T + 1) + 3σ2t2

≤ 1

σ2 (2T + 1) + 3σ2
≤ 1

4σ2

as needed.

Let us now verify that the third condition (19) also holds. Since ηt = ηt and αt = 2
t+1 , we have ηt−1

αt−1
= ηt(1−αt)

αt
= ηt(t−1)

2 .
Since wt ≤ wt−1, it follows that condition (19) holds.

We now turn our attention to the convergence. By Corollary 3.9, with probability ≥ 1− δ, we have

T∑
t=1

wt

(
ηt
αt

(f (yt)− f (x∗))− ηt (1− αt)
αt

(f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.

Grouping terms on the LHS and using that α1 = 1, we obtain

T−1∑
t=1

(
wt
ηt
αt
− wt+1

ηt+1 (1− αt+1)

αt+1

)
(f (yt)− f (x∗)) + wT

ηT
αT

(f (yT )− f (x∗)) + wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.
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Since {wt} satisfies condition (19), the coefficient of f (yt)− f (x∗) is non-negative and thus we can drop the above sum.
We obtain

wT
ηT
αT

(f (yT )− f (x∗)) + wTDψ (x∗, zT ) ≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.

Using that wT = 1
2C and wt ≤ 1

C for all 0 ≤ t ≤ T − 1, we obtain

1

2C

ηT
αT

(f (yT )− f (x∗)) +
1

2C
Dψ (x∗, zT )

≤ 1

C
Dψ (x∗, z0) +

1

C

(
G2 + 3σ2

) T∑
t=1

η2
t

1− Lαtηt
+ log

(
1

δ

)
.

Thus,

ηT
αT

(f (yT )− f (x∗)) + Dψ (x∗, zT )

≤ 2Dψ (x∗, z0) + 2
(
G2 + 3σ2

) T∑
t=1

η2
t

1− Lαtηt
+ 2C log

(
1

δ

)

= 2Dψ (x∗, z0) + 2
(
G2 + 3σ2

) T∑
t=1

η2
t

1− Lαtηt
+ 2σ2 log

(
1

δ

)
η2T (T + 1) (2T + 1) .

Using that Lη ≤ 1
4 and 2t

t+1 ≤ 2, we obtain

T∑
t=1

η2
t

1− Lαtηt
=

T∑
t=1

η2t2

1− Lη 2t
t+1

≤
T∑
t=1

2η2t2 =
1

3
η2T (T + 1) (2T + 1) .

Plugging in and using that ηT = ηT and αT = 2
T+1 , we obtain

η
T (T + 1)

2
(f (yT )− f (x∗)) + Dψ (x∗, zT )

≤ 2Dψ (x∗, z0) +

(
2

3
G2 + 2

(
1 + log

(
1

δ

))
σ2

)
η2T (T + 1) (2T + 1)

≤ 2Dψ (x∗, z0) + 2

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η2T (T + 1) (2T + 1) .

We can further simplify the bound by lower bounding T (T + 1) ≥ T 2 and upper bounding T (T + 1) (2T + 1) ≤ 6T 3.
We obtain

ηT 2 (f (yT )− f (x∗)) + 2Dψ (x∗, zT ) ≤ 4Dψ (x∗, z0) + 24

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η2T 3.

Thus we obtain

f (yT )− f (x∗) ≤ 4Dψ (x∗, z0)

ηT 2
+ 24

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
ηT,

and

Dψ (x∗, zT ) ≤ 2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η2T 3.
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Corollary B.3. Suppose we run the Accelerated Stochastic Mirror Descent algorithm with the standard choices αt = 2
t+1

and ηt = min
{

t
4L ,

η√
t

}
. Let wT = 1

12σ2
∑T
i=1 η

2
t

and wt−1 = wt + 6σ2η2
tw

2
t for all 1 ≤ t ≤ T . The sequence {wt}0≤t≤T

satisfies the conditions required by Corollary 3.9. By Corollary 3.9, with probability at least 1 − δ, Dψ (x∗, zT ) ≤
2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1
δ

))
σ2
)
η2(1 + log T ) and

f (yT )− f (x∗) ≤ 16L

T 2
Dψ (x∗, z0) +

2

T 1/2η

(
2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η2(1 + log T )

)
.

In particular, setting ηt = min

{
t

4L ,

√
Dψ(x∗,z0)

√
6
√
G2+σ2(1+log( 1

δ ))t1/2

}
, we obtain the second case of Theorem 3.6.

Proof of Corollary B.3. Recall from Corollary 3.9 that the sequence {wt} needs to satisfy the following conditions:

wt + 6σ2η2
tw

2
t ≤ wt−1, ∀1 ≤ t ≤ T, (20)

wtη
2
t

1− Lαtηt
≤ 1

4σ2
, ∀0 ≤ t ≤ T. (21)

We will set {wt} so that it satisfies the following additional condition, which will allow us to telescope the sum on the RHS
of Corollary 3.9:

wt−1
ηt−1

αt−1
≥ wt

ηt (1− αt)
αt

, ∀1 ≤ t ≤ T − 1. (22)

Given wT , we set wt−1 for every 1 ≤ t ≤ T so that the first condition (20) holds with equality:

wt−1 = wt + 6σ2η2
tw

2
t = wt + 6σ2η2t2w2

t .

Let C = 6σ2
∑T
i=1 η

2
t . We set

wT =
1

12σ2
∑T
i=1 η

2
t

=
1

2C
.

Given this choice for wT , we now verify that, for all 0 ≤ t ≤ T , we have

wt ≤
1

C + 6σ2
∑t
i=1 η

2
i

.

We proceed by induction on t. The base case t = T follows from the definition of wT . Consider t ≤ T . Using the definition
of wt−1 and the inductive hypothesis, we obtain

wt−1 = wt + 6σ2η2
tw

2
t

≤ 1

C + 6σ2
∑t
i=1 η

2
i

+
6σ2η2

t(
C + 6σ2

∑t
i=1 η

2
i

)2

≤ 1

C + 6σ2
∑t
i=1 η

2
i

+

(
C + 6σ2

∑t
i=1 η

2
i

)
−
(
C + 6σ2

∑t−1
i=1 η

2
i

)
(
C + 6σ2

∑t
i=1 η

2
i

)(
C + 6σ2

∑t−1
i=1 η

2
i

)
=

1

C + 6σ2
∑t−1
i=1 η

2
i

as needed.

Let us now verify that the second condition (21) also holds. Using that Lηt ≤ t
4 , and T ≥ 2, we obtain

wtη
2
t

1− Lαtηt
≤ wtη

2
t

1− t
4

2
t+1

≤ 2wtη
2
t ≤

2η2
t

6σ2
∑T
i=1 η

2
t + 6σ2

∑t
i=1 η

2
i

≤ 2η2
t

12σ2η2
t

≤ 1

4σ2

as needed.
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Let us now verify that the third condition (22) also holds. Since αt = 2
t+1 , we have

ηt−1

αt−1
=
ηt−1t

2
,

ηt (1− αt)
αt

=
ηt (t− 1)

2
.

If ηt−1 = t−1
4L then we have ηt ≤ t

4L and ηt(1−αt)
αt

≤ ηt−1

αt−1
= t(t−1)

8L . If ηt−1 = η√
t−1

then ηt = η√
t
,we also have

ηt(1−αt)
αt

≤ ηt−1

αt−1
. Since wt ≤ wt−1, it follows that condition (22) holds.

We now turn our attention to the convergence. By Corollary 3.9, with probability ≥ 1− δ, we have

T∑
t=1

wt

(
ηt
αt

(f (yt)− f (x∗))− ηt (1− αt)
αt

(f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.

Grouping terms on the LHS and using that α1 = 1, we obtain

T−1∑
t=1

(
wt
ηt
αt
− wt+1

ηt+1 (1− αt+1)

αt+1

)
(f (yt)− f (x∗)) + wT

ηT
αT

(f (yT )− f (x∗)) + wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.

Since {wt} satisfies condition (22), the coefficient of f (yt)− f (x∗) is non-negative and thus we can drop the above sum.
We obtain

wT
ηT
αT

(f (yT )− f (x∗)) + wTDψ (x∗, zT ) ≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑
t=1

wt
η2
t

1− Lαtηt
+ log

(
1

δ

)
.

Using that wT = 1
2C and wt ≤ 1

C for all 0 ≤ t ≤ T − 1, we obtain

1

2C

ηT
αT

(f (yT )− f (x∗)) +
1

2C
Dψ (x∗, zT )

≤ 1

C
Dψ (x∗, z0) +

1

C

(
G2 + 3σ2

) T∑
t=1

η2
t

1− Lαtηt
+ log

(
1

δ

)
.

Thus
ηT
αT

(f (yT )− f (x∗)) + Dψ (x∗, zT )

≤ 2Dψ (x∗, z0) + 2
(
G2 + 3σ2

) T∑
t=1

η2
t

1− Lαtηt
+ 2C log

(
1

δ

)
.

Using that Lηt ≤ t
4 , we obtain

T∑
t=1

η2
t

1− Lαtηt
=

T∑
t=1

η2
t

1− t
4

2
t+1

≤
T∑
t=1

2η2
t =

C

3σ2
.

Plugging in and using that ηT = ηT and αT = 2
T+1 , we obtain

ηT (T + 1)

2
(f (yT )− f (x∗)) + Dψ (x∗, zT )

≤ 2Dψ (x∗, z0) +

(
2G2 + 6

(
1 + log

(
1

δ

))
σ2

)
C

3σ2
.
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If T
4L ≤

η√
T

which means T 3/2 ≤ 4Lη then ηT = T
4L we have

C = 6σ2
T∑
i=1

η2
t =

6σ2

16L2

T∑
i=1

t2 ≤ 3σ2T 3

8L2
≤ 6σ2η2.

Hence

ηT (T + 1)

2
(f (yT )− f (x∗)) + Dψ (x∗, zT )

≤ 2Dψ (x∗, z0) +

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
3T 3

4L2
,

which entails

f (yT )− f (x∗) ≤ 16L

T 2
Dψ (x∗, z0) +

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
6T

L

=
16L

T 2
Dψ (x∗, z0) +

6√
T

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
T 3/2

L

≤ 16L

T 2
Dψ (x∗, z0) +

24√
T

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η,

and

Dψ (x∗, zT ) ≤ 2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η2.

If η√
T
≤ T

4L then ηT = η√
T

. Let T0 be the largest t such that η√
t
≥ t

4L , we have T 3
0 ≤ 16L2η2

C = 6σ2
T∑
i=1

η2
t

= 6σ2
T0∑
i=1

η2
t + 6σ2

T∑
i=T0+1

η2
t

=
6σ2

16L2

T0∑
i=1

t2 + 6σ2η2
T∑

i=T0+1

1

t

≤ 6σ2

16L2
T 3

0 + 6σ2η2
T∑

i=T0+1

1

t

≤ 6σ2η2
T∑
i=1

1

t
≤ 6σ2η2(1 + log T ).

Hence

f (yT )− f (x∗) ≤ 2

T 1/2η

(
2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η2(1 + log T )

)
,

and

Dψ (x∗, zT ) ≤ 2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η2(1 + log T ).

Overall we have

f (yT )− f (x∗) ≤ 16L

T 2
Dψ (x∗, z0) +

2

T 1/2η

(
2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1

δ

))
σ2

)
η2(1 + log T )

)
.

24



High Probability Convergence of Stochastic Gradient Methods

C. Missing Proofs from Section 4
C.1. Stochastic Gradient Descent

Proof of Lemma 4.2. We start from the smoothness of f

f(xt+1)− f(xt) ≤ 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= −ηt
〈
∇f(xt), ∇̂f(xt)

〉
+
Lη2

t

2

∥∥∥∇̂f(xt)
∥∥∥2

.

By writing ∇̂f(xt) = ξt +∇f(xt) we have

f(xt+1)− f(xt) ≤ −ηt 〈∇f(xt), ξt +∇f(xt)〉+
Lη2

t

2
‖ξt +∇f(xt)‖2

= −ηt ‖∇f(xt)‖2 − ηt 〈∇f(xt), ξt〉

+
Lη2

t

2
‖ξt‖2 +

Lη2
t

2
‖∇f(xt)‖2 + Lη2

t 〈∇f(xt), ξt〉 .

We obtain the inequality (7) by rearranging the terms.

Proof of Theorem 4.3. We prove by induction. The base case t = T + 1 trivially holds. Consider 1 ≤ t ≤ T , we have

E [exp (St) | Ft] = E [E [exp (Zt + St+1) | Ft+1] | Ft]
= E [exp (Zt)E [exp (St+1) | Ft+1] | Fk] .

From the induction hypothesis we have E [exp (St+1) | Ft+1] ≤ exp
(

3σ2
∑T
i=t+1

wiη
2
iL

2

)
, hence

E [exp (St) | Ft] ≤ exp

(
3σ2

T∑
i=t+1

wiη
2
iL

2

)
E [exp (Zt) | Ft] .

We have then

E [exp (Zt) | Ft] = E
[
exp

(
wt

(
ηt

(
1− ηtL

2

)
‖∇f(xt)‖2 + ∆t+1 −∆t

)
− vt ‖∇f(xT )‖2

)
| Ft

]
≤ E

[
exp

(
wt

(
ηt(ηtL− 1) 〈∇f(xt), ξt〉+

η2
tL

2
‖ξt‖2

)
− vt ‖∇f(xt)‖2

)
| Ft

]
= exp

(
−vt ‖∇f(xt)‖2

)
E
[
exp

(
wt

(
ηt(ηtL− 1) 〈∇f(xt), ξt〉+

η2
tL

2
‖ξt‖2

))
| Ft

]
≤ exp

(
−vt ‖∇f(xt)‖2

)
exp

(
3σ2

(
w2
t η

2
t (ηtL− 1)2 ‖∇f(xt)‖2 +

wtη
2
tL

2

))
= exp

(
3σ2wtη

2
tL

2

)
.

where the second line is due to (7) in Lemma 4.2 and the second to last line is due to Lemma 2.2.Therefore

E [exp (St) | Ft] ≤ exp

(
3σ2

T∑
i=t

wiη
2
iL

2

)
which we what we need to show.

Proof of Corollary 4.4. In Lemma 4.3, Let t = 1 we obtain

E [exp (S1)] ≤ exp

(
3σ2

T∑
t=1

wtη
2
tL

2

)
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hence by Markov’s inequality we have

Pr

[
S1 ≥

(
3σ2

T∑
t=1

wtη
2
tL

2

)
+ log

1

δ

]
≤ δ.

In other words, with probability ≥ 1− δ (once the condition in Lemma 4.3 is satisfied)

T∑
t=1

[
wtηt

(
1− ηtL

2

)
− vt

]
‖∇f(xt)‖2 + wt (∆t+1 −∆t)

≤ 3σ2
T∑
t=1

wtη
2
tL

2
+ log

1

δ
.

This gives

T∑
t=1

[
wtηt

(
1− ηtL

2

)
− vt

]
‖∇f(xt)‖2 + wT∆T+1 ≤ w1∆1 +

(
T∑
t=2

(wt − wt−1)∆t + 3σ2
T∑
t=1

wtη
2
tL

2

)
+ log

1

δ

as needed.

Proof of Theorem 4.1 . First case.

Starting from this inequality, we will specify the choice of ηt and wt to obtain the bound. Consider ηt = η with ηL ≤ 1,
wt = w = 1

6σ2η . Note that wtη2
tL = ηL

6σ2 ≤ 1
2σ2 satisfies the condition of Lemma 4.3, we have

LHS of (9) = w∆T+1 +

T∑
t=1

[
wη

(
1− ηL

2

)
− 3σ2w2η2(ηL− 1)2

]
‖∇f(xt)‖2

= w∆T+1 + wη

T∑
t=1

[
1− ηL

2
− 1

2
(ηL− 1)2

]
‖∇f(xt)‖2

≥ w∆T+1 +
wη

2

T∑
t=1

‖∇f(xt)‖2

where the last inequality is due to 1− ηL
2 −

(1−ηL)2

2 ≥ 1
2 when 0 ≤ ηL ≤ 1. Besides,

RHS of (9) =w∆1 +
3σ2

2
wη2LT + log

1

δ
.

Hence with probability ≥ 1− δ

T∑
t=1

‖∇f(xt)‖2 +
2∆T+1

η
≤ 2∆1

η
+ 3σ2ηLT +

2

wη
log

1

δ

=
2∆1

η
+ 3σ2ηLT + 12σ2 log

1

δ
.

Finally by choosing η = min

{
1
L ;
√

∆1

σ2LT

}
and noticing ∆T+1 ≥ 0, we obtain the desired inequality.

Second case.
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Consider ηt = η√
t

with ηL ≤ 1, wt = w = 1
6σ2η . Again, we have wtη2

tL = ηL
6σ2t ≤

1
2σ2 , then

LHS of (9) =

T∑
t=1

[
wη√
t

(
1− ηL

2
√
t

)
− 3σ2w2η2

t

(
1− ηL√

t

)2
]
‖∇f(xt)‖2 + w∆T+1

=

T∑
t=1

wη√
t

[
1− ηL

2
√
t
− 3σ2wη√

t

(
1− ηL√

t

)2
]
‖∇f(xt)‖2 + w∆T+1

≥
T∑
t=1

wη√
t

[
1− ηL

2
√
t
− 3σ2wη

(
1− ηL√

t

)2
]
‖∇f(xt)‖2 + w∆T+1

=

T∑
t=1

wη√
t

[
1− ηL

2
√
t
− 1

2

(
1− ηL√

t

)2
]
‖∇f(xt)‖2 + w∆T+1

≥
T∑
t=1

wη

2
√
t
‖∇f(xt)‖2 + w∆T+1 ≥

wη

2
√
T

T∑
t=1

‖∇f(xt)‖2 + w∆T+1,

where the second inequality is due to 1− ηL

2
√
t
− 1

2

(
1− ηL√

t

)2

≥ 1
2 when 0 ≤ ηL√

t
≤ 1. Besides,

RHS of (9) =w∆1 +
3σ2

2
wη2L

T∑
t=1

1

t
+ log

1

δ

≤w∆1 +
3σ2

2
wη2L(1 + log T ) + log

1

δ
.

Therefore, with probability ≥ 1− δ

T∑
t=1

‖∇f(xt)‖2 +
2
√
T∆T+1

η

≤
√
T

(
2∆1

η
+ 3σ2ηL (1 + log T ) +

2

wη
log

1

δ

)
=
√
T

(
2∆1

η
+ 3σ2ηL (1 + log T ) + 12σ2 log

1

δ

)
.

Choose η = 1
L , and notice ∆T+1 ≥ 0, we obtain

1

T

T∑
t=1

‖∇f(xt)‖2 ≤
2∆1L+ 3σ2 (1 + log T ) + 12σ2 log 1

δ√
T

.

C.2. AdaGrad-Norm

Proof of Lemma 4.6. Starting from the smoothness of f

f(xt+1)− f(xt) ≤ 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= − η
bt

〈
∇f(xt), ∇̂f(xt)

〉
+
Lη2

2b2t

∥∥∥∇̂f(xt)
∥∥∥2

= − η
bt
‖∇f(xt)‖2 −

η

bt
〈∇f(xt), ξt〉+

Lη2

2b2t

∥∥∥∇̂f(xt)
∥∥∥2

. (23)
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Multiplying both sides by bt
η(2bt−b0) and rearranging, we obtain

‖∇f(xt)‖2

2bt − b0
≤ −〈∇f(xt), ξt〉

2bt − b0
+
bt (∆t −∆t+1)

η (2bt − b0)
+

ηL

2bt (2bt − b0)

∥∥∥∇̂f(xt)
∥∥∥2

=

(
1

2bt−1 − b0
− 1

2bt − b0

)
〈∇f(xt), ξt〉 −

〈∇f(xt), ξt〉
2bt−1 − b0

+
bt (∆t −∆t+1)

η (2bt − b0)
+

ηL

2bt (2bt − b0)

∥∥∥∇̂f(xt)
∥∥∥2

. (24)

Note that by the smoothness of f we also have ‖∇f(xt)‖2 ≤ 2L∆t. Combining with Cauchy-Schwatz inequality we have(
1

2bt−1 − b0
− 1

2bt − b0

)
〈∇f(xt), ξt〉

≤
(

bt−1

2bt−1 − b0
− bt

2bt − b0

)
‖∇f(xt)‖2

2ηL
+

(
1

2bt−1 − b0
− 1

2bt − b0

)2
ηL

bt−1

2bt−1−b0 −
bt

2bt−b0

‖ξt‖2

2

=

(
bt−1

2bt−1 − b0
− bt

2bt − b0

)
∆t

η
+

(
1

2bt−1 − b0
− 1

2bt − b0

)
ηL

b0
‖ξt‖2 .

Plugging into (24) we obtain

‖∇f(xt)‖2

2bt − b0
≤
(

1

2bt−1 − b0
− 1

2bt − b0

)
ηL

b0
‖ξt‖2 −

〈∇f(xt), ξt〉
2bt−1 − b0

+
bt−1∆t

η (2bt−1 − b0)
− bt∆t+1

η (2bt − b0)
+

ηL

2bt (2bt − b0)

∥∥∥∇̂f(xt)
∥∥∥2

.

Sum up from 1 to T

T∑
t=1

‖∇f(xt)‖2

2bt − b0
≤

T∑
t=1

(
1

2bt−1 − b0
− 1

2bt − b0

)
ηLMT

b0
−

T∑
t=1

〈∇f(xt), ξt〉
2bt−1 − b0

+

T∑
t=1

(
bt−1∆t

η (2bt−1 − b0)
− bt∆t+1

η (2bt − b0)

)
+

T∑
t=1

ηL

2bt (2bt − b0)

∥∥∥∇̂f(xt)
∥∥∥2

≤ ηLMT

b20
+

∆1

η
− bT∆T+1

η (2bT − b0)
+
ηL

2

T∑
t=1

∥∥∥∇̂f(xt)
∥∥∥2

b2t
−

T∑
t=1

〈∇f(xt), ξt〉
2bt−1 − b0

≤ ηLMT

b20
+

∆1

η
− bT∆T+1

η (2bT − b0)
+
ηL

2
log

b2T
b20
−

T∑
t=1

〈∇f(xt), ξt〉
2bt−1 − b0

.

Proof of Lemma 4.7. For 1 ≤ t ≤ T , given |λ| ≤ 1
σ , we have

E

[
exp

(
λ2

〈
∇f(xt)

‖∇f(xt)‖
, ξt

〉2
)
| Ft

]
≤ E

[
exp

(
λ2 ‖ξt‖2

)
| Ft

]
≤ exp

(
λ2σ2

)
.

Thus −
〈
∇f(xt)
‖∇f(xt)‖ , ξt

〉
is a centered σ-sub-Gaussian RV given Ft, and we can apply Lemma 2.2 for a = w‖∇f(xt)‖

2bt−1−b0 and
b = 0, for some constant w > 0 to get

E
[
exp

(
−w 〈∇f(xt), ξt〉

2bt−1 − b0

)
| Ft

]
= E

exp

−w ‖∇f(xt)‖
〈
∇f(xt)
‖∇f(xt)‖ , ξt

〉
2bt−1 − b0

 | Ft


≤ exp

(
2w2 ‖∇f(xt)‖2 σ2

(2bt−1 − b0)
2

)
.
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By a simple induction argument we obtain

E

[
exp

(
T∑
t=1

−w 〈∇f(xt), ξt〉
2bt−1 − b0

− 2w2 ‖∇f(xt)‖2 σ2

(2bt−1 − b0)
2

)]
≤ 1.

Hence, by Markov’s inequality

Pr

[
T∑
t=1

−w 〈∇f(xt), ξt〉
2bt−1 − b0

− 2w2 ‖∇f(xt)‖2 σ2

(2bt−1 − b0)
2 ≥ log

1

δ

]
≤ δ

which implies with probability at least 1− δ, we have

T∑
t=1

−w 〈∇f(xt), ξt〉
2bt−1 − b0

≤
T∑
t=1

2w2σ2 ‖∇f(xt)‖2

(2bt−1 − b0)
2 + log

1

δ
.

However, we now have a mismatch between the index of the numerator and denominator of the first term in the RHS. To
resolve this, observing that ‖∇f(xt)‖2 ≤ 2 ‖∇f(xt)−∇f(xt−1)‖2 + 2 ‖∇f(xt−1)‖2 and using the smoothness of f for
the first term, ie ‖∇f(xt)−∇f(xt−1)‖ ≤ L ‖xt − xt−1‖ = Lη

bt−1

∥∥∥∇̂f(xt−1)
∥∥∥, we have

T∑
t=1

2w2σ2 ‖∇f(xt)‖2

(2bt−1 − b0)
2 ≤

T∑
t=2

4w2η2L2σ2
∥∥∥∇̂f(xt−1)

∥∥∥2

b2t−1 (2bt−1 − b0)
2 +

T∑
t=2

4w2σ2 ‖∇f(xt−1)‖2

(2bt−1 − b0)
2

+
2w2σ2 ‖∇f(x1)‖2

b20
.

Finally, since 2bt−1 − b0 ≥ b0 and
∑T
t=2
‖∇̂f(xt−1)‖2

b2t−1
≤ log

b2T
b20

, the proof is completed.

Lemma C.1. With probability at least 1− δ
T∑
t=1

‖ξt‖2 ≤ σ2T + σ2 log
1

δ
.

Proof of Lemma C.1. It is not hard to verify that

E

[
exp

(∑T
t=1 ‖ξt‖

2

σ2

)]
≤ exp

(
T∑
t=1

1

)
= exp(T ).

Thus by Markov’s inequality

Pr

[
T∑
t=1

‖ξt‖2 ≥ σ2T + σ2 log
1

δ

]
= Pr

[
exp

(∑T
t=1 ‖ξt‖

2

σ2

)
≥ exp(T )

δ

]
≤ δ.

Therefore with probability at least 1− δ
T∑
t=1

‖ξt‖2 ≤ σ2T + σ2 log
1

δ
.

Proof of Theorem 4.5. From Lemma 4.6 and 4.7, we have with probability at least 1− δ
T∑
t=1

‖∇f(xt)‖2

2bt − b0
≤ ηLMT

b20
+

∆1

η
+

2wσ2 ‖∇f(x1)‖2

b20
+

(
ηL

2
+

4wη2L2σ2

b20

)
log

b2T
b20

+

T∑
t=2

4wσ2 ‖∇f(xt−1)‖2

(2bt−1 − b0)
2 +

1

w
log

1

δ
.
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Here we choose w = b0
8σ2 min

{
1; b0ηL

}
and simplify the result to get

T∑
t=1

‖∇f(xt)‖2

2bt − b0
−

T∑
t=2

4wσ2 ‖∇f(xt−1)‖2

(2bt−1 − b0)
2 ≤ ηLMT

b20
+

∆1

η
+
‖∇f(x1)‖2

4b20
+ ηL log

b2T
b20

+
8σ2

b0

(
1 +

ηL

b0

)
log

1

δ
.

Note that by the choice of w, in the LHS of the above,

4wσ2

(2bt−1 − b0)
2 ≤

b0

2 (2bt−1 − b0)
2 ≤

1

2 (2bt−1 − b0)
.

Hence, we have

T∑
t=1

‖∇f(xt)‖2

2(2bt − b0)
≤

T∑
t=1

‖∇f(xt)‖2

2bt − b0
−

T∑
t=2

4wσ2 ‖∇f(xt−1)‖2

(2bt−1 − b0)
2 .

which implies

T∑
t=1

‖∇f(xt)‖2

4bT
≤ ηLMT

b20
+

∆1

η
+
‖∇f(x1)‖2

4b20
+ ηL log

b2T
b20

+
8σ2

b0

(
1 +

ηL

b0

)
log

1

δ
.

It is known that with probability at least 1− δ, MT ≤ σ2
(
1 + log T

δ

)
(Li & Orabona, 2020; Liu et al., 2022). By the union

bound, we have with probability at least 1− 2δ

T∑
t=1

‖∇f(xt)‖2

4bT
≤ ηL log

b2T
b20

+
∆1

η
+
‖∇f(x1)‖2

4b20
+

8σ2

b0

(
1 +

ηL

b0

)
log

1

δ
+
ηLσ2

b20

(
1 + log

T

δ

)

⇒
T∑
t=1

‖∇f(xt)‖2 ≤ 4bT

ηL log
b2T
b20

+
∆1

η
+
‖∇f(x1)‖2

4b20
+

8σ2

b0

(
1 +

ηL

b0

)
log

1

δ
+
ηLσ2

b20

(
1 + log

T

δ

)
︸ ︷︷ ︸

g(δ)=O(1+σ2 log T
δ )

 .

Note that

bT =

√√√√b20 +

T∑
t=1

∥∥∥∇̂f(xt)
∥∥∥2

≤

√√√√b20 + 2

T∑
t=1

‖ξt‖2 +

T∑
t=1

2 ‖∇f(xt)‖2.

Now we consider the following two cases

Case 1.
∑T
t=1 2 ‖∇f(xt)‖2 ≤ b20 + 2

∑T
t=1 ‖ξt‖

2, then we have

T∑
t=1

‖∇f(xt)‖2 ≤ 4

√√√√2b20 + 4

T∑
t=1

‖ξt‖2
(
ηL log

2b20 + 4
∑T
t=1 ‖ξt‖

2

b20
+ g(δ)

)
.
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Case 2.
∑T
t=1 2 ‖∇f(xt)‖2 > b20 + 2

∑T
t=1 ‖ξt‖

2, then we have

T∑
t=1

‖∇f(xt)‖2 ≤ 8

√√√√ T∑
t=1

‖∇f(xt)‖2
(
ηL log

4
∑T
t=1 ‖∇f(xt)‖2

b20
+ g(δ)

)

⇒

√√√√ T∑
t=1

‖∇f(xt)‖2 ≤ 16ηL log
2
√∑T

t=1 ‖∇f(xt)‖2

b0
+ 8g(δ)

≤ 16ηL log

√∑T
t=1 ‖∇f(xt)‖2

32ηL
+ 16ηL log

64ηL

b0
+ 8g(δ)

≤

√∑T
t=1 ‖∇f(xt)‖2

2
+ 16ηL log

64ηL

b0
+ 8g(δ)

⇒

√√√√ T∑
t=1

‖∇f(xt)‖2 ≤ 32ηL log
64ηL

b0
+ 16g(δ).

Combining the two cases, we have

T∑
t=1

‖∇f(xt)‖2 ≤ 4

√√√√2b20 + 4

T∑
t=1

‖ξt‖2
(
ηL log

2b20 + 4
∑T
t=1 ‖ξt‖

2

b20
+ g(δ)

)

+

(
32ηL log

64ηL

b0
+ 16g(δ)

)2

.

The final step is to use Lemma C.1 and union bound to get, with probability at least 1− 3δ

1

T

T∑
t=1

‖∇f(xt)‖2 ≤
4

T

√
2b20 + 4σ2T + 4σ2 log

1

δ

(
ηL log

2b20 + 4σ2T + 4σ2 log 1
δ

b20
+ g(δ)

)

+
1

T

(
32ηL log

64ηL

b0
+ 16g(δ)

)2

.
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