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ABSTRACT

A neural multimodal machine translation (MMT) system is one that aims to per-
form better translation by extending conventional text-only translation models
with multimodal information. Many recent studies report improvements when
equipping their models with the multimodal module, despite the controversy
whether such improvements indeed come from the multimodal part. We revisit
the recent development of neural multimodal machine translation by proposing
two interpretable MMT models that achieve new state-of-the-art results on the
standard Multi30k dataset. To our surprise, however, while we observe similar
gains as in the recent developed multimodal-integrated models, our models learn
to ignore the multimodal information. Upon further investigation, we discover
that the improvements bought about by the multimodal models over text-only
counterpart are in fact results of the regularization effect. We report our empir-
ical findings which express the importance of MMT models’ interpretability and
set new paradigms for future MMT research.

1 INTRODUCTION

Since statistical methods and machine learning algorithms were first introduced to the field of natural
language processing (NLP) in the early 1990s, most researchers hold the belief that, with appropriate
regularization, adding more features to NLP models rarely harms performance. Nevertheless, due
to the recent prevalence of deep neural network models, applying proper regularization has been
far more difficult than tuning a simple λ hyperparameter, which controls the importance of the
regularization term in the learning objective1. For this reason, while it is often tempting to conclude
the gain of a model comes from some exciting features newly introduced, we should also realize
that in the context of neural models, this gain may well be due to the fact that the baseline isn’t
properly regularized. The additional features merely serve as a noise that regularizes the neural
model (Goodfellow et al., 2016; Bishop, 1995).

From this perspective, we revisit the recent development of neural multimodal machine translation
(MMT). MMT aims at designing better translation systems by extending conventional text-only
translation models to take into account multimodal information. Many researches (Calixto et al.,
2017; Helcl et al., 2018; Ive et al., 2019; Lin et al., 2020; Yin et al., 2020) report improvements
when models are equipped with multimodal information, while others (Specia et al., 2016; Elliott
et al., 2017; Barrault et al., 2018) argue that visual features did not seem to help reliably. In par-
ticular, Elliott (2018) conduct thorough experiments to demonstrate that MMT models can translate
without significant performance losses even in the presence of features derived from unrelated im-
ages. A more recent study (Caglayan et al., 2019), however, shows that under limited textual context
(e.g., noun words are masked), models are capable of leveraging the visual input to generate better
translations. But it remains unclear where the gains of MMT methods come from when the tex-
tual context is complete. Despite those concerns, the field appears to be progressing steadily, albeit
slowly in recent years.

In this paper we propose two interpretable models taking advantage of multimodal information.
Instead of directly infusing visual features into the model, we design learnable components, allowing
the model to voluntarily decide the usefulness of the visual features and reinforce their effects when

1Most commonly, quadratic or “l2” regularization (Krogh & Hertz, 1992) is used: R(w) = λ
∑

i w
2
i .
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they are helpful. Our models achieve new state-of-the-art results on the standard multi30k (Elliott
et al., 2016) dataset. In spite of that, both models learned to ignore the multimodal information to
our surprise. Our further analysis suggests that the improvements in fact come from a regularization
effect that is similar to the addition of random noise (Bishop, 1995) and weight decay (Hanson &
Pratt, 1989). The additional information is treated as noise signal that lower the model’s trust on the
hidden representations generated from the neural encoders, resulting in a more robust network that
has lower generalization error.

Our contributions are threefold. First, we revisit neural models for the popular task of multimodal
machine translation. Our findings stress the importance of MMT models’ interpretability. Second,
for the MMT task, we provide a strong text-only baseline implementation as well as two models
with interpretable visual modules that replicate similar gains as reported in previous works. In
particular, our MMT models focus on the interpretability of how multimodal information is fused
into the translation models. Our methods can serve as standard baselines for future interpretable
MMT studies. Third, our analysis suggests that the improvements of the multimodal models over
text-only counterparts is a result of better regularization effect.

2 BACKGROUND

One can broadly categorize MMT systems into two types: (1) Conventional MMT, where
there is gold alignment between the source (target) sentence pair and a relevant image and (2)
Retrieval-based MMT, where there is an image corpus from which the system needs to retrieve
relevant images as additional clues to assist translation.

Conventional MMT Most MMT systems require MMT datasets of images with bilingual annota-
tions for both training and inference. Many early attempts use a pre-trained model (e.g., ResNet (He
et al., 2016)) to encode images into feature vectors. This image/visual representation is then either
used in the initialization of the decoder’s and/or the encoder’s hidden states (Elliott et al., 2015;
Libovický & Helcl, 2017; Calixto et al., 2016) or appended/prepended to word embeddings as ad-
ditional input tokens (Huang et al., 2016; Calixto & Liu, 2017). Recent works (Calixto et al., 2017;
Libovický et al., 2018; Zhou et al., 2018; Ive et al., 2019; Lin et al., 2020) use attention mecha-
nism to select relevant visual features and generate a visual-aware representation for the decoder.
While there are more works on engineering decoders, encoder-based approaches are relatively less
explored. To this end, Yao & Wan (2020) and Yin et al. (2020) propose to replace the vanilla Trans-
former encoder with a stack of multi-modal encoder layers.

Retrieval-based MMT The effectiveness of conventional MMT relies on the availability of im-
ages with bilingual annotations, which limits its applicability. To address this issue, Zhang et al.
(2020) integrate a retrieval component into MMT. They use term-frequency-inverse-document-
frequency (TF-IDF) to build a token-to-image lookup table. With this table, images that share
similar topics with a source sentence are retrieved as relevant images. This creates image-bilingual-
annotation instances for training. Retrieval-based models have been shown to improve performance
across a variety of NLP tasks besides MMT, such as open-domain question answering (Guu et al.,
2020; d’Autume et al., 2019), fact checking (Thorne et al., 2018), dialogue (Weston et al., 2018),
language modeling (Khandelwal et al., 2019), question generation (Lewis et al., 2020), and transla-
tion (Gu et al., 2018).

3 METHOD

In this section we introduce two new MMT models: (1) Gated Fusion for conventional MMT and
(2) Retrieval-augmented MMT (RMMT) for retrieval-based MMT. Our design philosophy is that the
models should learn, in an interpretable manner, to which degree multimodal information should be
used.

We start with the simple yet effective Gated Fusion model that translates a source sentence x into a
target y with the help of a gold-standard image z associated to x and y. The model learns a gating
vector ~λ ∈ [0, 1]d that controls the amount of visual information that is blended into the textual
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representation. The learned ~λ makes the fusion process interpretable: a larger gating value λ ∈ ~λ
indicates that the model exploits more visual context in the translation.

For RMMT, we augment a conventional MMT model with a learnable retriever, which learns to
retrieve images that are semantically-relevant to an input sentence x. We jointly train the retriever
with the rest of the model in an end-to-end manner such that the model learns to retrieve images that
are highly influential in the translation.

3.1 GATED FUSION MMT

Given a source sentence x of length T , we first feed it into a vanilla Transformer (Vaswani et al.,
2017) encoder to obtain a textual representation Htext ∈ RT×d. The encoder contains L identical
layers, each with a multi-head self-attention sublayer followed by a position-wise, fully connected
feed-forward sublayer. Layers and sublayers are chained using residual connection (He et al., 2016)
and layer normalization (Ba et al., 2016). For the image z associated with x, we use a ResNet-50
CNN (He et al., 2016) trained on ImageNet (Russakovsky et al., 2015) to extract a 2048-dimensional
average pooled visual representation, which is then projected and broadcasted to the same dimension
as Htext.

Embed image (z) = Wz ResNetpool (z) . (1)
We now devise a gating mechanism to control the fusion of Htext and Embed image (z). The gating
vector ~λ ∈ [0, 1]d is computed as follow:

~λ = sigmoid (Wλ Embed image (z) + UλHtext) , (2)

where Wλ and Uλ are model parameters. Note that this gating mechanism has been a building
block for many recent MMT systems (Zhang et al., 2020; Lin et al., 2020; Yin et al., 2020). We
are, however, the first to focus on its interpretable factors. Finally, we fuse the textual and visual
representations:

H = Htext + ~λ Embed image (z). (3)
The output H is fed into the decoder directly for translation as in vanilla Transformer.

3.2 RETRIEVAL-AUGMENTED MMT (RMMT)

On the basis of Gated Fusion, we introduce a retrieval component that retrieves images from a pool
of candidates Z using input sentence x. Each retrieved image z is then treated as a latent variable
and we marginalize over all z ∈ Z to obtain the overall likelihood of generating the target sentence
y, yielding:

p(y|x) =
∑
z∈Z

pη(z | x)

N∏
i

pθ (yi | x, z, y<i) . (4)

RMMT consists of two sequential components: (1) an image retriever pη(z|x) with parameters η that
returns probability distributions over candidate images given a query x. (2) a multi-modal translator∏N
i pθ(yi|x, z, y<i) that generates each yi condition on the input sentence x, the image z returned

by the retriever, and the previous generated tokens y<i. Ideally, we can implement this multimodal
translator (denote as p(y|x, z)) using any existing MMT models. Without loss of generality, here we
use the Gated Fusion model as an example.

Image Retriever The retriever is defined as a dense inner product model:

p(z | x) =
exp f(x, z)∑
z′ exp f (x, z′)

, (5)

f(x, z) = Embed text (x)> Embed image(z), (6)

where Embedtext(x) and Embedimage(z) are functions that map x and z respectively to
d−dimensional vectors. The relevance score f(x, z) between x and z is defined as the inner product
of the vector embeddings. The retrieval distribution is the softmax over all relevance scores.

We obtain Embedimage(z) as in Equation 1. For Embedtext(x), we implement it using BERT (Devlin
et al., 2018) as below:

Embed text (x) = Wtext BERTCLS (x) . (7)
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Following standard practices, we use a pre-trained BERT model2 to obtain the “pooled” representa-
tion of the sequence (denoted as BERTCLS(x)). Wtext is a projection matrix.

Decoding The likelihood p(y|x) estimated in RMMT (Equation 4) cannot be solved with a single
beam search pass. Instead, we use the “Fast Decoding” algorithm proposed in Lewis et al. (2020)
to approximate maxy p(y | x). In particular, we run beam search for each candidate image zj ∈
{z1, . . . , zK}, scoring each hypothesis using pθ(yi | x, zj , y<i). This yields K set of hypotheses
of which some might not have appeared in the search space of all images. We make a further
approximation that pθ(y | x, zj) = 0, where y was not generated during beam search from x, zj .
Finally, we multiply each score pθ(yi | x, zj , y<i) with p(zj | x) and then sum up the probabilities
across K beams to obtain the marginalized probability pθ(yi | x, y<i).

3.3 TRAINING

We train both Gated Fusion and RMMT by maximizing the log-likelihood, log p(y|x). For Gated
Fusion, we follow standard sequence to sequence (Bahdanau et al., 2014) training protocols. For
RMMT, since both the image retriever and multimodal translator are differentiable neural networks,
we can jointly optimize them (as defined in Equation 4) using stochastic gradient descent. The
key computational challenge is that the marginal probability p(y|x) involves a summation over all
images z in the image corpus Z . We approximate this by summing over the top k images with the
highest probability under pη(z | x), assuming that most images are irrelevant to x and thus giving
negligible probabilities. The whole retrieval process is in-memory.

What does the retriever learn? Since there is no direct supervision for the retriever in training
(i.e. we do not provide ground truth images to supervise the training of retriever), it is not obvious
how the training objective encourages meaningful retrievals. Here, we provide mathematical guaran-
tees about how RMMT rewards retrievals that improve translation performance. Recall that f(x, z)
(see Equation 6) is the relevance score that retriever assigns to images z, given input sequence x. We
can see how a single step of gradient descent during training alters f(x, z) by analyzing the gradient
with respect to the parameters of the image retriever, η:

∇ log p(y | x) =
∑
z∈Z

r(z)∇f(x, z),

r(z) =

[
p(y | z, x)

p(y | x)
− 1

]
p(z | x).

(8)

For each image z, the change of retriever’s relevance score f(x, z) is associated with r(z) — in-
creasing (decreasing) if r(z) is positive (negative). The multiplier r(z) is positive if and only if
p(y|x, z) > p(y|x). The term p(y|x, z) is the probability of generating the correct sequence y
conditioning on image z, while p(y|x) is the expected value of p(y|x, z) when conditioning on ran-
domly sampled image from p(z|x). Therefore, whenever the model performs better than expected,
a helpful image z will receive a positive update (i.e f(x, z) = f(x, z) + learning rate ∗ ∇f(x, z),
since ∇f(x, z) is positive, the relevance score will increase). Through this training procedure, the
retriever learns to focus on images that can improve translation performance. We refer readers to
Guu et al. (2020) for a detailed derivation of Equation 8.

Retriever warm-start At the beginning of training, the retrieved images z will likely be unrelated
to x since the retriever does not yet have good representations for Embedtext(x) and Embedimage(z).
This starts a vicious cycle where the multimodal translator learns to ignore the retrieved irrelevant
images and thus the retriever does not receive a meaningful gradient and cannot improve. To avoid
this issue, we pre-train the retriever on a Text-to-Image-Retrieval task (Frome et al., 2013). The
goal of the pre-training is to learn a common space for image and text such that we can measure the
visual-semantic similarity by the inner product of two vectors.

2Here we use bert-base-uncased version from HuggingFace (Wolf et al., 2019).
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4 EXPERIMENT

4.1 DATASET

We evaluate our methods on the widely-used MMT datasets: Multi30k (Elliott et al., 2016).

The Multi30k dataset is an extension of Flickr30k (Plummer et al., 2015). Flickr30k contains 31,014
images sourced from online photo-sharing websites. Each image is paired with five English de-
scriptions. Researchers create Multi30k by sampling one image-caption pair for each image from
Flickr30k and crowd-sourcing German/French translation for the English caption. We follow a stan-
dard split of 29,000 instances for training, 1,014 for validation, and 1,000 for testing (Test2016). We
also report results on the 2017 test set (Test2017) with extra 1,000 instances and the MSCOCO test
set that has 461 more challenging out-of-domain instances that contain ambiguous verbs.

We use the official preprocessed version of Multi30k3 and merge the source and target sentences
to build a joint vocabulary. We then apply the byte pair encoding (BPE) algorithm (Sennrich et al.,
2016) with 10,000 merging operations to segment words into subwords, following standard practice.
Resulting in a vocabulary of 9,712 (9,544) tokens for En-De (En-Fr).

Retriever pre-train. We pre-train the retriever on a subset of Flickr30k that has overlapping in-
stances with Multi30k removed. We use Multi30k’s validation set to evaluate the retriever. We
measure the performance by recall-at-K (R@K) defined as the fraction of queries for which the
correct images are retrieved in the closest K images to the query. The pre-trained retriever registers
an R@1 of 22.8% and R@5 of 39.6%.

4.2 SETUP

We implement the proposed models and baselines with FairSeq toolkit (Ott et al., 2019). We ex-
periment with different model sizes (Base, Small, and Tiny) as detailed in Appendix A. Base is
a widely-used model configuration for Transformer in both text-only translation (Vaswani et al.,
2017) and MMT (Grönroos et al., 2018; Ive et al., 2019). However, for small datasets like Multi30k,
training such a big model (about 50 million parameters) has the potential of overfitting. We there-
fore turn to a relatively small model commonly used for low-resourced translation (Zhu et al., 2020),
denoted as Small. In our preliminary study, we found that even a Small model can still overfit. We
thus perform a grid search on Multi30k’En-De validation set and obtain a Tiny configuration that
works surprisingly well. A Tiny model has 4 encoder layers and 4 decoder layers. The dimensions
of input layer, output layer, and inner feed-forward layer are set to 128, 128, and 256, respectively.
The number of attention heads is set to 4.

We use Adam with β1 = 0.9, β2 = 0.98 for model optimization. We start training with a warm-up
phase (2,000 steps) where we linearly increase the learning rate from 10−7 to 0.005. Thereafter we
decay the learning rate proportional to the number of updates. Each training batch contains at most
4,096 source/target tokens. We set label smoothing weight to 0.1, dropout to 0.3. We follow Zhang
et al. (2020) to early-stop the training if validation loss does not improve for ten epochs. We average
the last ten checkpoints for inference as in Vaswani et al. (2017) and Wu et al. (2019). We perform
beam search with beam size set to 5. Multi-bleu.perl was used to compute 4-gram BLEU scores for
all test sets. All models are trained and evaluated on one single machine with two Titan P100 GPUs.

4.3 BASELINES

Except the text-only Transformer (Vaswani et al., 2017) baseline, we also compare to the following
conventional MMT baselines:

Doubly-ATT (Calixto et al., 2017; Helcl et al., 2018; Arslan et al., 2018) A doubly-attentive
transformer is an extension of text-only Transformer, whose vanilla decoder is replaced with a mul-
timodal decoder. An extra visual attention sublayer is inserted between the decoder’s source-target
attention sublayer and feed-forward sublayer.

Imagination The Imagination architecture, initially proposed by Elliott & Kádár (2017) and later
integrated into Transformer by Helcl et al. (2018), attempts to leverage the benefits of multi-tasking

3https://github.com/multi30k/dataset
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# Model En→De En→Fr
#Params Test2016 Test2017 MSCOCO #Params Test2016 Test2017 MSCOCO

Text-only Transformer
1 Transformer-Base 49.1M 38.33 31.36 27.54 49.0M 60.60 53.16 42.83
2 Transformer-Small 36.5M 39.68 32.99 28.50 36.4M 61.31 53.85 44.03
3 Transformer-Tiny 2.6M 41.02 33.36 29.88 2.6M 61.80 53.46 44.52

Existing MMT Systems
4 GMNMT♠ 4.0M 39.8 32.2 28.7 - 60.9 53.9 -
5 DCCN♠ 17.1M 39.7 31.0 26.7 16.9M 61.2 54.3 45.4
6 Doubly-ATT♠ 3.2M 41.45 33.95 29.63 3.2M 61.99 53.72 45.16
7 Imagination♠ 7.0M 41.31 32.89 29.90 6.9M 61.90 54.07 44.81
8 UVR-NMT♦ 2.9M 40.79 32.16 29.02 2.9M 61.00 53.20 43.71

Our MMT Systems
9 Balanced Fusion♠ 2.8M 39.48 30.39 27.51 2.8M 57.36 49.86 42.03

10 Gated Fusion♠ 2.9M 41.96 33.59 29.04 2.8M 61.45 54.03 43.77
11 RMMT-Static♦ 2.9M 42.12‡∗ 33.14 30.53†∗ 2.9M 62.12 55.08‡∗∗ 45.10†

12 RMMT♦ 3.3M 42.00 33.82 30.56 3.2M 61.72 54.0 45.24

Table 1: BLEU scores on Multi30k. Results in row 4 and 5 are taken from the original papers.
♠ indicates conventional MMT models, while ♦ refer to retrieval-based models. Without further
specified, all our implementations are based on the Tiny configuration. ‡/†: significantly better than
Transformer-Tiny (p < 0.01/0.05), **/*: significantly better than Imagination (p < 0.01/0.05)

to improve MMT. They propose to share the sentence encoder between the translation task and an
auxiliary visual reconstruction task, which encourages the visual grounding for translation.

Balanced Fusion In comparison to Gated Fusion, we experimented on a non-parametric fusion
method that directly adds up visual and textual representations.

For retrieval-based MMT, we consider the following baselines:

UVR-NMT (Zhang et al., 2020). This method enables MMT to be applied to large-scale text-
only NMT through a token-to-image lookup. They use an attention layer with a gated weighting to
fuse the visual representations and the textual representations.

RMMT-static To evaluate the effectiveness of our methods against UVR-NMT, we propose a
variant called RMMT-static. In particular, we do not update our retriever during training and degen-
erate the learning objective to the one used in UVR-NMT. We also use the same fusion component
as in UVR-NMT. For both RMMT and RMMT-static, we use top-5 retrieved images following
UVR-NMT.

To ensure fair comparison and minimize training/environmental differences, all the above baselines
are implemented by ourselves based on FairSeq and with the same set of hyper-parameters. We also
consider two more recent methods: GMNMT (Yin et al., 2020) and DCCN (Lin et al., 2020), we
directly use the results reported in their paper.

5 RESULTS

Table 1 shows the results on Multi30k. Our reproduction of text-only Transformer-Base (row 1)
matches the BLEU scores reported in Grönroos et al. (2018); Ive et al. (2019). We further test
the models with fewer parameters, Transformer-Small and Transformer-Tiny. We observe clear im-
provements with less parameters. This supports our speculation that the large number of parameters
at the scale of Transformer-Base leads to overfitting. Transformer-Tiny, whose parameters are about
1/20 in number of Transformer-Base, is more robust and efficient in all our test sets. We therefore
use it as the default basis for all our MMT systems in the following discussion.

5.1 CONVENTIONAL MMT SYSTEMS

Previous conventional MMT systems have demonstrated clear improvements over text-only base-
lines. For instance, Helcl et al. (2018) shows a 0.9 BLEU gain on Imagination model. While with
an ever-strong text-only new baseline, we replicate similar, albeit smaller gains (see rows 6 and 7).
Despite its simplicity, our Gated Fusion model (row 10) surpasses almost all baselines on En→De
translation, and is on-par with the best on En→Fr translation. Comparing to Balanced Fusion (row

6



Under review as a conference paper at ICLR 2020

9), we can see that allowing the model to dynamically control the fusion of multimodal represen-
tation is critical to high performance. A natural question then arises: “How much visual context is
exploited by Gated Fusion?”

To answer this question we focus on the interpretable component in Gated Fusion — the gating
vector ~λ ∈ [0, 1]d (see Equation 3). Intuitively, a larger gating value indicates that the model learns
to depend more on visual context to perform better translation.

We propose to quantify the degree to which the visual context is exploited in Gated Fusion using
visual awareness (denoted as ∆~λ), which is defined as the percentage of non-zero values in ~λ.

From Table 2, we observe that ∆~λ is generally small, suggesting that the model learns to discard
visual context most of the time. Worse yet, non-zero gating values are within [10−10, 10−40]. Such
negligibly small values indicate that even though the visual context is exploited by the model, it is
orders-of-magnitude less important than previously thought.

5.2 RETRIEVAL-BASED MMT

Visual awareness

Multi30k En→De
Test2016 25.0%
Test2017 30.0%
MSCOCO 25.1%

Multi30k En→Fr
Test2016 32.8%
Test2017 38.0%
MSCOCO 33.2%

Table 2: Visual awareness on Multi30k.

Our best-performing model is RMMT-static (Table 1, row
11), whose retriever is frozen and does not update during
training. Although RMMT-static does not always use the
gold-standard images associated with the sentence pairs, it
still significantly outperforms conventional MMT models
like Imagination. One plausible explanation is that con-
ventional systems only rely on a single image for each
sentence pair, while our model relies on top-k retrieved
images, which injects more diversity into the translation.

To our surprise, the RMMT model, in which the retriever
is jointly optimized with the model, does not bring further
improvement. Inspecting closer, we observe that RMMT’s
retriever has “collapsed” and learned to retrieve the same
images regardless of the input. The retriever collapse issue
(Lewis et al., 2020) is not an uncommon phenomenon in retrieval-augmented models. It usually
happens when there is a less-explicit requirement for the retrieved items in the task, resulting in less
informative gradients for the retriever.

We also apply RMMT and RMMT-static to text-only corpora, which is described in details in Ap-
pendix E.

5.3 REVISIT THE NEED FOR VISUAL CONTEXT IN MMT

The phenomena of “zero-valued gating vector” in Gated Fusion and “retriever collapse” in RMMT
suggest that visual context does not offer additional useful information in MMT, or at least the
offering is much less than what was previously thought. Given that both previous papers and our
experiments see similar gains of MMT systems when they are compared with text-only baselines,
we want to investigate where these gains come from. Our hypothesis is that the improvements are
due to some regularization effects, where the additional information is treated as random noise that
lowers the model’s trust on the hidden representations generated from the neural encoders, resulting
in smaller network weights and a more robust network that has lower generalization error.

To verify our hypothesis, we conduct two sets of experiments based on two popular regularization
methods: adding random noise (Bishop, 1995) and adding weight decay (Hanson & Pratt, 1989).
Supported by these two experiments, we find that these regularization techniques achieve similar
gains over the text-only baseline in incorporating the multimodal information.

5.3.1 RANDOM NOISE

In the random noise experiments we keep all hyper-parameters unchanged but replace visual rep-
resentations extracted by ResNet (denoted as ResNet features) with randomly initialized vectors
(denoted as noise). In other words, the noise was added once per training sequence as in Graves
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# Model En→De En→Fr
Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO

1 Transformer 41.02 33.36 29.88 61.80 53.46 44.52
2 Doubly-ATT 41.53(+0.08) 33.90(-0.05) 29.76(+0.15) 61.85(-0.35) 54.61(+0.46) 44.85(-0.80)
3 Imagination 41.20(-0.11) 33.32(+0.42) 29.92(+0.02) 61.28(-0.62) 53.74(-0.33) 44.79(-0.01)
4 Gated Fusion 41.53(-0.45) 33.52(-0.07) 29.87(+0.83) 61.58(+0.13) 54.21(+0.18) 44.86(+1.09)

Table 3: BLEU scores on Multi30k with randomly initialized visual representation. Numbers in
parentheses indicate the relative improvement/deterioration compared with the original model with
ResNet features.

et al. (2013) rather than at every timestep. We ran each experiment three times with a different
set of noise drawn from a Gaussian distribution whose mean and standard deviation are both set
to 1. We report the average performance results, which are shown in Table 3. We observe that on
En→De translation, using random noise (rows 2-4) can also achieve clear gains over the text-only
baseline (row 1). On Gated Fusion (En→Fr), using random noise can even outperform the same
model equipped with ResNet features.

Our adversarial evaluation shows that the added random noise is functioning just like the visual
context. Injecting noise into a neural network makes it difficult for the network to fit individual
data points precisely, and hence it reduces overfitting (Bishop et al., 1995). In terms of MMT,
added noise or visual context make the translations of sentences in Multi30k, which are short and
repetitive (Caglayan et al., 2019), more challenging.

5.3.2 WEIGHT DECAY

As for another controlled evaluation, we focus on weight decay. Weight decay has not been widely
adopted in NMT because NMT datasets generally contain millions of sentences and are less likely
to overfit. Even in low-resource translation (Wu et al., 2019), researchers are very cautious with the
usage of weight decay (e.g., 0.0001). We experimented on text-only Transformer, existing MMT
method (Doubly-ATT), and our Gated Fusion method.

We can see from Figures 1(a) and (b) that with a large penalty on model weights (0.1), a text-only
Transformer (red line with triangle) can also exhibit performance that are comparable to or even
superior than Dounly-ATT (green line with �) and Gated Fusion (blue line withF). This finding
further supports our hypothesis that multimodal context serves as a kind of regularization. On the
other hand, introducing more regularization into MMT models always deteriorates the performance
on Test2016 and Test2017. One plausible explanation is that the visual context already serves as reg-
ularization in MMT, thus imposing more regularization will lead to under-fitting. On MSCOCO, we
observe a similar trend for Transformer, but both MMT models show further improvement equipped
with weight decay. This unusual behavior could be due to the fact that MSCOCO contains out-of-
domain sentences with ambiguous verbs, thus injecting more regularization to force the network to
trust the textual encoder’s output less can further improve the model’s performance.
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Figure 1: BLEU score curves on En→De translation with different weight decay rate. 0 indicates
without weight decay.
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6 CONCLUSION

In this paper we propose two novel interpretable models that exhibit new state-of-the-art perfor-
mance on the widely adopted MMT datasets — Multi30k. Our analysis on the proposed models, as
well as on other existing MMT systems, suggests that visual context helps MMT in the similar vein
as regularization methods (e.g., weight decay). Those empirical findings, however, should not be
understood as us denying the contribution of existing MMT methods. We believe that sophisticated
MMT models are necessary for effective grounding of visual context into translation. Their effec-
tiveness might be impaired by limitation in existing datasets (Caglayan et al., 2019). Our results
emphasise the importance of interpretability in MMT research, and stress the need of new datasets
to push forward the field.
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A MODEL SIZE

Table 4 shows the configuration of different model sizes.

Model component Base Small Tiny
Number of encoder/decoder layers 6 6 4
Input/Output layer dimension 512 512 128
Inner feed-forward layer dimension 2048 1024 256
Number of attention heads 8 4 4

Table 4: Model configurations for Base, Small, and Tiny.

B RESULTS ON VATEX

To further support our findings, we replicate our experiments on a new large-scale dataset – Va-
Tex. VaTex is a video-based MMT corpus that contains 129,955 English-Chinese sentence pairs
for training, 15,000 sentence pairs for validation, and 30,000 sentence pairs for testing. Each pair
of sentences is associated with a video clip. Since the testing set is not publicly available, we use
half of the validation set for validating and the other half for testing. We apply the byte pair en-
coding algorithm on the lower-cased English sentences and split Chinese sentences into sequences
of characters, resulting in a vocabulary of 17,216 English tokens and 3,384 Chinese tokens. We
use the video features provided along with the VaTex dataset, in which each video is represented
as Rk∗1024, where k is the number of segments. Since some MMT systems take a “global” visual
feature as input, we use 3D-Max-Pooling to extract the pooled representation R1024 for each video.

Model BLEU METEOR
Transformer 35.82 59.02

+weight decay 0.1 36.32 59.38
+weight decay 0.01 36.07 59.14
+weight decay 0.001 35.92 59.22

Doubly-ATT 36.05 59.26
Imagination 36.25 59.26
Gated Fusion 36.06 59.34
RMMT-Static 36.35 59.44
RMMT 35.34 58.32

Table 5: Results on VaTex En-Zh translation.

The results are shown in Table 5. We observe that although most MMT systems show improvement
over the Transformer baseline, the gains are quite marginal. Indicating that although image-based
MMT models can be directly applied to video-based MMT, there is still room for improvement due
to the challenge of video understanding. We also note that regularize the text-only Transformer
with weight decay demonstrates similar gains as injecting video information into the models, which
further supports our findings in Section 5.3.2.
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Figure 2: Training dynamic analysis on Test2016 of Multi30k En-de and En-Fr translation.

C TRAINING DYNAMIC ANALYSIS

All our investigations so far are conducted in a post-hoc manner (analyze after model converge).
In this section, we dive deeply into our models’ training dynamics to understand how they accom-
modate to the introduction of visual information during training. Recall that Gated Fusion contains
a gating vector ~λ ∈ [0, 1]d that controls the amount of visual information that is blended into the
textual representation. We compute a corpus-level averaged gating weight λ ∈ [0, 1] to measure
the degree visual information is exploited in Gated Fusion. Figure 2 shows how λ changes during
training, starting from epoch 1.

Note that at the beginning of training, Gated Fusion uses a relatively high λ (> 0.5), but quickly
decrease to ≈ 0.48 at the end of Epoch 1. We speculate that the model relies heavily on images at
the beginning because visual features are extracted from pre-trained ResNet-50 and are more infor-
mative, whereas the textual encoder is randomly initialized. As the training continues, λ gradually
decrease to near zero (<10e-10). This learning curve shows that Gated Fusion learns to translate
without “seeing” images. Because with such a magnitude smaller weight, most (if not all) visual
knowledge is discarded during fusion. However, although negligibly small, λ is never precisely zero
(i.e. the model will not discard visual information completely). This motivates our conjecture that
the visual information is functioning like some structured noise that slightly alters the model’s hid-
den representation. We observe a similar trend in RMMT that the retriever’s recall quickly decrease
to near zero over time.

D RESULTS ON METEOR

We also report our results based on METEOR (Banerjee & Lavie, 2005), which consistently demon-
strates higher correlation with human judgments than BLEU does in independent evaluations such
as EMNLP WMT 2011 4.

From Table 6, we can see that on En-Fr translation, MMT systems demonstrate similar improve-
ments over text-only baselines in both METEOR and BLEU(see Table 1). On En-De translation,
however, MMT systems are mostly on-par with Transformer-tiny on METEOR and do not show con-
sistent gains as BLEU. We hypothesis the reason being that En-De train/valid/test2016 set is created
in a image-blind fashion, in which the crowd-sourcing workers produce translations without seeing
the images (Frank et al., 2018). Such that source sentence can already provide sufficient context for
translation. When creating the En-Fr corpus, the image-blind issue is fixed (Elliott et al., 2017), thus
images are perceived as “needed” in the translation for whatever reason. Although BLEU is unable
to elicit this difference, evaluation based on METEOR captured it and confirmed previous research.

We also repeat our experiments about random noise (Section 5.3.1) and weight decay (Section 5.3.2)
using METEOR.

4http://statmt.org/wmt11/papers.html
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# Model En→De En→Fr
#Params Test2016 Test2017 MSCOCO #Params Test2016 Test2017 MSCOCO

Text-only Transformer
1 Transformer-Base 49.1M 65.92 60.02 54.73 49.0M 80.09 74.93 68.57
2 Transformer-Small 36.5M 66.01 60.80 55.95 36.4M 80.71 75.74 69.10
3 Transformer-Tiny 2.6M 68.22 62.05 56.64 2.6M 81.02 75.62 69.43

Existing MMT Systems
4 GMNMT♠ 4.0M 57.6 51.9 47.6 - 74.9 69.3 -
5 DCCN♠ 17.1M 56.8 49.9 45.7 16.9M 76.4 70.3 65.0
6 Doubly-ATT♠ 3.2M 68.04 61.83 56.21 3.2M 81.12 75.71 70.25
7 Imagination♠ 7.0M 68.06 61.29 56.57 6.9M 81.2 76.03 70.35

Our MMT Systems
9 Balanced Fusion♠ 2.8M 66.64 58.62 54.12 2.8M 78.16 72.90 67.71

10 Gated Fusion♠ 2.9M 67.84 61.94 56.15 2.8M 80.97 76.34 70.51
11 RMMT-Static♦ 2.9M 68.64 61.95 56.75 2.9M 81.44 76.88 70.34
12 RMMT♦ 3.3M 68.75 62.07 56.35 3.2M 81.05 75.75 71.01

Table 6: METEOR scores on Multi30k. Results in row 4 and 5 are taken from the original papers.
♠ indicates conventional MMT models, while ♦ refers to retrieval-based models. Without further
specification, all our implementations are based on the Tiny configuration.

# Model En→De En→Fr
Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO

1 Transformer 68.22 62.05 56.64 81.02 75.62 69.43
2 Doubly-ATT 68.39(+0.35) 61.83(+0.0) 56.46(+0.25) 81.27(+0.15) 76.22(+0.51) 70.21(-0.04)
3 Imagination 67.93(-0.13) 61.84(+0.55) 56.49(-0.08) 80.75(-0.45) 76.57(+0.54) 69.88(-0.47)
4 Gated Fusion 68.25(+0.41) 61.5(-0.44) 55.93(-0.22) 81.22(+0.25) 76.01(-0.33) 70.33(-0.18)

Table 7: METEOR scores on Multi30k with randomly initialized visual representation. Numbers in
parentheses indicate the relative improvement/deterioration compared with the original model with
ResNet features.

D.1 RADNDOM NOISE

From Table 7, we observe that Doubly-ATT equipped with random noise (row 2) is consistently on-
par with (En→De) or better than (En→Fr) text-only baseline (row 1). On Doubly-ATT (En→De),
using random noise can even outperform the same model equipped with ResNet features.

D.2 WEIGHT DECAY

We can see from Figures 3 (a) and (b) that with a large weight decay penalty (0.1), a text-only
Transformer can also exhibit METEOR scores that are comparable to or even higher than MMT
systems. These results are mostly consistent with those evaluated using BLEU (see Figure 1). And
again, we observe very different model behaviors on the MSCOCO set, which we have discussed in
Section 5.3.2.
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Figure 3: METEOR score curves on En→De translation with different weight decay rate. 0 indicates
without weight decay.
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Model BLEU

Transformer-Small 28.62
+weight decay 0.0001 29.14

RMMT-Static-Small 29.08
RMMT-Small 28.57

Table 8: BLEU score on IWSLT’14 EN→DE translation.

All adversarial evaluation above complement our early findings illustrated using BLEU.

E RESULTS ON IWSLT’14

We also evaluate the retrieval-based model RMMT on text-only corpus — IWSLT’14. The
IWSLT’14 dataset contains 160k bilingual sentence pairs for En-De translation task. Following the
common practice, we lowercase all words, split 7k sentence pairs from the training dataset for val-
idation and concatenate dev2010, dev2012, tst2010, tst2011, tst2012 as the test set. The number of
BPE operations is set to 20,000. We use the Small configuration in all our experiments. The dropout
and label smoothing rate are set to 0.3 and 0.1, respectively. Since there is no images associated
with IWSLT, we follow Zhang et al. (2020) and retrieve images from Multi30K corpus.

From Table 8, we see that Transformer without weight decay is marginally outperformed by RMMT-
static, but achieves slightly higher BLEU scores when trained with a 0.0001 weight decay. Our
visual context as regularization hypothesis also sheds light on why visual context is helpful on non-
grounded low-resourced datasets like IWSLT’14.
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