
Learning A Risk-Aware Trajectory Planner From
Demonstrations Using Logic Monitor

Xiao Li
MIT

xiaoli@mit.edu

Jonathan A. DeCastro
Toyota Research Institute

jonathan.decastro@tri.global

Cristian-Ioan Vasile
Lehigh University

cvasile@lehigh.edu

Sertac Karaman
MIT

sertac@mit.edu

Daniela Rus
MIT

rus@mit.edu

Abstract: Risk awareness is an important factor to consider when deploying poli-
cies on robots in the real-world. Defining the right set of risk metrics can be
difficult. In this work, we use a logic monitor that keeps track of the environ-
mental agents’ behaviors and provides a risk metric that the controlled agent can
incorporate during planning. We introduce LogicRiskNet, a learning structure that
can be constructed from temporal logic formulas describing rules governing a safe
agent’s behaviors. The network’s parameters can be learned from demonstration
data. By using temporal logic, the network provides an interpretable architec-
ture that can explain what risk metrics are important to the human. We integrate
LogicRiskNet in an inverse optimal control (IOC) framework and show that we
can learn to generate trajectory plans that accurately mimic the expert’s risk han-
dling behaviors solely from demonstration data. We evaluate our method on a
real-world driving dataset.

Keywords: Learning from demonstrations, Temporal Logic, Autonomous Driv-
ing

1 Introduction

Imagine a driver that is trying to turn across traffic at an unprotected intersection where there is
oncoming traffic. When faced with the situation shown in Figure 1(a), the driver needs to decide
when it is safe to make the turn. The driver makes this decision by evaluating how risky the nearest
oncoming vehicle is in terms of the intended turning maneuver. The risk may be dependent on a
number of factors, including how far the vehicle is from the intersection, how fast it is driving and
whether it has the intention to slow down. If we wish to incorporate such risk-aware decision making
into an autonomous driving system, we are faced with two problems: (1) how do we accurately
model the risk factors that humans take into account while driving, and (2) how do we generate
plans from these risk factors. With the development of data-driven autonomous driving, we have
access to a growing amount of large-scale human driving data. Large-scale data contain not only
normal driving behaviors, but also what drivers do in order to manage risk. Taking advantage of
these data, our goal in this work is to develop a risk representation that can expressively describe
the desired/undesired behaviors of road agents and with parameters learnable from demonstration
data. We aim to obtain risk metrics that reflect that of the human demonstrator, and generate risk-
aware trajectory plans using these metrics.

Recent work on risk and uncertainty aware policy learning aim to incorporate common risk con-
structs such as conditional value at risk, worst-case risk, etc., into the problem formulation either
as an auxiliary loss or constraints [1, 2]. Many then use reinforcement learning (RL) to obtain the
policy. The main limitation of applying RL to autonomous driving is its exploration requirement.
It can be difficult to explore safely especially when we wish to deal with risky scenarios. Work
on uncertainty-aware imitation learning [3] and risk-aware offline RL [4] address the exploration
problem, but are limited in the types of risks they can express.

5th Conference on Robot Learning (CoRL 2021), London, UK.

... ...
...

...

. . .

. . .

. . .

. . .

Logic formula describing safe agent behaviors

Logic Risk
Network

Generate

Map
Information

Agent
Information

Risk
Map

Demonstration
Data

Trajectory Optimization

Train

Step Envrionment

Sensing RegionRisk Contour

Tracked Belief
State Contours

Trajectory Plan

(a) (b)

Figure 1: LogicRiskNet-IOC framework. (a) A pictorial depiction of our setup. The red car is the ego vehicle
(controlled by our planner). The blue cars move according to the trajectories recorded in the dataset. Their
trailing contours represent the tracking distributions. The red contours around the ado vehicles (neighboring
vehicles not controlled by us) present their risks (the brighter the contour the higher the risk.) (b) An illustration
of our inverse optimal control (IOC) procedure. The outer loop generates trajectory plans according to the risk
map. The inner loop updates LogicRiskNet’s parameters using a kind of feature matching.

It is important to be risk-averse in safety critical applications. It is often more important to be averse
to the right set of risks. In this paper, we want to answer the question “if we have observed our
nearby road agents for a while, can we develop a risk model that quantifies how risky they are
based on their past behaviors in the same way that humans would.” We take inspiration from real-
time verification [5] and formal synthesis [6] and introduce a differentiable logic monitor which
we refer to as LogicRiskNet as an expressive and learnable risk representation. To summarize our
contributions, we

• introduce a differentiable logic-based risk metric and show that this metric is able to de-
scribe complex, temporally-extended risk events as logic formulas and learn its parameters
from human driving data;

• show that we can not only use LogicRiskNet to generate risk-aware trajectories, given its
hierarchical monitoring properties, we can also use it to explain why an agent is risky;

• demonstrate in a real-world driving dataset that our method yields controllable risk-averse
or, alternatively, risk-seeking behaviors.

Note that, while we apply our approach to the domain of autonomous driving, we can equally-well
extend our approach to other domains, such as robotics.

2 Background: Past Time Signal Temporal Logic (PtSTL)

STL [7] offers a formalism for expressing and reasoning among a rich set of rules. The rules are
defined over predicates (inequalities of real-valued functions). In standard STL, the formulas are
forward-looking, meaning that the formulas are evaluated by looking at future trajectories. In this
work, we need to evaluate formulas using past trajectories (trajectories of road agents we have
tracked over the past), using this past information to compute a risk of violating these rules in the
future. Therefore, our rules will be encoded as a set of past time STL (ptSTL) [8] formulas with the
following syntax

φ := p(x) < ε | ¬φ |φ ∧ φ |φ ∨ φ |F−[a,b)φ | G
−
[a,b)φ, (1)

2

where a, b ∈ IR≥0, a < b, represent finite time bounds; φ is a ptSTL formula; p(x) < ε is a
predicate; x ∈ X ⊆ IRn is a state; p(·) : IRn → IR is the predicate function, ε ∈ IR is a constant.
¬ (not), ∧ (and) and ∨ (or) are Boolean operators. F− (eventually) and G− (always) are past time
temporal operators. Here F−[a,b)φ requires φ to be true at least once in the time interval t ∈ (−b,−a]

whereas G−[a,b)φ requires φ to be true for all of this interval.

Let xt0:t1 = {xt0 , ..., xt1} denote the state trajectory from time t0 to t1. xt0:t1 |= φ denotes that
trajectory xt0:t1 satisfies φ (i.e. φ evaluates to true under xt0:t1). The Boolean semantics of ptSTL
are provided in Appendix A.

An example ptSTL formula is F−[τ0,τ1)(|x| < 2) ∧ G−[τ1,τ2)(x > 3) which means that “|xt| < 2 is
true for at least one t ∈ (−τ1,−τ0] and xt > 3 is true for all t ∈ (−τ2,−τ1]”.

Similar to STL, ptSTL is equipped with a robustness degree (or robustness for short) that quantifies
the level of satisfaction of a trajectory with respective to a formula. A robustness function, denoted
r, takes in a trajectory and a ptSTL formula and outputs a real-valued number. A robustness greater
than zero signifies that the trajectory satisfies the given formula, i.e. r(xt0,t1 , φ) > 0⇒ xt0,t1 |= φ.
Negative robustness implies violation of the formula. The formal definition of robustness is also
given in the Appendix A.

Note that each predicate relationship p(x) < ε appearing in φ has parameters that can be fit to
how humans behave. For example, the parameterized ptSTL formula φ = G−[τ0,τ1] (α1x + γ1y <

ε1) ∧ F[τ2,τ3] (α2x
2 > ε2) has parameters ξ = {(α1, γ1), ε1, α2, ε2}. Hence, we parameterize each

predicate appearing in a formula φ, denoting the parameterized formula φξ (see, e.g., [9]).

3 Problem Formulation and Approach

Let x = (p, ψ, v) denote the state of a vehicle that includes position (x-y coordinates), heading
and velocity (which we later use in a unicycle model). We call the vehicle that is controlled by our
planner the ego agent, and all other traffic participants not controlled by us ado agents. Denote ΩT
as the set of trajectories with horizon T (i.e. ωT = xt:t+T ∈ ΩT). Suppose that the ego vehicle
tracks its nearest N ado agents as well as itself via a tracking algorithm (such as a Kalman filter).
This algorithm returns a set of belief states at time step t, ht =

[
xte,Σ

t
e, x

t
ai ,Σ

t
ai

]
, i ∈ [0, N),

which are concatenated into a history of length H as htH = [ht−H , . . . , ht]. Here, xte,ai and Σt
e,ai

are the mean values and covariances for the ego and i-th ado vehicle states. HH is the set of such
histories (i.e. htH ∈ HH). Define a dataset D = [ΩT , UT ,HH] where HH is obtained from
sensors, ΩT is the ego vehicle’s ground truth future trajectory, uT =

[
ut, ..., ut+T−1

]
∈ UT is

the corresponding sequence of controls (speed and steering). Let feature f : ΩT × UT → R be
a function that maps a trajectory of states and controls to a real value (e.g. average distance to the
center lane). f(ωT) =

(
f1(ωT), ..., fn(ωT)

)
∈ Rn is a vector of such features. Our problem is

formally defined as follows
Problem 1. Given (1) a parametric ptSTL formula φξ that defines the behavior of a safe ado agent,
(2) a feature fφ

ξ

representing ado agent risks, (3) a set of user defined features representing behav-
iors of the ego agent f , (4) a demonstrations dataset D that contains a human driver’s decisions
and environment information, find a trajectory distribution Pθ : ΩT → [0, 1] parametrized by θ (θ
contains the ptSTL parameters ξ as well as feature combination weights) that best matches human
behavior; i.e., minimizes the following objective functions

J1 = EPθ [f (ω̃T)]− f(ωT) and J2 = EPθ
[
fφ

ξ

(ω̃T)
]
− fφ

ξ

(ωT) (2)

where ωT is a trajectory from the demonstration dataset. ω̃T is a trajectory sampled from Pθ.

Problem 1 defines a feature matching problem similar to many inverse reinforcement learning
(IRL) [10] and IOC [11] formulations. We design a set of features f to capture driving preferences
in non-risky situations, but also include a risk-based feature fφ

ξ

capturing the risk management
preferences seen in demonstrations. From the demonstration data we then learn the risk metric pa-
rameters ξ and the weights that combine the feature values. This combination gives us a cost model
that, when solved, yields driving behaviors similar to the demonstrator (in the context of our defined

3

features and risk models). While existing IOC approaches are able to imitate standard driving be-
haviors such that the generated trajectories from the cost model are exponentially more preferred by
the agent (under maximum-entropy formulations, e.g. [11]). In our case, the additional risk feature
provides the capacity to generalize our model better under risky situations without hindering the
ability to replicate the driving style of human demonstrators in normal scenarios.

4 Logic Monitor Guided Risk-Aware LfD

In this section, we will describe in detail our risk-aware LfD framework. We will first introduce the
LogicRiskNet - a differentiable syntax tree generated from a parametric ptSTL formula. The network
takes as input the tracking histories hT and outputs a risk assignment for each tracked vehicle based
on their past behaviors. This risk assignment can be used to monitor which vehicles are risky in a
given scene. We then show how LogicRiskNet can be incorporated into an IOC framework that is
able to learn this syntax tree from demonstrations while simultaneously learn a cost function that
specifies a risk-aware planning problem, from which a trajectory can be solved efficiently.

Our method is depicted in Figure 1(b) where there are 2 nested loops. The outer loop starts with the
map and agent information which are passed through the LogicRiskNet to construct a risk map. This
risk map constitutes the objective function for a trajectory planner. The generated trajectory serves
to control the ego agent in a receding horizon fashion. In the inner loop, the same set optimized
trajectories are also compared against human demonstrated trajectories in the same situations, and
their differences serve as training signals to the LogicRiskNet.

LogicRiskNet - a differentiable parametric ptSTL risk monitor. We describe how we may con-
struct a ptSTL risk monitor based on a learned stochastic risk measure that can be applied to a
probabilistic description of human behaviors. We extend the definition of robustness degree (intro-
duced in Section 2) to encompass belief states. In order to calculate the risk of a trajectory of belief
states w.r.t a ptSTL formula φ, we need to modify the definition of the robustness. Recall that the
basic element of φ is a predicate of the form p(x) < c, define α(x) = c− p(x) as the predicate (this
is same as the robustness degree for the predicate). Since x is stochastic, rather than deterministic,
we can evaluate ptSTL formulas instead using a risk measure ρ : X → R, representing expectation,
mean-variance, value-at-risk, etc. 1 In this work, we assume the expectation risk measure, but can
equally well replace this with others. We can then apply this risk measure to the robustness definition
yielding αρ(x) = ρ(α(x)), x ∈ X (This treatment is similar to [13]).

Given a parametric ptSTL formula φξ, a risk measure ρ(·) and the tracking history hH , we can
construct the robustness risk for φξ as

Rφ(hH | ξ) = rρ
(
hH , φ

ξ
)

(3)

where rρ
(
hH , φ

ξ
)

is the robustness applied to the risk-based predicate αρ. Once the risk predicate
values are calculated at each time step in the trajectory, the robustness calculations for Boolean
and temporal operators can be carried out. In order to tune the parameters ξ using demonstration
data, we follow the approach in [14]. Specifically, if we replace the max and min functions in the
robustness definition with softmax approximations, we can construct a computation graph from Rφ

with the predicate parameters at the leaves and the robustness risk at the root. This makes it possible
to learn ξ using backpropagation. The intuition behind Equation 3 is that given a ptSTL formula φ
parameterized by ξ, agents’ past observations hH , and a risk measure ρ, the robustness risk Rφ can
be calculated to represent agent risk levels in terms of satisfaction of φ.We provide a step-by-step
example of constructing the LogicRiskNet in Appendix F.

LfD using LogicRiskNet. With LogicRiskNet Rφ, we are able to characterize risky ado vehicles as
using the following risk feature:

fφ(hH , ωT | ξ) =

N−1∑
i=0

T−1∑
t=0

−Rφ(hiH | ξ)
1

||pte − ptai ||2
(4)

1We further require that the risk measure is coherent; see [12].

4

Algorithm 1 Trajectory Optimization

1: Inputs: initial controls ũinitT ; initial ego vehicle state x0
e; tracking history hH ; lane informa-

tion T ; control effort weight βu; lane tracking weight βN ; ptSTL formula parameters ξ;
2: ũT ← ũinitT
3: for i=1 . . . N do
4: ω̃e ← ConstructTrajectory(ũT ,x

0
e)

5: f̃φ ← f̃φ (hH , ω̃e | ξ) , f̃u ← f̃u (ũT), f̃N ← f̃N (ω̃e, NT) . construct features
6: L̃ = f̃φ + βu · f̃u + βN · f̃N . construct objective
7: ũT ←ũT − γ̃∇uT L̃ . update control sequence
8: end for
9: ω̃e ← ConstructTrajectory

(
ũT , x

0
e

)
10: return ω̃e, f̃

φ, f̃u, f̃N

where pte and ptai , t ∈ [0, T) are the ego and ado vehicles’ positions at time t. hiH is the tracking
history of ado vehicle i along with the history of the ego agent. Essentially, (4) describes a collision
feature scaled by the risk Rφ, where the inverse-squared distance may be viewed as a generalization
of potential fields [15]. A safe trajectory should yield a low fφ value. A positive Rφ signifies a
rule abiding ado agent whereas a negative Rφ signifies a rule-violating agent. Intuitively, we use
the past observations to determine how risky an ado agent is, and by solving for trajectories that
minimize fφ we can control the ego agent to stay away from risky ado agents. Our potential-field
formulation of risk acts to approximate the behavior of drivers in reacting to potential collisions but
do not over-react if collision is not imminent.

To imitate risk-free driving behavior, we additionally introduce a control effort feature and a nominal
trajectory feature for the ego vehicle as follows

fu(uT) =

T−1∑
t=0

||ut||2 where u = (v, ψ̇), fN (ωT , NT) =

T−1∑
t=0

||pte − ptN ||2 (5)

where ptN ∈ NT are points on the nominal trajectory. Nominal trajectories can be the human ego
agent’s trajectories (during training) or trajectories on the target lane center (during deployment).
These features encourage the ego agent to follow a trajectory (and speed) profile with smooth control
efforts. Given features fφ, fu, fN , we solve for a trajectory plan ωT by minimizing fφ+βu ·fu +
βN · fN using gradient descent. Algorithm 1 describes this trajectory optimization process.

In Algorithm 1, line 4 describes the process of using a unicycle model to construct a trajectory from a
control sequence. This procedure allows us to generate kinematically feasible trajectories compared
to direct trajectory optimization. In calculating the risk feature fφ, we use a constant velocity and
heading model estimate of ado agents’ future trajectories ptai , t ∈ [0, T − 1). During training, the
nominal trajectory NT is the ego vehicle’s ground truth future trajectory from the dataset. During
deployment, this nominal trajectory is taken from points on the target center lane which can be
obtained from route planning.

Algorithm 2 describes how the parameters from the LogicRiskNet along with the objective function
weights are learned from demonstrations using a maximum entropy model of uncertainty.

All entities with superscript d are taken from the demonstrations. Line 4 calculates the sum of
features obtained from trajectories from the human driver averaged over the dataset. Lines 6-10
calculates the same but with trajectories obtained from Algorithm 1. Line 12 updates the parameters
such that AfφD and Af̃φ can match.

5 Experimental Results

We train and evaluate our method on the NuScenes dataset. NuScenes [16] is a dataset for au-
tonomous driving based in Boston and Singapore. It contains 850 scenes each 20s long, containing
23 object classes and HD semantic maps with 11 annotated layers. We chose this particular dataset
for the rich semantics it provides which is well suited for rule definitions. We will use 650 scenes

5

for training and 200 scenes for validation. Details in experiment setup, implementation and hyper-
parameters used are provided in the Appendix C.

Rules used. We use the following two rules to describe behaviors of a safe ado agent. Our goal is
to generate ego plans which avoid ado agents deemed risky in the sense that they violate these rules.

φ1 = G−[0,H) (driveNearLane ∧ keepSafeCarDistFromEgo)) (6)

φ2 = G−[0,H) (egoInIntersection→ (farFromIntersection ∨ driveSlowly)) (7)

where H is the tracking horizon (we use H = 4). φ1 describes that a safe ado vehicle should
“always drive near the center lane and keep a safe distance from the ego vehicle.” φ2 expresses that
at intersections “always if the ego vehicle is in the intersection implies that a safe ado vehicle should
either be far from the intersection or drive slowly.” The final rule φ = φ1 ∧ φ2 takes the form of a
conjunction of a set of sub-rules. Predicate and parameter definitions can be found in Appendix B.

Methods of evaluation. We evaluate our method and comparison cases in terms of optimality (time
to reach goal position) and safety (minimum distance to nearby vehicles). Within the dataset, we
will set the human ego vehicle’s start and end positions as the initial and goal positions. Optimality
is measured as the time to travel from the initial position to within a distance to the goal position
averaged over the validation set. Safety is measured as the minimum distance to nearby ado vehicles
in a scene averaged over the validation set. We perform two experiments: 1) during evaluation,
we control the ego vehicle with our learned planner, and the ado vehicles move according to the
trajectories recorded in the dataset and time is synchronized; and 2) we re-run the evaluation in a
more realistic setting using ado vehicles that react to the ego according to an intelligent driver model
(see Appendix G). In each of our evaluations, the ego vehicle can navigate in an environment with
realistic human or reactive ado vehicles.

We use four methods for comparison. LogicRiskNet-IOC refers to the proposed method; Human
refers the human driver in the dataset; BC refers to a behavior cloning agent; and TrajOpt refers to
a trajectory optimization agent. Implementation details of BC and TrajOpt agents can be found in
Appendix C.

Results and discussions. LogicRiskNet does not only output the final risk measure but can also
output the risk of all intermediate sub-formulas without needing additional computation. This allows
us to explain the reason of its decisions. Figure 2 shows an example of an unprotected right turn
at an intersection and the vehicle that we are monitoring is highlighted by the yellow dash circle in
Figures 2(a) and 2(c). Here we are showing two consecutive steps in the scenes. Looking at the
top plot in Figure 2(b) we can see that this vehicle is labelled as risky (a negative risk value denotes

Algorithm 2 LogicRiskNet Guided LfD

1: Inputs: parameteric ptSTL formula φξ; parameter learning rate γφ; demonstration dataset D
2: ξ ← ξinit, βu ← βu, init, βN ← βN , init

3: for i=1 . . . N do
4: AfφD

= 1
|D|
∑|D|
d=0

(
fφ
(
hdH ,ω

d
T | ξ

)
+ fu

(
udT
)

+ fN
(
ωdT , N d

T

))
5: Sf̃φ = 0

6: for j=1 . . . |D| do
7: ω̃e, f̃

φ, f̃u, f̃N = TrajectoryOptimization
(
ũinitT , xd,0e , hdH , N d

T , β
u, βN , ξ

)
8: Sf̃φ+ = f̃φ + f̃u + f̃N

9: end for
10: Af̃φ = 1

|D|Sf̃φ

11: Lφ = (AfφD
−Af̃φ)2

12:
(
ξ, βu, βN

)
←
(
ξ, βu, βN

)
− γφ∇ξ, βu, βNLφ

13: end for
14: return ξ, βu, βN

6

(a) (c)(b) (d)

Figure 2: LogicRiskNet monitor results. (a) Monitoring the highlighted ado vehicle at time 1.5 sec. (b) Risk
traces for φ and selected sub-formulas. (c) Monitoring at time 2 sec. (d) Corresponding risk traces.

Table 1: Performance comparison results
Time to goal Safety distance Goal%min mean max 90th min mean max 90th

BC 13.21 19.98 20.0 20.0 0.34 4.22 10.86 8.66 37%
TrajOpt 16.92 18.50 20.0 19.76 3.89 6.37 12.43 8.34 87%

RiskLogicNet-IOC 15.31 17.35 20.0 19.0 2.72 3.98 9.01 6.12 93%
Human 19.0 19.75 20.0 20.0 3.03 4.62 9.45 6.84 100%

violation of the safety rule φ.) To gain more insights on why this is the case, we can look at the
risk values of sub-formulas. The middle and bottom plot shows that this vehicle is neither driving
slowly nor far away from the intersection. Figure 2(d) shows that after one time-step the risk for the
monitored vehicle has increased (risk value becomes more negative), and the cause is not because
the vehicle has sped up but because it has driven closer to the center of the intersection. The structure
of the entire LogicRiskNet and the monitoring traces for all sub-formulas are shown in Appendix D.

Table 1 shows comparison results in terms of the time it takes to reach the goal and the minimum
distance to neighboring vehicles during this navigation. An aggressive agent will achieve a low time-
to-goal (drive faster) as well as a small safety distance. The %Reach goal measures the percentage
of scenes in the validation set the corresponding agent is able to reach the goal state. Failure is called
if the agent does not reach the goal in the duration of the scene. All results are averaged over scenes
in the validation set (each scene is ∼20 seconds). From the table we can observe that LogicRiskNet-
IOC achieves the most similar behavior to Human with the former slightly more aggressive. In
comparison, TrajOpt is much more conservative. This is because it treats all agents as the same
collision object that is needs to avoid whereas LogicRiskNet-IOC agent will place less emphasis on
low risk agents (i.e. vehicles that are stopped). This gives the latter more free space to plan and
also behaves more human-like (as humans place different amount of risk on vehicles based on their
past behaviors). BC agent has a wide span of behaviors but mainly suffers from distribution shift
[17] shown by its low success rate at reaching the goal. While we use non-reactive agents in this
evaluation, in Appendix G we also extend it to a more realistic simulated environment.

Once the network parameters ξ and the objective parameters β are learned, we obtain a system that
behaves similar to the human demonstrator. In practice, this may not be satisfactory and the user may
wish to further fine tune the system. We conduct a study to see how varying the magnitude of the
risk feature in Equation (4) changes the behavior of the ego agent. In Figure 3, the x-axis represents
a risk coefficient multiplied to f̃φ on line 6 in Algorithm 1. We run Algorithm 1 across all scenes
in the validation set and record the time-to-goal and safety distance. Figure 3 shows that with the
increasing importance placed on the risk term, the ego vehicle becomes more conservative (driving
slower and keeping a further distance to ado vehicles). This finding allows the user to control the
ego vehicle to strike a desired balance between risk-averse and risk-seeking behavior.

7

(a) (b)

Ti
m

e-
to

-g
oa

l

S
af

et
y

di
st

an
ce

Risk coefficient Risk coefficient

Figure 3: Controlling risk management behaviors by tuning risk feature coefficients. Both (a) Time-to-
goal and (b) safety distance increases with the risk coefficient indicating that the ego vehicle becomes more
conservative as we tune up this coefficient.

6 Related Work

Risk and uncertainty aware policy learning has been well-studied in the context of reinforcement
learning. There have been several comprehensive surveys on this topic; [1] provide a general survey,
while [2] provide greater focus on autonomous driving (AD). In general, common risk metrics such
as conditional value at risk, mean-variance, worst-case analysis, etc. have been used as either an
auxiliary loss in the objective function or as a set of constraints. In many robotic and driving tasks,
however, RL is not readily applicable given its exploration requirement. Imitation learning and
offline RL helps with addressing this problem. Specifically, in [3], kernelized movement primitives
are used to estimate uncertainties in the demonstrations in finding optimal gains in a controller. The
authors of [4] use offline distributional RL to learn a policy that is averse to conditional value at risk.
Our work, in contrast, aims to learn from demonstrations to learn a human’s notion of risk. It does
not require exploration beyond the demonstrations, yet it is able to generalize well to new scenarios,
and has the capacity to learn rare situations such as rule violations and near collisions.

Temporal logic (TL)-guided policy learning is an area that we take have taken inspiration from.
In this area, TL is often used to specify the ego agent’s desired high-level behavior and used to
generate rewards. The authors of [18, 19, 20] provide surveys of recent work on the use of TL in
RL. The exploration problem still exists in these methods. To address these challenges, the authors
of [21, 22] learn finite state automata from demonstration and use them to guide planning with the
value iteration network which avoids exploration. It can sometimes be tedious to manually design
a TL formula that yields satisfying behaviors. Work has been done to make components of the
formula learnable from data. In [23], the authors propose learning linear temporal logic (LTL)
formulas from demonstrations. Given the close relationship between TL and automaton[24], the
authors of [25] propose a method that learns reward machines (an automata-like reward presentation)
from demonstrations. A shortcoming of these methods is that the LTL that they use operates on
propositions (binary variables with values true or false). Unlike our STL-based approach, these
approaches require discrete state and action spaces and require the demonstrations themselves to
have the same discrete representations. We provide additional discussions on related work in risk-
aware formal synthesis in Appendix H.

7 Conclusion

In this work, we introduced the LogicRiskNet - an expressive and differentiable risk representation
based on temporal logic descriptions of risky agent behaviors. We show that with a demonstration
dataset we are able to learn risk parameters that results in trajectories similar to the demonstrator. We
also show that given the structure of LogicRiskNet we can monitor and explain why an agent is risky
without additional computation. Given our choice of the IOC framework and the interpretability of
our method, users are able to tune the objective function post-training to obtain the desired level of
risk-averse behaviors.

8

Acknowledgments

This work is supported by the Toyota Research Institute (TRI). This article solely reflects the opin-
ions and conclusions of its authors and not TRI, Toyaota, or any other Toyota entity. Their support
is gratefully acknowledged. We also thank Nvidia for providing computation resources.

References
[1] J. Garcia and F. Fernández. A comprehensive survey on safe reinforcement learning. J. Mach.

Learn. Res., 16:1437–1480, 2015.

[2] Z. yu Zhu and H. Zhao. A survey of deep rl and il for autonomous driving policy learning.
ArXiv, abs/2101.01993, 2021.

[3] J. Silvério, Y. Huang, F. J. Abu-Dakka, L. Rozo, and D. Caldwell. Uncertainty-aware imitation
learning using kernelized movement primitives. 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 90–97, 2019.

[4] N. A. Urp’i, S. Curi, and A. Krause. Risk-averse offline reinforcement learning. ArXiv,
abs/2102.05371, 2021.

[5] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. Seshia. Robust online moni-
toring of signal temporal logic. ArXiv, abs/1506.08234, 2015.

[6] C. Belta, B. Yordanov, and E. A. Gol. Formal methods for discrete-time dynamical systems.
2017.

[7] A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued signals. In
FORMATS, 2010.

[8] E. A. Gol. Efficient online monitoring and formula synthesis with past stl. 2018 5th
International Conference on Control, Decision and Information Technologies (CoDIT), pages
916–921, 2018.

[9] E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric identification of temporal proper-
ties. In RV, 2011.

[10] G. Neu and C. Szepesvari. Apprenticeship learning using inverse reinforcement learning and
gradient methods. In UAI, 2007.

[11] M. Kuderer, S. Gulati, and W. Burgard. Learning driving styles for autonomous vehicles from
demonstration. 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 2641–2646, 2015.

[12] L. Lindemann, N. Matni, and G. J. Pappas. Stl robustness risk over discrete-time stochastic
processes. ArXiv, abs/2104.01503, 2021.

[13] S. Safaoui, L. Lindemann, D. Dimarogonas, I. Shames, and T. Summers. Control design for
risk-based signal temporal logic specifications. IEEE Control Systems Letters, 4:1000–1005,
2020.

[14] K. Leung, N. Aréchiga, and M. Pavone. Back-propagation through signal tempo-
ral logic specifications: Infusing logical structure into gradient-based methods. In
Workshop on Algorithmic Foundations of Robotics, 2020.

[15] A. Pierson, W. Schwarting, S. Karaman, and D. Rus. Navigating congested environments with
risk level sets. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 5712–5719, 2018. doi:10.1109/ICRA.2018.8460697.

[16] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

9

http://dx.doi.org/10.1109/ICRA.2018.8460697

[17] F. Codevilla, E. Santana, A. M. López, and A. Gaidon. Exploring the limitations of behav-
ior cloning for autonomous driving. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9328–9337, 2019.

[18] H.-C. Liao. A survey of reinforcement learning with temporal logic rewards.

[19] Q. Gao. Deep reinforcement learning with temporal logic specifications. 2018.

[20] C.-J. Heiker. Temporal logic specifications in reinforcement learning. 2021.

[21] B. Araki, K. Vodrahalli, T. Leech, C. Vasile, M. Donahue, and D. Rus. Learning to plan with
logical automata. In Robotics: Science and Systems, 2019.

[22] B. Araki, K. Vodrahalli, T. Leech, C. Vasile, M. Donahue, and D. Rus. Deep bayesian non-
parametric learning of rules and plans from demonstrations with a learned automaton prior. In
AAAI, 2020.

[23] D. Kasenberg and M. Scheutz. Interpretable apprenticeship learning with temporal logic spec-
ifications. 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 4914–
4921, 2017.

[24] C. Baier and J. Katoen. Principles of model checking. 2008.

[25] R. T. Icarte, E. Waldie, T. Q. Klassen, R. Valenzano, M. P. Castro, and S. A. McIlraith. Learning
reward machines for partially observable reinforcement learning. In NeurIPS, 2019.

10

	Introduction
	Background: Past Time Signal Temporal Logic (PtSTL)
	Problem Formulation and Approach
	Logic Monitor Guided Risk-Aware LfD
	Experimental Results
	Related Work
	Conclusion

