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Abstract

Over the past decade, predictive modeling of neural re-
sponses in the primate visual system has advanced sig-
nificantly, driven by diverse deep neural network ap-
proaches. These include models optimized for visual
recognition, methods that align visual and language in-
formation, models trained directly on brain data, and rep-
resentations from large language models (LLMs). Addi-
tionally, various readout mechanisms have been devel-
oped to map network activations to neural responses. De-
spite this progress, it remains unclear which approach
performs best across different regions of the visual hi-
erarchy. In this study, we systematically compare these
methods for modeling the human visual system and pro-
pose novel strategies to enhance response predictions.
We demonstrate that the choice of readout mechanism
significantly impacts prediction accuracy and introduce
a biologically grounded readout that dynamically adjusts
receptive fields based on image content and learns geo-
metric invariances of voxel responses directly from data.
This novel readout outperforms factorized methods by 3-
23% and standard ridge regression by 7-53%, setting a
new benchmark for neural response prediction. Our find-
ings reveal distinct modeling advantages across the vi-
sual hierarchy: response-optimized models with visual
inputs excel in early to mid-level visual areas, while em-
beddings from LLMs—Ileveraging detailed contextual de-
scriptions of images—and task-optimized models pre-
trained on large vision datasets provide the best fit for
higher visual regions. Through comparative analysis, we
identify three functionally distinct regions in the visual
cortex: one sensitive to perceptual features not captured
by linguistic descriptions, another attuned to fine-grained
visual details encoding semantic information, and a third
responsive to abstract, global meanings aligned with lin-
guistic content. Together, these findings offer key in-
sights into building more precise models of the visual
system.

Keywords: Neuro Al, vision, deep neural networks, Neural Re-
sponse Modeling, fMRI encoding, Readout Mechanisms, Vi-
sion Language Alignment

Introduction and Related Work

Building accurate predictive models of the visual system has
been a longstanding goal in neuroscience. Early approaches
primarily relied on handcrafted features, such as Gabor filters,
curvature models, and motion energy models, to predict re-
sponses in early to mid-level visual areas (Hubel & Wiesel,
1962; Livingstone & Hubel, [1984;|Albrecht & Hamilton, [1982;
Gallant et al., (1993} [Hubel & Wiesel, |1968; IDesimone et al.}
1984; Tanaka et al., [1991; |Pasupathy & Connor, [2002; [Yue
et al [2020; [Yang et al. 2023} [Pasupathy & Connor, [1999;
Tsunoda et al., [2001}; |Rust & DiCarlol 2010} Brincat & Con-
nor, |2004; [Zeki, [1973; |Pasupathy & Connor, [2001}; |Moran &
Desimonel [1985} [Kobatake & Tanakal [1994; Kriegeskorte et
al.l 2008; |Kobatake et al.l 1998} Miyashita, |1988). Similarly,
word-based descriptions were often used to model responses
in higher-level visual regions (Huth et al., 2012). These mod-
els provided interpretability, as the features they employed
were well understood and linked to specific visual computa-
tions. However, they lacked quantitative precision in their abil-
ity to predict neural responses.

The advent of deep convolutional neural networks (DC-
NNs) marked a significant improvement in predictive accuracy
across the visual system (Yamins et al.| 2014; |Abdelhack &
Kamitanil, 2018} |Wen et al., [2018;|[Horikawa & Kamitani, |2017;
Eickenberg et al., [2017;|Glcli & Van Gerven, 2015} |Cichy et
al., |2016; [Khaligh-Razavi & Kriegeskortel 2014; |Schrimpf et
al., [2020; |Storrs et al., 2021} |Safarani et al., |2021}; |Schwartz
et al., 2019} |Seeliger et al., [2021} |Shen et al.| |n.d.). DC-
NNs trained on image categorization tasks emerged as the
first class of models capable of capturing neural activity in the
primate visual cortex with a reasonable degree of fidelity. This
success spurred a wave of model-brain comparisons, wherein

Code can be found at - https://github.com/NeuroML-Lab/Visual-
Stream-Modeling
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Figure 1: (A) High-level schematic of the key components analyzed in this study. (B) Various stimuli used to model the visual
cortex. (C) Different encoder backbones employed in the study. (D) Readout mechanisms (Linear, Gaussian, Factorized, and
Semantic Spatial Transformer) that map ANN encoder representations to neuronal or voxel responses.

variations in input data, architecture, and learning objectives
were explored to identify the most predictive models of brain
responses in both non-human primates and humans.

More recently, models trained using multimodal contrastive
learning approaches, such as CLIP, or image-caption em-
beddings from large language models (LLMs), have shown
promise in predicting neural responses in the visual cortex
(Tang et all, 2024} [Wang et al.| [2022; [Doerig et al., [2024).
These findings suggest that visual brain responses may en-
code some linguistically learned structure or semantics. In
parallel, another class of models, optimized specifically for
neural response prediction (Khosla & Wehbe} [2022;[Khosla ef|
[2022;[Federer et al}[2020; [Dapello et al., [2022;[St-Yves ef|

of large-scale neural datasets 2022).

Given the broad range of modeling approaches applied to
different regions of the visual cortex, a critical question re-
mains: which approach offers the most quantitatively precise
predictions of neural responses across the various areas of
the human visual system? This challenge underscores the
need for systematic comparisons to determine the optimal
models for different visual processing stages. While some
recent studies have made strides in conducting large-scale
comparative analyses, they tend to focus primarily on spe-
cific pre-selected visual regions and largely compare different
task-optimized vision networks (Conwell, Prince, Kay, et al.,
[2022). A more comprehensive comparison is needed to eval-

2023) — either trained from scratch or fine-tuned to better
align with primate visual representations—has achieved im-
pressive predictive accuracy, particularly with the availability

uate a broader set of approaches, including models based on
response optimization and embeddings from language mod-
els trained on vision-aligned tasks or pure language data.



An equally pressing issue concerns the readout mecha-
nism by which models’ internal representations are mapped
onto neural responses|lvanova et al.| (2022). The predominant
readout in primate studies is the fully-connected affine read-
out, often used in regularized linear regression models. How-
ever, these linear ridge regression readouts require numerous
parameters, especially in high-dimensional spaces, leading to
significant computational and memory demands. To mitigate
this, more efficient methods have been developed, such as
factorized linear readouts by (Klindt et al., 2017), that decou-
ple spatial from feature selectivity, reducing overhead and im-
proving prediction accuracy. The Gaussian2D readout (Lurz
et al., [2020) further enhances parameter efficiency by learn-
ing spatial readout locations using a bivariate Gaussian dis-
tribution informed by anatomical retinotopy. However, it is still
unclear which readout approach provides the best predictive
accuracy across different cortical areas.

Determining the most effective model—and the most suit-
able readout—for each region of the visual cortex is vital. Ac-
curate models provide a powerful platform for in silico experi-
mentation, enabling researchers to test hypotheses that may
be impractical to probe in vivo. They also inform experimental
design and facilitate precise neural population control (Walker:
et al.,|2019; |Bashivan et al.,[2019). In this way, achieving high
predictive accuracy is foundational for both practical applica-
tions and deeper theoretical insights into visual processing.

In this paper, we bridge these gaps by systematically com-
paring a broad array of models—along with diverse readout
methods—to identify the most accurate approach for each re-
gion of the human visual cortex. Specifically, we make the
following key contributions:

1. Comprehensive analysis of different neural network
models and readouts: We systematically compare an ex-
tensive set of neural network models spanning vision-only,
vision-language and language-only paradigms. Addition-
ally, we explore different readout mechanisms and examine
which models perform better in specific brain regions, while
highlighting the unique advantages each provides.

2. Introduction of a novel readout: We introduce a novel
biologically-grounded readout method which delivers signif-
icant improvements in accuracy, outperforming factorized
methods by 3-23% and standard ridge regression (the de
facto choice in many studies) by 7-53% .

3. Identification of brain regions sensitive to perceptual
and semantic information: Through large-scale compar-
ative analysis of models across various visual regions, we
identify three distinct regions in the human visual cortex that
respond primarily to (a) low-level perceptual characteristics
of the input, (b) localized visual semantics aligned with lin-
guistic descriptions, and (c) global semantic interpretations
of the input, also aligned with language.

Methods
Encoders

Task-optimized Models We use encoders from pre-trained
models like AlexNet (Krizhevsky et al.,2012) and ResNet (He
et al., [2016), originally trained for object classification on
the large-scale ImageNet dataset (Deng et al., |2009). The
weights of their intermediate layers are frozen, and only
the readout layers (described later) are trained. Prior re-
search shows that early layers of neural networks align with
lower visual cortex regions, while later layers correspond to
higher regions (Khaligh-Razavi & Kriegeskorte, |2014;|GUclU &
Van Gerven, 2015} |Cichy et al., 2016}, |Eickenberg et al., 2017}
Horikawa & Kamitani, 2017; Wen et al.| |2018} |Abdelhack &
Kamitanil, [2018; [Yamins et al., |2014). Thus, we experimented
with all layers of task-optimized networks. For fair compari-
son, we selected the best-performing layers for each cortical
region (see Appendix Table [AT]and summary in Table [T).

Response-optimized Models Task-optimized models often
rely heavily on a priori hypotheses, which may be biased
towards pre-existing conclusions, limiting novel discoveries.
Further, these networks are typically optimized for specific
tasks, such as object classification, which may not capture the
full range of visual processing in the cortex. Recently, (Khosla
& Wehbe| 2022) showed that training neural networks from
scratch with stimulus images and fMRI data from the NSD
dataset (Allen et al., 2022) can achieve accuracy comparable
to state-of-the-art task-optimized models. By directly optimiz-
ing for neural responses, these models are free to learn rep-
resentations that are more closely aligned with the underlying
neural computations, unencumbered by the biases inherent
in task-driven models. This flexibility can enable response-
optimized models to uncover richer, more generalizable rep-
resentations that better reflect the diversity of neural activation
patterns across brain regions.

We leverage the same architecture for response-optimized
models as prior work (Khosla & Wehbe, |2022), which consists
of a convolutional neural network (CNN) core that transforms
raw input data into feature spaces characteristic of different
brain regions, followed by a readout layer that maps these fea-
tures to fMRI voxel responses. The core contains four convo-
lutional blocks, where each convolutional block includes two
convolutional layers, followed by internal batch normalization,
nonlinear ReLU activations, and an anti-aliased average pool-
ing operation. To ensure equivariance under all isometries,
we use E(2)-Equivariant Steerable Convolution layers (Weiler
& Cesal, [2019). Further analysis on the importance of network
architecture for Response-optimized models can be found in
Appendix section [Comparing different architectures for Task|
[and Response Optimized models|and Table [A6]

Language Models - Recent studies show that higher vi-
sual regions converge toward representational formats simi-
lar to large language model (LLM) embeddings of scene de-
scriptions. (Doerig et al., 2024) used MPNET (Song et al.,
2020) to encode image captions and map them to fMRI re-



sponses via ridge regression, finding it effectively modeled
higher visual areas despite being trained on language inputs
alone. In contrast, (Tang et al.| |2024) and (Wang et al., 2022)
used multimodal models like CLIP (Radford et al., |2021) and
BridgeTower (Yang et al., |2023), showing that CLIP outper-
forms vision-only models in capturing higher visual regions,
attributing this to language feedback. These motivated us
to evaluate language models relative to vision-only response-
optimized and task-optimized models as detailed below (More
detailed comparison on CLIP and MPNET embeddings and
additional results with GPT2-XL [Brown et al| (2020) can be
found in Appendix section [Unimodal versus multimodal em-|
[peddings in Tanguage models| and Table [A3) -

1. Single Caption - Images in the NSD dataset are sourced
from MS COCO (Lin et al.,|2014) and annotated by 4-5 hu-
man annotators. We encode these captions using CLIP or
MPNET, average the encodings, and input them into a lin-
ear regressor to map them to fMRI voxel responses. Since
the captions describe the image as a whole without offering
spatial details (i.e., fine-grained delineations of features at
different locations), we only use the ridge linear readout for
single caption inputs.

2. Dense Caption - An image of size 424 %424 is divided into
grids of size 53 % 53. For each grid, a caption is generated
using GPT-2, which is then encoded by either CLIP or MP-
NET. Thus an image of shape 3 * 424 %424 is transformed
into a feature representation N x 8 x 8, where N is the size of
the embedding produced by CLIP or MPNET. The dense-
caption language encoders further process these feature
maps through a single convolutional block (as described
earlier for the response-optimized vision encoders) before
passing them to the readout model. For additional techni-
cal details—including an in-depth examination of whether
dense-caption improvements stem from spatial subdivision
or increased semantic detail, as well as experiments com-
paring alternative single-caption approaches—please refer
to the Appendix section [The Necessity of Spatial Subdivi-|
[sion in Dense Captioning for Effective Visual Cortex Model

Table[A7]and Figure [A5]

Readouts

The encoders discussed above are paired with a readout
model (Figure [1) that maps the encoder feature representa-
tions to voxel fMRI responses from various regions of the vi-
sual cortex.

Linear Readout This approach uses a ridge regression
model to map encoder features directly to voxel responses.
Let n be the total number of voxels in the measured brain re-
gion. For a given stimulus i, the predicted voxel response
vector Y; € R" is computed as Y; = WE;, where E; € R¢ is
the flattened encoder feature representation and W € R"*¢ is
the weight matrix. These weights are learned by minimizing
the ridge regression objective: minw ||[Y — WE||Z +A[|W/||%,
where Y is the matrix of true voxel responses, E is the corre-
sponding matrix of encoder features, || - || denotes the Frobe-

nius norm, and A is the regularization parameter. We select
the optimal A via cross-validation.

Spatial-Feature Factorized Linear Readout factorizes the
linear readout model into spatial (the portion of the input space
a voxel is sensitive to) and feature (the specific features of the
input space a voxel responds to) dimensions, as described
in (Klindt et al.,[2017). By separating spatial (where) and fea-
ture (what) dimensions, the model mirrors the known structure
of neural receptive fields in the brain, where neurons exhibit
sensitivity to specific spatial locations and particular feature
types. This approach not only significantly reduces the num-
ber of parameters but also aligns more closely with the known
characteristics of neural responses.

™M=
M=

C
Yc,n = Ec,w.h Sn.w,h» Yn = Z Yc,n Fn,c~ (1)
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I
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I
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Here, ¥, represents the predicted response for voxel n, and
E € REXWxH is the encoder feature map (the “what”). The
spatial weights S € RV*WxH gpecify the receptive field (the
“where”) for each of the N voxels, while the feature weights
F € RV*C determine each voxel’s sensitivity to the C feature
channels. W and H denote the spatial dimensions of the
encoder feature map.

Gaussian 2D Readout This readout models each voxel’s
spatial sensitivity as a 2D Gaussian in the encoder fea-
ture space (Lurz et all [2020). Specifically, each voxel
n is associated with a bivariate Gaussian distribution
Gu(x,y) ~ N(un,X,), whose mean u, represents the voxel's
preferred location (receptive field center), and whose co-
variance X, defines the size, shape, and orientation of the
receptive field along the x and y axes. The same spatial
Gaussian is applied uniformly across all feature channels,
indicating a shared positional sensitivity for each voxel.

To compute the response ¥, of voxel n, we first bilinearly
interpolate the feature values V.(x,y) from channel ¢ of the
encoder feature map E € RE*W*H at spatial coordinates
(x,y), weighted by the Gaussian distribution G,(x,y). We
then multiply these interpolated values by the learned
channel-specific weights W,. and sum over channels:
¥, = Zlewchc(x,y). Here, W, determines the contri-
bution of channel ¢ to voxel n, and the interpolated feature
V.(x,y) depends on the Gaussian weighting specified by
G,(x,y). By incorporating spatial information in this way,
the Gaussian 2D readout captures the spatial sensitivity of
each voxel with fewer parameters than the Spatial-Feature
Factorized Linear Readout.

Semantic Spatial Transformer Readout We introduce a
novel readout that adaptively modulates both the encoder
feature maps and their corresponding spatial weight distribu-
tions (i.e., receptive fields) on a per-voxel basis. Inspired by
Spatial Transformer Networks (STN) (Jaderberg et al., [2015),
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Figure 2: Semantic Spatial Transformer Readout (A) Schematic of encoder feature maps; color intensity reflects weight
magnitude for interpretability. (B) Schematic of the learned Spatial Weights (“Where”) matrix, which defines the receptive fields
of the N modeled neurons. Each neuron’s receptive field is shown in a distinct color, with darker intensities highlighting its
spatial extent (shape and location). (C-D) Input-dependent modulation of feature maps. (C) Example affine transformations
applied to feature maps in response to the input image shown in (D). Top row: original feature maps; bottom row: corresponding
transformed maps after applying learned affine transformations. Affine spatial transformations serve to reformat the features into
a standardized canonical form on the fly, making the downstream processing more robust to variations such as scale, rotation, or
translation. (D) Illustration of the pipeline for channel-specific spatial modulations: input X induces different affine transformations
across channels—e.g., channel i undergoes scaling, channel j experiences scaling and translation, and channel k undergoes
translation. (E) Input-dependent modulation of spatial receptive fields. The receptive field of the same neuron i is dynamically
modulated based on different input stimuli X, Y, and Z. In these examples, the receptive field undergoes a scaling transformation
for input X, a combination of scaling and translation for input Y, and translation for input Z.

this method spatially modulates the feature maps and spa-
tial masks using affine transformations (e.g., rotation, scaling,
and translation), allowing for dynamic and stimulus-dependent
adjustments. The STN comprises two kinds of spatial modu-
lations:

Spatial modulation of spatial masks (Receptive Fields). Un-
like fixed spatial masks used in standard factorized or Gaus-
sian readouts, our STN-based readout accommodates the dy-
namic nature of receptive fields (RFs). Biological evidence
shows that RF sizes can expand or contract based on con-
trast (Sceniak et all, [1999) and can also shift or reshape in

response to contextual or attentional cues (Womelsdorf et al.,
2006). By allowing each voxel to learn its own affine transform,

our method can capture such stimulus-dependent changes,
moving beyond the static RF assumptions of conventional
readouts (Figure[2A, B, C).

Spatial modulation of feature maps. Beyond voxel-level RF

modulation, STNs also enable channel-wise transformations
of the encoder features. Each feature channel may encode
distinct visual attributes (e.g., edges, textures, or shapes) and
thus might require unique spatial modifications. In contrast
to object classification tasks—where known invariances (e.g.,
rotation, reflection) can be applied through data augmenta-
tion—voxel responses exhibit unknown geometric invariances.
Allowing the network to learn channel-specific transforms di-
rectly from fMRI data provides a powerful mechanism to dis-
cover these invariances, potentially leading to richer and more
accurate neural response models (Figure 2D, E).

STN Architecture - Our STN module has four key compo-
nents: 1. Localization Network - A pretrained ResNet-50
that processes the raw stimulus image and outputs a feature
representation before adaptive average pooling, 2. Linear
Deformation Networks - Two linear networks produce affine
transformation parameters. From the localization features,



one generates 0 € RE*6 for the C feature channels, while the
other yields 6, € R¥*° for the N voxels. Each row in 6, and
0, encodes a 2 x 3 matrix (6 parameters) for a unique affine
transform, 3. Parameterized Sampling Grid - Constructs
sampling grids based on 8; and 6,, defining how E (encoder
feature map) and S (spatial weight matrix) are warped and 4.
Sampler - Applies bilinear interpolation to generate the trans-
formed feature map E’ and spatial weights S’.

We compute each voxel’'s predicted response, S?,,, using
the Spatial-Feature Factorized Linear Readout (Eq.[T), but re-
place E and S with their STN-transformed versions:

E =AT(E,0,), S =AT(S,0,),

where AT(X,0) applies a distinct 2 x 3 affine matrix in 6,,
to each channel m in X € RM*W>H By jointly modulating
receptive fields and feature channels, the STN readout cap-
tures the dynamic, context-dependent properties of neural re-
sponses and learns unknown geometric invariances directly
from the data, offering a biologically motivated enhancement
over fixed-mask readout methods. Further analysis on this
readout is expanded in Appendix Table [A4] Figure [A6] and
Section [Analyzing spatial modulation of Receptive Fields in|
[visual cortex: Insights from STN Readouts| where we ex-
amine how stimulus-dependent spatial shifts learned by the
STN vary across the visual hierarchy. See Appendix Sec-
tion [Further Clarification on the pipeline for Semantic Trans-|
Figures[A7]and Table [A8]for details on the individual
affine transformations, computational complexity, and usability
across different input stimuli.

Training and Dataset

In this study, we utilized stimuli-response pairs from four sub-
jects (Subjects 1, 2, 5, and 7) from the Natural Scenes Dataset
(More details in Appendix section [Natural Scenes Dataset).
The experimental setup involved presenting a total of 37,000
image stimuli from the MS COCO dataset (Lin et al., [2014)
to these subjects. Out of these, 1,000 images were shown to
all four subjects, and these shared images were designated
as the test set for our analyses. The remaining 36,000 im-
ages were split into 35,000 for training and 1,000 for valida-
tion purposes. We trained separate models for each of the
following brain regions: the high-level ventral, dorsal and lat-
eral streams, V4, V3v, V3d, V2v, V2d, V1v, and V1d. This
approach allowed us to tailor the models to the unique neural
response patterns of each region, thereby providing a more
precise understanding of how different parts of the visual cor-
tex process information. Throughout the paper, the reported
accuracy refers to the test-time performance, measured as the
noise-normalized Pearson correlation between predicted and

actual voxel responses (see Appendix section
[Datasef for noise ceiling computation).

All response-optimized models were trained using an
NVIDIA GeForce RTX 4090 and NVIDIA A40 GPU. We em-
ployed a batch size of 4 with gradient accumulation to achieve
an effective batch size of 16, using a learning rate of 0.0001.

Training was performed using an equal-weighted combination
of Mean Squared Error (MSE) and correlation loss between
predicted and target voxel responses, with early stopping ap-
plied after 20 epochs without improvement in validation accu-
racy, measured by Pearson correlation.

Results

Performance comparison of readouts across vision
and language models in the visual cortex

We first evaluated the performance of various readout mech-
anisms in predicting neural responses across different brain
regions. Our results showed that the Semantic Spatial Trans-
former readouts consistently outperform Linear, 2D Gaus-
sian, and Spatial-Feature Factorized Linear readouts across
all regions of the visual cortex and for almost all encoder
models (see Figure ). Its key advantage lies in the abil-
ity to flexibly adjust spatial masks and feature maps on a
stimulus-by-stimulus basis, shifting receptive fields, resizing
them, or rotating feature maps to align with a canonical
form—transformations that better capture the actual variability
in visual processing and boost predictive performance. This
trend of superior performance is especially evident in vision
models (see Figure [3}A) and holds for other task-optimized
encoders processing visual input (details in Appendix Tables
and [A2). Figure [3}B further illustrates the brain voxels
where each readout performs best, underscoring the domi-
nant performance of the Semantic Spatial Transformer read-
out for vision models across the visual hierarchy.

While the Semantic Spatial Transformer achieves the over-
all highest accuracy across all regions for all models (Ap-
pendix Tables [A3), its improvement is less pro-
nounced with language embedding inputs (Figure [3}B). This
disparity arises because the Semantic Spatial Transformer
readout uses a pretrained ResNet50 encoder as the localiza-
tion network to learn affine transformations that adjust both
vision and language encoder feature spaces. Vision encoder
features are generally larger per channel (e.g., 28x28) than
language encoder features (e.g., 4x4). Consequently, the Se-
mantic Spatial Transformer readout has a greater capacity to
leverage the rich spatial information available in vision models.
Larger spatial dimensions provide more granular information,
allowing STNs to learn transformations that account for vari-
ations in position, scale, and orientation of features more ac-
curately. Further analysis on this bias introduced by readouts
can be found in Appendix section [Dependency of Semantic|
[Spatial Transformer Readout on Channel Size|and Table[A]

Further, Spatial-Feature Factorized Linear Readouts out-
perform Linear Ridge Regression Readouts both in terms of
memory efficiency and prediction performance, as shown in
Figure[3}A and Appendix Tables[A3] [A2]and[AT] This improve-
ment is attributed to the readout’s capability to effectively dis-
entangle voxel response selectivity into spatial and feature di-
mensions. This approach aligns with established phenomena
in neuroscience, where neurons exhibit selectivity not only for
specific features but also for stimuli presented within their re-
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Gaussian 2D readouts are mostly outperformed by both
Spatial-Feature Factorized Linear Readouts and Linear Ridge
Regression Readouts in vision models, despite needing sig-
nificantly fewer parameters. This performance gap can be at-
tributed to the fact that Gaussian readouts were initially de-
veloped for grayscale stimuli in the mouse primary visual cor-
tex [2020), where they utilized the brain’s retino-
topic mapping and anatomical organization to accurately de-
fine receptive fields. In our study, however, we learn the pa-
rameters of the Gaussian readout solely from the responses to
complex image inputs, deliberately excluding anatomical infor-
mation to maintain a fair comparison with other methods. Fur-
thermore, this modeling approach may be less effective for the
human visual system, where the assumption of a Gaussian-
like structure may not hold true for the spatial receptive fields
of all voxels, which may exhibit greater complexity.

Interestingly, the performance gap between Gaussian read-
outs and other readouts narrows in language models, where
Gaussian readouts slightly outperform linear readouts across

all regions and exceed Spatial-Feature Factorized Linear
Readouts in higher regions. This may be due to the smaller
feature space in language models compared to vision models
(e.g., 4x4 vs. 28x28), which simplifies receptive field localiza-
tion.

Since the Semantic Spatial Transformer readout consis-
tently outperformed others, we focus on it when analyzing the
encoders in detail in the following sections.

ResNet 50 Encoder
AlexNet Encoder

mem Response Optimized Vision Encoder

o
®

Test Accuracy

Brain Regions

/ Il Voxels with <=0 noise ceiling
B

B Voxels better predicted by Task optimized encoders
Voxels better predicted by Response optimized encoders

KTask Optimized model - Resnet 50 Task Optimized model - Alexnet /

Figure 4: Comparison of Task-optimized versus Response-
optimized vision models - (A) Test Accuracy (Normalized
Pearson Correlation) on held out dataset using Task-optimized
model encoders and Response-optimized model encoders
with Semantic Spatial Transformer readout, (B) Brain visual-
ization showing voxels better predicted by each model

Task-optimized vs Response-optimized models

To ensure a fair comparison, we trained models using differ-
ent sets of layers for each task-optimized model (Appendix
Table containing additional baselines ConvNext-Base
and MOCO-V2 [He et al] (2020)), and used only
the best-performing ResNet50 layers for comparison, as pre-
sented in Table [l In the early regions of the visual cor-
tex (V1, V2, V3, and V4), response-optimized vision mod-
els consistently outperform task-optimized models by 2-12%
(Figure [4] and Table [T), with a particularly notable margin
over simpler architectures like AlexNet (Appendix Table [AT).
This suggests that features necessary for modeling early and
mid-level visual areas are not fully captured by current task-
optimized models, and explicit alignment with neural respon-
sefs is crucial for higher prediction accuracy. This may be
because task-optimized models, primarily trained on object-
centric tasks, don’'t account for the broader range of visual



Table 1: Performance (Test Accuracies as Noise-Normalized Pearson Correlation) of Task-Optimized Vision models (ResNet-50,
TV; best from [AT), Response-Optimized Vision models (RV), and Language Models with CLIP embeddings—Single Caption
(SL) and Dense Caption (DL). All use the Semantic Spatial Transformer readout, except SL which uses Ridge Linear readout.

Model Details Viv vid V2v vad V3v Vv3d V4 Ventral | Dorsal | Lateral
TV 0.8507 | 0.8083 | 0.8057 | 0.7603 | 0.7612 | 0.7763 | 0.7674 | 0.6105 | 0.6606 | 0.5823
RV 0.8698 | 0.8340 | 0.8302 | 0.7919 | 0.7808 | 0.7913 | 0.7729 | 0.5796 | 0.6089 | 0.5638
SL 0.3974 | 0.3779 | 0.3809 | 0.3702 | 0.4093 | 0.4119 | 0.4882 | 0.5661 | 0.6243 | 0.5920
DL 0.7196 | 0.6590 | 0.6903 | 0.6457 | 0.6897 | 0.6774 | 0.7167 | 0.5953 | 0.6562 | 0.6001
xels with <=0 noi ilin Voxels with <=0 noise ceilin
A = zgx::z bett:er p:)edioctseedcsyl Lgnguage model /B = Voxels better predicted by Si?ﬁgle Caption Language model \

Voxels better predicted by Vision model

Language model - Single
Caption (CLIP), Vision model
- AlexNet

Language model - Single
Caption (CLIP), Vision model
- Response Optimized

Language model - Single
Caption (CLIP), Vision model
- Resnet 50

Language model - Dense
Caption (CLIP), Vision model
- Resnet 50

Language model - Dense
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Figure 5: Comparison of vision and language models using Semantic Spatial Transformer readouts - Brain visualizations show-
ing: (A) voxels better predicted by vision and language models, (B) voxels better predicted by single and dense caption language
models, (C) the ten regions of the human visual cortex analysed in this study (V, D and L refer to Ventral, Dorsal and Lateral
streams respectively), (D) highlighting three distinct regions, each demonstrating varying sensitivities to largely perceptual char-
acteristics of the input, localized visual semantics aligned with linguistic descriptions, and global semantic interpretations of the

input, also aligned with language

functions performed by the brain. Incorporating more etho-
logically relevant tasks into the optimization framework might
be necessary for better modeling of early to mid-level vi-
sual processing. In the higher regions of the visual cor-
tex (high-level ventral, dorsal, and lateral streams), task-
optimized models show a slight performance advantage of
around 5% over response-optimized models. This could be
because these regions process more complex visual infor-
mation, and task-optimized models, trained on larger object-
centric datasets like ImageNet (>1.2 million images), better
capture these functions. However, the small difference indi-
cates that response-optimized models, despite being trained
on only a fraction ( 3%) of the data, still capture significant
aspects of high-level visual processing.

Brain regions sensitive to vision vs language
models

Recent research shows that pure language models, like MP-
NET, can predict image-evoked brain activity in the high-level
visual cortex using only image captions (Doerig et al, [2024).
This raises intriguing questions about the alignment between
the human visual cortex and language. To explore this rela-
tionship further, we compare these language with vision-only
models.

When we assess language models that receive only image
captions—without the images themselves—against response-
optimized vision models, we find that the lower regions of the
visual cortex are better modeled by vision-based approaches.
In contrast, higher regions are more effectively captured by
language models (see Figure A, column 3 and Table .
This pattern also holds when comparing language models to




task-optimized vision models, although the distinction is less
pronounced (first two columns of Figure [B}A).

Next, we differentiate between single-caption and dense-
caption models. Single-caption models convey only the overall
semantic content of an image, whereas dense-caption mod-
els capture both spatial and semantic details. Consequently,
the lower regions of the visual cortex, which are sensitive to
fine-grained visual information, are better modeled by dense-
caption models, as illustrated in Figure 5} B.

As we move from the lower to the higher regions of the vi-
sual cortex, there is a notable shift in sensitivity from local-
ized semantics to global semantics across all ventral, dorsal,
and lateral streams. Figure [B}B demonstrates that single-
caption models dominate in the mid-to-higher regions of these
streams, emphasizing the sensitivity of these areas to the
overall meaning or interpretation of an entire image or scene.
This trend is further corroborated in Figure A, which com-
pares vision models with both single-caption and dense-
caption language models. Here, response-optimized vision
models outperform single-caption models in the lower regions
of the ventral, dorsal, and lateral streams, but do not maintain
this advantage in the mid-to-higher regions.

Thus, we can identify three distinct regions in the visual cor-
tex that are sensitive to different stimulus types (Figure [} D):
(1) lower visual regions (V1, V2, V3, and V4) are most sen-
sitive to perceptual features that are not fully captured by lin-
guistic descriptions - region A; (2) mid-level regions of the dor-
sal, ventral, and lateral streams are most sensitive to localized
semantics (i.e. detailed, specific information about particular
parts or regions of an image) - region B; and (3) higher regions
of the dorsal, ventral, and lateral streams are sensitive exclu-
sively to global semantic information - region C. Vision models
outperform both single and dense caption language models in
region A (Figure[B}A and Table[T), thus proving its sensitivity to
largely perceptual features. Dense Caption language models
outperform single caption language models (Figure [B}B) and
response-optimized vision models (Figure [B}A) in region B,
thus proving it is most sensitive to nuanced, localized seman-
tic details. Vision models also outperform single caption mod-
els in region B (Figure [B}A), thus proving it is more sensitive
to detailed visual information. Lastly, single caption language
models outperform both dense caption models (Figure [B}B)
and vision models (Figure [B}A) in region C, thus confirming its
sensitivity to global semantics. Although this comparison was
done mainly using Semantic Spatial Transformer readout, the
trends hold true for other readouts, although to a much lesser

extent (Appendix Figures [AT).

Discussion

In this study, we leveraged the NSD Dataset to evaluate var-
ious neural network models in predicting neural responses
across different brain regions. Our analysis focused on three
key comparisons: task vs. response optimized models, vision
models vs. language models, and different readout methods
for mapping model activations to brain signals.

First, we compared task-optimized models pre-trained on
visual tasks (thus biased toward those tasks), with response-
optimized models trained directly from brain response data.
Response-optimized models significantly outperform task-
optimized models in early visual regions. This suggests that
brain-like processing in early-to-mid visual areas does not fully
emerge in task-optimized models, and explicit alignment with
neural data enhances prediction accuracy. However, in higher
visual regions, both model types perform comparably, with
task-optimized models showing a slight edge.

Next, we compared vision models with language models
(both single-caption and dense-caption). Vision models out-
performed language models in early visual regions, which are
more attuned to perceptual features not captured by linguis-
tic descriptions. In mid-level visual regions, sensitivity shifts
toward semantic information, with dense-caption models ex-
celling due to their ability to represent localized semantics. In
higher visual regions, single-caption models perform better,
indicating the importance of global scene understanding.

Finally, we evaluated different readout mechanisms for
mapping activations to brain responses. Factorized readouts
significantly outperformed standard linear models, and incor-
porating a Semantic Spatial Transformer further improved per-
formance, particularly in vision models.

Our work has several limitations. First, we focused on task-
optimized models trained for object categorization. A compre-
hensive comparison of models trained on other visual objec-
tives and data sets is outside the scope of this study. However,
prior research suggests that variations in architecture, objec-
tive, and data diet do not drastically impact response predic-
tion accuracy (Conwell, Prince, Kay, et al., [2022), so we do
not expect our conclusions to change significantly with addi-
tional models. While we found that language models become
more accurate in predicting responses in high-level visual re-
gions, we did not explore what specifically drives this perfor-
mance |[Shoham et al.| (2024), |Conwell et al.| (2023), Huh et
al.| (2024). It is still uncertain whether object category infor-
mation (e.g., nouns) or other elements such as actions, spa-
tial relationships, or contextual details play a more significant
role. Finally, while the Semantic Spatial Transformer led to
better predictions, future work should investigate how spatial
and feature weights are modulated by different inputs. We
also only tested affine transformations; more constrained or
nonlinear deformations may offer further improvements.
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Appendix
Natural Scenes Dataset

A detailed description of the Natural Scenes Dataset (NSD;
http://naturalscenesdataset.org) is provided elsewhere (Allen
et all [2022). The NSD dataset contains measurements
of fMRI responses from 8 participants who each viewed
9,000-10,000 distinct color natural scenes (22,000-30,000
trials) over the course of 30-40 scan sessions. Scanning
was conducted at 7T using whole-brain gradient-echo EPI at
1.8-mm resolution and 1.6-s repetition time. Images were
taken from the Microsoft Common Objects in Context (COCO)
database (Lin et al.,[2014), square cropped, and presented at
a size of 8.4° x 8.4°. A special set of 1,000 images were
shared across subjects; the remaining images were mutually
exclusive across subjects. Images were presented for 3 s with
1-s gaps in between images. Subjects fixated centrally and
performed a long-term continuous recognition task on the im-
ages. The fMRI data were pre-processed by performing one
temporal interpolation (to correct for slice time differences)
and one spatial interpolation (to correct for head motion). A
general linear model was then used to estimate single-trial
beta weights. Cortical surface reconstructions were gener-
ated using FreeSurfer, and both volume- and surface-based
versions of the beta weights were created. In this study, we
analyze manually defined regions of interest (ROls) across
both early and higher-level visual cortical areas. For early vi-
sual areas, we focus on ROls delineated based on the results
of the population receptive field (pRF) experiment - V1v, V1id,
V2v, V2d, V3v, V3d, and hV4. For higher level visual cortex
regions, we target the ventral, dorsal, and lateral streams, as
defined by the streams atlas.

Noise Ceiling Estimation in NSD - Noise ceiling for ev-
ery voxel represents the performance of the “true” model un-
derlying the generation of the responses (the best achiev-
able accuracy) given the noise in the fMRI measurements.
They were computed using the standard procedure followed
in (Allen et al., 2022) by considering the variability in voxel re-
sponses across repeat scans. The dataset contains 3 different
responses to each stimulus image for every voxel. In the es-
timation framework, the variance of the responses, G?esponse,
are split into two components, the measurement noise 62 ;..
and the variability between images of the noise free responses

2
Gsignal'

A2 _ A2 ~2
Gresponse - Gsignal + Ohoise

An estimate of the variability of the noise is given as 62 ., =
% ", Var(B;), where i denotes the image (among n images)
and Var(f3;) denotes the variance of the response across rep-
etitions of the same image. An estimate of the variability of

the noise free signal is then given as,

A2 _ a2 )
cssignal - Gresponse ~ Ohoise
i 42 —
Since the measured responses were z-scored, Gregponse = |
A . A0 . e
and Ggigng = 1 — Grgise-  The noise ceiling (n.c.) expressed



Table A1: Performance (Test Accuracies as Normalized Pearson Correlation) of various Task Optimized vision models with Linear
Ridge (R), Spatial-Feature Factorized Linear (F), Semantic Spatial Transformer (S) and Gaussian2D (G) readouts

Model Details Visual Cortex Region

Layers | Readout | Viv Vid | vav | vad V3v. [ Vv3d | V4 [ Ventral | Dorsal | Lateral
ResNet 50
R 0.6009 | 0.5695 | 0.5168 | 0.4783 | 0.4612 | 0.4543 | 0.4085 | 0.2958 | 0.3101 | 0.2508
1 G 0.5935 | 0.5634 | 0.5110 | 0.4238 | 0.4135 | 0.4148 | 0.3758 | 0.2236 | 0.1928 | 0.1940
F 0.8041 | 0.7627 | 0.7321 | 0.6950 | 0.6517 | 0.6540 | 0.5771 | 0.3252 | 0.3318 | 0.2709
S (Ours) | 0.8498 | 0.8022 | 0.7860 | 0.7501 | 0.7559 | 0.7461 | 0.7410 | 0.5763 | 0.6208 | 0.5652
R 0.5618 | 0.6535 | 0.6276 | 0.4677 | 0.4564 | 0.4485 | 0.4157 | 0.3628 | 0.3796 | 0.3131
5 G 0.6478 | 0.5827 | 0.5694 | 0.5086 | 0.4975 | 0.4861 | 0.4898 | 0.2958 | 0.2797 | 0.2593
F 0.8142 | 0.7728 | 0.7601 | 0.7302 | 0.6956 | 0.7110 | 0.6403 | 0.4034 | 0.4116 | 0.3515
S (Ours) | 0.8507 | 0.8083 | 0.8057 | 0.7603 | 0.7612 | 0.7763 | 0.7601 | 0.5813 | 0.6241 | 0.5667
R 0.6599 | 0.6413 | 0.6426 | 0.6014 | 0.6051 | 0.6237 | 0.6138 | 0.5022 | 0.5657 | 0.4689
3 G 0.6607 | 0.6110 | 0.6359 | 0.5920 | 0.6270 | 0.6205 | 0.6526 | 0.4991 | 0.5296 | 0.4671
F 0.8046 | 0.7666 | 0.7705 | 0.7482 | 0.7465 | 0.7675 | 0.7540 | 0.5751 | 0.6277 | 0.5384
S (Ours) | 0.7898 | 0.7393 | 0.7643 | 0.7193 | 0.7496 | 0.7495 | 0.7674 | 0.6105 | 0.6606 | 0.5823
R 0.2812 | 0.2577 | 0.2583 | 0.2556 | 0.2880 | 0.2433 | 0.3132 | 0.3006 | 0.2922 | 0.2820
4 (all G 0.5170 | 0.4671 | 0.4810 | 0.4318 | 0.4821 | 0.4787 | 0.5442 | 0.4764 | 0.4702 | 0.4704
F 0.5922 | 0.5488 | 0.5606 | 0.5297 | 0.5542 | 0.5659 | 0.5612 | 0.4525 | 0.4741 | 0.4269
S (Ours) | 0.6989 | 0.6504 | 0.6746 | 0.6487 | 0.6743 | 0.6791 | 0.6814 | 0.5857 | 0.6337 | 0.5809
AlexNet
R 0.6359 | 0.6320 | 0.5844 | 0.5403 | 0.5268 | 0.5178 | 0.4795 | 0.3134 | 0.3275 | 0.2727
1 G 0.6520 | 0.6009 | 0.5539 | 0.5197 | 0.4649 | 0.4489 | 0.4550 | 0.3156 | 0.3054 | 0.2662
F 0.7253 | 0.6897 | 0.6479 | 0.6136 | 0.5678 | 0.5841 | 0.5300 | 0.3170 | 0.3178 | 0.2763
S (Ours) | 0.7590 | 0.7159 | 0.7229 | 0.6662 | 0.6934 | 0.6764 | 0.7004 | 0.5594 | 0.6072 | 0.5556
R 0.5822 | 0.5550 | 0.5268 | 0.4951 | 0.4919 | 0.4855 | 0.4715 | 0.2924 | 0.2949 | 0.2485
5 G 0.6459 | 0.6221 | 0.5883 | 0.5489 | 0.5439 | 0.5357 | 0.5278 | 0.3688 | 0.3399 | 0.3271
F 0.7325 | 0.6923 | 0.6704 | 0.6396 | 0.6168 | 0.6287 | 0.5876 | 0.3864 | 0.3822 | 0.3322
S (Ours) | 0.7710 | 0.7288 | 0.7273 | 0.6950 | 0.7043 | 0.7117 | 0.7169 | 0.5705 | 0.6002 | 0.5408
R 0.5951 | 0.5722 | 0.5554 | 0.5260 | 0.5234 | 0.5313 | 0.5197 | 0.3389 | 0.3392 | 0.2879
3 G 0.6311 | 0.6150 | 0.5997 | 0.5705 | 0.5597 | 0.5629 | 0.5719 | 0.4289 | 0.4072 | 0.3888
F 0.7419 | 0.7055 | 0.7033 | 0.6713 | 0.6655 | 0.6864 | 0.6594 | 0.4618 | 0.4711 | 0.4098
S (Ours) | 0.7634 | 0.7236 | 0.7327 | 0.6961 | 0.7065 | 0.7092 | 0.7148 | 0.5694 | 0.6071 | 0.5326
R 0.6145 | 0.5830 | 0.5834 | 0.5527 | 0.5733 | 0.5677 | 0.5632 | 0.4123 | 0.4181 | 0.3486
4 G 0.6357 | 0.6038 | 0.5994 | 0.5677 | 0.5684 | 0.5795 | 0.5908 | 0.4601 | 0.4827 | 0.4220
F 0.7325 | 0.6933 | 0.6989 | 0.6724 | 0.6735 | 0.6895 | 0.6758 | 0.5066 | 0.5323 | 0.4559
S (Ours) | 0.7444 | 0.7070 | 0.7173 | 0.6816 | 0.7037 | 0.7108 | 0.7129 | 0.5688 | 0.6214 | 0.5458
R 0.4931 | 0.4798 | 0.4703 | 0.4474 | 0.4560 | 0.4609 | 0.4662 | 0.3717 | 0.3806 | 0.3394
5 (all) G 0.5605 | 0.5652 | 0.5136 | 0.5193 | 0.4946 | 0.5231 | 0.5260 | 0.4523 | 0.4334 | 0.4201
F 0.6889 | 0.6339 | 0.6679 | 0.6183 | 0.6602 | 0.6502 | 0.6833 | 0.5803 | 0.6347 | 0.5797
S (Ours) | 0.7168 | 0.6653 | 0.6859 | 0.6481 | 0.6855 | 0.6797 | 0.7156 | 0.6003 | 0.6443 | 0.5965
ConvNext Base
1 S 0.8238 | 0.7744 | 0.775 | 0.7324 | 0.7334 | 0.7361 | 0.7257 | 0.5579 | 0.5948 | 0.5186
2 S 0.8194 | 0.7762 | 0.7753 | 0.7425 | 0.7520 | 0.7595 | 0.7536 | 0.5745 | 0.6172 | 0.5521
3 S 0.6697 | 0.6345 | 0.6445 | 0.6057 | 0.6504 | 0.6600 | 0.6858 | 0.5756 | 0.6392 | 0.5836
4 (all) S 0.6688 | 0.6209 | 0.6394 | 0.5914 | 0.6394 | 0.6351 | 0.6742 | 0.5761 | 0.6374 | 0.5679
Moco V2

1 S 0.8379 | 0.7735 | 0.7898 | 0.7370 | 0.7505 | 0.7459 | 0.7552 | 0.5828 | 0.6083 | 0.5635
2 S 0.8405 | 0.7967 | 0.8018 | 0.7630 | 0.7632 | 0.7736 | 0.7589 | 0.5917 | 0.6366 | 0.5758
3 S 0.8066 | 0.7604 | 0.7791 | 0.7340 | 0.7589 | 0.7722 | 0.7649 | 0.6082 | 0.6621 | 0.5850
4 (all) S 0.7111 | 0.6586 | 0.6793 | 0.6457 | 0.6735 | 0.6790 | 0.6980 | 0.6038 | 0.6641 | 0.6019




Table A2: Performance (Test Accuracies as Normalized Pearson Correlation) of Response Optimized vision models with Linear
Ridge (R), Spatial-Feature Factorized Linear (F), Semantic Spatial Transformer (S) and Gaussian2D (G) readouts

Readout Viv Vid V2v va2d V3v V3d \'Z Ventral | Dorsal | Lateral
R 0.7746 | 0.7427 | 0.7299 | 0.6906 | 0.6867 | 0.6865 | 0.6551 | 0.4657 | 0.4824 | 0.4372
G 0.7306 | 0.6744 | 0.6746 | 0.6253 | 0.6326 | 0.6104 | 0.6297 | 0.4784 | 0.4728 | 0.4545
F 0.83154 | 0.7926 | 0.7795 | 0.7419 | 0.7268 | 0.7323 | 0.7085 | 0.4847 | 0.4831 | 0.4504
S (Ours) | 0.8698 | 0.8340 | 0.8302 | 0.7919 | 0.7808 | 0.7913 | 0.7729 | 0.5796 | 0.6089 | 0.5638

Table A3: Performance (Test Accuracies as Normalized Pearson Correlation) of language models (C: CLIP, M: MPNET, G-XL:
GPT2-XL) with Linear Ridge (R), Spatial-Feature Factorized Linear (F), Semantic Spatial Transformer (S) and Gaussian2D (G)

readouts

Model Details Visual Cortex Region

LLM [ Readout | Viv | Vid [ V2v [ Vv2ad | V3v | Vad V4 [ Ventral | Dorsal | Lateral
Single Caption Models
C R 0.3974 | 0.3779 | 0.3809 | 0.3702 | 0.4093 | 0.4119 | 0.4882 | 0.5661 | 0.6243 | 0.5920
M R 0.3931 | 0.3738 | 0.3738 | 0.3687 | 0.4031 | 0.4077 | 0.4873 | 0.5672 | 0.6269 | 0.6126
G-XL R 0.3791 | 0.3642 | 0.3653 | 0.3540 | 0.3953 | 0.4036 | 0.4773 | 0.5638 | 0.6162 | 0.6007
Dense Caption Models

R 0.6597 | 0.6154 | 0.6551 | 0.5953 | 0.6371 | 0.6322 | 0.6621 | 0.5807 | 0.6201 | 0.5761
C G 0.6783 | 0.6277 | 0.6682 | 0.6207 | 0.6644 | 0.6531 | 0.6905 | 0.5980 | 0.6491 | 0.5943
F 0.6919 | 0.6329 | 0.6721 | 0.6183 | 0.6603 | 0.6572 | 0.6927 | 0.5915 | 0.6365 | 0.5781
S (Ours) | 0.7196 | 0.6590 | 0.6903 | 0.6457 | 0.6897 | 0.6774 | 0.7167 | 0.5953 | 0.6562 | 0.6001
R 0.6557 | 0.5941 | 0.6325 | 0.5732 | 0.6162 | 0.6207 | 0.6493 | 0.5679 | 0.5831 | 0.5502
M G 0.6840 | 0.6261 | 0.6659 | 0.6207 | 0.6583 | 0.6519 | 0.6928 | 0.5934 | 0.6441 | 0.5894
F 0.6889 | 0.6339 | 0.6679 | 0.6183 | 0.6602 | 0.6502 | 0.6833 | 0.5803 | 0.6347 | 0.5797
S (Ours) | 0.7168 | 0.6653 | 0.6859 | 0.6481 | 0.6855 | 0.6797 | 0.7156 | 0.6003 | 0.6443 | 0.5965
R 0.6738 | 0.6272 | 0.6586 | 0.6136 | 0.6625 | 0.6504 | 0.6862 | 0.5881 | 0.6380 | 0.5732
G-XL G 0.6895 | 0.6284 | 0.6717 | 0.6203 | 0.6605 | 0.6631 | 0.6980 | 0.5941 | 0.6501 | 0.6003
F 0.6940 | 0.6386 | 0.6716 | 0.6275 | 0.6597 | 0.6636 | 0.6974 | 0.5874 | 0.6381 | 0.5832
S (Ours) | 0.7253 | 0.6653 | 0.7038 | 0.6619 | 0.6956 | 0.6939 | 0.7242 | 0.5974 | 0.6487 | 0.6023

6% nal
o —o5—. The
Gsigna\+6n0ise
models were evaluated in terms of their ability to explain the
average response across 3 trials (i.e., repetitions) of the stim-

ulus. To account for this trial averaging, the noise ceiling is ex-

in correlation units is thus given as n.c. =

A2

Gswgnal
pressed as n.c. =/ om0
Gsigna\+6n0ise/3

ing using this formulation for every voxel in each subject and
expressed the noise-normalized prediction accuracy (R) as a
fraction of this noise ceiling.

. We computed noise ceil-

Unimodal versus multimodal embeddings in
language models

As outlined in the previous section, the higher-level regions of
the ventral, dorsal, and lateral visual streams exhibit height-
ened sensitivity to broad semantic information that captures
the overall meaning of a scene, as opposed to specific visual
details or a combination of visual and spatial features. These
regions are best modeled by single-caption language mod-
els. To investigate this further, we examine the performance

of models using unimodal encoders like MPNET, which are
trained exclusively on language, and multimodal encoders like
CLIP, trained on both language and visual data. In the higher
regions of the ventral, dorsal, and lateral streams, models
using MPNET encoders slightly outperform those with CLIP
encoders by 0.5%. This marginal advantage in the higher
regions may be attributed to MPNET’s optimization for cap-
turing rich semantic nuances from text, aligning well with the
language-sensitive nature of these brain regions. On the other
hand, in the lower visual regions, where responses are more
strongly driven by visual inputs, CLIP encoders hold a small
advantage of 1% over MPNET, likely due to their integration of
visual knowledge. However, this trend does not hold in dense
caption language models, where the performance of both en-
coders is comparable.

The Necessity of Spatial Subdivision in Dense
Captioning for Effective Visual Cortex Modeling

We further investigated whether the observed differences be-
tween dense and global captioning are due to (a) the spatial
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Figure A1: A - Brain Visualizations showing voxels that are better predicted by vision and language models, all using Ridge
Linear readouts, B - Brain Visualizations showing voxels that are better predicted by single caption and dense caption language

models, all using Ridge Linear readouts

subdivision of the image (Hypothesis 1) or the increased se-
mantic detail in dense captions (Hypothesis 2). The original
idea behind using dense captions was to provide spatial infor-
mation in addition to semantic information in the form of cap-
tions, and subdividing the image into equal sized grids and
getting captions for each grid was one of the easiest and most
intuitive ways to do that.

We further tried generating more comprehensive single
captions of the image using existing LLMs, however none of
them were able to provide more information than those al-
ready present in the original MS-COCO dataset. In an attempt
to densify the single captions, we thus adopted a different ap-
proach: for each image, we took the embeddings of dense
captions generated for individual grid locations and averaged
these embeddings to produce a single "aggregate dense cap-
tion” embedding.

On comparing single caption stimuli with ‘densified’ single
caption stimuli (as opposed to the dense caption approach
discussed in the paper) (Figure [A5), we saw a similar trend
where the higher regions of the visual cortex were better mod-
eled by single caption stimuli. However, the transition in sensi-
tivity from dense to single caption in the middle regions of the
ventral, dorsal and lateral stream that is so clearly pronounced
when using dense captions is missing when using the above
‘densified’ single captions. Further comparing ‘densified’ sin-
gle captions to dense captions (as proposed in the paper), we

saw that the dense captions modeled the overall visual cor-
tex better. Hence, we do feel that adding spatial information
to the dense caption is necessary for building more accurate
models, be it by sub-dividing the image into grids or via any
other way.

Analyzing spatial modulation of Receptive Fields in
visual cortex: Insights from STN Readouts

In an additional experiment focused on interpreting the STN
readouts, we calculated the distance between the affine pa-
rameters corresponding to the spatial maps of each voxel for
every image, relative to the mean affine parameters across
all images (Figure [A6). The L2 norm of this vector was
computed for each voxel. Across all encoders, we observed
that stimulus-dependent spatial shifts of the receptive field in-
crease from lower to higher visual regions. A similar trend
emerged when calculating the average spatial shifts for each
channel of the feature map across images for different regions.
This trend further supports the idea that higher levels of the vi-
sual cortex benefit more from learned geometric invariances
and exhibit greater spatial modulation of their visual receptive
fields compared to lower visual cortex regions. This modula-
tion includes phenomena such as receptive field expansion,
contraction, or shifts in response to different stimuli.
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Figure A2: A - Brain Visualizations showing voxels that are better predicted by vision and language models, all using Gaussian2D
readouts, B - Brain Visualizations showing voxels that are better predicted by single caption and dense caption language models,

all using gaussian2D readouts

Table A4: Performance (Test Accuracies as Normalized Pearson Correlation) of Spatial-Feature Factorized Linear Readout (F)
with individual affine transformations applied to encoder feature maps (1) and spatial masks (2) separately, all with Response

Optimized Vision models.

Readout Viv Vid V2v vad V3v v3d V4 Ventral | Dorsal | Lateral
F 0.83154 | 0.7926 | 0.7795 | 0.7419 | 0.7268 | 0.7323 | 0.7085 | 0.4847 | 0.4831 | 0.4504
F+1 0.8596 | 0.8217 | 0.8179 | 0.7769 | 0.7705 | 0.7719 | 0.7659 | 0.5638 | 0.5962 | 0.5371
F+2 0.8750 | 0.8409 | 0.8310 | 0.7948 | 0.7814 | 0.7958 | 0.7782 | 0.5865 | 0.6156 | 0.5641

Table A5: Performance (Analysis of the effect of channel size on the improvement introduced by Semantic Spatial Transformer
Readout (S) over Spatial-Linear Factorized Readouts (F), all with Response Optimized Vision models

Readout Viv vid V2v vad V3v V3d V4 Ventral | Dorsal | Lateral
F (28*28) | 0.8315 | 0.7926 | 0.7795 | 0.7419 | 0.7268 | 0.7323 | 0.7085 | 0.4847 | 0.4831 | 0.4504
S (28*28) | 0.8698 | 0.8340 | 0.8302 | 0.7919 | 0.7808 | 0.7913 | 0.7729 | 0.5796 | 0.6089 | 0.5638
S (4%4) 0.8432 | 0.8089 | 0.8056 | 0.7690 | 0.7672 | 0.7743 | 0.7425 | 0.5734 | 0.5986 | 0.5513
S (4%4) 0.7783 | 0.7328 | 0.7374 | 0.6991 | 0.7061 | 0.7043 | 0.7102 | 0.5699 | 0.6002 | 0.5532

Dependency of Semantic Spatial Transformer
Readout on Channel Size

We acknowledge the importance of ensuring that the readout
does not skew conclusions about neural representations. The
larger improvements for vision models stem from their feature
representations having greater spatial dimensions than lan-

guage models, allowing the SST to better leverage the rich
spatial information available in vision models. To mitigate this,
we can normalize spatial dimensions across models to ensure
uniform treatment. Empirically we show that if we reduce the
spatial dimensions of the vision encoder to match those of the
language encoder, that does drop the prediction performance
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Figure A3: A - Brain Visualizations showing voxels that are better predicted by Vision and language models, all using Spatial-
Feature Factorized Linear readouts, B - Brain Visualizations showing voxels that are better predicted by single caption and dense
caption language models, all using Spatial-Feature Factorized Linear readouts

and relative gains (Table [A5).

The overall trend where higher cortical areas are better
modeled by language input and lower cortical areas by vi-
sual input is consistently observed across all readouts (Fig-
ure. [A3). However, the margin distinguishing
the effectiveness of the models varies slightly. Notably, as
we progress from less biologically intuitive readouts to more
biologically plausible ones (linear regression, Gaussian 2D,
Spatial-Feature Factorized Linear Readout, and finally, the
Semantic Spatial Transformer Readout), these trends become
increasingly well-defined. Given that the Semantic Spatial
Transformer Readout most accurately and consistently mod-
els neural responses, we rely on it to delineate regions of the
visual cortex sensitive to varying kinds of stimulus information.

Comparing different architectures for Task and
Response Optimized models

Our study carefully controlled several factors to compare task-
optimized and response-optimized neural network models for
predicting brain responses. Specifically, we held constant
both the stimulus set and readout layer, varying only the en-
coder architecture across models. The rationale for employ-
ing different architectures in our study was to leverage state-
of-the-art approaches tailored to distinct modeling paradigms.
A direct comparison between task-optimized and response-
optimized models is inherently challenging due to differences

in the available training stimulus sets. Specifically, the stimu-
lus set for training response-optimized models is substantially
smaller—approximately 0.03 times the size of the datasets
used for task optimization (e.g. ImageNet). Incorporating
structural biases into response-optimized models (e.g., ro-
tation equivariance) enables them to learn effectively from
smaller datasets. This advantage of rotation-equivariant archi-
tectures in neural encoding contexts has been demonstrated
in prior studies [Khosla & Wehbe| (2022) and is a critical fac-
tor when designing models that align with the constraints of
neural data.

While head-on comparisons using identical architectures
for task and neural response optimization could provide valu-
able insights into the specific contributions of these factors ,
the primary objective of our study was not to isolate these fac-
tors. Instead, we aimed to identify the most predictive models
for voxel responses across distinct regions of the visual sys-
tem. Our findings reveal the current best-performing models
for this goal, emphasizing practical predictive utility rather than
dissecting the contributions of task versus response optimiza-
tion in isolation.

We conducted further experiments using - a ResNet-50 en-
coder trained from scratch exclusively on the NSD dataset,
a Mask-RCNN encoder trained from scratch on the NSD
dataset, a pretrained Mask-RCNN encoder finetuned on the
NSD dataset, and compared it with the proposed task and
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Figure A4: Comparison of Unimodal and Multimodal embeddings in Language models, A - Test Accuracy (Normalized Pearson
Correlation) on held out dataset using Single Caption Language encoders with CLIP and MPNET embeddings, B - Brain Visual-
ization showing regions better predicted by each encoder in Single Caption Language models
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Figure A5: A - Comparison of Single Caption Language models with Dense Caption Language models, B - Comparison of
Single Caption Language models with ‘Densified’ Single Caption Language model, C - Comparison of ‘Densified’ Single Caption
Language model with Dense Caption Language model

response optimized encoders in the paper all paired with a ject classification on ImageNet, the ResNet-50 trained from
Semantic Spatial Transformer readout (Table [AE). We did this scratch on neural responses struggled to match the perfor-
to analyze if the same architecture for response- and task- mance of the proposed response-optimized e2cnn model.
optimized vision models could provide valuable insights. Un- The task optimized Mask-RCNN model is pretrained on the
like the task-optimized ResNet-50, which is trained for ob- MS-COCO dataset which is a superset of the images in the
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Figure A6: A - Average spatial shifts of voxel spatial masks across all images, B - Mean spatial shifts for each brain region,
comparing spatial masks across all images, C - Mean spatial shifts for each brain region, comparing feature maps across all

images.

Table A6: Performance (Analysis of different architectures for Response and Task Optimized models (A - Task Optimized Resnet
50 (pretrained with ImageNet), B - Response Optimized Resnet 50, C - Task Optimized Mask-RCNN (pretrained with MS-COCO),
D - Response Optimized Mask-RCNN, E - Response Optimized E2cnn (proposed), all with Semantic-Spatial Transformer Read-

outs.
Encoder Type Viv vid V2v vad V3v V3d v4 Ventral | Dorsal | Lateral
A 0.8507 | 0.8083 | 0.8057 | 0.7603 | 0.7612 | 0.7763 | 0.7674 | 0.6105 | 0.6606 | 0.5823
B 0.7579 | 0.7034 | 0.7021 | 0.6646 | 0.6861 | 0.6712 | 0.6991 | 0.5546 | 0.5814 | 0.5470
C 0.8543 | 0.8144 | 0.8084 | 0.7693 | 0.7680 | 0.7772 | 0.7793 | 0.6077 | 0.6764 | 0.5987
D 0.8147 | 0.7654 | 0.7621 | 0.7163 | 0.7089 | 0.6898 | 0.7114 | 0.5648 | 0.5841 | 0.5469
E 0.8698 | 0.8340 | 0.8302 | 0.7919 | 0.7808 | 0.7913 | 0.7729 | 0.5796 | 0.6089 | 0.5638

NSD dataset. Although both the task optimized performance
show a very similar performance, we once again see a sim-
ilar trend here with the Mask-RCNN encoder trained from
scratch on the NSD dataset, where it struggled to reach the
performance of the response optimized e2cnn model. This
comparison underscores the role of network architecture and
the significance of incorporating relevant structural biases
into networks when optimizing them on response prediction
with limited data (atleast in comparison to large-scale vision
datasets).

Task-optimized models, typically pretrained on large-scale
datasets (e.g., ImageNet), apply only a linear mapping from
their learned representations to brain responses. Although
one could examine how diverse architectures and tasks affect
performance, prior work (Conwell, Prince, Alvarez, & Konkle|
2022; |Conwell et al., |2024) suggests that even starkly differ-
ent architectures (e.g., CNNs vs. transformers) yield similar
brain predictivity in task-optimized settings, implying that ar-
chitecture alone may not be the critical factor. Here, we take a
complementary approach by comparing these task-optimized
models with response-optimized and LLM-based frameworks,

each configured to best align with neural data constraints.
Specifically, we select the most effective pretrained architec-
ture for task optimization and pair it with an appropriately cho-
sen architecture for response optimization.

Further Clarification on the pipeline for Semantic
Transformers

Figure presents an overview of the pipeline when us-
ing the Semantic Spatial Transformer Readout. This readout
builds upon the existing Spatial-Feature Factorized readout,
whose components are highlighted in the orange box in the
figure. The key innovation introduced by the Semantic Spa-
tial Transformer is the application of affine transformations to
both the encoder feature representation and the spatial weight
("where”) matrix, enabling data augmentation and modulation
of receptive fields dynamically based on the input. To en-
able these transformations, the readout incorporates four ad-
ditional components: (1) Localization Network (2) Deforma-
tion Network (seperate for each affine transformation set) (3)
Parameterized Sampling Grid (4) Sampler.

The localization network is implemented using a pretrained



Table A7: Performance (Test Accuracies as Normalized Pearson Correlation) of Single Caption Language models - (1) entire
sentence is used, (2) Only object words are used, (3) Only stuff words are used, (4) Both object and stuff words are used and

(5) Jumbled sentences are used

Caption Type Viv vid Vav vad V3v v3d V4 Ventral | Dorsal | Lateral
1 0.3974 | 0.3779 | 0.3809 | 0.3702 | 0.4093 | 0.4119 | 0.4882 | 0.5661 | 0.6243 | 0.5920
2 0.3342 | 0.3252 | 0.3197 | 0.322 | 0.3407 | 0.3506 | 0.4051 | 0.4905 | 0.5287 | 0.5187
3 0.3186 | 0.2603 | 0.2888 | 0.2530 | 0.2973 | 0.2868 | 0.3413 | 0.4237 | 0.4418 | 0.4143
4 0.3721 | 0.3316 | 0.3439 | 0.3242 | 0.3609 | 0.3575 | 0.4200 | 0.5038 | 0.5415 | 0.5178
5 0.4016 | 0.3759 | 0.3802 | 0.3682 | 0.4080 | 0.4099 | 0.4840 | 0.5615 | 0.6211 | 0.5952
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Figure A7: Overall Pipeline when a Semantic Spatial Transformer readout is used.

Table A8: Number of learnable parameters for each readout configuration - Here, C denotes the number of channels in the
encoder feature representation, N is the number of neurons being modeled, and W H represents the spatial dimensions of each

feature map channel.

Readout Type Number of parameters learnt
Linear N«xCxHxxW
Gaussian 2D N« (C+7)
Spatial-Feature Factorized N+ (C+WxH)

Semantic Transformer | N* (C+W xH)+32%6(N+C) + 196 %32 %2

ResNet-50 block, which generates input stimulus embed-
dings. Importantly, this network’s weights are frozen during
training. The motivation for using a pretrained network is to
leverage strong, prior-informed embeddings, which can facili-
tate the learning of effective affine transformations. While the
main DNN encoder in the pipeline (whether task-optimized or

response-optimized) could also serve as a localization net-
work, we chose a fixed pretrained model to ensure robust and
stable representations. Incorporating the main encoder as the
localization network is a promising direction for future work.

Each of the two deformation networks is implemented as
a linear layer that receives embeddings from the localization



network and outputs 6-parameter affine transformations for
two distinct purposes -

1. 0;: transformation parameters for each channel of the en-
coder feature representation (R©*"*H) to apply stimuli de-
pendent data augmentations on each channel.

2. 0;: transformation parameters for each neuron in the spa-
tial weight ("where”) matrix (RV*W*H), that will modulate the
respective neuron’s receptive field based on the input stim-
uli.

Once 6; and 6, are obtained, they are applied to the re-
spective W x H grids using PyTorch’s built-in affine-grid (to
generate sampling grids) and grid-sample (to apply the trans-
formations) functions. The parameterized sampling grid de-
fines how each location in the transformed grid corresponds
to coordinates in the original grid. For example, a target co-
ordinate (x,y) in the transformed space might map back to a
source coordinate (i, j) in the original grid. Since these source
coordinates may not align perfectly with discrete pixel loca-
tions, the Sampler uses bilinear interpolation to compute the
output value at (x,y) by interpolating values from neighboring
pixels around (i, j) in the input.

The affine transformations applied to the encoder feature
representations (parameterized by 01) for data augmentation
purposes are further illustrated in FigureA,C,D. Similarly, the
transformations applied to the spatial weight matrix (parame-
terized by 6,), which allow for dynamic modulation of receptive
fields, are detailed in Figure B, E.

Computational complexity of the Semantic Spatial Trans-
former Readout The Semantic Spatial Transformer intro-
duces minimal overhead—the extra complexity comes solely
from two lightweight deformation networks that predict affine
transformation parameters for each feature channel in the en-
coder and one for each voxel. The localization network is con-
figured to output embeddings of dimension 196. Each defor-
mation network starts with a linear layer that projects this 196-
dimensional embedding to a hidden dimension of 32, which
is then further transformed into a 6-parameter affine transfor-
mation. The total number of learnable parameters in each
deformation network is -

1. For 8; (channel-wise transformations): 19632 +32x6xC,
where C is thte total number of channels.

2. For 0, (neuron-wise transformations): 196 %32 +32 %6 %N,
where N is the number of neurons.

The additional parameters (roughly 32-6- (N +C) plus a
constant term) are modest relative to the overall parameter
count of the encoder. Moreover, the affine grid generation and
bilinear sampling operations are computationally efficient and
scale linearly with the feature map size. Table[A8]summarizes
the number of parameters that need to be learned for each
readout configuration.

How are dense caption stimuli used with Semantic
Transformer readouts? To generate dense caption stimuli,
the original image (e.g., of size 424 x 424) is first divided into
uniform patches of size 8 x 8, resulting in a grid of 53 x 53
chunks. For each chunk, a caption is generated using a lan-
guage model (e.g., GPT-2). These captions are then embed-
ded into vector representations using a large language model
(LLM). Let the embedding dimension be M, which varies de-
pending on the LLM used—for example, M = 512 for CLIP,
M =768 for MPNET, and M = 1600 for GPT-2 XL. As a result,
the dense caption stimuli can be interpreted as an "image” of
shape M x 53 x 53, analogous to a standard RGB image of
shape 3 x 424 x 424.

Dense caption stimuli are specifically used in conjunc-
tion with a 2-block E2CNN encoder, similar to the response-
optimized models used for visual stimuli (which typically use
8 blocks). The output of this encoder is a set of feature maps
that can be represented as a C x W x H matrix, which in-
tegrates naturally with the "what” and "where” matrices in the
Semantic Spatial Transformer Readout. To generate the affine
transformations, we do not pass the dense caption stimuli di-
rectly. Instead, the original image stimuli are passed through
the ResNet-50 localization network to produce more robust
and semantically meaningful affine parameters. This design
choice is motivated by the desire to leverage strong visual pri-
ors from pretrained models. A promising direction for future
work would be to investigate whether affine transformations
can be learned directly from linguistic descriptions alone, with-
out relying on the original visual input.
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