
CITB: A Benchmark for Continual Instruction Tuning

Zihan Zhang1, Meng Fang2, Ling Chen1, Mohammad-Reza Namazi-Rad3

1University of Technology Sydney 2University of Liverpool
3University of Wollongong

Zihan.Zhang-5@student.uts.edu.au, Meng.Fang@liverpool.ac.uk
Ling.Chen@uts.edu.au, mrad@uow.edu.au

Abstract

Continual learning (CL) is a paradigm that
aims to replicate the human ability to learn
and accumulate knowledge continually with-
out forgetting previous knowledge and transfer-
ring it to new tasks. Recent instruction tuning
(IT) involves fine-tuning models to make them
more adaptable to solving NLP tasks in general.
However, it is still uncertain how instruction
tuning works in the context of CL tasks. This
challenging yet practical problem is formulated
as Continual Instruction Tuning (CIT). In this
work, we establish a CIT benchmark consist-
ing of learning and evaluation protocols. We
curate two long dialogue task streams of dif-
ferent types, InstrDialog and InstrDialog++,
to study various CL methods systematically.
Our experiments show that existing CL meth-
ods do not effectively leverage the rich natu-
ral language instructions, and fine-tuning an
instruction-tuned model sequentially can yield
similar or better results. We further explore
different aspects that might affect the learning
of CIT. We hope this benchmark will facilitate
more research in this direction1.

1 Introduction

Recent studies have shown that multi-task instruc-
tion tuning (IT) makes language models better zero-
shot learners (Wei et al., 2022; Sanh et al., 2022;
Wang et al., 2022; Chung et al., 2022; Longpre
et al., 2023). IT fine-tunes pre-trained language
models (PLMs) on various tasks with natural lan-
guage instructions (Fig.1) and can achieve remark-
ably well generalization to unseen tasks.

Despite their impressive performance, these
instruction-tuned PLMs still fall short on domain-
specific tasks due to the limited exposure to rele-
vant knowledge and vocabulary from the training
corpus (Luo et al., 2023). Moreover, PLMs are
static after deployment, and there is no mechanism

1Code and data are available at https://github.com/
hyintell/CITB.

Instruction Tuning

Continual Instruction Tuning

Multi-task training

Summarization

Instruction-
tuned LM

Sentiment
Analysis

Question
Answering

Natural Language
Inference

Test on unseen tasks

Stage 1: Multi-
task training

Stage 2: Sequential
single task learning

Instructi
on-tuned

LM
task1 task2

Instructi
on-tuned

LM

Evaluate on: 𝒟test
seq

 𝒟test
init 𝒟test

unseen

Figure 1: Illustration of proposed continual instruction
tuning (CIT). Unlike previous works, we evaluate the
instruction-tuned model on the initial training, unseen,
and newly learned tasks.

to update themselves or adapt to a changing envi-
ronment (Zhang et al., 2023; Bubeck et al., 2023).

Continual learning (CL) aims to enable informa-
tion systems to learn from a continuous data stream
across time (Biesialska et al., 2020). Therefore, it
is promising to leverage CL for instruction-tuned
PLMs to continually adapt to new domains and
tasks without costly re-training. Despite its impor-
tance, it is non-trivial to alleviate catastrophic for-
getting, a phenomenon in which previously learned
knowledge or abilities are degraded due to over-
written parameters (McCloskey and Cohen, 1989).
Moreover, enabling knowledge transfer is also es-
sential since many tasks are similar and have com-
mon knowledge (Ke et al., 2021).

Unfortunately, there is little work on applying
CL for IT and has only been explored in rather
specific settings. Scialom et al. (2022) continu-
ally fine-tune a T0 (Sanh et al., 2022) on eight
new tasks with memory replay to avoid forgetting.
Despite effectiveness, they need to store large num-
ber of instances per task in memory, which is too
costly when scaling to a larger number of tasks.

https://github.com/hyintell/CITB
https://github.com/hyintell/CITB

In addition, they do not study knowledge trans-
fer between tasks. Yin et al. (2022) propose to
use history task instructions to reduce forgetting
and enable knowledge transfer. However, they do
not compare with commonly adopted CL methods,
which makes the effectiveness of other CL methods
unknown. Moreover, they only evaluate the model
on the newly learned tasks while largely ignoring
previously learned tasks during the multi-task train-
ing stage (Fig.1). They also overlook the intrinsic
ability of the instruction-tuned model on unseen
tasks. Lastly, both of them use different evalua-
tion metrics and setups, which creates an obstacle
to comparing different techniques and hinders the
development of this field.

To this end, we first formulate this practical yet
under-explored problem as Continual Instruction
Tuning (CIT). Then, we propose a first-ever bench-
mark suite to study CIT systematically. Our bench-
mark, CITB, consists of both learning and evalua-
tion protocol and is built on top of the recently
proposed SuperNI dataset (Wang et al., 2022).
We create two CIT task streams: InstrDialog
stream, which consists of 19 dialogue-related tasks
spanning three categories; InstrDialog++ stream,
which includes all the tasks in InstrDialog stream
and 19 additional tasks selected from broad cat-
egories and domains. Using the two long task
streams, we implement various CL methods to
study forgetting and knowledge transfer under the
setup of CIT. We find that directly fine-tuning an
instruction-tuned model sequentially yields com-
petitive performance with existing CL methods.
With further investigation, we find that rich natural
language instructions enable knowledge transfer
and reduce forgetting, which is barely fully lever-
aged by current CL methods. We conduct com-
prehensive experiments to explore what effects the
learning of CIT. We hope our CITB benchmark will
serve as a helpful starting point and encourage sub-
stantial progress and future work by the community
in this practical setting. To summarize, our main
contributions are:

• We formulate the problem of CIT and establish
a benchmark suite consisting of learning and
evaluation protocols.

• We curate two long task streams of various
types based on the SuperNI dataset to study
different setups of CIT.

• We implement various CL methods of differ-
ent categories, conduct extensive experiments

and ablation studies to analyze the lack of cur-
rent practices, and propose a future direction.

2 Related Work

Instruction Tuning. Much effort has been made
recently to use natural language instructions to
solve multiple tasks concurrently or to align with
human preferences (Touvron et al., 2023; Zhou
et al., 2023; OpenAI, 2023). Unlike simple and
short prompts (Liu et al., 2021), natural language
instructions (Fig.2) can be more comprehensive,
including components such as task definition, in-
context examples (Brown et al., 2020), and expla-
nations. Through IT, PLMs learn to complete tasks
by following instructions, which enables them to
solve new tasks by following instructions without
learning (i.e., generalization ability). Ideally, we
expect the instruction-tuned model to understand
any given task instruction so that an end user can
directly leverage the model to solve the task with-
out the need to annotate a large dataset and train
it. Unfortunately, despite the instruction-tuned
models such as FLAN (Wei et al., 2022; Longpre
et al., 2023), T0 (Sanh et al., 2022), and Tk-Instruct
(Wang et al., 2022) showing strong generalization
performance to their evaluation tasks, there is still
a sizeable gap compared with supervised training,
which limits the usage of the models. From a prac-
tical point of view, a desirable instruction-tuned
model should be able to extend its ability by contin-
ually learning those under-performed tasks or any
new task, while not forgetting the old ones.

Continual Learning. In contrast to multi-task
learning, continually fine-tuning a model on tasks
might lead to catastrophic forgetting (McCloskey
and Cohen, 1989), where the model forgets previ-
ously acquired knowledge after learning new tasks.
In CL literature, approaches to overcoming catas-
trophic forgetting can be grouped into three cate-
gories (Biesialska et al., 2020; Ke and Liu, 2023).
Regularization-based methods use an additional
loss to prevent important parameters of previous
tasks from being updated (Kirkpatrick et al., 2017;
De Lange et al., 2019). Replay-based methods
store and replay a small subset of training data
from previous tasks to prevent forgetting (Rebuffi
et al., 2017; Scialom et al., 2022); Architecture-
based methods introduce task-specific components
for new tasks and isolate parameters of old tasks
(Madotto et al., 2021; Zhu et al., 2022). How-
ever, the effectiveness of these CL methods for

Input: “Sentence: The lens of the eye is a(n) convex shape.
Question: What shape is the lens of the eye?”
Expected Output: “convex”

Definition:
In this task, you are given a sentence and a question, you
would be asked to create the answer which is contained in the
sentence provided.

Positive Example 1
Input: “Sentence: Heat from the sun causes the most
evaporation of water from a lake. Question: Which of these
causes the MOST evaporation of water from a lake?”
Output: “Heat from the Sun”
Explanation: “The output is correct as … it as the 'Heat from
the sun'”

Negative Example 1
Input: “Sentence: Gas has no definite volume and no definite
shape. Question: Which state of matter has no definite volume
and no definite shape?”
Output: “Matter”
Explanation: “The correct answer to … hence it is incorrect.”

Figure 2: An example of natural language instruction
that consists of a descriptive task definition, one positive
and one negative in-context example with explanation
(Wang et al., 2022). Given a task instruction and the
input of a test instance, a model needs to produce the
desired output.

CIT remains unknown. CIT differs from traditional
CL in heavily relying on comprehensive instruc-
tions. Can previous methods fully leverage the
rich instructions to avoid forgetting while facilitat-
ing knowledge transfer between tasks? Moreover,
many proposed CL methods target tasks of specific
types (e.g., text classification, relation extraction)
(Huang et al., 2021; Qin and Joty, 2022; Zhu et al.,
2022), while CIT can learn broad tasks of different
categories because of the natural language instruc-
tions2. Yin et al. (2022); Scialom et al. (2022);
Mok et al. (2023) study a similar problem using
IT in the CL setting, but no benchmarks are built
for different categories of CL methods. To tackle
CIT, it is essential to establish an unified bench-
mark to compare existing approaches and promote
the development of this field. However, to our best
knowledge, CIT is still immature and no public
benchmark is available.

3 Preliminaries

Instruction Tuning (IT). Following previous
studies (Wei et al., 2022; Sanh et al., 2022; Wang
et al., 2022), each task t ∈ T consists of its natural
language instruction It and a set of N input-output

2All tasks can be filled into a natural language instruction
template and transformed into a text-to-text format (Wei et al.,
2022).

instances Dt =
{(

xti, y
t
i

)
∈ X t × Yt

}N

i=1
, which

can be split into the training Dt
train, validation Dt

dev
and test sets Dt

test. Each instance is filled into an
instruction template such that different tasks can
be transformed into a unified text-to-text format
(Fig.2). IT aims to learn a model f : It×X t → Yt

that can predict the output yti given the task instruc-
tion It and an input xti. In general, the model is
first trained on a mixture of tasks (Tseen) and then
evaluated for its zero-shot generalization ability on
held-out tasks (Tunseen), where Tseen ∩ Tunseen = ∅.
The model is expected to learn to follow instruc-
tions via the training tasks and then solve new tasks
with only the help of task instructions.

4 Continual Instruction Tuning
Benchmark

In this section, we first formalize the CIT problem
(Fig.1). Then, we present the learning and evalua-
tion protocol of our framework CITB. Lastly, we
describe the data for creating the benchmark.

4.1 Continual Instruction Tuning
In contrast to static IT, which only learns a fixed
set of tasks (Tseen), the model should be able to
keep learning new tasks without catastrophically
forgetting previously learned knowledge and fa-
cilitate knowledge transfer if possible. Let us ex-
pand the definition such that we have a set of T
tasks Tseq = {t1, · · · , tT } that arrives sequentially.
Note that the tasks in the stream can be any type
and are not restricted to specific categories or do-
mains. Similarly, each task tj ∈ Tseq has a natural
language instruction Itj , training Dtj

train, validation
Dtj

dev and test sets Dtj
test. Likewise traditional CL,

the goal of CIT is to learn a single model f from
Tseq sequentially.

CIT vs. Traditional CL. While sharing similar
desiderata with traditional CL, CIT differs in that:
(1) it pays more attention to effectively leveraging
the rich natural language instructions to prevent
catastrophic forgetting and encourage knowledge
transfer; (2) because of the multi-task nature of
instructions, all tasks can be formatted in the uni-
fied text-to-text format, therefore CIT can learn any
task or domain instead of a few specific tasks or
domains; (3) after learning a few tasks, the model
should have learned how to follow instructions to
complete tasks, therefore, we expect fewer training
instances required and higher knowledge transfer
for future tasks.

4.2 Learning Protocol of CIT Benchmark

A non-instruction-tuned model (e.g., T5; Raffel
et al. 2020) may struggle to understand instructions
if trained only on a task sequentially. It is also
against our motivation to extend a model’s ability
that is already instruction-tuned. Therefore, we
separate the learning process into two stages.

Stage 1: Initial Multi-task Fine-tuning. To
teach a model a better understanding of task instruc-
tions, we first fine-tune the model on instruction
data. Suppose we have another group of M tasks
Tinit = {t1, · · · , tM} that also equips with natu-
ral language instructions, where Tinit ∩ Tseq = ∅.
We fine-tune a base pre-trained model on the train-
ing set (i.e., Dinit

train =
⋃M

i=1D
ti
train) of the mixed M

tasks to get an instruction-tuned model, denoted as
finit. After training, most of the training data Dinit

train
is unavailable for subsequent sequential learning,
but a memory Minit (Minit ≪ |Dinit

train|) that stores
a small portion of training instances is accessible.
We use this model as the starting point to conduct
the subsequent learning.

Stage 2: Sequential Single Task Fine-tuning.
To keep extending knowledge of the instruction-
tuned finit, we fine-tune it on the training set Dtj

train
of each task tj in the stream Tseq. Similarly, when
learning the task tj , the training data of previ-
ous tasks in the stream (i.e., Dseq

train =
⋃j−1

i=1 D
ti
train,

i < j < T) is unavailable, but a small memory
Mseq can be used for training.

4.3 Evaluation Protocol of CIT Benchmark

Evaluation Process. After learning each task tj
(1 < j < T) in stream Tseq, we consider three
datasets to measure the model’s performance. (1)
Similar to the standard CL, we evaluate the model
on the test sets of all previously learned tasks in
the stream, the test set of the current task, and the
test set of the next task, denoted as Dseq

test. This
helps us measure whether the model forgets previ-
ous knowledge and whether it is helpful to learn
future tasks; (2) We evaluate the model on the test
sets of the M tasks that are used in stage 1 to teach
the model how to follow instructions, denoted as
Dinit

test =
⋃M

i=1D
ti
test. This is where different from

the conventional CL. In CL, previous works only
evaluate downstream tasks in the stream but not the
tasks during the pre-training phase because such
data is generally not accessible to end-users (Ke
et al., 2022). (3) Since multi-task instruction-tuned

models have shown strong zero-shot generaliza-
tion to unseen tasks (Wang et al., 2022), our initial
model trained in stage 1 might also have zero-shot
generalization to some unseen tasks Tunseen, where
Tinit ∩ Tseq ∩ Tunseen = ∅. Let Dunseen

test be the test
sets of all tasks in Tunseen. We evaluate the model
on Dunseen

test if it is available. To sum up, once a new
task is learned, the model will be evaluated on:

D = Dseq
test +Dinit

test +Dunseen
test (1)

In CIT, it is more critical for the instruction-tuned
model to maintain its existing abilities than learn
new ones because it can solve multiple tasks by fol-
lowing instructions. Otherwise, if it forgets many
tasks, there is no point in using such a model than
a task-specific one. Therefore, it is essential to
evaluate on Dinit

test and Dunseen
test .

Evaluation Metrics. Due to the diversity of the
tasks in CIT and the open-ended generation nature
of the text-to-text format, we follow Wang et al.
(2022) to use ROUGE-L (Lin, 2004) to measure
the aggregated performance of each task. They
have shown that ROUGE-L generally works well
for both generation and classification tasks.

Following Lopez-Paz and Ranzato (2017) and
Biesialska et al. (2020), we also use CL-related
metrics to measure the learning procedure. Let aj,i
be the ROUGE-L score of the model on the test set
of task ti right after training on task tj , we define
the following:

Average ROUGE-L (AR), which measures the
average performance of the model on all tasks after
the final task tT is learned:

ART =
1

T

T∑
i=1

aT,i (2)

We use Final ROUGE-L (FR) to measure the per-
formance of the model on Dinit

test and Dunseen
test , respec-

tively, after the final task tT is learned.
Forward Transfer (FWT), which measures how

much the model can help to learn the new task.
FWT also tests the model’s zero-shot generaliza-
tion to new tasks:

FWTT =
1

T − 1

T∑
i=2

ai−1,i (3)

Backward Transfer (BWT), which measures
the impact that continually learning on subsequent
tasks has on previous tasks:

BWTT =
1

T − 1

T−1∑
i=1

(aT,i − ai,i) (4)

Notably, positive BWT indicates that subsequent
tasks can improve the performance of previous
tasks, while negative value implies knowledge for-
getting.

4.4 Data Curation

In this work, we adopt the recently proposed Su-
perNI (Wang et al., 2022) dataset to establish the
benchmark. SuperNI consists of more than 1,600
NLP tasks, spanning a diverse variety of 76 broad
task types, such as language generation, classifica-
tion, question answering, and translation. More-
over, each task is equipped with an instruction and
a set of instances, and all the instances can be trans-
formed into the text-to-text format. Therefore, the
dataset is suitable for studying CIT. The official
training set of SuperNI3 consists of 756 English
tasks spanning 60 broad NLP categories, while 119
tasks from 12 categories are used for zero-shot eval-
uation. We keep the official 119 evaluation tasks
untouched and create two CIT task streams from
the 756 training tasks.

InstrDialog Stream. Dialogue is an important
field to study continual learning because new tasks,
domains or intents are continuously emerging
(Madotto et al., 2021). To investigate how a model
learns new dialogue data under the setup of CIT,
we carefully curate all dialogue-related tasks from
the training set of SuperNI to form the CIT task
stream. Specifically, we use 4 tasks from dialogue
state tracking, 11 tasks from dialogue generation,
and 4 tasks from intent identification, resulting in
a total of 19 dialogue tasks, i.e., |Tseq| = 19. We
remove tasks that are excluded by the official task
splits4.

InstrDialog++ Stream. Because of the multi-
task nature of instructions, an instruction-tuned
model can learn any new task with different types
(§4.1). To study how different types of tasks and
how a long-task curriculum affects CIT, we first
include all 19 dialogue tasks from the InstrDialog
stream, then we manually select the other 19 tasks

3https://github.com/allenai/
natural-instructions

4https://github.com/allenai/
natural-instructions/tree/master/splits

from the remaining training task set. We intention-
ally select tasks from broad categories, including
sentence ordering, style transfer, toxic language
detection, and others. In total, we have 38 tasks of
18 categories (3 categories from InstrDialog and 15
categories from the new 19 tasks), i.e., |Tseq| = 38.

The remaining training tasks can be used for
stage 1 initial multi-task fine-tuning (§4.2). In sum-
mary, the number of initial fine-tuning tasks avail-
able is M = |Tinit| = 718, and we use the official
119 test task sets as Tunseen to evaluate whether
the performance deteriorates for unseen tasks after
learning new tasks. For all tasks, we fill instances
in a natural language instruction template and trans-
form them into a unified text-to-text format (§3).
Unless otherwise specified, we use the instruction
template consisting of the task definition and two
positive examples for all tasks because it generally
yields the best performance (Wang et al., 2022).
See an example of natural language instructions in
Fig.2, and the selected tasks in Table 5. We study
the effect of the instruction template in §6.3.

5 Experiments

Using our CITB benchmark, we conduct experi-
ments on various popular CL methods of different
kinds. We describe our experiment setups and com-
pared methods in this section.

5.1 Setup
Model. We use the LM-adapted version of T5-
small (Raffel et al., 2020), which is further trained
with a language modeling objective. We initial-
ize a T5 model from HuggingFace5. Since it is
costly to fine-tune on all 718 tasks, we randomly
select 100 tasks from Tinit and fine-tune T5 to ob-
tain an instruction-tuned model finit (§4.2), which
has learned to understand some instructions and can
act as a good starting point to conduct subsequent
learning. Note that the 100 randomly selected train-
ing tasks do not overlap with InstrDialog and In-
strDialog++, but their task categories might over-
lap with the categories in InstrDialog++.

Train/Dev/Test Splits. Since the number of in-
stances in each task is imbalanced and a large num-
ber of training instances do not help generalization
in IT (Wang et al., 2022), we follow Wang et al.
(2022) use a fixed size of 500/50/100 instances per
task as the train/dev/test set for the InstrDialog

5https://huggingface.co/google/
t5-small-lm-adapt

https://github.com/allenai/natural-instructions
https://github.com/allenai/natural-instructions
https://github.com/allenai/natural-instructions/tree/master/splits
https://github.com/allenai/natural-instructions/tree/master/splits
https://huggingface.co/google/t5-small-lm-adapt
https://huggingface.co/google/t5-small-lm-adapt

InstrDialog Tinit Tunseen
Method AR FWT BWT FR FR Mem. +P (Tun) Time

FT-no-init 29.62.1 8.00.2 −10.82.3 17.30.5† 16.51.3† 0 0 (1) 0.50.02
AdapterCL 8.10.1 9.40.7 −21.90.9 - - 0 T*0.02 (0.02) 0.40.03
Init 22.5† - - 43.5 36.5† - - -
FT-init 35.70.2 18.50.7 −4.60.2 38.60.3 32.30.6† 0 0 (1) 0.60.01
L2 35.60.1 17.50.5 −3.81.2 39.40.4 34.91.2† 0 1 (1) 0.60.1
EWC 34.50.6 16.80.4 −6.81.5 37.00.1 32.50.5† 0 2 (1) 1.10.2
AGEM (10) 33.20.4 19.10.1 −7.31.0 38.61.1 32.40.0† (T+M)*10 0 (1) 1.10.1
AGEM (50) 34.90.9 18.11.0 −6.00.9 37.70.1 32.61.0† (T+M)*50 0 (1) 1.30.1
Replay (10) 38.40.7 23.70.0 −1.30.5 42.70.7 32.40.4† (T+M)*10 0 (1) 1.40.04
Replay (50) 40.40.0 22.90.1 1.61.2 47.10.5 31.81.0† (T+M)*50 0 (1) 3.20.5

Multi 42.10.6 - - 44.71.3 32.80.9† 0 0 (1) 1.10.2

Table 1: Performance of different methods on the InstrDialog stream. Means and standard deviations are reported.
† means zero-shot performance. "Mem." means the number of instances stored in the memory for each task; T
is the total number of tasks in the stream and M is the number of tasks used for initial training. "+P" means the
percentage of additional parameters added for each task, measured by the total parameters of the base model; "Tun"
is the portion of tunable parameters during training. "Time" is the average hours for each method to complete the
task stream. Best numbers are in bold.

stream. For InstrDialog++, since it has a longer
task sequence, to save computational cost, we use
100/50/100 instances per task instead. For Tinit,
we use 100/50/100 instances per task and 100 in-
stances per task for Tunseen. We study the effect of
different numbers of training instances in §6.3.

5.2 Baselines and Compared Methods

We implement commonly used CL methods from
three categories (Biesialska et al., 2020) to bench-
mark CIT.

Regularization-based methods rely on a fixed
model capacity with an additional loss term to con-
solidate previously gained knowledge while learn-
ing subsequent tasks. We use L2 and EWC (Kirk-
patrick et al., 2017), which uses a fisher informa-
tion matrix to reduce forgetting by regularizing
the loss to penalize the changes made to important
parameters of previous tasks.

Replay-based methods store a small subset of
training instances from previous tasks in a memory.
The data are replayed later to reduce forgetting.
We adopt Replay, which saves random instances
from each task in a memory and then jointly trains
the model on new task data and the old data in the
memory; AGEM (Chaudhry et al., 2019), which
adds constraint to prevent parameter update from
increasing the loss of each previous task. The loss
of previous tasks is calculated using the instances
stored in the memory.

Architectural-based methods introduce task-
specific parameters to the base model to pre-
vent subsequent tasks from interfering with pre-
viously learned parameters. We adopt AdapterCL
(Madotto et al., 2021), which freezes the pre-
trained model and trains a residual Adapter
(Houlsby et al., 2019) for each task independently.

Apart from the three categories of CL, we also
implement instruction-based baselines because all
previous CL methods are not designed for CIT. No
prior work had tried to fine-tune an instruction-
tuned model sequentially without any mechanism
for preventing forgetting or encouraging knowl-
edge transfer. However, it is commonly considered
a performance lower bound in CL literature. To
this end, we propose to continually fine-tune the ini-
tial instruction-tuned model (§5.1) on subsequent
tasks, named as FT-init. As a direct comparison,
we initialize a new T5 model, which is not tuned
on any instruction data, and we continually fine-
tune it (FT-no-init). In addition, we also report the
performance of the initial instruction-tuned model
(Init), which is the starting point before subsequent
learning. Lastly, we jointly fine-tune a T5 model us-
ing all the data, including the training data used in
stage 1 and the training data of all subsequent tasks
in the stream (Multi). This is often regarded as the
performance upper bound in CL and does not have
catastrophic forgetting and knowledge transfer.

InstrDialog++ Tinit Tunseen
Method AR FWT BWT FR FR

FT-no-init 31.32.4 26.80.3 −5.21.4 28.90.6† 31.22.1†

AdapterCL 20.70.2 14.30.9 −7.31.1 - -

Init 30.5† - - 43.5 36.5†
FT-init 34.80.3 29.80.5 −2.80.6 40.80.2 35.90.5†

L2 36.10.2 27.90.3 −4.01.2 41.10.4 34.91.1†

EWC 38.60.4 28.60.5 −4.01.8 41.30.3 34.00.7†

AGEM (10) 39.30.6 28.90.2 −3.81.1 40.30.9 34.10.3†

Replay (10) 43.10.7 29.00.4 −3.60.8 44.00.5 30.10.6†

Multi 44.90.5 - - 44.60.9 33.90.5

Table 2: Performance of different methods on the InstrDialog++ stream. † means zero-shot performance.

5.3 Implementation Details

For both InstrDialog stream and InstrDialog++
stream, we conduct continual instruction tuning
using the same initial instruction-tuned model for
all methods except FT-no-init, AdapterCL, and
Multi. For these methods, we initialize a new T5
model. For AGEM and Replay, we experiment on
a memory size of 10 and 50, i.e., we set the memory
size Minit to 10 and 50, same as Mseq. We jointly
train the data in Minit, Mseq, and the new task
data for these two methods. For AdapterCL, we
use a bottleneck of 100. Due to limited computing
resource, we randomly permute the task streams
and run all experiments using three random seeds.
We refer this as task order 1. We study the effect
of task orders in §6.3. The selected tasks for task
stream InstrDialog and InstrDialog++ are listed
in Table 5. The task orders are listed in Table 6.
More details are in Appendix A.

6 Results and Analysis

In this section, we report the performance of vari-
ous baselines discussed in §5.2 on our benchmark.

6.1 Results on InstrDialog Stream

Table 1 shows each method’s overall performance
and resource requirement after continually learning
the InstrDialog stream. We have the following
observations:

First, all methods except AdapterCL have im-
proved AR, compared to the zero-shot performance
(22.5) of the starting point model Init. This shows
CIT can extend a model’s knowledge. In con-
trast, although AdapterCL is parameter-efficient
and does not rely on memory, it performs even

worse than Init. We conjecture that AdapterCL fails
to learn instructions effectively because it is initial-
ized from a non-instruction-tuned model (T5) and
the few tunable parameters restrict it from learning
complex instructions.

Second, among all baselines, Replay generally
have the best performance. All methods except
Replay (50) have negative BWT, meaning that they
all suffer from catastrophic forgetting. Further-
more, forgetting on Tinit and Tunseen is even worse,
which demonstrates that the ability of the initial
instruction-tuned model Init has deteriorated after
learning new dialogue tasks. We also find storing
more examples in memory improves Replay but
does not significantly help AGEM. It might be be-
cause the constraints added to the loss are roughly
the same, no matter how many instances are stored.
Despite used additional parameters, regularization-
based L2 and EWC perform similar to other base-
lines. Multi overall performs well, with the high-
est AR and improved FR on Tinit, however, it also
forgets tasks in Tunseen. Replay (50) has a higher
FR on Tinit than Multi because the 5,000 instances
stored in Minit are jointly trained multiple times
when learning subsequent tasks (§5.3), leading to
better data fitting.

Third, FT-init performs surprisingly well on
all metrics and is competitive to L2, EWC, and
AGEM. This finding contradicts the common sense
in CL that simply fine-tuning a model sequentially
would lead to catastrophic forgetting because all
parameters can be freely updated in learning new
tasks (Kirkpatrick et al., 2017). Even for FT-no-init,
which is not tuned on any instruction data, shows
increased AR after learning the 19 dialogue tasks.
This raises a question: do various CL methods truly

mitigate forgetting and promote knowledge trans-
fer in CIT? We hypothesize that the rich natural
language instructions lead to the remarkable per-
formance of the baselines (§6.3).

6.2 Results on InstrDialog++ Stream

The performance of all methods after learning the
InstrDialog++ steam is shown in Table 2. We
observe most of the same findings as in §6.1, except
that:

First, Init has a higher (30.5 vs. 22.5) zero-shot
performance on this long stream than on InstrDia-
log, as in Table 1. We analyze that the categories of
the selected 100 training tasks (§5.1) overlap with
the categories in the stream, which enables more
knowledge transfer of tasks between the same cat-
egory because of the similar natural language in-
structions. For example, both sets have tasks from
sentiment analysis and toxic language detection.
In contrast, Init did not learn dialogue tasks, thus
showing lower generalization on InstrDialog.

Second, we can see improved performance for
almost all methods compared to Table 1, especially
on Tinit and Tunseen. For FT-init and FT-no-init, the
improvements of FWT and BWT are particularly
significant, reaching the best among all CL meth-
ods.

Combining the results on the two streams from
Table 1 and 2, we find that catastrophic forget-
ting exists in CIT. However, learning a longer task
stream and diverse tasks of different types leads to
better knowledge transfer and lower forgetting.

FT-init FT-no-init

Instr. AR FWT BWT AR FWT BWT

id 13.9 10.0 -30.3 11.5 8.0 -27.7
def 38.0 21.7 -6.9 33.8 16.1 -7.3
def+2p 34.8 29.8 -2.8 31.3 26.8 -5.2
def+2p

+2n
40.4 28.1 -7.1 33.8 22.3 -7.3

Table 3: Effect of instruction templates on InstrDia-
log++. "id": only use the short task id; "def": only
use descriptive task definitions; "def+2p": use task def-
inition and two positive examples; "def+2p+2n": use
additional two negative examples.

6.3 Ablation Studies

In this section, we investigate the reason why
instruction-based baselines (FT-init and FT-no-init)
perform as well as or even better than conventional

FT-init FT-no-init

Instr. Tinit Tunseen Tinit Tunseen

id 3.6 2.8 1.0 1.7
def 25.8 23.6 20.3 22.4
def+2p 40.8 35.9 28.9 31.2
def+2p+2n 37.7 35.7 27.2 33.1

Table 4: Effect of instruction templates on Tinit and
Tunseen.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10

20

30

40

50

60
AdapterCL
AGEM-10
AGEM-50
EWC
FT-init
FT-no-init
L2
Replay-10
Replay-50

Task in the Stream

A
R

Figure 3: AR of each method during learning the Instr-
Dialog stream (task order 1).

CL methods (§6.1 & §6.2). We also explore differ-
ent aspects that might affect CIT.

Rich instructions enable knowledge transfer and
reduce forgetting in CIT. We use the same setup
as in Table 2, except for using different instruction
templates. Results in Table 3 confirms our hypothe-
sis that the remarkable performance of FT-init and
FT-no-init comes from the rich natural language
instructions. When only using the task Id (e.g.,
task565_circa_answer_generation) as instruc-
tion without descriptive task definition or in-
context examples, simply fine-tuning the model
sequentially yields low AR, FWT, and BWT, which
aligns with the findings in CL literature. Addition-
ally, providing in-context examples (2p or 2p+2n)
generally improves performance. However, al-
though task performance (AR) is improved with
two additional negative examples, we witness de-
creased knowledge transfer (FWT and BWT). For
the model that is not fine-tuned on any instruction
data (FT-no-init), we find it worse than FT-init,
showing the benefits of the initial multi-task train-
ing on instruction data.

Similar observations are found on Tinit and
Tunseen in Table 4, where the model catastrophi-
cally forgets its initial abilities after learning a long
stream of tasks. Providing descriptive task defini-
tions significantly boosts task performance as well

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10

20

30

40

50
AdapterCL
AGEM-10
AGEM-50
EWC
FT-init
FT-no-init
L2
Replay-10
Replay-50

Task in the Stream

A
R

Figure 4: AR of each method during learning the Instr-
Dialog stream (task order 2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

20

40

60

AdapterCL
AGEM-10
AGEM-50
EWC
FT-init
FT-no-init
L2
Replay-10
Replay-50

Task in the Stream

A
R

Figure 5: AR of each method during learning the Instr-
Dialog stream (task order 3).

as facilitates knowledge transfer. Moreover, it also
maintains the model’s generalization ability on un-
seen tasks. Combining the results in Table 1, 2, 3,
and 4, we find that those conventional CL meth-
ods do not fully leverage the instructions to reduce
forgetting and facilitate knowledge transfer while
learning continuously because the naive FT-init and
FT-no-init can also achieve the same. This calls for
novel CL methods designed for CIT.

Task types and learning order matter to CIT.
To explore how task types and orders in a stream
affects CIT, we randomly permute the InstrDialog
stream to get two new task orders and conduct the
same learning as Table 1. We present the interme-
diate learning trends of all 19 tasks in Fig.3, Fig.4
and Fig.5. One can see from the plots that all base-
lines are highly affected by task orders, fluctuating
dramatically when different tasks are learned first.
We argue that it is because the task difficulties and
similarities vary a lot. Learned tasks transfer knowl-
edge through the instructions to new tasks of the
same type, therefore facilitating its learning. For
example, the last task in order 1 (Fig.3) is a type
of dialogue generation, which is the dominant task
type in the stream (11/19, §4.4), therefore all base-
lines are improved. However, all baselines reach
below Multi after learning all 19 tasks, demonstrat-

0 200 400

10

15

20

FT-init
FT-no-init

training instances per task

FW
T

Figure 6: Effect of training instances per task on FWT.

0 200 400

−10

−5

0 FT-init
FT-no-init

training instances per task
B
W

T

Figure 7: Effect of training instances per task on BWT.

ing knowledge forgetting will eventually appear if
learning longer enough tasks.

A large number of training instances do not
help knowledge transfer. We vary the number of
instances per task used for learning the InstrDialog
stream from [10, 20, 100, 200, 500]. As shown in
Fig.6 and Fig.7, FWT and BWT gradually decrease
when the number of training instances is scaled to
large values. It aligns with the findings by Wang
et al. (2022) in standard IT, where large number
of instances do not help generalization to unseen
tasks, we also find it is true in CIT. Additionally, we
find instruction-tuned models (FT-init) have better
generalization to new tasks (FWT) than the model
not fine-tuned on any instruction data (FT-no-init).
This shows that, after learning a few tasks, the
model have learned how to follow instructions to
complete tasks, thus fewer training instances are
required for new tasks.

7 Conclusion

In this work, we establish a benchmark for contin-
ual instruction tuning, with two 19 and 38 long task
streams to be learned sequentially. We implement
and compare various continual learning methods of
different types using the benchmark to study their
effectiveness under this new domain. We conduct
extensive ablation studies to analyze the lack of
current practices, and propose a future direction.

Limitations

We identify our limitations as follows. First, due
to limited resources, all experiments in this work
use T5-small (LM-adapted) as the backbone, which
might not entirely reflect continual instruction tun-
ing in general. As Wang et al. (2022) points out,
there is a sizable gap between the smaller mod-
els and the 11B or 3B models in generalizing to
new tasks. Second, when creating the two CIT task
streams, we only use English tasks from the Su-
perNI dataset (Wang et al., 2022). In future, it can
be extended to multilingual task streams to study
cross-language continual instruction tuning. Third,
we follow the SuperNI dataset to use ROUGE-L
as an aggregated metric to evaluate all tasks. Al-
though it acts as a good proxy for the model’s over-
all performance, it might not serve as an effective
measurement for some specific tasks. Fourth, while
we selected diverse tasks to form the InstrDialog
and InstrDialog++ task streams, we did not analyse
the characteristics of these tasks (Kim et al., 2023).
In future, we consider to select better source tasks
and study how source tasks affect CIT.

Acknowledgements

This work is supported by TPG Telecom. We
would like to thank anonymous reviewers for their
valuable comments.

References
Magdalena Biesialska, Katarzyna Biesialska, and

Marta R. Costa-jussà. 2020. Continual lifelong learn-
ing in natural language processing: A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6523–6541,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-

ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with gpt-4.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019. Efficient
lifelong learning with a-GEM. In International Con-
ference on Learning Representations.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2019. Continual learning: A
comparative study on how to defy forgetting in clas-
sification tasks. arXiv preprint arXiv:1909.08383,
2(6):2.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang,
and Diyi Yang. 2021. Continual learning for text clas-
sification with information disentanglement based
regularization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 2736–2746, Online. As-
sociation for Computational Linguistics.

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu,
and Bing Liu. 2022. Continual training of lan-
guage models for few-shot learning. arXiv preprint
arXiv:2210.05549.

Zixuan Ke and Bing Liu. 2023. Continual learning of
natural language processing tasks: A survey.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu.
2021. Achieving forgetting prevention and knowl-
edge transfer in continual learning. In Advances in
Neural Information Processing Systems.

Joongwon Kim, Akari Asai, Gabriel Ilharco, and Han-
naneh Hajishirzi. 2023. Taskweb: Selecting better
source tasks for multi-task nlp.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526.

https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/2021.naacl-main.218
http://arxiv.org/abs/2211.12701
http://arxiv.org/abs/2211.12701
https://openreview.net/forum?id=RJ7XFI15Q8f
https://openreview.net/forum?id=RJ7XFI15Q8f
http://arxiv.org/abs/2305.13256
http://arxiv.org/abs/2305.13256
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning.

David Lopez-Paz and Marc' Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Ziyang Luo, Can Xu, Pu Zhao, Xiubo Geng, Chongyang
Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023.
Augmented large language models with parametric
knowledge guiding.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu, Eu-
njoon Cho, Pascale Fung, and Zhiguang Wang. 2021.
Continual learning in task-oriented dialogue systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7452–7467, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Jisoo Mok, Jaeyoung Do, Sungjin Lee, Tara Taghavi,
Seunghak Yu, and Sungroh Yoon. 2023. Large-scale
lifelong learning of in-context instructions and how to
tackle it. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12573–12589, Toronto,
Canada. Association for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report.

Chengwei Qin and Shafiq Joty. 2022. Continual few-
shot relation learning via embedding space regular-
ization and data augmentation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2776–2789, Dublin, Ireland. Association for Compu-
tational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6107–6122, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/2301.13688
https://proceedings.neurips.cc/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
http://arxiv.org/abs/2305.04757
http://arxiv.org/abs/2305.04757
https://doi.org/10.18653/v1/2021.emnlp-main.590
https://doi.org/10.18653/v1/2023.acl-long.703
https://doi.org/10.18653/v1/2023.acl-long.703
https://doi.org/10.18653/v1/2023.acl-long.703
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2022.acl-long.198
https://doi.org/10.18653/v1/2022.acl-long.198
https://doi.org/10.18653/v1/2022.acl-long.198
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://aclanthology.org/2022.emnlp-main.410
https://aclanthology.org/2022.emnlp-main.410
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5085–5109, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Wenpeng Yin, Jia Li, and Caiming Xiong. 2022. Con-
TinTin: Continual learning from task instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3062–3072, Dublin, Ireland.
Association for Computational Linguistics.

Zihan Zhang, Meng Fang, Ling Chen, Mohammad-Reza
Namazi-Rad, and Jun Wang. 2023. How do large
language models capture the ever-changing world
knowledge? a review of recent advances.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment.

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie
Huang. 2022. Continual prompt tuning for dialog
state tracking. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1124–1137,
Dublin, Ireland. Association for Computational Lin-
guistics.

A Implementation Details

For both InstrDialog stream and InstrDialog++
stream, we conduct continual instruction tuning
using the same initial instruction-tuned model for
all methods except FT-no-init, AdapterCL, and
Multi. For these methods, we initialize a new T5
model. Since AdapterCL needs to train a task-
specific adapter for each task, it is too costly to
train the 100 adapters for it, therefore we initialize
it from a T5 model. For AdapterCL, we use a
bottleneck of 100.

The initial instruction-tuned model (§5.1) is
trained on 100 tasks with 100 instances per task
(in total 10,000). We use a maximum of 15 epochs
with learning rate 1e-05. We perform checkpoint
selection using the development set.

For AGEM and Replay, we experiment on a
memory size of 10 and 50, i.e., we set the memory

size Minit to 10 and 50, same as Mseq. We jointly
train the data in Minit, Mseq, and the new task data
for these two methods.

For L2 and EWC, we tune the regularization
term from [0.001, 0.01, 0.1], and use 0.01. For
AdapterCL, we use learning rate of 1e-3. For other
methods, we use 1e-5. For the InstrDialog stream,
we use a batch size of 4 for EWC and 8 for all
other methods; for the InstrDialog++ stream, we
use a batch size of 16. For all experiments except
AdapterCL, we train a maximum epoch of 15 and
perform early stopping with 3 patience to avoid
overfitting; for AdapterCL, we use a larger epoch
of 20 with patience of 5.

The selected tasks for task stream InstrDialog
and InstrDialog++ are listed in Table 5. The task
orders are listed in Table 6. All experiments are
done in an RTX3090 Ti with 24GB VRAM.

https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/2022.acl-long.218
https://doi.org/10.18653/v1/2022.acl-long.218
http://arxiv.org/abs/2310.07343
http://arxiv.org/abs/2310.07343
http://arxiv.org/abs/2310.07343
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2305.11206
https://doi.org/10.18653/v1/2022.acl-long.80
https://doi.org/10.18653/v1/2022.acl-long.80

Task Category Number Task Name Domain

1 task565_circa_answer_generation Dialogue
2 task574_air_dialogue_sentence_generation Dialogue
3 task576_curiosity_dialogs_answer_generation Dialogue, Commonsense
4 task611_mutual_multi_turn_dialogue Dialogue
5 task639_multi_woz_user_utterance_generation Dialogue
6 task1590_diplomacy_text_generation Dialogue, Game
7 task1600_smcalflow_sentence_generation Dialogue, Commonsense
8 task1603_smcalflow_sentence_generation Dialogue
9 task1714_convai3_sentence_generation Dialogue
10 task1729_personachat_generate_next Dialogue
11 task1730_personachat_choose_next Dialogue

12 task294_storycommonsense
_motiv_text_generation Story

13 task573_air_dialogue_classification Dialogue
14 task848_pubmedqa_classification Medicine
15 task1713_convai3_sentence_generation Dialogue
16 task766_craigslist_bargains_classification Dialogue
17 task1384_deal_or_no_dialog_classification Dialogue, Commonsense
18 task1500_dstc3_classification Dialogue, Public Places
19 task1501_dstc3_answer_generation Dialogue, Public Places
20 task927_yelp_negative_to_positive_style_transfer Reviews
21 task1549_wiqa_answer_generation_missing_step Natural Science
22 task459_matres_static_classification News
23 task379_agnews_topic_classification News
24 task347_hybridqa_incorrect_answer_generation Wikipedia
25 task1360_numer_sense_multiple_choice_qa_generation Commonsense
26 task1151_swap_max_min Mathematics
27 task636_extract_and_sort_unique_alphabets_in_a_list Mathematics
28 task301_record_question_generation News

29 task082_babi_t1_single_supporting
_fact_question_generation Commonsense

30 task306_jeopardy_answer_generation_double Knowledge Base
31 task1427_country_region_in_world Countries
32 task298_storycloze_correct_end_classification Story
33 task864_asdiv_singleop_question_answering Mathematics
34 task598_cuad_answer_generation Law
35 task1553_cnn_dailymail_summarization News
36 task1203_atomic_classification_xreact Commonsense

37 task967_ruletaker_incorrect_fact
_generation_based_on_given_paragraph Commonsense

38 task1607_ethos_text_classification Social

Dialogue Generation

Intent Identification

Dialogue State Tracking

Style Transfer
Sentence Ordering

Word Semantics
Text Categorization

Pos Tagging
Fill in The Blank

Program Execution

Question Generation

Misc.

Coherence Classification
Question Answering

Summarization
Commonsense Classification

Wrong Candidate Generation

Toxic Language Detection

Table 5: List of tasks selected from SuperNI (Wang et al., 2022)

Task Order Task’s IDs in order

Order1 848 611 565 1714 574 1590 1730 294 576 1600 1500 639 1729 1501 1713 766 1603 1384 573
Order2 848 1603 1714 565 611 1590 1600 639 294 1500 1384 1713 1501 576 574 1729 766 573 1730
Order3 1713 576 1384 294 573 611 1729 1600 574 1590 848 639 766 1501 565 1603 1730 1500 1714

Table 6: Task orders for three runs of the InstrDialog Stream.

