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Abstract

Urban Land Cover (ULC) classification plays a crucial role in urban planning,
environmental monitoring, and sustainable development. We study this task
using the ULC dataset from the UCI Machine Learning Repository, which in-
cludes tabular features derived from high-resolution aerial imagery across nine
classes (e.g., roads, trees, grass, water). The dataset presents typical remote
sensing challenges, including high dimensionality, heterogeneous features, and
class imbalance. In a unified, reproducible pipeline, we benchmark classical
machine learning models (e.g., Logistic Regression, SVM, Random Forest, XG-
Boost, CatBoost) against Tabular Deep Learning (TDL) models (TabNet, FT-
Transformer, TabTransformer, TabSeq, and 1D CNNs). To address class im-
balance, we employ weighted cross-entropy loss for TDL models and evaluate
performance using accuracy, macro-precision, macro-recall, macro-F1, AUC-ROC,
and confusion matrices. Our results show that while tree ensembles remain
strong general baselines, TDL models can match or exceed their performance
when non-linear interactions are significant and imbalance handling is effective,
providing complementary advantages for urban land cover mapping. See code:
https://github.com/mtesha/tdl-vs-ml-urbanlandcover

1 Introduction

Urban Land Cover (ULC) classification supports sustainable development, urban planning, and
environmental management by charting the geographical distribution and dynamics of essential
surface types in urban areas (e.g., impervious surfaces, vegetation, and water). Accurate ULC maps
support downstream analyses such as heat-island mitigation, stormwater management, and land-use
monitoring. In this work, we examine ULC classification using the ULC dataset from the UCI
Machine Learning Repository [Johnson, |2013]], which provides tabular descriptors derived from a
high-resolution aerial image. The features span multiple descriptor families (e.g., spectral, textural,
shape/size) and nine classes (e.g., roads, trees, grass, water), and present typical remote-sensing
challenges: high dimensionality, heterogeneous feature types, and class imbalance.
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We build robust traditional Machine Learning (ML) baselines, including Logistic Regression (LR)
[Rao} [1973], Decision Trees [[Quinlan, [1986], Random Forests (RF) [Breiman, |2001]], Support Vector
Machines (SVM) [Cortes and Vapnikl, [1995]], k-Nearest Neighbors (KNN) [Cover and Hartl |1967],
Naive Bayes [Duda and Hart, |1973|], and boosting methods such as AdaBoost [Freund and Schapire,
1997[], Gradient Boosting [Friedmanl [2001]], XGBoost [Chen and Guestrin, [2016]], and CatBoost
[Prokhorenkova et al.,|2018]], and compare them to some of the Tabular Deep Learning (TDL) models:
TabNet [Arik and Pfister} [2021]], TabTransformer [Huang et al., [2020, 'Wangl 2020], FT-Transformer
and related modern TDL baselines [|Gorishniy et al., [2021]], as well as TabSeq [[Habib et al.| 2024,
Habib)| 2024]] and a 1D CNN variant [LeCun et al.,|1998|]. To mitigate class imbalance in TDL, we
use weighted cross-entropy.

Our study is motivated by mixed evidence in the literature on when TDL provides gains over tree
ensembles for tabular problems. In remote sensing and urban mapping, the integration of diverse
features and the management of imbalance are paramount [Johnson and lizukal 2016/ Johnson} 2015}
Wickham et al., [2014] Jozdani et al., 2019, Jin et al.|, [2019] [Ducey et al.l 2018]]. We therefore ask: (i)
How do strong classical ML methods compare to TDL on ULC? (ii) Under what conditions (e.g.,
non-linear interactions, imbalance handling) do TDL models match or surpass tree ensembles? (iii)
What practical recommendations emerge for reproducible ULC pipelines?

Contributions. (1) A unified, reproducible pipeline benchmarking strong ML baselines against some
of the TDL models on UCI ULC [Johnson, [2013]]. (2) A systematic evaluation with accuracy, macro-
precision/recall/F1, AUC-ROC, and confusion matrices. (3) An analysis of imbalance mitigation
(weighted cross-entropy) and when representation learning in TDL closes or exceeds the performance
of tree ensembles, yielding actionable guidance for urban mapping practitioners.

2 Related Work

ULC mapping has been a long-standing focus in remote sensing for monitoring urban expansion
and environmental change. Methodological advances span data fusion, object-based analysis, and
large-scale national products. For rapid land use/land cover mapping, [Johnson and lizukal 2016]
integrate OpenStreetMap (OSM) with Landsat time-series and report strong performance with
classical classifiers (e.g., Random Forest, Naive Bayes), while noting challenges from noise and
class imbalance. At the descriptor level, [Johnson, 2015[] propose spatially-weighted segment-level
fusion (SWSF) to better aggregate low-spatial-resolution signals, improving small/narrow class
discrimination when the coarse resolution is >3 x the high-resolution reference. At national scale, the
MRLC consortium underpins NLCD and related products (C-CAP, CDL, LANDFIRE), leveraging
Landsat to deliver consistent land cover layers for the United States that enable diverse environmental
applications [Wickham et al.,|2014] Jin et al.;|2019]]. Beyond mapping itself, demographic land cover
interactions have been quantified statistically; for the U.S. Great Lakes States, [Ducey et al., [2018|]
show population growth, housing density, and recreational/retirement status as key drivers of land
conversion.

Comparisons of modeling paradigms for urban LULC remain mixed. In an object-based setting,
[Jozdani et al.}2019]| find that a multilayer perceptron can outperform gradient boosting, XGBoost,
and SVMs, while CNN integrations offer limited gains under complex urban morphology and
segmentation errors. In parallel, tabular-learning research has introduced modern deep models for
mixed-type features (e.g., TabNet, TabTransformer, FT-Transformer) alongside strong tree ensembles
[Arik and Pfister, 2021, Huang et al., 2020, |Gorishniy et al.l 2021} |Chen and Guestrin, 2016,
Prokhorenkova et al.,2018], Breiman, 2001]. However, few studies systematically benchmark some
of the recent TDL architectures against well-tuned classical baselines on tabular ULC descriptors
where heterogeneity, high dimensionality, and class imbalance are prominent. Earlier UHI-based land
cover studies relied on Landsat imagery and GIS-based statistical analyses but did not use modern
AI/ML/TDL methods for ULC change classification [Ritu, [2023| Ritu and Bruce} 2025]]. A Khulna
traffic-delay study similarly used survey/GIS and speed-flow analysis but did not employ modern
ML/TDL prediction pipelines [Bashar et al.| [2020].

Our focus. We address this gap by evaluating strong classical ML methods and recent TDL models
within a unified, reproducible pipeline on the UCI ULC dataset, with attention to imbalance mitigation
and multi-metric reporting. This complements prior work on fused imagery and object-based analysis
by centering the tabular descriptor regime common in operational ULC workflows.



3 Methodology

Dataset. We utilize the ULC dataset from the UCI Machine Learning Repository [Johnsonl 2013].
It provides engineered tabular descriptors from a single high-resolution aerial image with samples
of Nyrain=168, nest=5007, d=147 features, and K=9 classes (asphalt, building, car, concrete, grass,
pool, shadow, soil, tree), exhibiting heterogeneous descriptors and class imbalance.

Preprocessing. Labels are integer-encoded {1,..., K'}. Features are z-scored using training
statistics, i.e., Z;; = (x;; — py)/0; with (p;,0;) from Xy, and reused for validation/test. A
stratified 10% of Xiin is held out for validation.

Models. Classical ML and GBDT: Logistic Regression (LR) [Rao\ [1973]], Decision Tree (DT)
[Quinlan |1986|, Random Forest (RF) [Breiman, 2001[], SVM [Cortes and Vapnikl,|1995]], kNN [[Cover
and Hart, [1967]], Naive Bayes (NB) [Duda and Hart, [1973]], Gradient Boosting (GBM) [Friedman,
2001]], AdaBoost [Freund and Schapire, |1997]], XGBoost [Chen and Guestrin, [2016], CatBoost
[Prokhorenkova et al., [2018]|], and a shallow MLP [Rumelhart et al.,|1986|]. TDL: TabNet [Arik and
Pfister, 2021]], TabTransformer [[Huang et al., 2020, |Wang, 2020], FT-Transformer [Gorishniy et al.,
2021]], a 1D CNN [LeCun et al., [1998]], and TabSeq [Habib et al., [2024} [Habib| [2024].

Discussion. Tree ensembles (RF, GBM, XGBoost, CatBoost) are strong defaults on heterogeneous
tabular data. They capture non-linearities and higher-order interactions with modest tuning, tolerate
mixed feature scales, and are comparatively robust on small-n regimes like ULC. CatBoost addi-
tionally handles categorical variables and reduces target leakage via ordered boosting, which often
improves calibration and minority-class recall. Linear/margin methods (LR, SVM) and KNN/NB pro-
vide interpretable, low-variance references that help contextualize gains from more complex models.
The shallow MLP probes whether simple neural capacity suffices without tabular-specific inductive
bias. TDL models introduce representation learning tailored to feature interactions (transformers)
or sparse attentive selection (TabNet); however, they typically require stronger regularization and
benefit from imbalance-aware training to avoid overfitting at this scale. The 1D CNN imposes a
sequential inductive bias over features (useful for local groups of correlated descriptors but sensitive to
feature order), whereas TabSeq explicitly learns a stable ordering and denoised representation before
classification. Together, the suite spans linear — tree — neural paradigms, enabling a controlled
comparison under identical preprocessing, validation, and metrics.

Training, loss, and metrics. All models train on (X;g?fd, Yirain)» Select by validation loss/accuracy,

and report on (Xgld 4. ).  For TDL we use class-weighted cross-entropy Lycp =
-+ Zf\il wy, logpe(y; | x;) with wy, = KLN;C where Ny, counts class-k training samples; tree
ensembles are left unweighted. We report test accuracy; macro-precision/recall/F1; one-vs-rest macro
AUC-ROC; and confusion matrices for error analysis.

Key hyperparameters. Optimizer: Adam, batch size 32, learning rate 103, early stopping on
validation loss. TabNet [Arik and Pfister, 2021|]: nqg=64, n,=64, ngeps=3, y=1.3, )\Spmezl()"g, Ir
2%x1072, patience 20. TabTransformer [Huang et al., 2020, Wang, 2020]]: dim 32, depth 6, heads
8, attn/ffn dropout 0.1, MLP multipliers (4, 2), Ir 10~3, weighted cross-entropy. FT-Transformer
[Gorishniy et al.} 2021]]: dim 32, depth 6, heads 8, dropout 0.1. 1D CNN [LeCun et al.,|1998]]: conv
(64 ch, k=3) — max-pool (k=2, stride 2) — FC(128)x2 with dropout 0.3 — softmax. TabSeq
[Habib et al.,|2024}, Habib, [2024]: feature ordering via k-means (k=>5) + dispersion minimization;
DAE encoder/decoder {128, 64} with dropout 0.2 and noise 0.1; classifier MLP {128, 64} with
dropout 0.5. Optuna|Akiba et al.| [2019]] was used to tune the hyperparameters of the TDL models,
while the classical ML baselines followed scikit-learn defaults, and the GBDT models used their
respective library defaults (e.g., CatBoost [Prokhorenkova et al.,[2018]], XGBoost [Chen and Guestrin}
2016]).

Implementation. Python/Scikit-learn for classical models; PyTorch/TensorFlow for TDL; fixed
seeds and persisted preprocessing stats for reproducibility.



4 Results and Analysis

Setup. We evaluate 16 models (classical ML and TDL) on the UCI ULC test set and report
Test Accuracy (%), macro Precision/Recall/F1, and one-vs-rest macro AUC-ROC. Summary tables

(Tabs. [TH2Z) are complemented by six visualizations (Fig[T]and Figs. in Appendix [A.T).

Baseline performance (all models). CatBoost attains the highest test accuracy (82.25%), fol-
lowed by Random Forest (81.66%) and Naive Bayes (77.51%), confirming the strength of tree
ensembles and simple probabilistic baselines on tabular descriptors. Among TDL models, Tab-
Transformer (74.75%) and TabSeq (73.96%) are competitive with the best non-ensemble classical
baselines. In Appendix [A 1] Fig. [A3] contrasts accuracies across all models; Fig. [A4] compares
Precision/Recall/F1/AUC for top contenders; Fig. [A5] shows a full metric heatmap, highlighting
trade-offs (e.g., models with similar accuracy but different Recall/AUC). Fig. [I|focuses on the five
deep models. Table |2 presents the full results. See Appendix for ROC curves and confusion
matrices for all models.

TDL with weighted cross-entropy. To address class imbalance, we train 1D-CNN, Tab-
Net, FT-Transformer, TabTransformer, and TabSeq with class-weighted cross-entropy. Accu-
racy results (Fig. in Appendix show TabSeq (73.57%) and TabTransformer (73.37%)
leading this group. Fig. in Appendix [A.] also indicates consistent gains in Recall and
F1 for most models under weighting, echoing improvements noted in Table [II See Ap-
pendix [A.2]for ROC curves and confusion matrices for TDL models with weighted cross entropy.

Table 1: TDL models with class-
Findings. (1) Ensemble dominance. CatBoost/RF re- weighted cross-entropy.
main strong on heterogeneous tabular features. (2) TDL
potential. Attention-based TDL (TabTransformer/TabSeq) ~ _Med! Acc.% Prec. Rec. F1 AUC
are competitive and close the gap with better imbalance [P ChN A O O
handling. (3) Weighted loss helps. Class-weighted cross-  FrTrnsformer 7239 066 072 068 093
entropy generally boosts Recall/F1, improving minority- Eg;"“f‘“m” LSO S A0S
class sensitivity without large AUC degradation. (4) Met-
ric trade-offs. Accuracy alone obscures differences; macro
Recall/F1 and AUC are crucial for imbalanced ULC.

Table 2: Performance of different models on ULC (test set).

Model Test Acc. (%) Precision Recall F1 AUC
Logistic Regression [Rao}|1973] 70.61 0.70 0.73 0.71 0.94
Random Forest [Breimanj} 2001} 81.66 0.81 0.83 0.81 0.97
SVM |[Cortes and Vapnik}|1995] 68.44 0.67 0.71 0.68 0.96
Decision Tree [Quinlan}|1986] 74.75 0.72 0.75 0.73 0.96
KNN [Cover and Hart}[1967] 70.22 0.69 0.69 0.69 0.93
Naive Bayes [Duda and Hart}|1973] 77.51 0.76 0.78 0.76 0.96
MLP [Rumelhart et al.||1986] 69.63 0.65 0.70 0.67 0.97
CatBoost [Prokhorenkova et al.|[2018] 82.25 0.81 0.82 0.82 0.98
AdaBoost |Freund and Schapirel[1997] 63.12 0.67 0.62 0.64 0.93
XGBoost [Chen and Guestrin[[2016] 68.05 0.69 0.64 0.64 0.95
GB |Friedman|2001] 72.78 0.70 0.72 0.71 0.93
1D CNN |LeCun et al.|[1998] 73.37 0.73 0.75 0.75 0.97
TabNet |Arik and Pfister}[2021] 64.10 0.57 0.60 0.57 0.91
FT-Transformer |Gorishniy et al.}[2021] 73.18 0.70 0.74 0.70 0.93
TabTransformer [Huang et al.}[2020] 74.75 0.71 0.72 0.72 0.96
TabSeq [Habib et al.|[2024] 73.96 0.70 0.74 0.74 0.95

Statistical comparison of model accuracies. Table [2] reports single-run test accuracies for all
baselines, and Figure [2] visualizes the same results with 95% binomial confidence intervals computed
from the test-set size. Because the intervals for many methods overlap, the evidence for large
performance gaps on this single split is limited. Even so, the plot indicates that CatBoost, Random
Forest, and Naive Bayes form the strongest group, with CatBoost achieving the highest observed
accuracy. Since per-instance predictions or multiple randomized splits were not available, we used an
approximate two-proportion (unpaired) comparison rather than a paired test such as McNemar or
Friedman.



Performance Metrics for Deep Learning Models

—e— Test Accuracy (%)

72

70

Test Accuracy (%)

1D CNN TabNet FT-Transformer TabTransformer TabSeq
Models

Figure 1: Deep-model accuracies (TDL only). Remaining visualizations appear in Appendix

Model accuracies with 95% CI (binomial)

B (=)} o]
o o o
L

Accuracy (%)

N
o
L

A2

SRS R RN S AN >
_\_Ooocée@é op(je

N
N3 % ‘?é?) ~ <

Figure 2: Model accuracies on the ULC test set with 95% binomial confidence intervals.

Future direction. For future work, we will extend this study to a broader set of tabular benchmarks
and develop a tabular Transformer-style model for remote-sensing and flood-related tabular datasets
to better handle heterogeneous features and limited labels. This direction directly addresses the
current single-dataset and novelty concerns and further clarifies the role of tabular deep learning for
ULC. The same pipeline can also be applied in Muslim-majority or rapidly urbanizing cities (e.g.,
Dhaka, Jakarta, Lahore, Cairo), where recent urban land-cover products are scarce.

5 Conclusion

We evaluated robust classical ML models alongside newer TDL techniques for ULC classification
using the UCI ULC dataset. Tree ensembles especially CatBoost and Random Forest achieved the
highest accuracy and competitive macro metrics, reaffirming their suitability for heterogeneous, im-
balanced tabular features. Nevertheless, TDL models (TabTransformer, TabSeq) were competitive and
improved further with class-weighted losses, indicating clear potential when representation learning
and imbalance handling are aligned with data characteristics. Practically, we recommend ensembles
as robust baselines and TDL as complementary models when non-linear feature interactions and
minority-class sensitivity are priorities. Limitations include a single-dataset scope and modest sample
size; future work will expand to additional ULC benchmarks, explore stronger calibration/uncertainty
modeling, and refine TDL architectures and sampling/weighting strategies to close the remaining gap.
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A Technical Appendices and Supplementary Material

This supplementary material accompanies our main paper entitled Tabular Deep Learning vs Classical
Machine Learning for Urban Land Cover Classification (submitted to the 5 Muslims In ML
(MusIML) Workshop co-located with NeurIPS 2025). It provides additional experimental results that
complement the main text.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state that the paper (i) benchmarks strong
classical ML models against Tabular Deep Learning (TDL) models on the UCI Urban Land
Cover (ULC) dataset, (ii) uses a unified, reproducible pipeline, and (iii) analyzes metric-level
differences (accuracy, macro F1, AUC). These are exactly the contributions developed in
the main sections, without overclaiming generalization to large multimodal or multisensor
settings.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly note that experiments are conducted on a single public UCI
ULC dataset with a modest test split, and that we do not report paired significance tests
because per-instance predictions or multiple randomized splits were not available. We also
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uration files needed to reproduce the reported results: https://github.com/mtesha/
tdl-vs-ml-urbanlandcover.
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results?
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Justification: We describe the UCI ULC dataset, the train/validation/test split, preprocessing
(scaling using train statistics), the classical ML vs TDL model list, optimizer and loss settings
for TDL (Adam, weighted CE), and the use of Optuna for TDL hyperparameter tuning, so
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. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report model accuracies with 95% binomial confidence intervals and
include an approximate two-proportion comparison against the top model on the single test
split. We also state the limitation that paired tests (e.g., McNemar, Friedman/Nemenyi) are
not applicable without per-instance predictions or multiple randomized splits.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: We specify the software stack (scikit-learn, PyTorch/TensorFlow), dataset
size and splits, batch size and optimizer settings, and note that all runs are reproducible on a
standard workstation (CPU or a single commodity GPU). Given the modest scale of UCI
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societal impacts of the work performed?

Answer: [Yes]

Justification: Our study targets ULC classification from tabular/remote sensing descriptors,
which can support urban planning, environmental monitoring, and service provision in
data-scarce cities, including Muslim-majority and rapidly urbanizing regions. At the same
time, any automated land/asset mapping pipeline could be misused for inequitable resource
allocation or area-level surveillance if applied without transparency or local validation, so
we recommend responsible, policy-aware deployment.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use a small, public, non-sensitive UCI ULC dataset and release task-
specific tabular classification code; no large pretrained or generative models, scraped data,
or high-risk assets are introduced, so additional safeguards are not required.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?


https://neurips.cc/public/EthicsGuidelines

13.

14.

15.

16.

Answer: [Yes]

Justification: We use the publicly available UCI ULC dataset and standard open-source
libraries (scikit-learn, PyTorch), all of which are properly cited and used within their
research/OSS licenses. We do not redistribute modified versions of proprietary assets.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release a lightweight, documented codebase for reproducing the TDL
vs classical ML experiments on the UCI ULC dataset (data loading, preprocessing, model
configs, and evaluation). No new dataset is introduced; the only new asset is the reproducible
pipeline, which is described in the paper and in the repository.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the
paper include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human-subject data collection was conducted; we only
used a public remote-sensing/tabular dataset.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The work uses only publicly available, non-PII remote-sensing/tabular data
and does not involve human subjects, so IRB review was not required.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [NA]

Justification: LLMs were used only for minor language polishing and LaTeX formatting;
they did not contribute to the core methodology, experiments, or results, so a formal
declaration is not required.
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A Technical Appendices and Supplementary Material

This supplementary document supports our main paper titled Tabular Deep Learning vs Classical
Machine Learning for Urban Land Cover Classification (Submitted to the 5 Muslims In ML
(MusIML) Workshop co-located with NeurIPS 2025). Specifically, it includes:

» Additional Figures for Comparative Results
* ROC Curves and Confusion Matrices for TDL Models with Weighted Cross Entropy
* ROC Curves and Confusion Matrices for All Models with Standard Cross Entropy

A.1 Additional Figures for Comparative Results

Fig. (All-model accuracy). Overall leaderboard across 16 methods; tree ensembles (CatBoost,
RF) top the chart, while most TDL models sit mid-pack.

Fig.[A4](Top-model multi-metric). Across precision/recall/F1/AUC, CatBoost and RF remain con-
sistently strong with balanced precision-recall; TabTransformer trails slightly on F1 but is competitive
on AUC.

Fig.[A5] (Full metric heatmap). Side-by-side macro metrics reveal where models trade precision for
recall; CatBoost/RF are uniformly high, while TabNet and AdaBoost show weaker recall/F1.

Fig. (TDL with weighted CE accuracy). Adding class weights narrows gaps among deep
models; TabSeq/TabTransformer edge out FT-Transformer and 1D-CNN, with TabNet still behind.

Fig.[A7](TDL with weighted CE multi-metric). Weighted loss mainly boosts recall and F1 while
maintaining high AUC, indicating better minority-class sensitivity without sacrificing ranking quality.

Comparison of Test Accuracy Across Models
CatBoost
Random Forest
Naive Bayes
Decision Tree
TabTransformer
TabSeq
1D CNN
FT-Transformer

GB

Models

Logistic Regression
KNN

MLP

SVM

XGBoost

TabNet

AdaBoost

0 10 20 30 40 50 60 70 80
Test Accuracy (%)

Figure A3: All models test accuracy.

A.2 ROC Curves and Confusion Matrices for TDL Models with Weighted Cross Entropy

Figure[A8|(1D CNN, W). ROC curves cluster near the top-left, indicating strong separability for most
classes; macro AUC is high with only a few classes showing shallower curves. The confusion matrix
is diagonally dominant, with residual errors dispersed across a handful of visually similar categories.
Weighted loss improves recall for minority classes without noticeably degrading well-separated ones.

Figure[A9]| (TabNet, W). ROC profiles are competitive overall but exhibit slightly flatter segments
for some classes, consistent with greater sensitivity to class imbalance. The confusion matrix shows
more off-diagonal mass than 1D CNN, reflecting occasional swaps among related built-surface or
vegetation classes. Attention-based feature selection helps, but errors concentrate in harder pairs.
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Comparison of Precision, Recall, F1, and AUC for Top Models

Metric Value

Recall
—— CatBoost
A —— Random Forest
—— Naive Bayes
/ —— Decision Tree
—— TabTransformer
F1 4\ Pfecision
\\
AUC
Figure A4: Top models: Precision/Recall/F1/AUC.
Metric Comparison Across Models
Logistic Regression - 0.7 0.73 0.71
Random Forest - 0.81 0.83 0.81
Decision Tree - 0.72 0.75
KNN - 0.69 0.69 0.69
-0.85
Naive Bayes - 0.76 0.78
MLP 0.65 0.7
-0.80
) CatBoost - 0.82
S
o
= AdaBoost
-0.75
XGBoost -
GB - 0.7
1D CNN -
TabNet
FT-Transformer - 0.7 0.74
TabTransformer - 0.71 0.72 0.72
TabSeq - 0.7 0.74 0.74
il ' '
Precision Recall F1
Metrics

Figure AS: Metric heatmap for all models.
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Comparison of Test Accuracy Across dels with ighted Cr ropy Loss

TabSeq

TabTransformer

1D CNN

Models

FT-Transformer

TabNet

40
Test Accuracy (%)

Figure A6: Weighted CE (TDL): test accuracy.

Metrics Comparison Across Models with Weighted Cross-Entropy Loss

1.00
Models
—e— 1D CNN
0.95 4 £3 —e— TabNet
: —e— FT-Transformer
—e— TabTransformer
0.90 4 —e— TabSeq
0.85
o
S
g
© 0.80
c
=
1]
=
0.75
o
.\
o
0704 o .\
.
\.
. o
0.65 *
0.60 ™ ™ ™ ™
Precision Recall F1 AUC

Metrics

Figure A7: Effect of class-weighted cross-entropy on multi-metric performance (TDL).

Figure [AT0] (FT-Transformer, W). Transformer-based representations yield uniformly strong ROC
curves with tight variance across classes. The confusion matrix remains largely diagonal, with
misclassifications concentrated in a few class pairs suggesting remaining ambiguity in descriptors
rather than systematic bias. Weighted CE chiefly raises recall on the rarer classes.

Figure [AT1] (TabTransformer, W). This model achieves some of the steepest ROC traces across
classes, pointing to effective modeling of feature interactions. The confusion matrix shows high true-
positive counts along the diagonal and fewer large off-diagonal cells, indicating balanced performance;
remaining errors align with classes that are spectrally/structurally similar.

Figure [AT2] (TabSeq, W). ROC curves are consistently high; ordering-and-denoising prior to
classification appears to aid class separability. The confusion matrix is cleanly diagonal with a small
number of localized confusions, suggesting that TabSeq’s learned feature ordering mitigates some
overlap but challenging pairs persist.

Reading guide. Across models, AUC values near 1.0 denote strong one-vs-rest separability; diagonally
dominant confusion matrices reflect balanced accuracy. Off-diagonal clusters typically indicate
confusable, semantically related classes or minority-class scarcity; weighted cross-entropy mainly
improves recall in these regions.
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Figure A10: One-vs-all ROC and confusion matrix for FT-Transformer with weighted cross-entropy.
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Figure A9: One-vs-all ROC and confusion matrix for TabNet with weighted cross-entropy.
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(b) Confusion matrix (FT-Transformer, W)
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Figure A11: One-vs-all ROC and confusion matrix for TabTransformer with weighted cross-entropy.
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Figure A12: One-vs-all ROC and confusion matrix for TabSeq with weighted cross-entropy.

A.3 ROC Curves and Confusion Matrices for All Models with Standard Cross Entropy

Fig.[A13|(TabSeq). High AUC across classes; the confusion matrix is largely diagonal with remaining
errors concentrated in a few visually similar pairs consistent with TabSeq’s denoising + ordering
benefit on correlated features.

Fig.[AT4](TabTransformer). Steep ROC traces indicate strong one-vs-rest separability; off-diagonal
mass is modest and localized, suggesting effective modeling of feature interactions without class
weighting.

Fig.[AT5| (FT-Transformer). Uniformly high ROC curves with slightly larger variance for minority
classes; confusion matrix shows a few systematic swaps, hinting at remaining imbalance sensitivity
under standard CE.

Fig.[AT6](TabNet). Good but flatter ROC for some classes relative to transformer models; confusion
patterns show occasional confusion among built-surface categories, aligning with attentive feature
selection’s sensitivity to imbalance.
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Fig.[AT7](1D CNN). Strong ROC overall; the confusion matrix is diagonal-dominant with clustered
mistakes where descriptors overlap. Sequential bias can help local feature groups but remains
sensitive to feature permutations.

Fig. [AT8| (GBM). High AUC across most classes; confusion matrix is diagonally dominant with
residual errors in a few built-surface vs. soil confusions.

Fig.[A19|(XGBoost). Consistently strong ROC traces and a clean confusion matrix; misclassifications
are localized, reflecting robust handling of heterogeneous tabular features.

Fig. [A20] (AdaBoost). ROC performance is competitive but shows larger variance for minority
classes; confusion matrix reveals a few systematic swaps, typical for boosting with limited data.

Fig.[A21](CatBoost). Steep ROC curves with near-ceiling AUC on several classes; confusion matrix
is the most diagonal among ensembles, aligning with CatBoost’s strong overall accuracy.

Fig.[A22](MLP). Neural baseline shows high AUC but slightly more off-diagonal mass, indicating
sensitivity to class imbalance and feature scaling compared to tree ensembles.

Fig.[A23](Naive Bayes). Consistently high AUCs and a largely diagonal matrix; remaining errors
cluster among a few visually similar classes, reflecting conditional-independence limits.

Fig.[A24] (KNN). Competitive AUCs with thinner margins on several classes; confusion is diffuse
rather than localized, typical of distance-based decision boundaries.

Fig. @ (Decision Tree). Lower and more variable AUCs across classes; single-tree decision
boundaries yield heavier off-diagonal mass, suggesting underfitting/instability relative to ensembles.

Fig. [A26] (SVM). Strong one-vs-rest separability and clean diagonals for most classes; residual
confusion is limited to a few neighboring categories, matching SVMs’ large-margin behavior.

Fig.[A27) (Random Forest). Steep ROC curves with near-uniform high AUC across classes; the
confusion matrix is sharply diagonal, matching RF’s strong accuracy and robustness on heterogeneous
tabular features.

Fig. [A28] (Logistic Regression). High AUC on several classes, but the confusion matrix shows
increased spillover among visually similar categories, consistent with linear boundaries under class

overlap.
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Figure A13: One-vs-all ROC and confusion matrix for TabSeq with standard cross-entropy.
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Figure A14: One-vs-all ROC and confusion matrix for TabTransformer with standard cross-entropy.
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Figure A15: One-vs-all ROC and confusion matrix for FT-Transformer with standard cross-entropy.
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Figure A16: One-vs-all ROC and confusion matrix for TabNet with standard cross-entropy.
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Figure A17: One-vs-all ROC and confusion matrix for 1D CNN with standard cross-entropy.
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Figure A18: One-vs-all ROC and confusion matrix for Gradient Boosting (GBM).
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Figure A19: One-vs-all ROC and confusion matrix for XGBoost.
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Figure A20: One-vs-all ROC and confusion matrix for AdaBoost.
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Figure A21: One-vs-all ROC and confusion matrix for CatBoost.
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Figure A22: One-vs-all ROC and confusion matrix for a shallow MLP.

80

70

60

50

40

30

20

10

80

70

60

50

40

30

20

10

70

60

50

40

30

20

10



0.8

True Positive Rate
°
>

°
=

02

0.0

08

True Positive Rate
°
>

°
=

02

0.0

08

True Positive Rate
°
ES

°
=

02

0.0

One-vs-All ROC Curves - Naive Bayes

—— Class 0 (AUC = 0.9659)
—— Class 1 (AUC = 0.9600)
—— Class 2 (AUC = 0.9916)
—— Class 3 (AUC = 0.9671)
~—— Class 4 (AUC = 0.9439)

Class 8 (AU

0.2 0.4 06 0.8 1.0
False Positive Rate

(a) ROC (Naive Bayes)

Figure A23: One-vs-all ROC and confusion matrix for Naive Bayes.
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Figure A24: One-vs-all ROC and confusion matrix for KNN.
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Figure A25: One-vs-all ROC and confusion matrix for Decision Tree.
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Figure A26: One-vs-all ROC and confusion matrix for SVM.
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Figure A27: One-vs-all ROC and confusion matrix for Random Forest.
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Figure A28: One-vs-all ROC and confusion matrix for Logistic Regression.
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