
1

Large Language Model Agent: A Survey on
Methodology, Applications and Challenges

Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi Chen,
Ziyue Qiao, Qingqing Long, Rongcheng Tu, Xiao Luo, Wei Ju, Zhiping Xiao, Yifan Wang, Meng Xiao,

Chenwu Liu, Jingyang Yuan, Shichang Zhang, Yiqiao Jin, Fan Zhang, Xian Wu, Hanqing Zhao,
Dacheng Tao, Fellow, IEEE , Philip S. Yu, Fellow, IEEE and Ming Zhang

Abstract—The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language
Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward
artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy,
linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by
revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work
provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time,
while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying
the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and
identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.

Index Terms—Large language model, LLM agent, AI agent, intelligent agent, multi-agent system, LLM, literature survey

✦

1 INTRODUCTION

A rtificial Intelligence is entering a pivotal era with the
emergence of LLM agents—intelligent entities powered

by large language models (LLMs) capable of perceiving
environments, reasoning about goals, and executing ac-
tions [1]. Unlike traditional AI systems that merely respond
to user inputs, modern LLM agents actively engage with
their environments through continuous learning, reason-
ing, and adaptation. This shift represents a technological
advancement and a fundamental reimagining of human-
machine relationships. Commercial LLM agent systems
(e.g., DeepResearch, DeepSearch, and Manus) exemplify this
paradigm shift—autonomously executing complex tasks that

• Junyu Luo, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan
Wu, Binqi Chen, Wei Ju, Chengwu Liu, Jingyang Yuan, and Ming
Zhang are with the School of Computer Science and PKU-Anker LLM
Lab, Peking University, Beijing, China. (e-mail: luojunyu@stu.pku.edu.cn,
mzhang cs@pku.edu.cn)

• Weizhi Zhang and P.S. Yu are with the Department of Computer Science,
University of Illinois at Chicago, Chicago, USA.

• Ziyue Qiao is with the School of Computing and Information Technology,
Great Bay University, Guangdong, China.

• Qingqing Long and Meng Xiao are with the Computer Network Informa-
tion Center, Chinese Academy of Sciences, Beijing, China.

• Rongcheng Tu, Hanqing Zhao, and Dacheng Tao are with Nanyang
Technological University, Singapore.

• Xiao Luo is with the Department of Computer Science, University of
California, Los Angeles, USA.

• Zhiping Xiao is with Paul G. Allen School of Computer Science and
Engineering, University of Washington, Seattle, USA.

• Yifan Wang is with the School of Information Technology & Management,
University of International Business and Economics, Beijing, China.

• Shichang Zhang is with Harvard University, Cambridge, USA.
• Yiqiao Jin is with Georgia Institute of Technology, Atlanta, USA.
• Fan Zhang and Xian Wu are with Jarvis Research Center, Tencent YouTu

Lab, Shenzhen, China.

once required human expertise, from in-depth research to
computer operation, while adapting to specific user needs.

Compared to traditional agent systems [2], LLM-based
agents have achieved generational across multiple dimen-
sions, including knowledge sources [3], generalization ca-
pabilities [4], and interaction modalities [5]. Today’s agents
represent a qualitative leap driven by the convergence of
three key developments: ❶ unprecedented reasoning capabil-
ities of LLMs [6], ❷ advancements in tool manipulation and
environmental interaction [7], and ❸ sophisticated memory
architectures that support longitudinal experience accumu-
lation [8], [9]. This convergence has transformed theoretical
constructs into practical systems, increasingly blurring the
boundary between assistants and collaborators. This shift
fundamentally arises from LLMs’ role as general-purpose task
processors, unifying perception, decision-making, and action
within semantic space through generative architectures,
thereby forming human-like cognitive loops [10].

Our study presents a novel examination of agent systems
through a unified taxonomy that connects agent construction,
collaboration mechanisms, and evolutionary pathways. We
offer a comprehensive perspective tracing on how agents
are defined, how they function individually or collectively,
and how they evolve over time. Beyond clarifying the
current landscape, our work not only clarifies the current
landscape but identifies emerging patterns that signal future
developments. The rapid advancement of agent technologies
necessitates timely surveys to provide researchers with an
up-to-date taxonomy for understanding this dynamic field.

Figure 1 presents our organizational framework for
understanding the LLM agent ecosystem. At its core, our
methodology-centered approach examines the technical
foundations of agent systems through three interconnected
dimensions: construction (how agents are defined and built),

https://github.com/luo-junyu/Awesome-Agent-Papers


2

Agent Methodology

Construction EvolutionCollaboration

Self-Learning

Multi-agent 
Co-Evolution

External 
Resource

Centralized 
Control

Decentralized 
Collaboration

Hybrid 
Architecture

Profile 
Definition

Memory 
Mechanism

Planning 
Capability

Action 
Execution

Evaluation and Tools

Benchmark and Datasets Tools

LLM Use 
Tools

LLM Create 
Tools

Tools Develop 
LLM

General 
Assessment

Domain-specific 
Evaluation

Collaboration 
Evaluation

Real-World Issues

Security Social ImpactPrivacy

Agent-centric 
Security

Data-centric 
Security

Memorization 
Vulnerability

Intellectual 
Property Exploitation

Benefits

Ethical 
Concerns

Applications

Chemistry
Materials 

Science

Biology

Astronomy

Medical

Gaming
Productivity 

Tools
Social 

Science

Dataset 
Construction

Fig. 1: An overview of the LLM agent ecosystem organized into four interconnected dimensions: ❶ Agent Methodology,
covering the foundational aspects of construction, collaboration, and evolution; ❷ Evaluation and Tools, presenting
benchmarks, assessment frameworks, and development tools; ❸ Real-World Issues, addressing critical concerns around
security, privacy, and social impact; and ❹ Applications, highlighting diverse domains where LLM agents are being deployed.
We provide a structured framework for understanding the complete lifecycle of modern LLM-based agent systems.

collaboration (how they interact and work together), and
evolution (how they learn and improve over time). This
tripartite foundation is complemented by practical consid-
erations, including evaluation methodologies, development
tools, real-world challenges related to security and ethics,
and diverse application domains. This framework shapes the
structure of our survey, enabling a systematic exploration of
each dimension while highlighting their interconnections.
Distinction from Previous Surveys. Despite several surveys
exploring various aspects of AI agents in recent years,
our study makes a distinctive contribution through its
methodological focus and comprehensive analysis of LLM
agent architectures. Previous surveys have primarily focused
on specific applications (e.g., gaming [11], [12]), deployment
environments [13], [14], multi-modality [15] or security [16],
while others have provided broad overviews without a de-
tailed methodological taxonomy [1], [17]. Recent works also
have examined LLM-based agents compared to traditional AI
agents [9], multi-agent interaction [18], workflows [19], and
cooperative decision-making mechanisms [20]. In contrast to
these works, our survey stands out through:

1) Methodology-centered taxonomy: We propose a sys-
tematic taxonomy that deconstructs LLM agent systems
into their fundamental methodological components, in-
cluding role definition, memory mechanisms, planning
capabilities, and action execution [21].

2) Build-Collaborate-Evolve framework: We analyze three
interconnected dimensions of LLM agents - construction,
collaboration, and evolution - offering a more holistic
understanding than previous approaches [22], [23].
This integrated architectural perspective highlights the
continuity between individual LLM agent design and

collaborative systems, whereas prior studies have often
examined these aspects separately [22], [24].

3) Frontier applications and real-world focus: Beyond
addressing theoretical concepts, our work examines
cutting-edge tools, communication protocols, and di-
verse applications on LLM agents. We provide com-
prehensive analysis of pressing real-world challenges
including security, privacy, and ethics. This forward-
looking perspective is particularly valuable as agent
technologies transition from research to widespread
implementation.

Our survey provides researchers and practitioners with
a more structured taxonomy for understanding, comparing,
and advancing research of LLM agents from different per-
spectives. As LLM agent systems increasingly integrate into
various critical domains, understanding their architectural
foundations becomes essential not only for researchers but
also for policy scholars, industry practitioners, and society
at large. This survey aims to provide this foundation while
charting a path forward for this rapidly evolving field.

2 AGENT METHODOLOGY

This section presents a comprehensive framework for un-
derstanding LLM-based agent systems through three in-
terconnected dimensions: construction, collaboration, and
evolution. As illustrated in Figure 2, we first examine agent
construction (Section 2.1), which establishes the founda-
tional components including profile definition, memory
mechanisms, planning capabilities, and action execution.
We then explore collaboration paradigms (Section 2.2) that
enable multiple agents to work together through centralized



3

La
rg

e
La

ng
ua

ge
M

od
el

A
ge

nt

Profile Definition
§2.1.1

Human-Curated
Static Profiles

Camel [25], AutoGen [26], MetaGPT [27], ChatDev [28], AFlow [29]

Betch-Generated
Dynamic Profiles Generative Agents [30], RecAgent [31], DSPy [32]

Memory
Mechanism

§2.1.2

Short-Term
Memory ReAct [33], ChatDev [28], Graph of Thoughts [34], AFlow [29]

Long-Term
Memory

Voyager [35], GITM [36], ExpeL [37], Reflexion [38], TPTU [39],
OpenAgents [40], Lego-Prover [41], MemGPT [42]

Knowledge
Retrieval

as Memory

RAG [43], GraphRAG [44], Chain of Agnets [45], IRCoT [46],
Llatrieval [47], KG-RAR [48], DeepRAG [49]

Planning
Capability

§2.1.3

Task Decompo-
sition Strategies

Plan-and-solve Prompting [50], Distributed Problem Solving and
Planning [51], ReAct [33], Chain-of-discussion [52], Tree-planner
[53], ReAcTree [54], ToT [55], ReST-MCTS* [56], LLM-MARS [57],
LLM as BT-planner [58], ConceptAgent [59]

Feedback-
Driven Iteration

BrainBody-LLM [60], TrainerAgent [61], RASC [62], REVECA [63],
AdaPlanner [64], AIFP [65]

Action Execution
§2.1.4

Tool Utilization TRICE [66], GPT4Tools [67], EASYTOOL [68], AvaTaR [69],

Physical
Interaction

DriVLMe [70], ReAd [71], Collaborative Voyager [72]

Agent
Collaboration

§2.2

Centralized
Control
§2.2.1

Coscientist [73], LLM-Blender [74], MetaGPT [27], AutoAct [75],
Meta-Prompting [76], Wjudge [77]

Decentralized
Collaboration

§2.2.2

GAgents [30], CAMEL [25], MedAgents [78], ReConcile [79], MAD
[80], MADR [81], MDebate [82], AutoGen [26]

Hybrid
Architecture

§2.2.3
KnowAgent [83], WKM [84], Textgrad [85]

Agent Evolution
§2.3

Autonomous
Optimization and

Self-Learning
§2.3.1

SE [86], Evolutionary Optimization [87], DiverseEvol [88], SELF-
REFINE [89], STaR [90], V-STaR [91], Self-Verification [92], Self-
Rewarding [93], RLCD [94], RLC [95]

Multi-Agent
Co-Evolution

§2.3.2

ProAgent [96], CORY [97], CAMEL [25], Red-Team LLMs [98],
Multi-Agent Debate [82], MAD [99]

Evolution via
External Resources

§2.3.3

KnowAgent [83], WKM [84], CRITIC [100], STE [101], SelfEvolve
[102]

Fig. 2: A taxonomy of large language model agent methodologies.

control, decentralized cooperation, or hybrid architectures.
Finally, we investigate evolution mechanisms (Section 2.3)
that allow agents to improve over time through autonomous
optimization, multi-agent co-evolution, and external resource
integration. This three-dimensional framework provides a
systematic approach to analyzing the full lifecycle of LLM
agent systems.

2.1 Agent Construction
Agent construction serves as the foundational phase in
developing LLM-based autonomous systems, encompassing
the systematic design of core components that enable goal-
directed behaviors. This process prioritizes four interdepen-
dent pillars: profile definition (2.1.1), memory mechanism
(2.1.2), planning capability (2.1.3), and action execution (2.1.4).
These components collectively form a recursive optimization
loop, where memory informs planning, execution outcomes
update memory, and contextual feedback refines agent

profiles. The construction paradigm emphasizes modular
interoperability while preserving system-wide coherence, en-
abling subsequent collaboration and evolutionary adaptation
mechanisms, which will be discussed in later sections.

2.1.1 Profile Definition
Profile definition establishes an agent’s operational iden-
tity by configuring its intrinsic attributes and behavioral
patterns [25], [26]. Current methodologies encompass two
approaches: human-curated static profiles ensure domain-
specific consistency through manual specification, while
batch-generated dynamic profiles adaptively modulate opera-
tional parameters to stochastically yield a batch of agent
initializations. These mechanisms collectively govern an
agent’s decision boundaries and interaction protocols while
maintaining alignment with predefined objectives.
Human-Curated Static Profiles. This approach establishes
fixed agent profiles through manual specification by domain



4

experts, embedding explicit rules and domain-specific knowl-
edge. It ensures strict adherence to predefined behavioral
guidelines and task requirements enabling standardized
communication protocols among agents. This is particularly
effective in scenarios demanding high interpretability and
regulatory compliance. Such frameworks typically employ
coordinated interactions between predefined agent compo-
nents to achieve complex functionalities through structured
communication patterns. Representative implementations
demonstrate two key paradigms: systems like Camel [25],
AutoGen [26], and OpenAgents [40] orchestrate human-
agent collaboration through predefined conversational roles
(e.g., user proxy and assistant), enabling task execution
through structured dialogues. Meanwhile, frameworks such
as MetaGPT [27], ChatDev [28], and AFlow [29] showcase
role-based coordination patterns. ChatDev specializes in
code development by coordinating static technical roles (e.g.,
product managers and programmers) with deterministic
interaction protocols, while MetaGPT and AFlow extend this
paradigm to general task solving through structured role
orchestration.
Batch-Generated Dynamic Profiles. This paradigm employs
parameterized initialization to systematically generate di-
verse agent profiles that emulate human societal behaviors.
By injecting controlled variations into personality traits,
knowledge backgrounds, or value systems during agent
creation (e.g., through template-based prompting or latent
space sampling), the framework produces heterogeneous
populations capable of exhibiting complex social dynamics.
Such parameter-driven diversity is essential for simulating
realistic human-agent interactions in applications ranging
from social behavior studies to emergent group intelli-
gence simulations. This is demonstrated in systems for
human behavior simulation [30] and simulated user data
collection [31] where different profile configurations directly
shape collective interaction patterns. Moreover, DSPy [32]
can further optimize the parameters of the agent profile
initialization.

2.1.2 Memory Mechanism

Memory mechanisms equip agents with the ability to store,
organize, and retrieve information across temporal dimen-
sions. Short-term memory maintains transient contextual
data for immediate task execution, while long-term mem-
ory preserves structured experiential knowledge for persis-
tent reference. Integrating knowledge retrieval mechanisms
further optimizes information accessibility with Retrieval-
Augmented Generation (RAG) techniques [43].
Short-Term Memory. Short-term memory retains agent-
internal dialog histories and environmental feedback to
support context-sensitive task execution. This mechanism
is widely implemented in frameworks such as ReAct [33]
for thinking with reflection, ChatDev [28] for software
development, Graph of Thoughts [34] for solving elabo-
rate problems, and AFlow [29] for workflow automation,
demonstrating its versatility across domains. While this
mechanism enables detailed reasoning through interactive
exchanges, its transient nature limits knowledge retention
beyond immediate contexts—intermediate reasoning traces
often dissipate after task completion and cannot be directly

transferred to new scenarios. Furthermore, due to LLMs’
context window limitations, practical implementations re-
quire active information compression (e.g., summarization or
selective retention) and impose many constraints on multi-
turn interaction depth to prevent performance degradation.
Long-Term Memory. Long-term memory systematically
archives agents’ intermediate reasoning trajectories and
synthesizes them into reusable tools for future invoca-
tion. This process transforms ephemeral cognitive efforts
into persistent operational assets through three dominant
paradigms: ❶ skill libraries that codify procedural knowledge
(e.g., Voyager’s automated skill discovery in Minecraft [35]
and GITM’s text-based knowledge base [36]), ❷ experi-
ence repositories that store success/failure patterns (e.g.,
ExpeL’s distilled experience pool [37] and Reflexion’s trial-
optimized memory [38]), and ❸ tool synthesis frameworks
that evolve capabilities through combinatorial adaptation
(e.g., TPTU’s adaptive tool composition [39] and OpenAgents’
self-expanding toolkit [40]). Cross-domain implementations,
such as Lego-Prover’s theorem bank [41] and MemGPT’s
tiered memory architecture [42], further demonstrate how
structured long-term storage enhances reasoning efficiency
through strategic knowledge reuse.
Knowledge Retrieval as Memory. This paradigm di-
verges from agent-internal memory generation by integrat-
ing external knowledge repositories into generation pro-
cesses, effectively expanding agents’ accessible information
boundaries. Current implementations exhibit three domi-
nant approaches: ❶ Static knowledge grounding through
text corpora (RAG [43]) or structured knowledge graphs
(GraphRAG [44]), ❷ Interactive retrieval that integrates
agent dialogues with external queries, as demonstrated in
Chain of Agents [45] where short-term inter-agent commu-
nications trigger contextualized knowledge fetching, and ❸

Reasoning-integrated retrieval, exemplified by IRCoT [46]
and Llatrieval [47], which interleave step-by-step reasoning
with dynamic knowledge acquisition. Advanced variants
like KG-RAR [48] further construct task-specific subgraphs
during reasoning, while DeepRAG [49] introduces fine-tuned
retrieval decision modules to balance parametric knowledge
and external evidence. These hybrid architectures enable
agents to transcend training data limitations while maintain-
ing contextual relevance, establishing knowledge retrieval as
critical infrastructure for scalable memory systems.

2.1.3 Planning Capability
Planning capabilities are a critical aspect of LLM agents’ abil-
ities, enabling them to navigate through complex tasks and
problem-solving scenarios with high accuracy [103]. Effective
planning is essential for deploying LLM agents in real-world
applications, where they must handle a diverse range of
complex tasks and scenarios. The planning capability of
an LLM agent can be viewed from two perspectives: task
decomposition and feedback-driven iteration.
Task Decomposition Strategies. Task decomposition rep-
resents a basic approach to enhancing LLM planning ca-
pabilities by breaking down complex problems into more
manageable subtasks. Although solving an entire problem
may be challenging for LLM agents, they can more easily
handle subtasks and then integrate the results to address



5

the full problem. Task decomposition strategies fall into two
main categories: single-path chaining and multi-path tree
expansion.

Single-path chaining is a simple method with the simplist
version as zero-shot chain-of-thought [104], [105]. It first asks
the agent to devise a plan, which consists of a sequence of
subtasks that are built upon one another. Subsequently, the
agent is asked to solve the subtasks in the order they are
presented [50], [105]. This plan-and-solve paradigm [51] is
straightforward and easy to implement. However, it may
suffer from a lack of flexibility and error accumulation
during chaining, as the agent is required to follow the pre-
defined plan without any deviation during the problem-
solving procedure. Therefore, one line of work proposes to
adopt dynamic planning that only generates the next subtask
based on the current situation of the agent [33], [105]. This
enables the agent to receive environmental feedback and
adjust its plan accordingly, enhancing its robustness and
adaptability. Moreover, another line of work proposes to
use multiple chain-of-thoughts to improve the robustness of
the planning process. This is similar to ensemble methods,
involving self-consistency [62], [106], majority voting [107],
and agent discussion [52] to combine multiple chains. By
combining the wisdom of multiple chains, the agent can
make more accurate decisions and reduce the risk of error
accumulation.

A more complicated method is to use trees instead
of chains as the planning data structure, where multiple
possible reasoning paths exist when the agent is planning,
and the agent is allowed to backtrack with information
from feedback [53], [54]. Long et al. [55] propose a tree-
of-thought (ToT) method that explores the solution space
through a tree-like thought process. This allows the LLMs
to backtrack to previous states, which makes it possible
for the model to correct its previous mistakes, enabling
applications to various complicated tasks that involve the
”trial-error-correct” process. In more realistic scenarios, the
agent can gather feedback from the environment or humans
and dynamically adjust its reasoning path, potentially in-
corporating reinforcement learning [56], [108]. This enables
the agent to make more informed decisions in real-world
applications using advanced algorithms such as Monte Carlo
Tree Search [109], facilitating use cases in robotics [57]–[59]
and game-playing [110], [111].

Feedback-Driven Iteration. Feedback-driven iteration is a cru-
cial aspect of LLM planning capabilities, enabling the agent
to learn from the feedback and enhance its performance over
time. Feedback can originate from various sources, such as
environmental input, human guidance, model introspection,
and multi-agent collaboration.

Environmental feedback is one of the most common types
of feedback in robotics [60], generated by the environment
in which the embodied agent operates. Human feedback,
another crucial type, comes from user interactions or manu-
ally labeled data prepared in advance [61], [112]. Model
introspection provides an additional source of feedback,
which is generated by the agent itself [62]. Multi-agent
collaboration also serves as a feedback mechanism, where
multiple agents work together to solve a problem and
exchange insights [63], [112]. These sources of feedback

TABLE 1: A summary of agent collaboration methods.

Category Method Key Contribution

Centralized Control

Coscientist [73] Human-centralized experimental control
LLM-Blender [74] Cross-attention response fusion
MetaGPT [27] Role-specialized workflow management
AutoAct [75] Triple-agent task differentiation
Meta-Prompting [76] Meta-prompt task decomposition
WJudge [77] Weak-discriminator validation

Decentralized Collaboration

MedAgents [78] Expert voting consensus
ReConcile [79] Multi-agent answer refinement
METAL [115] Domain-specific revision agents
DS-Agent [116] Database-driven revision
MAD [80] Structured anti-degeneration protocols
MADR [81] Verifiable fact-checking critiques
MDebate [82] Stubborn-collaborative consensus
AutoGen [26] Group-chat iterative debates

Hybrid Architecture

CAMEL [25] Grouped role-play coordination
AFlow [29] Three-tier hybrid planning
EoT [117] Multi-topology collaboration patterns
DiscoGraph [118] Pose-aware distillation
DyLAN [119] Importance-aware topology
MDAgents [120] Complexity-aware routing

help evaluate the agent’s performance and thus guide its
planning. For instance, the agent can use feedback to update
(regenerate) its plan, adjust its reasoning path, or even modify
its goal. This iterative process continues until a satisfactory
plan is achieved [64], [65].

2.1.4 Action Execution
With the planning capability, it is important for the LLMs
to have the ability to execute the planned actions in the real
world. Action execution is a critical aspect of LLM agents’
abilities, as good plans are useless if the agent cannot execute
them effectively. Action execution involves two aspects: tool
utilization [113], and physical interaction [114].

Tool utilization [113] is an important aspect of LLM
action execution, enabling a wide range of abilities such
as precise calculation of numbers, up-to-date information
understanding, and proficient code generation. The tool
use ability involves two aspects: tool use decision and tool
selection. The tool-use decision is the process of deciding
whether to use a tool to solve a problem. When the agent is
generating content with less confidence or facing problems
related to specific tool functions, the agent should decide to
use specific tools [66], [67]. Tool selection is another important
aspect of tool utilization, involving the understanding of
tools and the agent’s current situation [68], [69]. For example,
Yuan et al. [68] propose simplifying the tool documentation
to better understand the available tools, enabling a more
accurate selection of tools.

Physical interaction [114] is a fundamental aspect of
embodied LLM agents. Their ability to perform specific
actions in the real world and interpret environmental feed-
back is crucial. When deployed in real-world settings, LLM
agents must comprehend various factors to execute actions
accurately. These factors include robotic hardware [114],
social knowledge [70], and interactions with other LLM
agents [71], [72].

2.2 Agent Collaboration

Collaboration among LLM agents plays a crucial role in
extending their problem-solving capabilities beyond indi-
vidual reasoning. Effective collaboration enables agents to
leverage distributed intelligence, coordinate actions, and
refine decisions through multi-agent interactions [26], [121].
We categorize existing collaboration paradigms into three



6

fundamental architectures: centralized control, decentralized
cooperation, and hybrid architectures. These paradigms differ
in their decision hierarchies, communication topologies, and
task allocation mechanisms, each offering distinct advantages
for specific application scenarios.

2.2.1 Centralized Control
Centralized control architectures employ a hierarchical co-
ordination mechanism where a central controller organizes
agent activities through task allocation and decision inte-
gration, while other sub-agents can only communicate with
the controller. This paradigm features two implementation
strategies: explicit controller systems utilize dedicated co-
ordination modules (often implemented as separate LLM
agents) to decompose tasks and assign subgoals, while
differentiation-based systems achieve centralized control by
using prompts to guide the meta agent in assuming distinct
sub-roles. The centralized approach excels in mission-critical
scenarios requiring strict coordination, such as industrial
automation [122] and scientific research [73].
Explicit Controller Systems. Multiple related works have
been developed to explicitly implenment centralized architec-
tures. The Coscientist [73] exemplifies the explicit controller
paradigm, where a human operator serves as the central
controller. It establishes standardized scientific experimental
workflows, allocates specialized agents and tools to distinct
experimental phases, and maintains direct control over the
final execution plan. LLM-Blender [74] explicitly creates
a controller that employs a cross-attention encoder for
pairwise comparison to identify the best responses, and then
fuses the top-ranked responses, enhancing their strengths
while mitigating weaknesses. MetaGPT [27] simulates real-
world software development workflows, direclty assigning
specialized managers to control distinct functional roles and
phases.
Differentiation-based Systems. AutoAct [75] exemplifies
the differentiation-based paradigm, which implicitly differ-
entiates the meta-agent into three sub-agents—plan-agent,
tool-agent, and reflect-agent—to break down the complex
ScienceQA task. Meta-Prompting [76] decomposes com-
plex tasks into domain-specific subtasks through carefully
crafted meta-prompts. A single model acts as a coordinator,
dynamically assigning subtasks to specialized sub-agents
guided by task-oriented prompts. The centrol manager then
integrates all intermediate outputs to produce the final
solution. These works predominantly employ highly capable
agents as central controllers to optimize task allocation and
decision aggregation. However, WJudge [77] demonstrates
that even controllers with limited discriminative power can
also significantly enhance the overall performance of agent
systems.

2.2.2 Decentralized Collaboration
In contrast to centralized architectures where a single con-
trol node often becomes a bottleneck due to handling all
inter-agent communication, task scheduling, and contention
resolution, decentralized collaboration enables direct node-
to-node interaction through self-organizing protocols. This
paradigm can be further categorized into two distinct
approaches: revision-based systems and communication-based
systems.

Revision-based Systems. In this paradigm, agents only
observe finalized decisions generated by peers and iteratively
refine a shared output through structured editing protocols.
This approach typically produces more standardized and de-
terministic outcomes. For instance, MedAgents [78] employs
predefined domain-specific expert agents that sequentially
propose and modify decisions independently, with consensus
achieved through final voting. ReConcile [79] coordinates
agents to iteratively refine answers through mutual response
analysis, confidence evaluation, and human-curated exem-
plars. METAL [115] introduces specialized text and visual
revision agents for chart generation tasks, demonstrating
how domain-specific refinement improves output quality.
Notably, revision signals may originate not only from agent
interactions but also from external knowledge bases [116],
[123], enabling hybrid refinement strategies.
Communication-based Systems. Compared to revision-based
approaches, communication-based methods feature more
flexible organizational structures, allowing agents to directly
engage in dialogues and observe peers’ reasoning processes.
This makes them particularly suitable for modeling dy-
namic scenarios such as human social interactions [30]. Key
implementations include: MAD [80] employs structured
communication protocols to address the ”degeneration-of-
thought” problem, where agents overly fixate on initial
solutions. MADR [81] enhances this by enabling agents to
critique implausible claims, refine arguments, and gener-
ate verifiable explanations for fact-checking. MDebate [82]
optimizes consensus-building through strategic alternation
between stubborn adherence to valid points and collaborative
refinement. AutoGen [26] implements a group-chat frame-
work that supports multi-agent participation in iterative
debates for decision refinement.

2.2.3 Hybrid Architecture
Hybrid architectures strategically combine centralized co-
ordination and decentralized collaboration to balance con-
trollability with flexibility, optimize resource utilization, and
adapt to heterogeneous task requirements. This approach
introduces two implementation patterns: static systems with
predefined coordination rules and dynamic systems featuring
self-optimizing topologies.
Static Systems. Static systems predefine fixed patterns for
combining different collaboration modalities. Representative
implementations include: CAMEL [25] partitions agents into
intra-group decentralized teams for role-playing simulations,
while maintaining inter-group coordination through central-
ized governance. AFlow [29] employs a three-tier hierarchy
consisting of centralized strategic planning, decentralized
tactical negotiation, and market-driven operational resource
allocation. EoT [117] formalizes four collaboration patterns
(BUS, STAR, TREE, RING) to align network topologies with
specific task characteristics.
Dynamic Systems. Recent innovations introduce neural topol-
ogy optimizers that dynamically reconfigure collaboration
structures based on real-time performance feedback, enabling
automatic adaptation to changing conditions. Key implemen-
tations demonstrate this paradigm: DiscoGraph [118] intro-
duces trainable pose-aware collaboration through a teacher-
student framework. The teacher model with holistic-view



7

TABLE 2: A summary of agent evolution methods.

Category Method Key Contribution

Self-Supervised Learning
SE [86] Adaptive token masking for pretraining
Evolutionary Optimization [87] Efficient model merging and adaptation
DiverseEvol [88] Improved instruction tuning via diverse data

Self-Reflection & Self-Correction

SELF-REFINE [89] Iterative self-feedback for refinement
STaR [90] Bootstrapping reasoning with few rationales
V-STaR [91] Training a verifier using DPO
Self-Verification [92] Backward verification for correction

Self-Rewarding & RL
Self-Rewarding [93] LLM-as-a-Judge for self-rewarding
RLCD [94] Contrastive distillation for alignment
RLC [95] Evaluation-generation gap for optimization

Cooperative Co-Evolution
ProAgent [96] Intent inference for teamwork
CORY [97] Multi-agent RL fine-tuning
CAMEL [25] Role-playing framework for cooperation

Competitive Co-Evolution
Red-Team LLMs [98] Adversarial robustness training
Multi-Agent Debate [82] Iterative critique for refinement
MAD [99] Debate-driven divergent thinking

Knowledge-Enhanced Evolution KnowAgent [83] Action knowledge for planning
WKM [84] Synthesizing prior and dynamic knowledge

Feedback-Driven Evolution
CRITIC [100] Tool-assisted self-correction
STE [101] Simulated trial-and-error for tool learning
SelfEvolve [102] Automated debugging and refinement

inputs guides the student model via feature map distillation,
while matrix-valued edge weights enable adaptive spatial
attention across agents. DyLAN [119] first utilizes the Agent
Importance Score to identify the most contributory agents
and then dynamically adjusts the collaboration structure
to optimize task completion. MDAgents [120] dynamically
assigns collaboration structures based on the task at hand.
It first performs a complexity check to classify tasks as low,
moderate, or high complexity. Simple tasks are handled by
a single agent, while more complex tasks are addressed
through hierarchical collaboration.

2.3 Agent Evolution

LLM Agents are evolving through various mechanisms that
enable autonomous improvement, multi-agent interaction,
and external resource integration. This section explores three
key dimensions of agent evolution: autonomous optimization
and self-learning, multi-agent co-evolution, and evolution via
external resources. These mechanisms collectively enhance
model adaptability, reasoning, and performance in complex
environments. We summarize the methods in Table 2.

2.3.1 Autonomous Optimization and Self-Learning

Autonomous optimization and self-learning allow LLMs
to improve their capabilities without extensive supervision.
This includes self-supervised learning, self-reflection, self-
correction, and self-rewarding mechanisms that enable mod-
els to explore, adapt, and refine their outputs dynamically.
Self-Supervised Learning and Adaptive Adjustment. Self-
supervised learning enables LLMs to improve using un-
labeled or internally generated data, reducing reliance on
human annotations. For example, self-evolution learning
(SE) [86] enhances pretraining by dynamically adjusting to-
ken masking and learning strategies. Evolutionary optimiza-
tion techniques facilitate efficient model merging and adap-
tation, improving performance without extensive additional
resources [87]. DiverseEvol [88] refines instruction tuning
by improving data diversity and selection efficiency. These
advancements contribute to the autonomous adaptability of
LLMs, enabling more efficient learning and generalization
across tasks.
Self-Reflection and Self-Correction. Self-reflection and self-
correction enable LLMs to iteratively refine their outputs

by identifying and addressing errors. For instance, SELF-
REFINE [89] applies iterative self-feedback to improve gen-
erated responses without external supervision. In reasoning
tasks, STaR [90] and V-STaR [91] train models to verify and
refine their own problem-solving processes, reducing reliance
on labeled data. Additionally, self-verification techniques
enable models to retrospectively assess and correct their
outputs, leading to more reliable decision-making [92].
These approaches collectively enhance LLM agents’ ability
to self-reflect and self-correct, reducing hallucinations and
improving reasoning quality.
Self-Rewarding and Reinforcement Learning. Self-rewarding
and reinforcement learning approaches enable LLMs to
enhance performance by generating internal reward signals.
Self-generated rewards help models refine decision-making,
with techniques ensuring stable and consistent learning
improvements [93]. Contrastive distillation further enables
models to align themselves through self-rewarding mecha-
nisms [94]. Additionally, RLC [95] leverages the evaluation-
generation gap via reinforcement learning strategies, fa-
cilitating self-improvement. These methods enhance LLM
adaptability by integrating self-rewarding strategies and
reinforcement learning paradigms.

2.3.2 Multi-Agent Co-Evolution
Multi-agent co-evolution enables LLMs to improve through
interactions with other agents. This involves cooperative
learning, where agents share information and coordinate
actions, as well as competitive co-evolution, where agents
engage in adversarial interactions to refine strategies and
enhance performance.
Cooperative and Collaborative Learning. Multi-agent col-
laboration enhances LLMs by enabling knowledge sharing,
joint decision-making, and coordinated problem-solving.
For instance, ProAgent [96] enables LLM-based agents
to adapt dynamically in cooperative tasks by inferring
teammates’ intentions and updating beliefs, enhancing zero-
shot coordination. CORY [97] extends RL fine-tuning into a
cooperative multi-agent framework, where LLMs iteratively
improve through role-exchange mechanisms, enhancing
policy optimality and stability. CAMEL [25] develops a role-
playing framework where communicative agents collaborate
autonomously using inception prompting, improving coor-
dination and task-solving efficiency in multi-agent settings.
These approaches contribute to more efficient, adaptable, and
intelligent multi-agent LLM systems.
Competitive and Adversarial Co-Evolution. Competitive co-
evolution strengthens LLMs through adversarial interactions,
debate, and strategic competition. For example, Red-team
LLMs [98] dynamically evolve in adversarial interactions,
continuously challenging LLMs to uncover vulnerabilities
and mitigate mode collapse, leading to more robust safety
alignment. Du et al. propose a multi-agent debate frame-
work [82] to enhance reasoning by having multiple LLMs
critique and refine each other’s arguments over multiple
rounds, improving factuality and reducing hallucinations.
Furthermore, the MAD framework [99] structures debates
among agents in a tit-for-tat manner, encouraging divergent
thinking and refining logical reasoning in complex tasks.
These competitive co-evolution strategies drive LLMs to



8

General
Assessment

Domain-specific 
Evaluation

Collaboration 
Evaluation

Multi-dimensional 
Capability

Dynamic
And Self-evolving

Domain-specific 
Competency Tests

Real-world 
Environment Simulation

Web
Interaction

Code
Generation

Tools Used by
LLM Agents

Tools Created by
LLM Agents 

Tools for Deploying 
LLM Agents

Knowledge
Retrieval

Computation

Creation

Productionization
Operation

and Maintenance

API Interactions

Decision Execution Reflection

Model Context 
Protocol

Benchmark and Datasets Tools
Evaluation and Tools

Fig. 3: An overview of evaluation benchmarks and tools
for LLM agents. The left side shows various evaluation
frameworks categorized by general assessment, domain-
specific evaluation, and collaboration evaluation. The right
side illustrates tools used by LLM agents, tools created by
agents, and tools for deploying agents.

develop stronger reasoning, resilience, and strategic adapt-
ability in a multi-agent adversarial manner.

2.3.3 Evolution via External Resources
External resources enhance the evolution of agents by
providing structured information and feedback. Knowledge-
enhanced evolution integrates structured knowledge to
improve reasoning and decision-making, while external
feedback-driven evolution leverages real-time feedback from
tools and environments to refine model performance.
Knowledge-Enhanced Evolution. LLMs can evolve by inte-
grating structured external knowledge, improving reasoning,
decision-making, and task execution. For example, KnowA-
gent [83] improves LLM-based planning by integrating action
knowledge, constraining decision paths, and mitigating hallu-
cinations, leading to more reliable task execution. The world
knowledge model (WKM) [84] enhances agent planning
by synthesizing expert and empirical knowledge, providing
global priors and dynamic local knowledge to guide decision-
making. These approaches collectively improve the evolution
of LLM by incorporating diverse and structured external
information.
External Feedback-Driven Evolution. LLMs can refine their
behavior by leveraging external feedback from tools, eval-
uators, and humans to improve performance iteratively.
For example, CRITIC [100] allows LLMs to validate and
revise their outputs through tool-based feedback, improving
accuracy and reducing inconsistencies. STE [101] enhances
tool learning by simulating trial-and-error, imagination, and
memory, enabling more effective tool use and long-term
adaptation. SelfEvolve [102] adopts a two-step framework
where LLMs generate and debug code using feedback from
execution results, enhancing performance without human
intervention. These approaches enable LLMs to evolve
iteratively by integrating structured feedback, improving
adaptability and robustness.

3 EVALUATION AND TOOLS

As LLM agents continue to evolve in complexity and
capability, robust evaluation frameworks and specialized

tools have become essential components of the agent ecosys-
tem. This section explores the comprehensive landscape of
benchmarks, datasets, and tools that enable the development,
assessment, and deployment of LLM agents. We first examine
evaluation methodologies in Section 3.1, covering general
assessment frameworks, domain-specific evaluation systems,
and collaborative evaluation approaches. We then discuss the
tools ecosystem in Section 3.2, including tools used by LLM
agents, tools created by agents themselves, and infrastructure
for deploying agent systems.

3.1 Evaluation Benchmarks and Datasets
The evolution of LLM agents has driven the creation of
specialized benchmarks that systematically evaluate agent
capabilities across technical dimensions and application
domains. These frameworks address three key requirements:
general assessment frameworks, domain-specific scenario
simulation, and collaborative evaluation of complex systems.

3.1.1 General Assessment Frameworks
The evolution of intelligent agents requires evaluation
frameworks to move beyond simple success-rate metrics
to comprehensive cognitive analysis. Recent advances focus
on building adaptive and interpretable assessment systems
capable of capturing the subtle interplay between reasoning
depth, environmental adaptability, and task complexity.
Multi-Dimensional Capability Assessment. Modern bench-
marks are increasingly adopting a hierarchical paradigm
that dissects agent intelligence across various dimensions
of reasoning, planning, and problem solving. AgentBench
[124] builds a unified test field across eight interactive
environments, revealing the advantages of a commercial
LLM in complex reasoning. Mind2Web [125] extends this
paradigm to web interaction scenarios, proposing the first
generalist agent for evaluating 137 real-world websites with
different tasks spanning 31 domains. This open environment
benchmark enables multi-dimensional capability assessment
through real web-based challenges. This is in line with
MMAU [126], which enhances explainability through granu-
lar capability mapping and breaks down agent intelligence
into five core competencies by more than 3,000 cross-domain
tasks. BLADE [127] extends evaluation to scientific discovery
by tracking the analytical decision patterns of expert vali-
dation workflows. VisualAgentBench [128] further extends
this approach to multimodal foundation agents, establishing
a unified benchmark across materialized interactions, GUI
operations, and visual design tasks, and rigorously testing
the LLM’s ability to handle the dynamics of the complex
visual world. Embodied Agent Interface [129] introduces
modular inference components (object interpretation, sub-
object decomposition, etc.) to provide fine-grained error
classification for embedded systems. CRAB [130] offers
cross-platform testing with graphics-based assessment and
a unified Python interface. These frameworks emphasize
the shift from a single measure of success to multifaceted
cognitive analysis.
Dynamic and Self-Evolving Evaluation Paradigms. Next-
generation framework addresses baseline obsolescence
through adaptive generation and human-AI collaboration.
BENCHAGENTS [131] automatically creates benchmarks



9

through LLM agents for planning, validating, and measuring
designs, enabling rapid capacity expansion. Benchmark
self-evolving [132] introduces six refactoring operations to
dynamically generate test instances for short-cut biases.
Revisiting Benchmark [133] proposed TestAgent with re-
inforcement learning for domain adaptive assessment. Other
methods such as Seal-Tools [134] (1,024 nested instances of
tool calls) and CToolEval [135] (398 Chinese APIs across 14
domains), complement static datasets and standardize tool
usage evaluation.

3.1.2 Domain-Specific Evaluation System

The increasing specialization of agent applications requires
evaluation systems tailored to domain-specific knowledge
and environmental constraints. Researchers are developing
dual-axis frameworks that combine vertical competency
testing for professional scenarios with horizontal validation
in real-world simulated environments.
Domain-Specific Competency Tests. Several key application
areas are specifically benchmarked with scenario-driven
assessments. For example, healthcare applications are rigor-
ously tested by MedAgentBench [136] and AI Hospital [137].
Specifically, MedAgentBench contains tasks designed by 300
clinicians in an FHIR-compliant environment, while the AI
hospital simulates clinical workflows through multi-agent
collaboration. The autonomous driving system benefits from
LaMPilot [138], which connects the LLM to the autonomous
driving architecture through code generation benchmarks.
Data science capabilities are evaluated by DSEval [139]
and DA-Code [140], covering lifecycle management from
data debate to model deployment, while DCA-Bench [141]
evaluates dataset curation agents based on real-world quality
issues. TravelPlanner [142] provides a sandbox environment
for travel planning scenarios. It contains 1225 planning
tasks that require multi-step reasoning, tool integration,
and constraint balancing under realistic conditions (e.g.,
budget and time). Machine learning engineering capabilities,
measured by MLAgant-Bench [143] and MLE-Bench [144],
simulate kaggle-like challenges that require optimization of
an end-to-end pipeline. Security-focused AgentHarm [145]
curated 440 malicious agent tasks in 11 hazard categories,
and systematically assessed LLM abuse risk for the first time
in a multi-step tool usage scenario. These domain-specific
benchmarks reveal significant performance gaps compared
to general testing in practical applications.
Real-World Environment Simulation. Several benchmarks
bridge the simulation to reality gap with real interactive
environments. OSWorld [146] builds the first scalable real-
computer ecosystem that supports 369 multi-application
tasks across Ubuntu/Windows/macOS. TurkingBench [147]
evaluates 158 micro-tasks using a crowdsourcing-derived
HTML interface, and LaMPilot [138] introduces an executable
code generation benchmark for autonomous driving scenar-
ios. OmniACT [148] provides 32K web/desktop automation
instances with basic requirements for visualization. EgoLife
[149] advances real-world simulation through a 300-hour
multimodal egocentric dataset capturing daily human activi-
ties (e.g., shopping, cooking, socializing), paired with Ego-
LifeQA tasks that test agents’ long-term memory retrieval,
health habit monitoring, and personalized recommendation

capabilities in dynamic environments. GTA [150] further
integrates real-world deployed tools and multi-modal inputs
(images, web pages) to evaluate real-world problem-solving
capabilities.

3.1.3 Collaborative Evaluation of Complex Systems
As agency systems evolve toward organizational complexity,
evaluation frameworks must quantify emergent coordination
patterns and collective intelligence. Recent approaches shift
evaluation from isolated agent proficiency to system-level
cognitive collaboration, revealing scalability challenges in
multi-agent workflows.
Multi-Agent System Benchmarking. TheAgentCompany
[151] pioneered enterprise-level assessments using simulated
software company environments to test web interaction and
code collaboration capabilities. Comparative analysis like
AutoGen and CrewAI [152] establishes methodological stan-
dards through ML code generation challenges. Large Visual
Language Model Survey [153] systematizes over 200 multi-
modal benchmarks. For multi-agent collaboration, MLRB
[154] designs 7 competition-level ML research tasks, and
MLE-Bench [144] evaluates Kaggle-style model engineering
through 71 real-world competitions. These efforts collectively
establish rigorous evaluation protocols for emergent agent
coordination capabilities.

3.2 Tools
Tools are an important part of LLM agents. When dealing
with complex tasks, LLM agents can call on external tools to
generate more precise answers. Depending on their creativity,
they can also create tools to solve tasks. In addition, LLM
agents need corresponding tools for deployment, mainte-
nance, and data acquisition.

3.2.1 Tools used by LLM agents
Since LLM agents do not perform well in handling some
specific tasks, such aas those requiring real-time information
and accurate calculations, external tools are introduced to
help the LLM agents perform these tasks more effectively.
These external tools can be categorized into three main
groups.
Knowledge Retrieval. For those real-time information that
LLM agents are not aware of, knowledge retrieval tools, such
as search engines, can help LLM agents to quickly access
up-to-date knowledge so that they are no longer limited to
the knowledge base they had during training. WebGPT [155]
successfully combines online search engines and LLMs with
the incorporation of the commercial API1. WebCPM [156],
inspired by WebGPT, develops a web search interface and
uses it to construct the first Chinese long-form question
answer (LFQA) dataset. ToolCoder [157] uses DuckDuckgo2

as the search engine for those frequently used public libraries
and employs the BM25 [158] score for those less-known or
private libraries.
Computation. LLM agents may suffer hallucinations when
dealing with tasks requiring precise computation. Compu-
tational tools like Python interpreters and math calculators

1. https://www.microsoft.com/en-us/bing/apis/bing-web-search-
api

2. https://duckduckgo.com



10

can help LLM agents with complex code execution or com-
putational tasks. AutoCoder [159] designs a dataset with the
interaction with coding execution results to facilitate LLM-
based code generation. RLEF [160] improves code generation
performance through an end-to-end reinforcement learning
framework that enables LLMs to learn feedback from code
executors. CodeActAgent [161] is an automatic agentic
system which can update the actions based on the interaction
with the code interpreter. Toolformer [162] integrates a
range of tools, including calculators, to significantly improve
the performance of models in tasks such as mathematical
calculations without compromising the model’s generality.
ART [163] enables LLM to invoke external tools, such
as calculators, when solving complex tasks and excels in
mathematical reasoning and complex computational tasks.
API Interactions. Building on external APIs, such as REST
APT, can enable LLM agents to call external services and
extend their functionality, such as manipulating databases
and implementing end-to-end automated processes. Rest-
GPT [164] explores more realistic scenarios by combining
LLM with RESTful APIs and presents RestBench to evalu-
ate the performance of RestGPT. GraphQLRestBench [165]
builds a dataset consisting of sequences of natural language
statements, and function calls to review existing open-source
LLMs, exploring the capabilities of LLMs for API calls.

3.2.2 Tools created by LLM agents
Since the users of traditional tools tend to be humans,
LLM agents often have limitations when making calls. In
addition, the limitations of existing tools make it difficult
to effectively handle new problems. In recent years, many
studies have explored how LLM agents can create their
tools. CRAFRT [166] provides a flexible framework for tool
creation and retrieval by collecting GPT-4 code solutions
for specific tasks and abstracting them into code snippets
to create specialized tool sets for the tasks. Toolink [167]
performs task resolution by creating a toolset and then
integrating the planning and invocation of tools through a
Chain of Solutions (CoS) approach. CREATOR [168] proposes
a four-phase framework–Creation, Decision, Execution, and
Reflection–to enable LLM agents to create tools and improve
the robustness of the output. LATM [169] proposes a two-
stage framework that allows LLMs to act as tool makers
and tool users, respectively and proposes a tool caching
mechanism that improves the efficiency of task solving and
reduces the cost while maintaining performance by assigning
different models to different tasks with different levels of
difficulty.

3.2.3 Tools for deploying LLM agents
LLM tools are essential for the deployment, development,
operation, and maintenance of LLM agents and for the secure
transmission of data. According to their role, these tools can
be categorized into three types.
Productionization. The main purpose of the production-
ization tools is to make it easy for users to deploy LLM
agents in production environments. AutoGen [26] is an
open-source framework that enables developers to build
LLM applications with customizable, conversational multiple
agents. LangChain [170] is an open-source framework for

Agent-centric 
Security 

Memorization 
Vulnerability

Benefits

Adversarial 
Attacks 

Model
Collaboration

Data
Extraction 

Attacks

Member
Inference
Attacks

Automation 
Enhancement

Job Creation
and Workforce 
Transformation

Data-centric
Security

Intellectual Property 
Exploitation

Ethical Concerns

External Data
 Attacks

Interaction 
Attacks

Model Stealing
Attacks

Bias and
Discrimination Accountability

Prompt Stealing 
Attacks

Jailbreak
Attacks

Backdoor
Attacks

Attribute 
Inference
Attacks

Enhance 
Information 
Distribution

Social
Impact

Privacy

Security

Real-world Issues

Fig. 4: An overview of real-world issues in LLM agent
systems, organized into three domains: security challenges
(including agent-centric and data-centric threats), privacy
concerns (covering memorization vulnerabilities and intellec-
tual property exploitation), and social impact considerations
(highlighting both benefits and ethical challenges).

building LLM applications that is highly extensible and al-
lows users to create custom modules and workflows to meet
their specific needs. LlamaIndex [171] is a data framework
serving large model applications, allowing users to build
LLM applications based on local data. It also provides a
rich toolbox for accessing and indexing data, retrieving and
reordering, and building custom query engines. Dify [172] is
an open-source LLM application development platform that
differs from other platforms in that it allows users to build
and test powerful AI workflows on canvas.
Operation and Maintenance. After deploying LLM agents,
the O&M tool ensures that the model performs well dur-
ing training and remains reliable during production. Ol-
lama [173] is a platform for building LLM agents that also
offers observability and monitoring support, allowing teams
to track their models’ performance in real-time. Dify [172]
enables users to monitor and analyze application logs and
performance over time, allowing for continuous improve-
ments in prompts, datasets, and models based on production
data and annotations.
Model Context Protocol. MCP3 is an open protocol that
standardizes how applications provide context to LLMs.
It is used to create secure links between LLMs and data
sources as well as to build LLM agents and workflows. MCP-
Agent [174] is a simple framework to build agents using
MCP. As more services become MCP-aware, users will be
able to take full advantage of them.

4 REAL-WORLD ISSUES

As LLM agents become increasingly integrated into various
aspects of society, they bring forth significant real-world
challenges that must be addressed for responsible deploy-
ment. Figure 4 provides an overview of these challenges,
categorized into three primary domains: security, privacy,
and social impact. Security concerns encompass both agent-
centric threats (Section 4.1) that target model components and
data-centric threats (Section 4.2) that contaminate input data.
Privacy issues (Section 4.3) include memorization vulnerabil-
ities and intellectual property exploitation. Beyond technical

3. https://modelcontextprotocol.io/introduction



11

concerns, LLM agents raise important ethical considerations
and have broad societal implications (Section 4.4), including
both potential benefits and risks to society. Understanding
these challenges is crucial for developing robust, trustworthy
agent systems.

4.1 Agent-centric Security
Agent-centric security targets defending different types
of attacks on the agent models, where attacks aim to
manipulate, tamper, and steal critical components of the
weights, architecture, and inference process of the agent
models. These agent-centric attacks may lead to perfor-
mance degradation, maliciously manipulated outputs, and
privacy leaks within agent systems. Li et al. [175] analyze
the security vulnerabilities of LLM agents under attacks
categorized by threat actors, objectives, entry points, and
so on. They also conduct experiments on certain popular
agents to demonstrate their security vulnerabilities. Agent
security bench [176] introduces a comprehensive framework
to evaluate attacks and defenses for LLM-based agents
across 10 scenarios, 10 agents, 400+ tools, 23 attack/defense
methods, and 8 metrics, revealing significant vulnerabilities
and limited defense effectiveness of current LLM agents.
We summarize the agent-centric security issues in the blow
categories.

4.1.1 Adversarial Attacks and Defense
Adversarial attacks aim to compromise the reliability of the
agents, rendering them ineffective in specific tasks. Mo et
al. [177] categorize adversarial attacks into three components,
i.e., Perception, Brain, and Action. AgentDojo [178] provides an
evaluation framework designed to measure the adversarial
robustness of AI agents by testing them on 97 realistic tasks
and 629 security test cases. ARE [179] evaluates multimodal
agent robustness under adversarial attacks. For adversarial
attack methods, CheatAgent [180] uses an LLM-based agent
to attack black-box LLM-empowered recommender systems
by identifying optimal insertion positions, generating adver-
sarial perturbations, and refining attacks through iterative
prompt tuning and feedback. GIGA [181] introduces gener-
alizable infectious gradient attacks to propagate adversarial
inputs across multi-agent, multi-round LLM-powered sys-
tems by finding self-propagating inputs that generalize well
across contexts. For adversarial attacks defense methods,
LLAMOS [182] introduces a defense technique for adver-
sarial attacks by purifying adversarial inputs using agent
instruction and defense guidance before they are input into
the LLM. Chern et al. [183] introduce a multi-agent debate
method to reduce the susceptibility of agents to adversarial
attacks.

4.1.2 Jailbreaking Attacks and Defense
Jailbreaking attacks attempt to break through the protection
of the model and obtain unauthorized functionality or
information. For jailbreaking attack methods, RLTA [184]
uses reinforcement learning to automatically generate attacks
that produce malicious prompts, triggering LLM agents’
jailbreaking to produce specific output. These can be adapted
to both white box and black box scenarios. Atlas [185]
jailbreaks text-to-image models with safety filters using a

mutation agent and a selection agent, enhanced by in-context
learning and chain-of-thought techniques. RLbreaker [186]
is a black-box jailbreaking attack using deep reinforcement
learning to model jailbreaking as a search problem, featuring
a customized reward function and PPO algorithm. Path-
Seeker [187] also uses multi-agent reinforcement learning
to guide smaller models in modifying inputs based on the
target LLM’s feedback, with a reward mechanism leveraging
vocabulary richness to weaken security constraints. For
jailbreaking defense methods, AutoDefense [188] proposes a
multi-agent defense framework that uses LLM agents with
specialized roles to collaboratively filter harmful responses,
effectively resisting jailbreak attacks. Guardians [189] uses
three examination methods—reverse Turing Tests, multi-
agent simulations, and tool-mediated adversarial scenar-
ios—to detect rogue agents and counter jailbreaking attacks.
ShieldLearner [190] proposes a novel defense paradigm for
jailbreak attacks by autonomously learning attack patterns
and synthesizing defense heuristics through trial and error.

4.1.3 Backdoor Attacks and Defense
Backdoor attacks implant specific triggers to cause the
model to produce preset errors when encountering these
triggers while performing normally under normal inputs.
For backdoor attack methods, DemonAgent [191] proposes a
dynamically encrypted muti-backdoor implantation attack
method by using dynamic encryption to map and decompose
backdoors into multiple fragments to avoid safety audits.
Yang et al. [192] investigate and implement diverse forms
of backdoor attacks on LLM-based agents, demonstrat-
ing their vulnerability through experiments on tasks like
web shopping and tool utilization. BadAgent [193] attacks
LLM-based intelligent agents to trigger harmful operations
through specific inputs or environment cues as backdoors.
BadJudge [194] introduces a backdoor threat specific to the
LLM-as-a-judge agent system, where adversaries manipulate
evaluator models to inflate scores for malicious candidates,
demonstrating significant score inflation across various data
access levels. DarkMind [195] is a latent backdoor attack that
exploits the reasoning processes of customized LLM agents
by covertly altering outcomes during the reasoning chain
without requiring trigger injection in user inputs.

4.1.4 Model Collaboration Attacks and Defense
Model collaboration attack is an emerging type of attack
that mainly targets scenarios where multiple models work
together. In this type of attack, attackers manipulate the
interaction or collaboration mechanisms between multiple
models to disrupt the overall functionality of the system. For
model collaboration attack methods, CORBA [196] introduces
a novel yet simple attack method for the LLM multi-agent
system. It exploits contagion and recursion, which are hard
to mitigate via alignment, disrupting agent interactions.
AiTM [197] introduces an attack method to the LLM multi-
agent system by intercepting and manipulating inter-agent
messages using an adversarial agent with a reflection mech-
anism. For the defense methods, Netsafe [198] identifies
critical safety phenomena and topological properties that in-
fluence the safety of multi-agent networks against adversarial
attacks. G-Safeguard [199] is also based on topology guidance
and leverages graph neural networks to detect anomalies



12

TABLE 3: Summary of agent-centric attacks and defense in
LLM agents.

Reference Description

Adversarial Attacks and Defense

Mo et al. [177] Attack: Adversarial attack benchmark
AgentDojo [178] Attack: Adversarial attack framework
ARE [179] Attack: Adversarial attack evaluation for multimodal agents
GIGA [181] Attack: Generalizable infectious gradient attacks
CheatAgent [180] Attack: Adversarial attack agent for recommender systems
LLAMOS [182] Defense: Purifying adversarial attack input
Chern et al. [183] Defense: Defense via multi-agent debate

Jailbreaking Attacks and Defense

RLTA [184] Attack: Produce jailbreaking prompts via reinforcement learning
Atlas [185] Attack: Jailbreaks text-to-image models with safety filters
RLbreaker [186] Attack: Model jailbreaking as a search problem
PathSeeker [187] Attack: Use multi-agent reinforcement learning to jailbreak
AutoDefense [188] Defense: Multi-agent defense to filter harmful responses
Guardians [189] Defense: Detect rogue agents to counter jailbreaking attacks.
ShieldLearner [190] Defense: Learn attack jailbreaking patterns.

Backdoor Attacks and Defense

DemonAgent [191] Attack: Encrypted muti-backdoor implantation attack
Yang et al. [192] Attack: Backdoor attacks evaluations on LLM-based agents
BadAgent [193] Attack: Inputs or environment cues as backdoors
BadJudge [194] Attack: Backdoor to the LLM-as-a-judge agent system
DarkMind [195] Attack: latent backdoor attack to customized LLM agents

Agent Collaboration Attacks and Defense

CORBA [196] Attack: Multi-agent attack via multi-agent
AiTM [197] Attack: Intercepte and manipulate inter-agent messages
Netsafe [198] Defense: Identify critical safety phenomena in multi-agent networks
G-Safeguard [199] Defense: leverages graph neural networks to detect anomalies
Trustagent [200] Defense: Agent constitution in task planning.
PsySafe [201] Defense: Mitigate safety risks via agent psychology

in the LLM multi-agent system. Trustagent [200] aims to
enhance the planning safety of LLM agentic framework in
three different planning stages. PsySafe [201] is grounded in
agent psychology to identify, evaluate, and mitigate safety
risks in multi-agent systems by analyzing dark personality
traits, assessing psychological and behavioral safety, and
devising risk mitigation strategies.

4.2 Data-centric Security
The goal of data-centric attacks is to contaminate the input
data of LLM agents, ultimately leading to unreasonable tool
calling, aggressive outputs and resource depletion, etc [202].
In data-centric attacks, any components in LLM agent
systems or default parameters are not allowed to be modified.
Based on the data type, we categorize attacks into external
data attacks and execution data attacks. Corresponding
defense strategies are summarized to counter these agent
attacks.

4.2.1 External Data Attack and Defense

User Input Falsifying. Modifying the user input is the most
straightforward and widely used data-centric attacks. These
injections [176] can lead to uncontrolled and dangerous
outputs. Though it is simple, it always achieves the highest
Attack Success Rate (ASR) [176], [203]. Li et al. [204] propose
malicious prefix prompts, such as “ignore the document”.
InjectAgent [205] and Agentdojo [203] are two prompt
injection benchmarks, which test the single and multi-turn
attacks in LLM agents. As the widespread effect of injections
on user inputs increases, various defense models have
been designed. Mantis [206] defenses through hacking back
to attackers’ own systems. [207] offers a defense module
called the Input Firewall, which extracts key points from
users’ natural language and converts them into a structured
JSON format. RTBAS [208] and TaskShield [209] check the

every step of information flow and agent process, including
function calls and tool execution, to make sure the execution
aligns with the original instructions and intentions. In the
ASB [176] benchmark, a sandwich defend strategy adds
additional guarding instructions to help LLM agents ignore
malicious injections.
Dark Psychological Guidance. Attackers can carry out dark
psychological guidance in the prompts, e.g., use “cheating”
instead of “care”, “betrayal” instead of “fairness”, “subver-
sion” instead of “authority”. Then LLM agents are guided
to be aggressive and antisocial, which may cause serious
social impacts. [210] proposes the “Evil Geniuses” to generate
prompts to put agents into specific role-playing states. Its
prompts are optimized through the red-blue exercises. [201]
injects the dark psychological traits into the user inputs.
To defense dark psychological injections, doctor and police
agents [201] are incorporated into the agents systems. The
doctor agents conduct the psychological assessment, while
the police agents supervise the safety of agent systems. They
work together to guard the healthy psychology at any time.
External Source Poisoning. Many attackers pay their at-
tention to the RAG-based LLM agents, as they have been
proven to be more reliable than general memory-based
LLM agents [211]. The attackers inject poisoning samples
into the knowledge databases [175], [212]. Based on this,
the Indirect Prompt Injection (IPI) attack embeds malicious
instructions into other external knowledge sources [213],
such as the websites, support literature, emails, online BBS,
which can manipulate agents and cause them to deviate
from the original intentions. WIPI [214] controls the agents
through a public web page to indirectly poison instructions.
[215] describes a Foot-in-the-Door (FITD) attack, which
begins with inconspicuous, unrelated requests and gradually
incorporates harmless ones. This approach increases the
likelihood of the agent executing subsequent actions, leading
to resource consumption that could have been avoided.
AgentPoison [216] is a typical red teaming work, which
achieves a high success rate in knowledge-intensive QA
agent. [183] employs a multi-agent debate for defense, where
each agent acts as a domain expert to verify the facticity of
external knowledge.

4.2.2 Interaction Attack and Defense

Interaction between user and agent interface. Some LLM
agents store the private user-agent interactions in users’
computer memory to enhance dialogue performance. During
these interactions, LLM agents are usually black-box to
attackers. [217] is a private memory extraction attack that
aggregates multiple levels of knowledge from the stored
memory. [218] presents an attack that occurs at the interface
between users and LLM agents, where it solicits information
from users.
Interaction among LLM agents. In multi-agent LLM systems,
the interactions among agents are frequent and essential [12].
Attackers poison a single agent, which then infects other
agents [219]. This recursive attack can ultimately deplete
the computational resources. AgentSmith [220] concludes
that the infectious spread occurs exponentially fast. The
Contagious Recursive Blocking Attack (CORBA) [196] is
designed to disrupt the communications among agents,



13

TABLE 4: Summary of data-centric attack and defense in
LLM agents.

Reference Description

External Data Attacks and Security

Li et al. [204] Attack: Malicious prefix injection
Psysafe [201] Attack: A dark psychological injection benchmark
Tian et al. [210] Attack: Guide agents into specific role-playing states
InjectAgent [205] Attack: A prompting injection benchmark
Agentdojo [203] Attack: A user injection benchmark
AgentPoison [216] Attack: Poisoning samples in knowledge databases
Nakash et al. [215] Attack: Indirect prompt injection through FITD attack
WIPI [214] Attack: control agents through a public web page
ASB [176] Attack: A multi-type attack benchmark
AgentHarm [223] Attack: A multi-type attack benchmark
Mantis [206] Defense: Hacking back to attackers
Chern et al. [183] Defense: Employ multi-agent debate to verify external knowledge
RTBAS [208] Defense: Check every step of agent information flow
TaskShield [209] Defense: Check every step of agent process
Zhang et al. [201] Defense: Doctor and police agents guard the healthy psychology

Interaction Attacks and Security

Wang et al. [217] Attack: Private memory extraction attack
CORBA [196] Attack: Disrupt the communications among agents
AgentSmith [220] Attack: Poison one agent to infectious other agents
Lee et al. [221] Attack: Conduct injections to self-replicate among agents
He et al. [197] Attack: Inject semantic disruptions to agent communications
BlockAgents [222] Defense: Incorporate blockchain and PoT against byzantine attacks
Abdelnabi et al. [207] Defense: A multi-layer agent firewall

allowing the infection to propagate across the entire commu-
nication network. [197] incorporates a reflection mechanism
to finish disruptions based on the semantic understand-
ing of communications. [221] injects malicious instructions
into one agent, enabling them to self-replicate across the
agent network, resembling the spread of a computer virus.
Additionally, [221] develops a tagging strategy to control
the infection spread. To defend against Byzantine attacks
during the agent interactions, BlockAgents [222] introduces
a consensus mechanism based on blockchain and proof-
of-thought (PoT) techniques. The agent that contributes the
most to the planning process is granted the accounting rights.
Interaction between agents and tools. To call appropri-
ate tools, the agents first make a plan, and then finish
the action. The interaction between agents and tools is
vulnerable. Some attackers maliciously modify planning
thoughts, and thus alter the agent actions. The agent may
call unconvincing or harmful tools to complete the task, and
further cause unexpected consequences. AgentHarm [223]
adds harmful distractions during multi-step execution tasks.
InjectAgent [205] conducts attacks during the agent planning
process. The multi-layer agent firewall [207] incorporates a
self-correction mechanism, known as the trajectory firewall
layer, to correct the deviated trajectory of agents. This firewall
layer verifies the generated responses to ensure compliance
with security rules.

4.3 Privacy

The widespread use of LLMs in multi-agent systems has
also raised several privacy concerns. These issues are mainly
caused by the memory capacity of LLMs, which may lead
to the leakage of private information during conversations
or when completing tasks. In addition, LLM agents are vul-
nerable to attacks involving model and prompt theft, along
with other forms of intellectual property theft. This section
explores the privacy threats posed by LLM Memorization
Vulnerabilities and LLM Intellectual Property Exploitation
emphasizing the importance of ensuring the safe and secure
deployment of LLMs in collaborative environments. Addi-

tionally, it discusses potential countermeasures to mitigate
these risks.

4.3.1 LLM Memorization Vulnerabilities

It has been shown that LLMs are able to generate text similar
to humans. However, such generated text may be retained
training data, which poses serious privacy protection issues.
These risks are particularly severe in multi-agent systems,
where LLMs may leak sensitive information when collaborat-
ing to solve complex tasks. This section explores the privacy
threats posed by LLM memory and discusses protection
measures against these threats.

Data Extraction Attacks. They exploit the memory capacity
of LLMs to extract sensitive information from training
data. Carlini et al. [224] show that an attacker can extract
personally identifiable information (PII) such as name, email,
and phone number from a GPT-2 model through specific
queries. The risk of data extraction increases with model size,
frequency of repeated data, and context length [225]. Huang
et al. [226] further study data extraction attacks against pre-
trained LLMs such as GPT-neo, highlighting the feasibility
of such attacks in practical applications.

Member Inference Attacks. Their purpose is to determine
whether a particular data sample has been part of the LLM
training data. Mireshghallah et al. [227] empirically analyze
the vulnerability of fine-tuned LLMs to membership infer-
ence attacks and find that fine-tuning the model head makes
it more vulnerable to such attacks. Fu et al. [228] propose a
self-calibrated membership inference attack method based
on probability changes, which provides a more reliable
membership signal through these variations. This type of
attack is particularly dangerous in multi-agent systems, as
the training data may originate from multiple sources of
sensitive information. In response to these risks, protection
strategies such as differential privacy (DP) and knowledge
distillation have been developed [229], [230].

Attribute Inference Attacks. The goal of attribute inference
attacks is to infer a certain feature or characteristic of a
data sample using training data. To confirm the existence of
sensitive attribute inference in LLMs, Pan et al. [231] conduct
an in-depth study of privacy issues related to attribute
inference attacks in LLMs. Wang et al. [232] study attribute
existence inference attacks on generative models and find
that most generative models are vulnerable to such attacks.

Protective Measures. Several protective strategies have been
proposed to reduce the chance of LLM memorization. Data
cleaning strategies can successfully reduce the risk of mem-
orization by locating and eliminating sensitive information
in training data [233]. Another effective way to minimize
privacy leakage is to introduce differential privacy noise
into model gradients and training data [229] during pre-
training and fine-tuning. Knowledge distillation techniques
have become an intuitive means of privacy protection by
transferring knowledge from private teacher models to
public student models [230]. In addition, privacy leakage
detection tools such as ProPILE can help service providers
assess the extent of their PII leakage before deploying LLM
agents [234].



14

TABLE 5: Summary of privacy threats and countermeasures
in LLM agents.

Reference Description

LM Memorization Vulnerabilities

Carlini et al. [224] Attack: Data Extraction
Huang et al. [226] Attack: Data Extraction on Pretrained LLMs
Mireshghallah et al. [227] Attack: Membership Inference on Fine-Tuned LLMs
Fu et al. [228] Attack: Self-Calibrated Membership Inference
Pan et al. [231] Attack: Attribute Inference in General-Purpose LLMs
Wang et al. [232] Attack: Property Existence Inference in Generative Models
Kandpal et al. [233] Defense: Data Sanitization to Mitigate Memorization
Hoory et al. [229] Defense: Differential Privacy for Pre-Trained LLMs
Kang et al. [230] Defense: Knowledge Distillation for Privacy Preservation
Kim et al. [234] Defense: Privacy Leakage Assessment Tool

LM Intellectual Property Exploitation

Krishna et al. [235] Attack: Model Stealing via Query APIs
Naseh et al. [236] Attack: Stealing Decoding Algorithms of LLMs
Li et al. [237] Attack: Extracting Specialized Code Abilities from LLMs
Shen et al. [240] Attack: Prompt Stealing in Text-to-Image Models
Sha et al. [241] Attack: Prompt Stealing in LLMs
Hui et al. [242] Attack: Closed-Box Prompt Extraction
Kirchenbauer et al. [238] Defense: Model Watermarking for IP Protection
Lin et al. [239] Defense: Blockchain for IP Verification

4.3.2 LM Intellectual Property Exploitation

LLM agents are subject to memory concerns as well as
privacy risks associated with intellectual property (IP), such
as model theft and prompt theft. These attacks put both
individuals and organizations at serious danger by taking
advantage of the LLMs’s economic value and signaling.

Model Stealing Attacks. Model theft attacks attempt to
extract model information (such as parameters or hyperpa-
rameters) by querying the model and observing its responses.
Krishna et al. [235] show that an attacker can steal informa-
tion from language models such as BERT through multiple
queries without accessing the original training data. Naseh
et al. [236] demonstrate that attackers can steal the types
and hyperparameters of LLM decoding algorithms at a low
cost. Li et al. [237] investigate the feasibility of extracting
specialized code from LLMs, highlighting the risk of model
theft in multi-agent systems. In response to these attacks,
protective measures such as model watermarking [238]
and blockchain-based IP authentication [239] have been
proposed.

Prompt Stealing Attacks. Prompt theft attacks involve
inferring original hints from generated content that may
have significant business value. Shen et al. [240] conduct
the first study of prompt stealer attacks against text-to-
image generation models and propose an effective attack
method called PromptStealer. Sha et al. [241] extend this
study to LLMs, using a parameter extractor to determine the
properties of the original prompt. Hui et al. [242] propose
PLEAK, a closed-box prompt extraction framework that
extracts system prompts for LLM applications by optimizing
adversarial queries. To prevent prompt theft, adversarial
samples have been proposed as an effective method to
obstruct attackers from inferring the original prompt by
introducing disturbance to the generated content [240].

The privacy challenges for LLM agents are multifaceted,
ranging from memory threats to risks related to intellectual
property. As LLMs continue to evolve, robust privacy pro-
tection technologies must be developed to mitigate these
privacy risks while ensuring that LLMs play an effective role
in multi-agent systems.

4.4 Social Impact and Ethical Concerns
LLM agents profoundly impact society, driving automation,
industrial innovation, and productivity gains. However,
ethical concerns remain. The following section explores both
the benefits and challenges associated with their use. We
summarize the content in Table 6.

4.4.1 Benefits to Sociaty
LLM agents have significantly impacted human society,
offering numerous benefits across various domains.
Automation Enhancement. LLM agents have found applica-
tions across diverse fields, including healthcare, biomedicine,
law, and education [243], [244]. By automating labor-
intensive tasks, they reduce time costs and enhance efficacy.
In healthcare, for example, they assist in interpreting clinical
symptoms, explaining lab results, and even drafting medical
documentation [245]. In legal and educational settings,
they streamline administrative work, generate summaries,
and provide instant, context-aware responses [243], [246],
[247]. Their ability to alleviate repetitive workloads allows
professionals to focus on more complex, high-stake tasks,
ultimately improving productivity and accessibility across
industries.
Job Creation and Workforce Transformation. While re-
searchers acknowledge the potential for AI agents to re-
place human jobs and disrupt the job market [243], others
argue that their advancements will reshape workforce de-
mands [248]. The rise of LLM agents is transforming the job
market, not only expanding technical roles such as machine
learning engineers and data scientists but also driving
demand for managerial positions like AI project managers
and business strategists. Given their growing economic
impact, governments are encouraged to support AI-focused
training programs to equip individuals for this evolving
landscape. Unlike LLMs, which often require specialized
expertise to use effectively, LLM agents are designed for
accessibility, attracting a broader user base and enabling
wider applications across various industries. As a result,
their societal impact is expected to surpass that of LLMs
or other AI models alone, bringing both challenges and
unprecedented opportunities.
Enhance Information Distribution. Businesses reliant on
large-scale text generation, such as online advertising, benefit
significantly from LLM agents. However, their misuse is a
growing concern, particularly regarding the proliferation of
fake news and misinformation [246], [247]. Beyond acceler-
ating advertisement distribution, enhanced information dis-
semination offers broader societal benefits. For instance, the
global shortage of patient, experienced, and knowledgeable
teachers has long been a challenge. LLM agents introduce
transformative solutions, such as intelligent online tutoring
systems, revolutionizing education accessibility [249].

4.4.2 Ethical Concerns
Although LLM agents bring numerous benefits to society,
they also pose potential risks that cannot be overlooked.
These challenges raise significant ethical concerns, includ-
ing bias in decision-making, misinformation propagation,
and privacy issues, highlighting the need for responsible
development and regulation.



15

Bias and Discrimination. LLM agents inherently inherit bi-
ases present in their training datasets and may even amplify
them during the learning process, leading to skewed outputs
and reinforcing existing stereotypes [250]. Recognizing this
issue, many existing works have implemented strategies to
mitigate harmful content generation. These methods include
filtering sensitive topics, applying reinforcement learning
with human feedback, and refining model training processes
to promote fairness and reduce bias [243], [246], [247]. The
pursuit of fairness has become a critical focus in studies on
LLM agents, as researchers strive to develop models that
minimize bias, promote inclusivity, and ensure ethical AI
deployment in real-world applications [251], [252].
Accountability. Despite efforts to mitigate toxic content in
LLM agents, the risk of harmful outputs persists [246], [247],
[253]. Accountability remains a key challenge, as documented
datasets provide limited oversight, while vast amounts of
undocumented data can be easily integrated into training.
Rigorous dataset documentation is essential, despite its
costs [254]. Additionally, proper governance frameworks
are necessary to ensure accountability in LLM agents [255],
[256].
Copyright. Copyright concerns are closely linked to privacy
and accountability. Some argue that AI should adhere to
the same legal and ethical standards as humans, ensuring
fair use and intellectual property protection [252]. Many
creators oppose their work being used to train models that
could replace them, yet the absence of clear regulations
and the growing demand for data lead to widespread
misuse [257]. This issue is often underestimated and requires
urgent attention, as it threatens human creators, increases the
prevalence of AI-generated content over human-produced
work in certain domains, and risks content degradation,
particularly when large AI models are increasingly trained
on AI-generated data [258]. Addressing these issues is
particularly crucial in the use of LLM agents, where users
often lack direct awareness of the training data sources. This
opacity increases the risk of unintended consequences, as
individuals may unknowingly rely on models trained on
controversial datasets, potentially resulting in reputational
harm or even legal repercussions.
Others. Some ethical concerns in the use of LLM agents, such
as privacy [243], [259], [260], data manipulation [261], and
misinformation [246], [262], are so critical that we provide a
thorough discussion in Sections 4.1, 4.2 and 4.3. Beyond these,
additional ethical concerns remain. One major issue is that
LLM agents lack true semantic and contextual understanding,
relying purely on statistical word associations. This limitation
is often misinterpreted and overestimated, leading to undue
reliance on these models [246], especially when their behavior
may not align well with human intentions [263]. Moreover,
concerns have been raised about the significant carbon foot-
print of LLM agents, posing environmental challenges [264],
alongside the high computational costs associated with
training large models [265].

5 APPLICATIONS

The versatility of LLM agents has led to their adoption across
diverse domains, transforming how complex tasks are ap-
proached in both research and industry settings. This section

TABLE 6: Overview of Social Impacts and Ethical Considera-
tions in LLM Agents.

Impact Reference

Benefits to Society

Automation Enhancement Foundation Models [243], GPT-3 [246], LLaMA [247]
Workforce Transformation Foundation Models [243], Redefining Work [248]
Enhance Information Distribution GPT-3 [246], LLaMa [247], Empower Online Education [249]

Ethical Concerns

Bias and Discrimination Fair Use [251], Fair Learning [252]
Accountability Stochastic Parrots [254], Governance [255], [256]
Copyright Fair Learning [252], Ethics of LLMs [257], AI collapse [258]
Data Privacy Foundation Models [243], Ethical and Social Risks [259]
Manipulation & Misinformation Data-Poisoning Attacks [261]
Others Overreliance [246], Alignment [263], Carbon Footprint [264], Expenses [265]

surveys the broad spectrum of LLM agent applications, from
accelerating scientific discovery (Section 5.1) to enhancing
interactive gaming experiences (Section 5.2), modeling com-
plex social phenomena (Section 5.3), and boosting produc-
tivity (Section 5.4). These applications demonstrate how the
integration of LLM-based agent systems enables enhanced
problem-solving capabilities through specialized knowledge
application, multi-agent collaboration, and human-AI inter-
action paradigms.

5.1 Scientific Discovery
By leveraging multiple specialized LLM agents that commu-
nicate and coordinate, LLM-based multi-agent AI systems
can combine diverse expertise, access external tools, and
decompose tasks, thereby extending the capabilities of
single LLMs [266], [267]. In this part, we survey advances
in applying LLM-driven multi-agent systems to scientific
research over the past three years.

5.1.1 Agentic AI Across Scientific Disciplines
LLM-based multi-agent systems are increasingly applied
across scientific disciplines to emulate human collaborative
workflows and tackle complex, interdisciplinary problems
that require diverse knowledge and skills. For example, the
SciAgents [268] framework uses distinct LLM agents such as
“Ontologist,” “Scientist,” and “Critic” to collectively generate
and refine scientific hypotheses. Centered on an ontolog-
ical knowledge graph that encodes relationships between
scientific concepts, SciAgents orchestrates ChatGPT-4-based
agents to generate novel research ideas and experimental
plans. In a case study on bio-inspired materials, one agent
generated a proposal to integrate silk with novel pigments;
another agent suggested simulation experiments to test the
idea, and a critical agent identified weaknesses and prompted
improvements. Beyond hypothesis generation, LLM-based
agents are being used to plan and execute experimental
research. For instance, Curie [269] developed an AI agent
framework for rigorous automated experimentation. In Curie,
an Architect agent first designs high-level experimental plans
to answer a scientific question, then multiple Technician
agents carry out specific experimental steps. In tests on ques-
tions derived from computer science research papers, Curie’s
structured multi-agent approach improved the correctness
of experimental results, outperforming more straightforward
prompt-based automation by a notable margin. This indicates
that multi-agent systems can bring not just creativity but also
discipline and reliability. Aside from scientific findings, LLMs
are also used to improve the generation pipeline of academic
works. AgentReview [270] proposes an LLM-agent-based



16

framework for simulating academic peer review processes,
offering valuable insights to improve the design of evaluation
protocols for academic papers.

5.1.2 Agentic AI in Chemistry, Materials Science and As-
tronomy

Due to the abundance of digital tools and data in these fields,
chemistry, materials science, and Astronomy have been early
adopters of LLM-based agentic AI. In the chemistry domain,
ChemCrow [271] exemplifies an LLM-driven chemistry agent
designed to foster scientific advancement by bridging the
gap between experimental and computational chemistry.
ChemCrow integrates an LLM with a suite of 18 expert-
designed chemistry tools, such as molecule property pre-
dictors, reaction planners and databases, enabling it to plan
and execute chemical syntheses autonomously. Materials
science problems, which often span multiple scales and
modalities (from atomic simulations to empirical data), also
benefit from multi-agent AI. AtomAgents [272] framework
is a physics-aware multi-agent system for automating alloy
design. In this system, a Planner agent (GPT-4) decomposes a
complex materials design challenge into a sequence of tasks,
which are then verified by a Critic agent and delegated to
specialist modules. Similar principles are being applied in
physics and astronomy. For example, an AI copilot agent
has been developed for the Cherenkov Telescope Array
in astronomy [273], using an instruction-tuned LLM to
autonomously manage telescope configuration databases and
even generate code for data analysis workflows. Although
still experimental, these efforts indicate that LLM-based
agents could soon be used in physics labs and astronomical
observatories. They could handle routine decision-making
and free human scientists to focus on high-level insights.

5.1.3 Agentic AI in Biology

The life sciences are likewise beginning to embrace LLM-
based multi-agent systems for hypothesis generation and
data analysis [274]. One notable direction is using LLM
agents to propose biological experiments or interpret multi-
omics data. BioDiscoveryAgent [275] proposed an AI agent to
design genetic perturbation experiments in molecular biology.
By parsing literature and gene databases, an LLM agent can
suggest which gene knockouts or edits might elucidate a
certain biological pathway. Another system, GeneAgent [276],
uses a self-refinement loop to discover gene associations from
biomedical databases, improving the reliability of findings
by cross-checking against known gene sets. RiGPS [277]
developed a multi-agent system with an experiment-based
self-verified reinforcement learning framework, enhancing
the biomarker identification task in the single-cell dataset.
BioRAG [211] developed a multi-agent-based RAG system
to handle biology-related QA, where several agents are
designed to retrieve information using multiple tools, and
one agent is specifically used to self-evaluate the retrieval
results. These examples illustrate the methodology of self-
questioning or self-verification in multi-agent AI: one or more
agents propose a scientific insight, and another evaluates its
plausibility with known knowledge, thereby reducing errors.

5.1.4 Agentic AI in Scientific Dataset Construction

Multi-agent systems also accelerate the construction of
scientific datasets. For instance, PathGen-1.6M [278] gen-
erated a massive pathology image dataset via multi-agent
collaboration, where multiple AI models played different
roles: one vision model scanned whole-slide histology images
to select representative regions, another (an LLM or multi-
modal model) generated descriptive captions for each region,
and additional agents iteratively refined the captions for
accuracy. KALIN [279] developed a multi-agent collaborative
framework to generate a high-quality domain LLM training
corpus. Specifically, two distinct LLMs are trained to generate
scientific questions with input chunked research articles as
context. Then, KAILIN utilizes a knowledge hierarchy to
self-evaluate the alignment of generated questions with the
input context, then self-evolving to more in-depth questions.
GeneSUM [280] is designed to maintain the gene function
description knowledge dataset automatically. Specifically, a
single description agent serves as a reader for gene ontology,
a retrieval agent functions as a reader for related literature,
and a summarization agent acts as the generator. GeneSUM
thus can automatically read emerging gene-function-related
research articles and renew the database of gene function
descriptions. These approaches demonstrate a virtuous
cycle: AI systems can consume scientific data and create
it, improving the next generation of models.

5.1.5 Agentic AI in Medical

Digitization of medical records [281], [282] brings great
potential in applying agentic AI in medical service. One
line of research has created simulated clinical environments
in which autonomous doctors and patient agents interact.
AgentHospital [283] is a virtual hospital populated by LLM-
driven doctors, nurses, and patient agents, modeling the
full cycle of care from triage to diagnosis to treatment. In
this system, each patient agent presents symptoms, and
doctor agents must converse with the patient, order virtual
tests, make a diagnosis, and prescribe treatment. In parallel,
other work focuses on aligning multi-agent AI directly with
clinical decision support in real scenarios. ClinicalLab [284]in-
troduced a comprehensive benchmark and an agent for
multi-department medical diagnostics, which involved 150
diseases across 24 medical specialties, reflecting the breadth
of knowledge required in hospital settings. Multi-agent
systems can also enhance conversational applications by
introducing roles and simulations. AIPatient [285] is a
system that creates realistic patient simulators powered
by LLMs. It leverages a structured knowledge graph of
medical information as a source of ground truth about a
patient’s conditions, and a Reasoning RAG workflow that
allows the patient agent to retrieve relevant details and
respond to a doctor’s questions in a convincing manner.
Medical imaging is another domain ripe for multi-agent AI
integration. For instance, CXR-Agent [286] uses a vision-
language model together with an LLM to interpret chest
X-rays and generate radiology reports with uncertainty
estimates. MedRAX [287] integrates several specialized tools,
such as an optical character reader for reading prior reports,
a segmentation model for highlighting image regions, and
an LLM for clinical reasoning, to solve complex chest



17

TABLE 7: Overview of Applications in LLM Agents.

Method Domain Core Idea

Scientific Discovery

SciAgents [268] General Sciences Collaborative hypothesis generation
Curie [269] General Sciences Automated experimentation
ChemCrow [271] Chemistry Tool-augmented synthesis planning
AtomAgents [272] Materials Science Physics-aware alloy design
D. Kostunin el al [273] Astronomy Telescope configuration management
BioDiscoveryAgent [275] Biology Genetic perturbation design
GeneAgent [276] Biology Self-verifying gene association discovery
RiGPS [277] Biology Biomarker identification
BioRAG [211] Biology Biology-focused retrieval augmentation
PathGen-1.6M [278] Medical Dataset Pathology image dataset generation
KALIN [279] Biology Dataset Scientific question corpus generation
GeneSUM [280] Biology Dataset Gene function knowledge maintenance
AgentHospital [283] Medical Virtual hospital simulation
ClinicalLab [284] Medical Multi-department diagnostics
AIPatient [285] Medical Patient simulation
CXR-Agent [286] Medical Chest X-ray interpretation
MedRAX [287] Medical Multimodal medical reasoning

Gaming

ReAct [33] Game Playing Reasoning and acting in text environments
Voyager [35] Game Playing Lifelong learning in Minecraft
ChessGPT [289] Game Playing Chess gameplay evaluation
GLAM [290] Game Playing Reinforcement learning in text environments
CALYPSO [291] Game Generation Narrative generation for D&D
GameGPT [292] Game Generation Automated game development
Sun et al. [293] Game Generation Interactive storytelling experience

Social Science

Econagent [294] Economy Economic decision simulation
TradingGPT [295] Economy Financial trading simulation
CompeteAI [296] Economy Market competition modeling
Ma et al. [297] Psychology Mental health support analysis
Zhang et al. [298] Psychology Social behavior simulation
TE [299] Psychology Psychological experiment simulation
Generative agents [30] Social Simulation Human behavior emulation
Liu et al. [300] Social Simulation Learning from social interactions
S3 [301] Social Simulation Social network behavior modeling

Productivity Tools

SDM [302] Software Development Self-collaboration for code generation
ChatDev [303] Software Development Chat-powered development framework
MetaGPT [27] Software Development Meta-programming for collaboration
Agent4Rec [304] Recommender Systems User behavior modeling
AgentCF [305] Recommender Systems User-item interaction modeling
MACRec [306] Recommender Systems Multi-agent recommendation
RecMind [307] Recommender Systems Knowledge-enhanced recommendation

X-ray cases that require referring to patient history and
imaging simultaneously. Evaluations of these approaches
on standard chest X-ray benchmarks [288] showed that it
could achieve diagnostic accuracy on par with state-of-the-art
standalone models while also providing an uncertainty score
that correlates with its correctness. In summary, the multi-
agent paradigm in medicine holds promise for improving
AI reliability by introducing redundancy, specialization, and
oversight. However, it also complicates the system, requiring
rigorous validation.

5.2 Gaming
The development of LLM agents offers an unprecedented op-
portunity in gaming, enabling agents to take on diverse roles
and exhibit human-like decision-making skills in intricate
game environments. Based on the different characteristics
of the games and roles of the agent, the applications can be
categorized into game playing and game generation.
Game Playing. In role-playing games, LLM agents can
assume various character roles, both as player-controlled
characters and non-player characters (NPCs). ReAct [33]
prompts LLMs to integrate reasoning and reflection into
action generation, enhancing decision-making in the embod-
ied environment. Voyager [35] introduces an LLM-powered
lifelong learning agent in Minecraft that persistently explores
the game world. ChessGPT [289] presents an autonomous
agent on mixed game-language data to facilitate board state

evaluation and chess gameplay. GLAM [290] builds an agent
in the BabyAI-text environment, where a policy is used to
select the next action, with training conducted through online
reinforcement learning.
Game Generation. In game generation, LLMs are used to
create dynamic and interactive game content. CALYPSO [291]
creates LLM agents as the assistants to help build a com-
pelling narrative to present in the context of playing Dun-
geons & Dragons. GameGPT [292] leverages dual-agent
collaboration and a hierarchical approach, using multiple
internal dictionaries to automate and enhance the game
development process. Sun et al. [293] create an interactive
storytelling game experience in 1001 Nights, where instruc-
tive language models and image generation are combined to
shape the narrative and world.

5.3 Social Science

The application of LLM agents in social science has seen
significant advancements, providing new opportunities for
understanding and simulating complex human behaviors
and interactions. These models facilitate insights into vari-
ous domains, including economics, psychology and social
simulation. Below, we explore how LLM agents are being
applied across these three critical areas.
Economy. In economics, LLM agents are utilized to ana-
lyze financial data and simulate financial activities. Econa-
gent [294] employs prompt engineering to create agents that
mimic human-like decisions or macroeconomic simulations.
TradingGPT [295] presents a multi-agent framework for
financial trading, which simulates human decision pro-
cesses by incorporating hierarchical memory structures and
debate mechanisms with individualized trading profiles.
CompeteAI [296] leverages LLM agents to model a virtual
town where restaurants and customers interact, providing
insights consistent with sociological and economic theories.
Psychology. In psychological research, LLM agents are
utilized to model human behavior with diverse traits and
cognitive processes. Ma et al. [297] investigate the psycho-
logical effects and potential benefits of using LLM-based
conversational agents for mental health support. Zhang
et al. [298] examine how LLM agents with unique traits
and thought processes replicate human-like social behav-
iors, including conformity and majority influence. TE [299]
uses LLM agents to simulate psychological experiments,
potentially revealing consistent distortions in how language
models replicate specific human behaviors.
Social Simulation. In societal simulation, LLM agents are
employed to model complex societal behaviors. These simu-
lations help in understanding real-world phenomena, such
as social influence, information diffusion, and collective
decision-making. Generative agents [30] introduce a multi-
agent interaction model within an interactive sandbox envi-
ronment, leveraging LLM agents to simulate realistic human
behavior in a variety of contexts. Building on this, Liu et
al. [300] introduce a training paradigm that enables LLMs
to learn from these simulated social interactions involving
multiple LLM agents. S3 [301] develops an LLM-based multi-
agent system to ensure the agents’ behaviors closely mimic
those of real humans within social networks.



18

5.4 Productivity Tools

LLM agents are increasingly leveraged to boost productivity
by automating diverse tasks, facilitating collaboration in
solving complex problems, and optimizing efficiency across
multiple domains. Below, we highlight their applications in
software development and recommender systems.
Software Development. Since software development involves
multiple roles, such as product managers, developers, and
testers, all working together to deliver high-quality prod-
ucts, LLM agents are increasingly being used to streamline
various aspects of the process. SDM [302] introduces a
self-collaboration framework that guides multiple LLM
agents to work together on code generation tasks, enhanc-
ing their ability to tackle complex software development
challenges collaboratively. ChatDev [303] proposes a chat-
powered software development framework, where agents
are guided on both what to communicate and how to
communicate effectively. MetaGPT [27] further incorporates
human workflows (i.e., Standardized Operating Procedures)
into LLM-powered multi-agent collaboration through a
meta-programming approach to enhance coordination and
streamline the collaborative process.
Recommender Systems. In the realm of recommender sys-
tems, LLM agents are increasingly utilized to simulate user
behaviors. Agent4Rec [304] employs LLM agents with inte-
grated user profiling, memory, and action modules to model
user behavior in recommender systems. AgentCF [305]
treats both users and items as LLM agents, introducing
a collaborative learning framework to model user-item
interactions in recommender systems. MACRec [306] directly
develops multiple agents to tackle the recommendation task.
RecMind [307] employs LLM agents to incorporate external
knowledge and carefully plans the utilization of tools for
zero-shot personalized recommendations.

6 CHALLENGES AND FUTURE TRENDS

Advancements in LLM-based multi-agent systems bring
significant opportunities but also present pressing challenges
in scalability, memory, reliability, and evaluation. This section
outlines key obstacles and emerging trends shaping the
future of agentic AI.

6.1 Scalability and Coordination

Scaling LLM-based multi-agent systems remains challeng-
ing due to high computational demands, inefficiencies in
coordination, and resource utilization [308], [309]. Existing
multi-agent frameworks, designed for lightweight agents
like function calls and rule-based systems [310], [311], lack
system-level optimization for LLM agents with billion-
scale parameters [26]. Future directions include hierarchical
structuring, where high-level LLM agents delegate subtasks
to specialized lower-level agents, and decentralized planning,
which enables agents to plan concurrently and synchronize
periodically to mitigate bottlenecks. Advancements in robust
communication protocols and efficient scheduling mecha-
nisms are needed to enhance coordination, real-time decision-
making, and system robustness [308], [309].

6.2 Memory Constraints and Long-Term Adaptation.

Effective memory mechanisms is important for maintaining
coherence across multi-turn dialogues and the longitudinal
accumulation of knowledge [312]. However, as LLMs possess
very limited effective context [74], [313], integrating sufficient
historical information into prompts becomes challenging.
This hinders the models’ contextual awareness over extended
interactions. Ensuring interaction continuity requires efficient
memory scalability and relevance management [314] beyond
current practice such as vector databases, memory caches,
context window management, and retrieval-augmented
generation (RAG) [43]. Future directions include hierarchical
memory architectures that combine episodic memory for short-
term planning with semantic memory for long-term retention,
as well as autonomous knowledge compression [315] to
refine memory dynamically and enhance reasoning over
extended interactions.

6.3 Reliability and Scientific Rigor

LLMs, while knowledge-rich, are neither comprehensive nor
up-to-date, thus potentially unsuitable as standalone replace-
ments for structured databases. Their stochastic nature makes
outputs highly sensitive to minor variations in prompts [316],
causing hallucinations [317] and compounding uncertainty
in multi-agent systems, such as agentic frameworks for
medical applications and autonomous scientific discov-
ery [318], where unreliable outputs can mislead high-stake
decision-making. Addressing these challenges necessitates
the development of rigorous validation mechanisms and
structured verification pipelines, including knowledge-graph-
based verification, where outputs are cross-checked against
structured databases [319], and cross-referencing via retrieval,
which grounds responses in cited source like web pages
as in WebGPT [320]. Along this direction, future work can
explore LLMs capable of direct citation generation, as well
as up-to-date and comprehensive knowledge sources readily
available for LLM applications. Meanwhile, in high-stakes
domains like healthcare, law, or scientific research, pure
automation remains risky. AI-human verification loops are be-
coming standard for ensuring safety, reliability, and account-
ability [317]. Future works can enhance cross-referencing
mechanisms [321], self-consistency [322], and standardized
AI auditing frameworks, such as fact-checking logs, to
improve accountability. For example, one critical challenge is
determining optimal intervention points amid the vast scale
of LLM-generated content.

6.4 Multi-turn, Multi-agent Dynamic Evaluation

Traditional AI evaluation frameworks, designed for static
datasets and single-turn tasks, fail to capture the complexities
of LLM agents in dynamic, multi-turn, and multi-agent
environments [312]. Current benchmarks primarily assess
task execution such as code completion [323], [324] and
dialogue generation [57] in isolated settings, overlooking
emergent agent behaviors, long-term adaptation, and collab-
orative reasoning that unfold across multi-turn interactions.
Additionally, static benchmarks struggle to keep pace with
evolving LLM capabilities [325]. Concerns persist regarding
potential data contamination, where model performance



19

may stem from memorization rather than genuine reason-
ing. Future research should focus on dynamic evaluation
methodologies, integrating multi-agent interaction scenarios,
structured performance metrics, and adaptive sample gen-
eration algorithms [326] to create more robust and reliable
assessment frameworks.

6.5 Regulatory Measures for Safe Deployment

As agentic AI systems gain autonomy, regulatory frameworks
must evolve to ensure accountability, transparency, and safety.
A key challenge is mitigating algorithmic bias–agents may
inadvertently discriminate based on gender, age, ethnicity,
or other sensitive attributes, often in ways imperceptible
to developers [250], [327]. Addressing this requires stan-
dardized auditing protocols to systematically identify and
correct biases, alongside traceability mechanisms that log
decision-making pathways and model confidence for post-
hoc accountability. Future work can explore multidisciplinary
approaches combining fairness-aware training pipelines
with legal and ethical safeguards. Collaboration between
policymakers, researchers, and industry stakeholders will
be critical to ensuring AI-driven systems operate safely and
equitably in alignment with societal values [328].

6.6 Role-playing Scenarios

LLM agents can simulate roles such as researchers, debators,
and instructors [309], [329], but their effectiveness is con-
strained by training data limitations and an incomplete un-
derstanding of human cognition [328], [330]. Since LLMs are
predominantly trained on web-based corpora, they struggle
to emulate roles with insufficient representation online [331]
and often produce conversations lacking diversity [270].
Future research should focus on enhancing role-play fidelity
by improving multi-agent coordination, incorporating real-
world reasoning frameworks, and refining dialogue diversity
to better support complex human-AI interactions.

7 CONCLUSION

This survey has presented a systematic taxonomy of LLM
agents, deconstructing their methodological components
across construction, collaboration, and evolution dimensions.
We have advanced a unified architectural perspective that
bridges individual agent design principles with multi-agent
collaborative systems—an approach that distinguishes our
work from previous surveys. Despite remarkable progress,
significant challenges remain, including scalability limita-
tions, memory constraints, reliability concerns, and inade-
quate evaluation frameworks. Looking forward, we antici-
pate transformative developments in coordination protocols,
hybrid architectures, self-supervised learning, and safety
mechanisms that will enhance agent capabilities across
diverse domains. By providing this foundational under-
standing and identifying promising research directions, we
hope to contribute to the responsible advancement of LLM
agent technologies that may fundamentally reshape human-
machine collaboration.

REFERENCES

[1] Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang,
J. Wang, S. Jin, E. Zhou et al., “The rise and potential of large
language model based agents: A survey,” Science China Information
Sciences, vol. 68, no. 2, p. 121101, 2025.

[2] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory
and practice,” The knowledge engineering review, vol. 10, no. 2, pp.
115–152, 1995.

[3] D. Zheng, M. Lapata, and J. Z. Pan, “Large language models as
reliable knowledge bases?” arXiv preprint arXiv:2407.13578, 2024.

[4] S. Lotfi, M. Finzi, Y. Kuang, T. G. Rudner, M. Goldblum, and A. G.
Wilson, “Non-vacuous generalization bounds for large language
models,” arXiv preprint arXiv:2312.17173, 2023.

[5] H. Fei, Y. Yao, Z. Zhang, F. Liu, A. Zhang, and T.-S. Chua,
“From multimodal llm to human-level ai: Modality, instruction,
reasoning, efficiency and beyond,” in COLING, 2024, pp. 1–8.

[6] J. Huang and K. C.-C. Chang, “Towards reasoning in large
language models: A survey,” arXiv preprint arXiv:2212.10403, 2022.

[7] C. Wang, W. Luo, Q. Chen, H. Mai, J. Guo, S. Dong, Z. Li, L. Ma,
S. Gao et al., “Tool-lmm: A large multi-modal model for tool agent
learning,” arXiv e-prints, pp. arXiv–2401, 2024.

[8] Z. Zhang, X. Bo, C. Ma, R. Li, X. Chen, Q. Dai, J. Zhu, Z. Dong,
and J.-R. Wen, “A survey on the memory mechanism of large
language model based agents,” arXiv preprint arXiv:2404.13501,
2024.

[9] P. Zhao, Z. Jin, and N. Cheng, “An in-depth survey of large
language model-based artificial intelligence agents,” arXiv preprint
arXiv:2309.14365, 2023.

[10] T. Sumers, S. Yao, K. Narasimhan, and T. Griffiths, “Cognitive
architectures for language agents,” TMLR, 2023.

[11] S. Hu, T. Huang, F. Ilhan, S. Tekin, G. Liu, R. Kompella, and L. Liu,
“A survey on large language model-based game agents,” arXiv
preprint arXiv:2404.02039, 2024.

[12] X. Xu, Y. Wang, C. Xu, Z. Ding, J. Jiang, Z. Ding, and B. F. Karlsson,
“A survey on game playing agents and large models: Methods,
applications, and challenges,” arXiv preprint arXiv:2403.10249,
2024.

[13] M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han,
A. Jamalipour, D. I. Kim, X. Shen et al., “Unleashing the power
of edge-cloud generative ai in mobile networks: A survey of aigc
services,” IEEE Communications Surveys & Tutorials, vol. 26, no. 2,
pp. 1127–1170, 2024.

[14] G. Qu, Q. Chen, W. Wei, Z. Lin, X. Chen, and K. Huang, “Mobile
edge intelligence for large language models: A contemporary
survey,” IEEE Communications Surveys & Tutorials, 2025.

[15] Z. Durante, Q. Huang, N. Wake, R. Gong, J. S. Park, B. Sarkar,
R. Taori, Y. Noda, D. Terzopoulos, Y. Choi et al., “Agent ai:
Surveying the horizons of multimodal interaction,” arXiv preprint
arXiv:2401.03568, 2024.

[16] Y. Wang, Y. Pan, Q. Zhao, Y. Deng, Z. Su, L. Du, and
T. H. Luan, “Large model agents: State-of-the-art, cooperation
paradigms, security and privacy, and future trends,” arXiv preprint
arXiv:2409.14457, 2024.

[17] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen,
J. Tang, X. Chen, Y. Lin et al., “A survey on large language model
based autonomous agents,” Frontiers of Computer Science, vol. 18,
no. 6, p. 186345, 2024.

[18] X. Li, S. Wang, S. Zeng, Y. Wu, and Y. Yang, “A survey on llm-based
multi-agent systems: workflow, infrastructure, and challenges,”
Vicinagearth, vol. 1, no. 1, p. 9, 2024.

[19] X. Li, “A review of prominent paradigms for llm-based agents:
Tool use (including rag), planning, and feedback learning,” arXiv
preprint arXiv:2406.05804, 2024.

[20] W. Jin, H. Du, B. Zhao, X. Tian, B. Shi, and G. Yang, “A com-
prehensive survey on multi-agent cooperative decision-making:
Scenarios, approaches, challenges and perspectives,” arXiv preprint
arXiv:2503.13415, 2025.

[21] Y. Ma, Z. Song, Y. Zhuang, J. Hao, and I. King, “A survey on
vision-language-action models for embodied ai,” arXiv preprint
arXiv:2405.14093, 2024.

[22] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V. Chawla,
O. Wiest, and X. Zhang, “Large language model based multi-
agents: A survey of progress and challenges,” arXiv preprint
arXiv:2402.01680, 2024.

[23] T. Masterman, S. Besen, M. Sawtell, and A. Chao, “The landscape
of emerging ai agent architectures for reasoning, planning, and
tool calling: A survey,” arXiv preprint arXiv:2404.11584, 2024.



20

[24] Y. Cheng, C. Zhang, Z. Zhang, X. Meng, S. Hong, W. Li, Z. Wang,
Z. Wang, F. Yin, J. Zhao et al., “Exploring large language model
based intelligent agents: Definitions, methods, and prospects,”
arXiv preprint arXiv:2401.03428, 2024.

[25] G. Li, H. A. A. K. Hammoud, H. Itani, D. Khizbullin, and
B. Ghanem, “Camel: Communicative agents for ”mind” explo-
ration of large language model society,” in NeurIPS, 2023.

[26] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang,
S. Zhang, J. Liu, A. H. Awadallah, R. W. White, D. Burger, and
C. Wang, “Autogen: Enabling next-gen llm applications via multi-
agent conversation,” 2023.

[27] S. Hong, X. Zheng, J. Chen, Y. Cheng, J. Wang, C. Zhang, Z. Wang,
S. K. S. Yau, Z. Lin, L. Zhou et al., “Metagpt: Meta programming
for a multi-agent collaborative framework,” in ICLR, 2024.

[28] C. Qian, W. Liu, H. Liu, N. Chen, Y. Dang, J. Li, C. Yang, W. Chen,
Y. Su, X. Cong et al., “Chatdev: Communicative agents for software
development,” in ACL, 2024, pp. 15 174–15 186.

[29] J. Zhang, J. Xiang, Z. Yu, F. Teng, X.-H. Chen, J. Chen, M. Zhuge,
X. Cheng, S. Hong, J. Wang, B. Liu, Y. Luo, and C. Wu, “AFlow:
Automating agentic workflow generation,” in ICLR, 2025.

[30] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S.
Bernstein, “Generative agents: Interactive simulacra of human
behavior,” in UIST, 2023, pp. 1–22.

[31] L. Wang, J. Zhang, H. Yang, Z.-Y. Chen, J. Tang, Z. Zhang, X. Chen,
Y. Lin, H. Sun, R. Song et al., “User behavior simulation with large
language model-based agents,” ACM Transactions on Information
Systems, vol. 43, no. 2, pp. 1–37, 2025.

[32] O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam,
S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam,
H. Miller, M. Zaharia, and C. Potts, “Dspy: Compiling declarative
language model calls into self-improving pipelines,” in ICLR, 2024.

[33] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and
Y. Cao, “React: Synergizing reasoning and acting in language
models,” in ICLR, 2023.

[34] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski,
L. Gianinazzi, J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk
et al., “Graph of thoughts: Solving elaborate problems with large
language models,” in AAAI, vol. 38, no. 16, 2024, pp. 17 682–17 690.

[35] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan,
and A. Anandkumar, “Voyager: An open-ended embodied agent
with large language models,” TMLR, 2023.

[36] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang,
B. Li, L. Lu, X. Wang et al., “Ghost in the minecraft: Generally
capable agents for open-world environments via large language
models with text-based knowledge and memory,” arXiv preprint
arXiv:2305.17144, 2023.

[37] A. Zhao, D. Huang, Q. Xu, M. Lin, Y.-J. Liu, and G. Huang, “Expel:
Llm agents are experiential learners,” in AAAI, 2024, pp. 19 632–
19 642.

[38] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao,
“Reflexion: Language agents with verbal reinforcement learning,”
NeurIPS, vol. 36, pp. 8634–8652, 2023.

[39] J. Ruan, Y. Chen, B. Zhang, Z. Xu, T. Bao, H. Mao, Z. Li, X. Zeng,
R. Zhao et al., “Tptu: Task planning and tool usage of large
language model-based ai agents,” in NeurIPS, 2023.

[40] T. Xie, F. Zhou, Z. Cheng, P. Shi, L. Weng, Y. Liu, T. J. Hua, J. Zhao,
Q. Liu, C. Liu et al., “Openagents: An open platform for language
agents in the wild,” arXiv preprint arXiv:2310.10634, 2023.

[41] H. Wang, H. Xin, C. Zheng, Z. Liu, Q. Cao, Y. Huang, J. Xiong,
H. Shi, E. Xie, J. Yin et al., “Lego-prover: Neural theorem proving
with growing libraries,” in ICLR, 2024.

[42] C. Packer, V. Fang, S. G. Patil, K. Lin, S. Wooders, and J. E.
Gonzalez, “Memgpt: Towards llms as operating systems,” CoRR,
2023.

[43] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,”
NeurIPS, vol. 33, pp. 9459–9474, 2020.

[44] D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody, S. Truitt,
D. Metropolitansky, R. O. Ness, and J. Larson, “From local to
global: A graph rag approach to query-focused summarization,”
arXiv preprint arXiv:2404.16130, 2024.

[45] Y. Zhang, R. Sun, Y. Chen, T. Pfister, R. Zhang, and S. Arik, “Chain
of agents: Large language models collaborating on long-context
tasks,” Advances in Neural Information Processing Systems, vol. 37,
pp. 132 208–132 237, 2024.

[46] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “Inter-
leaving retrieval with chain-of-thought reasoning for knowledge-
intensive multi-step questions,” arXiv preprint arXiv:2212.10509,
2022.

[47] X. Li, C. Zhu, L. Li, Z. Yin, T. Sun, and X. Qiu, “Llatrieval: Llm-
verified retrieval for verifiable generation,” in NAACL, 2024, pp.
5453–5471.

[48] W. Wu, Y. Jing, Y. Wang, W. Hu, and D. Tao, “Graph-augmented
reasoning: Evolving step-by-step knowledge graph retrieval for
llm reasoning,” 2025.

[49] X. Guan, J. Zeng, F. Meng, C. Xin, Y. Lu, H. Lin, X. Han, L. Sun,
and J. Zhou, “Deeprag: Thinking to retrieval step by step for large
language models,” arXiv preprint arXiv:2502.01142, 2025.

[50] L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, and E.-
P. Lim, “Plan-and-solve prompting: Improving zero-shot chain-
of-thought reasoning by large language models,” arXiv preprint
arXiv:2305.04091, 2023.

[51] E. H. Durfee, “Distributed problem solving and planning,” in
ECCAI Advanced Course on Artificial Intelligence. Springer, 2001,
pp. 118–149.

[52] M. Tao, D. Zhao, and Y. Feng, “Chain-of-discussion: A multi-
model framework for complex evidence-based question answer-
ing,” arXiv preprint arXiv:2402.16313, 2024.

[53] M. Hu, Y. Mu, X. Yu, M. Ding, S. Wu, W. Shao, Q. Chen,
B. Wang, Y. Qiao, and P. Luo, “Tree-planner: Efficient close-
loop task planning with large language models,” arXiv preprint
arXiv:2310.08582, 2023.

[54] J.-W. Choi, H. Kim, H. Ong, Y. Yoon, M. Jang, J. Kim et al.,
“Reactree: Hierarchical task planning with dynamic tree expansion
using llm agent nodes,” 2025.

[55] J. Long, “Large language model guided tree-of-thought,” arXiv
preprint arXiv:2305.08291, 2023.

[56] D. Zhang, S. Zhoubian, Z. Hu, Y. Yue, Y. Dong, and J. Tang, “Rest-
mcts*: Llm self-training via process reward guided tree search,”
NeurIPS, vol. 37, pp. 64 735–64 772, 2024.

[57] A. Lykov, M. Dronova, N. Naglov, M. Litvinov, S. Satsevich,
A. Bazhenov, V. Berman, A. Shcherbak, and D. Tsetserukou, “Llm-
mars: Large language model for behavior tree generation and nlp-
enhanced dialogue in multi-agent robot systems,” arXiv preprint
arXiv:2312.09348, 2023.

[58] J. Ao, F. Wu, Y. Wu, A. Swikir, and S. Haddadin, “Llm as bt-
planner: Leveraging llms for behavior tree generation in robot
task planning,” arXiv preprint arXiv:2409.10444, 2024.

[59] C. Rivera, G. Byrd, W. Paul, T. Feldman, M. Booker, E. Holmes,
D. Handelman, B. Kemp, A. Badger, A. Schmidt et al., “Concepta-
gent: Llm-driven precondition grounding and tree search for ro-
bust task planning and execution,” arXiv preprint arXiv:2410.06108,
2024.

[60] V. Bhat, A. U. Kaypak, P. Krishnamurthy, R. Karri, and F. Khorrami,
“Grounding llms for robot task planning using closed-loop state
feedback,” arXiv preprint arXiv:2402.08546, 2024.

[61] H. Li, H. Jiang, T. Zhang, Z. Yu, A. Yin, H. Cheng, S. Fu, Y. Zhang,
and W. He, “Traineragent: Customizable and efficient model
training through llm-powered multi-agent system,” arXiv preprint
arXiv:2311.06622, 2023.

[62] G. Wan, Y. Wu, J. Chen, and S. Li, “Dynamic self-consistency:
Leveraging reasoning paths for efficient llm sampling,” arXiv
preprint arXiv:2408.17017, 2024.

[63] S. Seo, J. Lee, S. Noh, and H. Kang, “Llm-based cooperative agents
using information relevance and plan validation,” arXiv preprint
arXiv:2405.16751, 2024.

[64] H. Sun, Y. Zhuang, L. Kong, B. Dai, and C. Zhang, “Adaplan-
ner: Adaptive planning from feedback with language models,”
NeurIPS, vol. 36, pp. 58 202–58 245, 2023.

[65] M. Jafaripour, S. Golestan, S. Miwa, Y. Mitsuka, and O. Zaiane,
“Adaptive iterative feedback prompting for obstacle-aware path
planning via llms,” in AAAI Workshop, 2025.

[66] S. Qiao, H. Gui, C. Lv, Q. Jia, H. Chen, and N. Zhang, “Making
language models better tool learners with execution feedback,”
arXiv preprint arXiv:2305.13068, 2023.

[67] R. Yang, L. Song, Y. Li, S. Zhao, Y. Ge, X. Li, and Y. Shan,
“Gpt4tools: Teaching large language model to use tools via self-
instruction,” NeurIPS, vol. 36, pp. 71 995–72 007, 2023.

[68] S. Yuan, K. Song, J. Chen, X. Tan, Y. Shen, R. Kan, D. Li, and
D. Yang, “Easytool: Enhancing llm-based agents with concise tool
instruction,” arXiv preprint arXiv:2401.06201, 2024.



21

[69] S. Wu, S. Zhao, Q. Huang, K. Huang, M. Yasunaga, K. Cao,
V. Ioannidis, K. Subbian, J. Leskovec, and J. Y. Zou, “Avatar:
Optimizing llm agents for tool usage via contrastive reasoning,”
NeurIPS, vol. 37, pp. 25 981–26 010, 2025.

[70] Y. Huang, J. Sansom, Z. Ma, F. Gervits, and J. Chai, “Drivlme:
Enhancing llm-based autonomous driving agents with embodied
and social experiences,” in IROS. IEEE, 2024, pp. 3153–3160.

[71] Y. Zhang, S. Yang, C. Bai, F. Wu, X. Li, Z. Wang, and X. Li,
“Towards efficient llm grounding for embodied multi-agent collab-
oration,” arXiv preprint arXiv:2405.14314, 2024.

[72] B. Colle, “Improving embodied llm agents capabilities through
collaboration,” 2024.

[73] D. A. Boiko, R. MacKnight, B. Kline, and G. Gomes, “Autonomous
chemical research with large language models,” Nature, vol. 624,
no. 7992, pp. 570–578, 2023.

[74] H. Jiang, Q. Wu, C.-Y. Lin, Y. Yang, and L. Qiu, “Llmlingua:
Compressing prompts for accelerated inference of large language
models,” in EMNLP, 2023, pp. 13 358–13 376.

[75] S. Qiao, N. Zhang, R. Fang, Y. Luo, W. Zhou, Y. E. Jiang, C. Lv,
and H. Chen, “Autoact: Automatic agent learning from scratch
for qa via self-planning,” arXiv preprint arXiv:2401.05268, 2024.

[76] M. Suzgun and A. T. Kalai, “Meta-prompting: Enhancing lan-
guage models with task-agnostic scaffolding,” arXiv preprint
arXiv:2401.12954, 2024.

[77] A. Khan, J. Hughes, D. Valentine, L. Ruis, K. Sachan, A. Rad-
hakrishnan, E. Grefenstette, S. R. Bowman, T. Rocktäschel, and
E. Perez, “Debating with more persuasive llms leads to more
truthful answers,” arXiv preprint arXiv:2402.06782, 2024.

[78] X. Tang, A. Zou, Z. Zhang, Z. Li, Y. Zhao, X. Zhang, A. Cohan, and
M. Gerstein, “Medagents: Large language models as collaborators
for zero-shot medical reasoning,” arXiv preprint arXiv:2311.10537,
2023.

[79] J. C.-Y. Chen, S. Saha, and M. Bansal, “Reconcile: Round-table
conference improves reasoning via consensus among diverse llms,”
arXiv preprint arXiv:2309.13007, 2023.

[80] T. Liang, Z. He, W. Jiao, X. Wang, Y. Wang, R. Wang, Y. Yang,
S. Shi, and Z. Tu, “Encouraging divergent thinking in large
language models through multi-agent debate,” arXiv preprint
arXiv:2305.19118, 2023.

[81] K. Kim, S. Lee, K.-H. Huang, H. P. Chan, M. Li, and H. Ji, “Can
llms produce faithful explanations for fact-checking? towards
faithful explainable fact-checking via multi-agent debate,” arXiv
preprint arXiv:2402.07401, 2024.

[82] Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch,
“Improving factuality and reasoning in language models through
multiagent debate,” in ICML, 2023.

[83] Y. Zhu, S. Qiao, Y. Ou, S. Deng, N. Zhang, S. Lyu, Y. Shen,
L. Liang, J. Gu, and H. Chen, “Knowagent: Knowledge-augmented
planning for llm-based agents,” arXiv preprint arXiv:2403.03101,
2024.

[84] S. Qiao, R. Fang, N. Zhang, Y. Zhu, X. Chen, S. Deng, Y. Jiang,
P. Xie, F. Huang, and H. Chen, “Agent planning with world
knowledge model,” NeurIPS, vol. 37, pp. 114 843–114 871, 2024.

[85] R. Fang, S. Qiao, and Z. Xi, “Refining guideline knowledge for
agent planning using textgrad,” in ICKG. IEEE, 2024, pp. 102–103.

[86] Q. Zhong, L. Ding, J. Liu, B. Du, and D. Tao, “Self-evolution
learning for discriminative language model pretraining,” in ACL
Findings, 2023, pp. 4130–4145.

[87] T. Akiba, M. Shing, Y. Tang, Q. Sun, and D. Ha, “Evolutionary op-
timization of model merging recipes,” Nature Machine Intelligence,
pp. 1–10, 2025.

[88] S. Wu, K. Lu, B. Xu, J. Lin, Q. Su, and C. Zhou, “Self-evolved
diverse data sampling for efficient instruction tuning,” arXiv
preprint arXiv:2311.08182, 2023.

[89] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe,
U. Alon, N. Dziri, S. Prabhumoye, Y. Yang et al., “Self-refine:
Iterative refinement with self-feedback,” NeurIPS, vol. 36, pp.
46 534–46 594, 2023.

[90] E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman, “Star: Self-taught
reasoner bootstrapping reasoning with reasoning,” in NeurIPS,
vol. 1126, 2024.

[91] A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and
R. Agarwal, “V-star: Training verifiers for self-taught reasoners,”
in COLM, 2024.

[92] Y. Weng, M. Zhu, F. Xia, B. Li, S. He, S. Liu, B. Sun, K. Liu,
and J. Zhao, “Large language models are better reasoners with
self-verification,” in EMNLP Findings, 2023, pp. 2550–2575.

[93] W. Yuan, R. Y. Pang, K. Cho, X. Li, S. Sukhbaatar, J. Xu, and
J. Weston, “Self-rewarding language models,” 2024.

[94] K. Yang, D. Klein, A. Celikyilmaz, N. Peng, and Y. Tian, “Rlcd:
Reinforcement learning from contrastive distillation for lm align-
ment,” in ICLR, 2024.

[95] J.-C. Pang, P. Wang, K. Li, X.-H. Chen, J. Xu, Z. Zhang, and Y. Yu,
“Language model self-improvement by reinforcement learning
contemplation,” in ICLR, 2024.

[96] C. Zhang, K. Yang, S. Hu, Z. Wang, G. Li, Y. Sun, C. Zhang,
Z. Zhang, A. Liu, S.-C. Zhu et al., “Proagent: building proactive
cooperative agents with large language models,” in AAAI, vol. 38,
no. 16, 2024, pp. 17 591–17 599.

[97] H. Ma, T. Hu, Z. Pu, L. Boyin, X. Ai, Y. Liang, and M. Chen,
“Coevolving with the other you: Fine-tuning llm with sequential
cooperative multi-agent reinforcement learning,” NeurIPS, vol. 37,
pp. 15 497–15 525, 2024.

[98] C. Ma, Z. Yang, H. Ci, J. Gao, M. Gao, X. Pan, and Y. Yang,
“Evolving diverse red-team language models in multi-round multi-
agent games,” arXiv preprint arXiv:2310.00322, 2023.

[99] T. Liang, Z. He, W. Jiao, X. Wang, Y. Wang, R. Wang, Y. Yang, S. Shi,
and Z. Tu, “Encouraging divergent thinking in large language
models through multi-agent debate,” in EMNLP, 2024, pp. 17 889–
17 904.

[100] Z. Gou, Z. Shao, Y. Gong, Y. Yang, N. Duan, W. Chen et al., “Critic:
Large language models can self-correct with tool-interactive
critiquing,” in ICLR, 2024.

[101] Y. Song, D. Yin, X. Yue, J. Huang, S. Li, and B. Y. Lin, “Trial and
error: Exploration-based trajectory optimization of llm agents,” in
ACL, 2024, pp. 7584–7600.

[102] S. Jiang, Y. Wang, and Y. Wang, “Selfevolve: A code evo-
lution framework via large language models,” arXiv preprint
arXiv:2306.02907, 2023.

[103] X. Huang, W. Liu, X. Chen, X. Wang, H. Wang, D. Lian, Y. Wang,
R. Tang, and E. Chen, “Understanding the planning of llm agents:
A survey,” arXiv preprint arXiv:2402.02716, 2024.

[104] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” NeurIPS, vol. 35, pp.
22 199–22 213, 2022.

[105] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in
large language models,” NeurIPS, vol. 35, pp. 24 824–24 837, 2022.

[106] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-consistency improves chain
of thought reasoning in language models,” arXiv preprint
arXiv:2203.11171, 2022.

[107] W. Li and W. Pan, “Enhancing chain-of-thought reasoning in large
language models through text style diversity and prompt fusion,”
in EIBDCT, vol. 13181. SPIE, 2024, pp. 226–232.

[108] J. Jiang, Z. Chen, Y. Min, J. Chen, X. Cheng, J. Wang, Y. Tang,
H. Sun, J. Deng, W. X. Zhao et al., “Technical report: Enhancing
llm reasoning with reward-guided tree search,” arXiv preprint
arXiv:2411.11694, 2024.

[109] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions
on Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[110] H. Guo, Z. Liu, Y. Zhang, and Z. Wang, “Can large language
models play games? a case study of a self-play approach,” arXiv
preprint arXiv:2403.05632, 2024.

[111] Y. Liu, P. Sun, and H. Li, “Large language models as agents in
two-player games,” arXiv preprint arXiv:2402.08078, 2024.

[112] A. R. Laleh and M. N. Ahmadabadi, “A survey on enhancing
reinforcement learning in complex environments: Insights from
human and llm feedback,” arXiv preprint arXiv:2411.13410, 2024.

[113] Z. Shen, “Llm with tools: A survey,” arXiv preprint
arXiv:2409.18807, 2024.

[114] C. Y. Kim, C. P. Lee, and B. Mutlu, “Understanding large-language
model (llm)-powered human-robot interaction,” in HRI, 2024, pp.
371–380.

[115] B. Li, Y. Wang, J. Gu, K.-W. Chang, and N. Peng, “Metal: A multi-
agent framework for chart generation with test-time scaling,”
arXiv preprint arXiv:2502.17651, 2025.

[116] S. Guo, C. Deng, Y. Wen, H. Chen, Y. Chang, and J. Wang,
“Ds-agent: Automated data science by empowering large
language models with case-based reasoning,” arXiv preprint
arXiv:2402.17453, 2024.



22

[117] Z. Yin, Q. Sun, C. Chang, Q. Guo, J. Dai, X. Huang, and
X. Qiu, “Exchange-of-thought: Enhancing large language model
capabilities through cross-model communication,” arXiv preprint
arXiv:2312.01823, 2023.

[118] Y. Li, S. Ren, P. Wu, S. Chen, C. Feng, and W. Zhang, “Learning
distilled collaboration graph for multi-agent perception,” NeurIPS,
vol. 34, pp. 29 541–29 552, 2021.

[119] Z. Liu, Y. Zhang, P. Li, Y. Liu, and D. Yang, “A dynamic llm-
powered agent network for task-oriented agent collaboration,” in
COLM, 2024.

[120] Y. Kim, C. Park, H. Jeong, Y. S. Chan, X. Xu, D. McDuff, H. Lee,
M. Ghassemi, C. Breazeal, H. Park et al., “Mdagents: An adaptive
collaboration of llms for medical decision-making,” NeurIPS,
vol. 37, pp. 79 410–79 452, 2024.

[121] L. Ying, T. Zhi-Xuan, V. Mansinghka, and J. B. Tenenbaum,
“Inferring the goals of communicating agents from actions and
instructions,” in Proceedings of the AAAI Symposium Series, vol. 2,
no. 1, 2023, pp. 26–33.

[122] J. Vyas and M. Mercangöz, “Autonomous industrial control using
an agentic framework with large language models,” arXiv preprint
arXiv:2411.05904, 2024.

[123] D. Dell’Anna, N. Alechina, F. Dalpiaz, M. Dastani, and B. Logan,
“Data-driven revision of conditional norms in multi-agent systems,”
Journal of Artificial Intelligence Research, vol. 75, pp. 1549–1593, 2022.

[124] X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding,
K. Men, K. Yang et al., “Agentbench: Evaluating llms as agents,”
arXiv preprint arXiv:2308.03688, 2023.

[125] X. Deng, Y. Gu, B. Zheng, S. Chen, S. Stevens, B. Wang, H. Sun,
and Y. Su, “Mind2web: Towards a generalist agent for the web,”
NeurIPS, vol. 36, pp. 28 091–28 114, 2023.

[126] G. Yin, H. Bai, S. Ma, F. Nan, Y. Sun, Z. Xu, S. Ma, J. Lu, X. Kong,
A. Zhang et al., “Mmau: A holistic benchmark of agent capabilities
across diverse domains,” arXiv preprint arXiv:2407.18961, 2024.

[127] K. Gu, R. Shang, R. Jiang, K. Kuang, R.-J. Lin, D. Lyu, Y. Mao,
Y. Pan, T. Wu, J. Yu et al., “Blade: Benchmarking language model
agents for data-driven science,” arXiv preprint arXiv:2408.09667,
2024.

[128] X. Liu, T. Zhang, Y. Gu, I. L. Iong, Y. Xu, X. Song, S. Zhang,
H. Lai, X. Liu, H. Zhao et al., “Visualagentbench: Towards large
multimodal models as visual foundation agents,” arXiv preprint
arXiv:2408.06327, 2024.

[129] M. Li, S. Zhao, Q. Wang, K. Wang, Y. Zhou, S. Srivastava,
C. Gokmen, T. Lee, E. L. Li, R. Zhang et al., “Embodied agent
interface: Benchmarking llms for embodied decision making,”
NeurIPS, vol. 37, pp. 100 428–100 534, 2025.

[130] T. Xu, L. Chen, D.-J. Wu, Y. Chen, Z. Zhang, X. Yao, Z. Xie, Y. Chen,
S. Liu, B. Qian et al., “Crab: Cross-platfrom agent benchmark
for multi-modal embodied language model agents,” in NeurIPS
Workshop, 2024.

[131] N. Butt, V. Chandrasekaran, N. Joshi, B. Nushi, and V. Balachan-
dran, “Benchagents: Automated benchmark creation with agent
interaction,” arXiv preprint arXiv:2410.22584, 2024.

[132] S. Wang, Z. Long, Z. Fan, Z. Wei, and X. Huang, “Benchmark self-
evolving: A multi-agent framework for dynamic llm evaluation,”
arXiv preprint arXiv:2402.11443, 2024.

[133] W. Wang, Z. Ma, P. Liu, and M. Chen, “Revisiting benchmark
and assessment: An agent-based exploratory dynamic evaluation
framework for llms,” arXiv preprint arXiv:2410.11507, 2024.

[134] M. Wu, T. Zhu, H. Han, C. Tan, X. Zhang, and W. Chen, “Seal-tools:
Self-instruct tool learning dataset for agent tuning and detailed
benchmark,” in NLPCC. Springer, 2024, pp. 372–384.

[135] Z. Guo, Y. Huang, and D. Xiong, “Ctooleval: a chinese benchmark
for llm-powered agent evaluation in real-world api interactions,”
in ACL Findings, 2024, pp. 15 711–15 724.

[136] Y. Jiang, K. C. Black, G. Geng, D. Park, A. Y. Ng, and J. H. Chen,
“Medagentbench: Dataset for benchmarking llms as agents in
medical applications,” arXiv preprint arXiv:2501.14654, 2025.

[137] Z. Fan, J. Tang, W. Chen, S. Wang, Z. Wei, J. Xi, F. Huang,
and J. Zhou, “Ai hospital: Benchmarking large language models
in a multi-agent medical interaction simulator,” arXiv preprint
arXiv:2402.09742, 2024.

[138] Y. Ma, C. Cui, X. Cao, W. Ye, P. Liu, J. Lu, A. Abdelraouf, R. Gupta,
K. Han, A. Bera et al., “Lampilot: An open benchmark dataset for
autonomous driving with language model programs,” in CVPR,
2024, pp. 15 141–15 151.

[139] Y. Zhang, Q. Jiang, X. Han, N. Chen, Y. Yang, and K. Ren, “Bench-
marking data science agents,” arXiv preprint arXiv:2402.17168,
2024.

[140] Y. Huang, J. Luo, Y. Yu, Y. Zhang, F. Lei, Y. Wei, S. He, L. Huang,
X. Liu, J. Zhao et al., “Da-code: Agent data science code gen-
eration benchmark for large language models,” arXiv preprint
arXiv:2410.07331, 2024.

[141] B. Huang, Y. Yu, J. Huang, X. Zhang, and J. Ma, “Dca-
bench: A benchmark for dataset curation agents,” arXiv preprint
arXiv:2406.07275, 2024.

[142] J. Xie, K. Zhang, J. Chen, T. Zhu, R. Lou, Y. Tian, Y. Xiao, and
Y. Su, “Travelplanner: A benchmark for real-world planning with
language agents,” arXiv preprint arXiv:2402.01622, 2024.

[143] Q. Huang, J. Vora, P. Liang, and J. Leskovec, “Benchmarking large
language models as ai research agents,” in NeurIPS Workshop,
2023.

[144] J. S. Chan, N. Chowdhury, O. Jaffe, J. Aung, D. Sherburn,
E. Mays, G. Starace, K. Liu, L. Maksin, T. Patwardhan et al., “Mle-
bench: Evaluating machine learning agents on machine learning
engineering,” arXiv preprint arXiv:2410.07095, 2024.

[145] M. Andriushchenko, A. Souly, M. Dziemian, D. Duenas, M. Lin,
J. Wang, D. Hendrycks, A. Zou, J. Z. Kolter, M. Fredrikson et al.,
“Agentharm: Benchmarking robustness of llm agents on harmful
tasks,” in ICLR, 2024.

[146] T. Xie, D. Zhang, J. Chen, X. Li, S. Zhao, R. Cao, J. H. Toh, Z. Cheng,
D. Shin, F. Lei et al., “Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments,” NeurIPS,
vol. 37, pp. 52 040–52 094, 2025.

[147] K. Xu, Y. Kordi, T. Nayak, A. Asija, Y. Wang, K. Sanders,
A. Byerly, J. Zhang, B. Van Durme, and D. Khashabi, “Tur [k]
ingbench: A challenge benchmark for web agents,” arXiv preprint
arXiv:2403.11905, 2024.

[148] R. Kapoor, Y. P. Butala, M. Russak, J. Y. Koh, K. Kamble, W. Al-
Shikh, and R. Salakhutdinov, “Omniact: A dataset and benchmark
for enabling multimodal generalist autonomous agents for desk-
top and web,” in ECCV. Springer, 2024, pp. 161–178.

[149] J. Yang, S. Liu, H. Guo, Y. Dong, X. Zhang, S. Zhang, P. Wang,
Z. Zhou, B. Xie, Z. Wang et al., “Egolife: Towards egocentric life
assistant,” arXiv preprint arXiv:2503.03803, 2025.

[150] J. Wang, M. Zerun, Y. Li, S. Zhang, C. Chen, K. Chen, and X. Le,
“Gta: a benchmark for general tool agents,” in NeurIPS, 2024.

[151] F. F. Xu, Y. Song, B. Li, Y. Tang, K. Jain, M. Bao, Z. Z. Wang,
X. Zhou, Z. Guo, M. Cao et al., “Theagentcompany: benchmarking
llm agents on consequential real world tasks,” arXiv preprint
arXiv:2412.14161, 2024.

[152] R. Barbarroxa, L. Gomes, and Z. Vale, “Benchmarking large
language models for multi-agent systems: A comparative analysis
of autogen, crewai, and taskweaver,” in International Conference on
Practical Applications of Agents and Multi-Agent Systems. Springer,
2024, pp. 39–48.

[153] Z. Li, X. Wu, H. Du, H. Nghiem, and G. Shi, “Benchmark
evaluations, applications, and challenges of large vision language
models: A survey,” arXiv preprint arXiv:2501.02189, 2025.

[154] M. Kenney, “Ml research benchmark,” arXiv preprint
arXiv:2410.22553, 2024.

[155] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim,
C. Hesse, S. Jain, V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe,
T. Eloundou, G. Krueger, K. Button, M. Knight, B. Chess, and
J. Schulman, “Webgpt: Browser-assisted question-answering with
human feedback,” 2022.

[156] Y. Qin, Z. Cai, D. Jin, L. Yan, S. Liang, K. Zhu, Y. Lin, X. Han,
N. Ding, H. Wang, R. Xie, F. Qi, Z. Liu, M. Sun, and J. Zhou,
“WebCPM: Interactive web search for Chinese long-form question
answering,” in ACL, A. Rogers, J. Boyd-Graber, and N. Okazaki,
Eds. Toronto, Canada: Association for Computational Linguistics,
Jul. 2023, pp. 8968–8988.

[157] K. Zhang, H. Zhang, G. Li, J. Li, Z. Li, and Z. Jin, “Toolcoder:
Teach code generation models to use api search tools,” 2023.

[158] S. Robertson, H. Zaragoza et al., “The probabilistic relevance
framework: Bm25 and beyond,” Foundations and Trends® in
Information Retrieval, vol. 3, no. 4, pp. 333–389, 2009.

[159] B. Lei, Y. Li, and Q. Chen, “Autocoder: Enhancing code large
language model with AIEV-INSTRUCT,” 2024.

[160] J. Gehring, K. Zheng, J. Copet, V. Mella, Q. Carbonneaux, T. Cohen,
and G. Synnaeve, “Rlef: Grounding code llms in execution
feedback with reinforcement learning,” 2025.



23

[161] X. Wang, Y. Chen, L. Yuan, Y. Zhang, Y. Li, H. Peng, and H. Ji,
“Executable code actions elicit better llm agents,” ArXiv, vol.
abs/2402.01030, 2024.

[162] T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli, E. Ham-
bro, L. Zettlemoyer, N. Cancedda, and T. Scialom, “Toolformer:
Language models can teach themselves to use tools,” Advances in
Neural Information Processing Systems, vol. 36, pp. 68 539–68 551,
2023.

[163] B. Paranjape, S. Lundberg, S. Singh, H. Hajishirzi, L. Zettlemoyer,
and M. T. Ribeiro, “Art: Automatic multi-step reasoning and tool-
use for large language models,” arXiv preprint arXiv:2303.09014,
2023.

[164] Y. Song, W. Xiong, D. Zhu, W. Wu, H. Qian, M. Song, H. Huang,
C. Li, K. Wang, R. Yao, Y. Tian, and S. Li, “Restgpt: Connecting
large language models with real-world restful apis,” 2023.

[165] A. Saha, L. Mandal, B. Ganesan, S. Ghosh, R. Sindhgatta, C. Eber-
hardt, D. Debrunner, and S. Mehta, “Sequential API function
calling using GraphQL schema,” in EMNLP, Y. Al-Onaizan,
M. Bansal, and Y.-N. Chen, Eds., Miami, Florida, USA, Nov. 2024,
pp. 19 452–19 458.

[166] L. Yuan, Y. Chen, X. Wang, Y. R. Fung, H. Peng, and H. Ji, “Craft:
Customizing llms by creating and retrieving from specialized
toolsets,” arXiv preprint arXiv:2309.17428, 2023.

[167] C. Qian, C. Xiong, Z. Liu, and Z. Liu, “Toolink: Linking toolkit
creation and using through chain-of-solving on open-source
model,” in NAACL, 2024, pp. 831–854.

[168] C. Qian, C. Han, Y. Fung, Y. Qin, Z. Liu, and H. Ji, “CREATOR:
Tool creation for disentangling abstract and concrete reasoning of
large language models,” in EMNLP Findings, H. Bouamor, J. Pino,
and K. Bali, Eds., Singapore, Dec. 2023, pp. 6922–6939.

[169] T. Cai, X. Wang, T. Ma, X. Chen, and D. Zhou, “Large language
models as tool makers,” 2024.

[170] “LangChain,” 1 2023. [Online]. Available: https://github.com/
langchain-ai/langchain

[171] “LlamaIndex,” 11 2022. [Online]. Available: https://github.com/
jerryjliu/llama index

[172] “Dify,” 5 2023. [Online]. Available: https://github.com/
langgenius/dify

[173] “Ollama,” 7 2023. [Online]. Available: https://github.com/
ollama/ollama

[174] “MCP Agent,” 2 2025. [Online]. Available: https://github.com/
lastmile-ai/mcp-agent

[175] A. Li, Y. Zhou, V. C. Raghuram, T. Goldstein, and M. Goldblum,
“Commercial llm agents are already vulnerable to simple yet
dangerous attacks,” arXiv preprint arXiv:2502.08586, 2025.

[176] W. Zhang, K. Tang, H. Wu, M. Wang, Y. Shen, G. Hou, Z. Tan,
P. Li, Y. Zhuang, and W. Lu, “Agent-pro: Learning to evolve
via policy-level reflection and optimization,” in ACL, 2024, pp.
5348–5375.

[177] L. Mo, Z. Liao, B. Zheng, Y. Su, C. Xiao, and H. Sun, “A trembling
house of cards? mapping adversarial attacks against language
agents,” arXiv preprint arXiv:2402.10196, 2024.

[178] E. Debenedetti, J. Zhang, M. Balunovic, L. Beurer-Kellner, M. Fis-
cher, and F. Tramer, “Agentdojo: A dynamic environment to
evaluate prompt injection attacks and defenses for llm agents,” in
NeurIPS, vol. 37, 2024, pp. 82 895–82 920.

[179] C. H. Wu, J. Y. Koh, R. Salakhutdinov, D. Fried, and A. Raghu-
nathan, “Adversarial attacks on multimodal agents,” arXiv preprint
arXiv:2406.12814, 2024.

[180] L.-b. Ning, S. Wang, W. Fan, Q. Li, X. Xu, H. Chen, and F. Huang,
“Cheatagent: Attacking llm-empowered recommender systems via
llm agent,” in KDD, 2024, pp. 2284–2295.

[181] W. Yu, K. Hu, T. Pang, C. Du, M. Lin, and M. Fredrikson,
“Infecting llm agents via generalizable adversarial attack,” in
NeurIPS Workshop, 2024.

[182] G. Lin and Q. Zhao, “Large language model sentinel: Llm agent
for adversarial purification,” arXiv preprint arXiv:2405.20770, 2024.

[183] S. Chern, Z. Fan, and A. Liu, “Combating adversarial attacks with
multi-agent debate,” arXiv preprint arXiv:2401.05998, 2024.

[184] X. Wang, J. Peng, K. Xu, H. Yao, and T. Chen, “Reinforcement
learning-driven llm agent for automated attacks on llms,” in ACL
Findings, 2024, pp. 170–177.

[185] Y. Dong, Z. Li, X. Meng, N. Yu, and S. Guo, “Jailbreaking
text-to-image models with llm-based agents,” arXiv preprint
arXiv:2408.00523, 2024.

[186] X. Chen, Y. Nie, W. Guo, and X. Zhang, “When llm meets
drl: Advancing jailbreaking efficiency via drl-guided search,” in
NeurIPS, 2024.

[187] Z. Lin, W. Ma, M. Zhou, Y. Zhao, H. Wang, Y. Liu, J. Wang, and
L. Li, “Pathseeker: Exploring llm security vulnerabilities with a
reinforcement learning-based jailbreak approach,” arXiv preprint
arXiv:2409.14177, 2024.

[188] Y. Zeng, Y. Wu, X. Zhang, H. Wang, and Q. Wu, “Autodefense:
Multi-agent llm defense against jailbreak attacks,” arXiv preprint
arXiv:2403.04783, 2024.

[189] S. Barua, M. Rahman, M. J. Sadek, R. Islam, S. Khaled, and A. Kabir,
“Guardians of the agentic system: Preventing many shots jailbreak
with agentic system,” arXiv preprint arXiv:2502.16750, 2025.

[190] Z. Ni, H. Wang, and H. Wang, “Shieldlearner: A new paradigm for
jailbreak attack defense in llms,” arXiv preprint arXiv:2502.13162,
2025.

[191] P. Zhu, Z. Zhou, Y. Zhang, S. Yan, K. Wang, and S. Su, “Demona-
gent: Dynamically encrypted multi-backdoor implantation attack
on llm-based agent,” arXiv preprint arXiv:2502.12575, 2025.

[192] W. Yang, X. Bi, Y. Lin, S. Chen, J. Zhou, and X. Sun, “Watch out for
your agents! investigating backdoor threats to llm-based agents,”
NeurIPS, vol. 37, pp. 100 938–100 964, 2025.

[193] Y. Wang, D. Xue, S. Zhang, and S. Qian, “Badagent: Inserting
and activating backdoor attacks in llm agents,” in ACL, 2024, pp.
9811–9827.

[194] T. Tong, F. Wang, Z. Zhao, and M. Chen, “Badjudge: Backdoor
vulnerabilities of llm-as-a-judge,” in ICLR, 2025.

[195] Z. Guo and R. Tourani, “Darkmind: Latent chain-of-thought
backdoor in customized llms,” arXiv preprint arXiv:2501.18617,
2025.

[196] Z. Zhou, Z. Li, J. Zhang, Y. Zhang, K. Wang, Y. Liu, and
Q. Guo, “Corba: Contagious recursive blocking attacks on multi-
agent systems based on large language models,” arXiv preprint
arXiv:2502.14529, 2025.

[197] P. He, Y. Lin, S. Dong, H. Xu, Y. Xing, and H. Liu, “Red-teaming llm
multi-agent systems via communication attacks,” arXiv preprint
arXiv:2502.14847, 2025.

[198] M. Yu, S. Wang, G. Zhang, J. Mao, C. Yin, Q. Liu, Q. Wen, K. Wang,
and Y. Wang, “Netsafe: Exploring the topological safety of multi-
agent networks,” arXiv preprint arXiv:2410.15686, 2024.

[199] S. Wang, G. Zhang, M. Yu, G. Wan, F. Meng, C. Guo, K. Wang,
and Y. Wang, “G-safeguard: A topology-guided security lens
and treatment on llm-based multi-agent systems,” arXiv preprint
arXiv:2502.11127, 2025.

[200] W. Hua, X. Yang, M. Jin, Z. Li, W. Cheng, R. Tang, and Y. Zhang,
“Trustagent: Towards safe and trustworthy llm-based agents
through agent constitution,” in EMNLP Findings, 2024.

[201] Z. Zhang, Y. Zhang, L. Li, H. Gao, L. Wang, H. Lu, F. Zhao,
Y. Qiao, and J. Shao, “Psysafe: A comprehensive framework for
psychological-based attack, defense, and evaluation of multi-agent
system safety,” arXiv preprint arXiv:2401.11880, 2024.

[202] Z. Deng, Y. Guo, C. Han, W. Ma, J. Xiong, S. Wen, and Y. Xiang,
“Ai agents under threat: A survey of key security challenges and
future pathways,” ACM Computing Surveys, 2024.

[203] E. Debenedetti, J. Zhang, M. Balunovic, L. Beurer-Kellner, M. Fis-
cher, and F. Tramèr, “Agentdojo: A dynamic environment to
evaluate prompt injection attacks and defenses for llm agents,”
NeurIPS, vol. 37, pp. 82 895–82 920, 2025.

[204] X. Li, Z. Li, Y. Kosuga, Y. Yoshida, and V. Bian, “Targeting the
core: A simple and effective method to attack rag-based agents via
direct llm manipulation,” arXiv preprint arXiv:2412.04415, 2024.

[205] Q. Zhan, Z. Liang, Z. Ying, and D. Kang, “Injecagent: Benchmark-
ing indirect prompt injections in tool-integrated large language
model agents,” arXiv preprint arXiv:2403.02691, 2024.

[206] D. Pasquini, E. M. Kornaropoulos, and G. Ateniese, “Hacking back
the ai-hacker: Prompt injection as a defense against llm-driven
cyberattacks,” arXiv preprint arXiv:2410.20911, 2024.

[207] S. Abdelnabi, A. Gomaa, E. Bagdasarian, P. O. Kristensson, and
R. Shokri, “Firewalls to secure dynamic llm agentic networks,”
arXiv preprint arXiv:2502.01822, 2025.

[208] P. Y. Zhong, S. Chen, R. Wang, M. McCall, B. L. Titzer, and
H. Miller, “Rtbas: Defending llm agents against prompt injection
and privacy leakage,” arXiv preprint arXiv:2502.08966, 2025.

[209] F. Jia, T. Wu, X. Qin, and A. Squicciarini, “The task shield:
Enforcing task alignment to defend against indirect prompt
injection in llm agents,” arXiv preprint arXiv:2412.16682, 2024.

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://github.com/langgenius/dify
https://github.com/langgenius/dify
https://github.com/ollama/ollama
https://github.com/ollama/ollama
https://github.com/lastmile-ai/mcp-agent
https://github.com/lastmile-ai/mcp-agent


24

[210] Y. Tian, X. Yang, J. Zhang, Y. Dong, and H. Su, “Evil geniuses:
Delving into the safety of llm-based agents,” arXiv preprint
arXiv:2311.11855, 2023.

[211] C. Wang, Q. Long, X. Meng, X. Cai, C. Wu, Z. Meng, X. Wang, and
Y. Zhou, “Biorag: A rag-llm framework for biological question
reasoning,” arXiv preprint arXiv:2408.01107, 2024.

[212] Y. Gan, Y. Yang, Z. Ma, P. He, R. Zeng, Y. Wang, Q. Li, C. Zhou,
S. Li, T. Wang et al., “Navigating the risks: A survey of security,
privacy, and ethics threats in llm-based agents,” arXiv preprint
arXiv:2411.09523, 2024.

[213] Z. Xiang, Y. Zeng, M. Kang, C. Xu, J. Zhang, Z. Yuan, Z. Chen,
C. Xie, F. Jiang, M. Pan et al., “Clas 2024: The competition for llm
and agent safety,” in NeurIPS Workshop, 2024.

[214] F. Wu, S. Wu, Y. Cao, and C. Xiao, “Wipi: A new web threat for
llm-driven web agents,” arXiv preprint arXiv:2402.16965, 2024.

[215] I. Nakash, G. Kour, G. Uziel, and A. Anaby-Tavor, “Breaking react
agents: Foot-in-the-door attack will get you in,” arXiv preprint
arXiv:2410.16950, 2024.

[216] Z. Chen, Z. Xiang, C. Xiao, D. Song, and B. Li, “Agentpoison:
Red-teaming llm agents via poisoning memory or knowledge
bases,” NeurIPS, vol. 37, pp. 130 185–130 213, 2025.

[217] B. Wang, W. He, P. He, S. Zeng, Z. Xiang, Y. Xing, and J. Tang,
“Unveiling privacy risks in llm agent memory,” arXiv preprint
arXiv:2502.13172, 2025.

[218] E. T. Red, “Malicious chatgpt agents: How gpts can quietly grab
your data (demo),” Embrace The Red, 2023.

[219] Y. Li, H. Wen, W. Wang, X. Li, Y. Yuan, G. Liu, J. Liu, W. Xu,
X. Wang, Y. Sun et al., “Personal llm agents: Insights and survey
about the capability, efficiency and security,” arXiv preprint
arXiv:2401.05459, 2024.

[220] X. Gu, X. Zheng, T. Pang, C. Du, Q. Liu, Y. Wang, J. Jiang,
and M. Lin, “Agent smith: A single image can jailbreak one
million multimodal llm agents exponentially fast,” arXiv preprint
arXiv:2402.08567, 2024.

[221] D. Lee and M. Tiwari, “Prompt infection: Llm-to-llm prompt injec-
tion within multi-agent systems,” arXiv preprint arXiv:2410.07283,
2024.

[222] B. Chen, G. Li, X. Lin, Z. Wang, and J. Li, “Blockagents: To-
wards byzantine-robust llm-based multi-agent coordination via
blockchain,” in ACM Turing Award Celebration Conference, 2024, pp.
187–192.

[223] M. Andriushchenko, A. Souly, M. Dziemian, D. Duenas, M. Lin,
J. Wang, D. Hendrycks, A. Zou, Z. Kolter, M. Fredrikson et al.,
“Agentharm: A benchmark for measuring harmfulness of llm
agents,” arXiv preprint arXiv:2410.09024, 2024.

[224] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss,
K. Lee, A. Roberts, T. Brown, D. Song, U. Erlingsson et al.,
“Extracting training data from large language models,” in USENIX,
2021, pp. 2633–2650.

[225] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, and
C. Zhang, “Quantifying memorization across neural language
models,” in ICLR, 2022.

[226] J. Huang, H. Shao, and K. C.-C. Chang, “Are large pre-trained
language models leaking your personal information?” arXiv
preprint arXiv:2205.12628, 2022.

[227] F. Mireshghallah, K. Goyal, A. Uniyal, T. Berg-Kirkpatrick,
and R. Shokri, “Quantifying privacy risks of masked language
models using membership inference attacks,” arXiv preprint
arXiv:2203.03929, 2022.

[228] W. Fu, H. Wang, C. Gao, G. Liu, Y. Li, and T. Jiang, “Practical mem-
bership inference attacks against fine-tuned large language models
via self-prompt calibration,” arXiv preprint arXiv:2311.06062, 2023.

[229] S. Hoory, A. Feder, A. Tendler, S. Erell, A. Peled-Cohen, I. Laish,
H. Nakhost, U. Stemmer, A. Benjamini, A. Hassidim et al., “Learn-
ing and evaluating a differentially private pre-trained language
model,” in EMNLP Findings, 2021, pp. 1178–1189.

[230] M. Kang, S. Lee, J. Baek, K. Kawaguchi, and S. J. Hwang,
“Knowledge-augmented reasoning distillation for small language
models in knowledge-intensive tasks,” NeurIPS, vol. 36, pp. 48 573–
48 602, 2023.

[231] X. Pan, M. Zhang, S. Ji, and M. Yang, “Privacy risks of general-
purpose language models,” in IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1314–1331.

[232] L. Wang, J. Wang, J. Wan, L. Long, Z. Yang, and Z. Qin, “Property
existence inference against generative models,” in USENIX, 2024,
pp. 2423–2440.

[233] N. Kandpal, E. Wallace, and C. Raffel, “Deduplicating training
data mitigates privacy risks in language models,” in ICML. PMLR,
2022, pp. 10 697–10 707.

[234] S. Kim, S. Yun, H. Lee, M. Gubri, S. Yoon, and S. J. Oh, “Propile:
Probing privacy leakage in large language models,” NeurIPS,
vol. 36, pp. 20 750–20 762, 2023.

[235] K. Krishna, G. S. Tomar, A. P. Parikh, N. Papernot, and M. Iyyer,
“Thieves on sesame street! model extraction of bert-based apis,”
arXiv preprint arXiv:1910.12366, 2019.

[236] A. Naseh, K. Krishna, M. Iyyer, and A. Houmansadr, “Stealing
the decoding algorithms of language models,” in ACM SIGSAC,
2023, pp. 1835–1849.

[237] Z. Li, C. Wang, P. Ma, C. Liu, S. Wang, D. Wu, C. Gao, and Y. Liu,
“On extracting specialized code abilities from large language
models: A feasibility study,” in ICSE, 2024, pp. 1–13.

[238] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Gold-
stein, “A watermark for large language models,” in ICML. PMLR,
2023, pp. 17 061–17 084.

[239] Y. Lin, Z. Gao, H. Du, D. Niyato, J. Kang, Z. Xiong, and Z. Zheng,
“Blockchain-based efficient and trustworthy aigc services in meta-
verse,” IEEE Transactions on Services Computing, 2024.

[240] X. Shen, Y. Qu, M. Backes, and Y. Zhang, “Prompt stealing attacks
against {Text-to-Image} generation models,” in USENIX, 2024,
pp. 5823–5840.

[241] Z. Sha and Y. Zhang, “Prompt stealing attacks against large
language models,” arXiv preprint arXiv:2402.12959, 2024.

[242] B. Hui, H. Yuan, N. Gong, P. Burlina, and Y. Cao, “Pleak: Prompt
leaking attacks against large language model applications,” in
ACM SIGSAC, 2024, pp. 3600–3614.

[243] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On
the Opportunities and Risks of Foundation Models,” arXiv preprint
arXiv:2108.07258, 2021.

[244] W. Liu, Z. He, and X. Huang, “Time matters: Examine tem-
poral effects on biomedical language models,” arXiv preprint
arXiv:2407.17638, 2024.

[245] P. Jones, W. Liu, I. Huang, X. Huang et al., “Examining imbalance
effects on performance and demographic fairness of clinical
language models,” arXiv preprint arXiv:2412.17803, 2024.

[246] L. Floridi and M. Chiriatti, “GPT-3: Its Nature, Scope, Limits, and
Consequences,” Minds and Machines, vol. 30, pp. 681–694, 2020.

[247] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“LLaMA: Open and Efficient Foundation Language Models,” arXiv
preprint arXiv:2302.13971, 2023.

[248] P. Tadas and S. Agarmore, “Redefining Work in the Age of AI:
Challenges and Pathways to Opportunities,” in SPICES. IEEE,
2024, pp. 1–5.

[249] S. Moore, R. Tong, A. Singh, Z. Liu, X. Hu, Y. Lu, J. Liang, C. Cao,
H. Khosravi, P. Denny et al., “Empowering Education with LLMs -
The Next-Gen Interface and Content Generation,” in International
Conference on Artificial Intelligence in Education. Springer, 2023, pp.
32–37.

[250] S. Liu, Y. Jin, C. Li, D. F. Wong, Q. Wen, L. Sun, H. Chen, X. Xie,
and J. Wang, “Culturevlm: Characterizing and improving cultural
understanding of vision-language models for over 100 countries,”
arXiv:2501.01282, 2025.

[251] P. Henderson, X. Li, D. Jurafsky, T. Hashimoto, M. A. Lemley, and
P. Liang, “Foundation Models and Fair Use,” JMLR, vol. 24, no.
400, pp. 1–79, 2023.

[252] M. A. Lemley and B. Casey, “Fair Learning,” Tex. L. Rev., vol. 99,
p. 743, 2020.

[253] S. Oh, Y. Jin, M. Sharma, D. Kim, E. Ma, G. Verma, and S. Kumar,
“Uniguard: Towards universal safety guardrails for jailbreak
attacks on multimodal large language models,” arXiv:2411.01703,
2024.

[254] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell,
“On the Dangers of Stochastic Parrots: Can Language Models Be
Too Big?” in FAccT, 2021, pp. 610–623.

[255] M. Brundage, S. Avin, J. Wang, H. Belfield, G. Krueger, G. Hadfield,
H. Khlaaf, J. Yang, H. Toner, R. Fong et al., “Toward Trustworthy
AI Development: Mechanisms for Supporting Verifiable Claims,”
arXiv preprint arXiv:2004.07213, 2020.

[256] D. Ganguli, D. Hernandez, L. Lovitt, A. Askell, Y. Bai, A. Chen,
T. Conerly, N. Dassarma, D. Drain, N. Elhage et al., “Predictability
and Surprise in Large Generative Models,” in FAccT, 2022, pp.
1747–1764.



25

[257] C. Deng, Y. Duan, X. Jin, H. Chang, Y. Tian, H. Liu, H. P. Zou,
Y. Jin, Y. Xiao, Y. Wang et al., “Deconstructing The Ethics of Large
Language Models from Long-standing Issues to New-emerging
Dilemmas: A Survey,” arXiv e-prints, pp. arXiv–2406, 2024.

[258] I. Shumailov, Z. Shumaylov, Y. Zhao, N. Papernot, R. Anderson,
and Y. Gal, “AI models collapse when trained on recursively
generated data,” Nature, vol. 631, no. 8022, pp. 755–759, 2024.

[259] L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang,
M. Cheng, M. Glaese, B. Balle, A. Kasirzadeh et al., “Ethical
and social risks of harm from Language Models,” arXiv preprint
arXiv:2112.04359, 2021.

[260] Y. Xiao, Y. Jin, Y. Bai, Y. Wu, X. Yang, X. Luo, W. Yu, X. Zhao,
Y. Liu, Q. Gu et al., “Large language models can be contextual
privacy protection learners,” in EMNLP, 2024, pp. 14 179–14 201.

[261] D. A. Alber, Z. Yang, A. Alyakin, E. Yang, S. Rai, A. A. Valliani,
J. Zhang, G. R. Rosenbaum, A. K. Amend-Thomas, D. B. Kurland
et al., “Medical large language models are vulnerable to data-
poisoning attacks,” Nature Medicine, pp. 1–9, 2025.

[262] Y. Jin, X. Wang, R. Yang, Y. Sun, W. Wang, H. Liao, and X. Xie,
“Towards fine-grained reasoning for fake news detection,” in AAAI,
vol. 36, no. 5, 2022, pp. 5746–5754.

[263] T. Shen, R. Jin, Y. Huang, C. Liu, W. Dong, Z. Guo, X. Wu, Y. Liu,
and D. Xiong, “Large Language Model Alignment: A Survey,”
arXiv preprint arXiv:2309.15025, 2023.

[264] A. S. Luccioni, S. Viguier, and A.-L. Ligozat, “Estimating the
Carbon Footprint of BLOOM, a 176B Parameter Language Model,”
JMLR, vol. 24, no. 253, pp. 1–15, 2023.

[265] E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy
Considerations for Deep Learning in NLP,” in AAAI, vol. 34,
no. 09, 2020, pp. 13 693–13 696.

[266] J. Zhou, “Awesome ai agents for scien-
tific discovery,” https://github.com/zhoujieli/
Awesome-LLM-Agents-Scientific-Discovery, 2024.

[267] AAAI, “Aaai 2025 presidential panel: Future of ai research,” 2025.
[Online]. Available: https://aaai.org/wp-content/uploads/2025/
03/AAAI-2025-PresPanel-Report-FINAL.pdf

[268] A. Ghafarollahi and M. J. Buehler, “Sciagents: Automating
scientific discovery through bioinspired multi-agent intelligent
graph reasoning,” Advanced Materials, vol. n/a, no. n/a, p.
2413523. [Online]. Available: https://advanced.onlinelibrary.
wiley.com/doi/abs/10.1002/adma.202413523

[269] P. T. J. Kon, J. Liu, Q. Ding, Y. Qiu, Z. Yang, Y. Huang, J. Srinivasa,
M. Lee, M. Chowdhury, and A. Chen, “Curie: Toward rigorous
and automated scientific experimentation with ai agents,” 2025.
[Online]. Available: https://arxiv.org/abs/2502.16069

[270] Y. Jin, Q. Zhao, Y. Wang, H. Chen, K. Zhu, Y. Xiao, and J. Wang,
“Agentreview: Exploring peer review dynamics with llm agents,”
in EMNLP, 2024, pp. 1208–1226.

[271] A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D. White,
and P. Schwaller, “Chemcrow: Augmenting large-language
models with chemistry tools,” 2023. [Online]. Available:
https://arxiv.org/abs/2304.05376

[272] A. Ghafarollahi and M. J. Buehler, “Atomagents: Alloy
design and discovery through physics-aware multi-modal
multi-agent artificial intelligence,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.10022

[273] D. Kostunin, V. Sotnikov, S. Golovachev, and A. Strube, “Ai
agents for ground-based gamma astronomy,” 2025. [Online].
Available: https://arxiv.org/abs/2503.00821

[274] B. Qi, K. Zhang, K. Tian, H. Li, Z.-R. Chen, S. Zeng, E. Hua,
H. Jinfang, and B. Zhou, “Large language models as biomedical
hypothesis generators: A comprehensive evaluation,” 2024.
[Online]. Available: https://arxiv.org/abs/2407.08940

[275] Y. Roohani, A. Lee, Q. Huang, J. Vora, Z. Steinhart, K. Huang,
A. Marson, P. Liang, and J. Leskovec, “Biodiscoveryagent: An
ai agent for designing genetic perturbation experiments,” arXiv
preprint arXiv:2405.17631, 2024.

[276] Z. Wang, Q. Jin, C.-H. Wei, S. Tian, P.-T. Lai, Q. Zhu, C.-P. Day,
C. Ross, and Z. Lu, “Geneagent: Self-verification language agent
for gene set knowledge discovery using domain databases,” 2024.
[Online]. Available: https://arxiv.org/abs/2405.16205

[277] M. Xiao, W. Zhang, X. Huang, H. Zhu, M. Wu, X. Li, and Y. Zhou,
“Knowledge-guided biomarker identification for label-free single-
cell rna-seq data: A reinforcement learning perspective,” arXiv
preprint arXiv:2501.04718, 2025.

[278] Y. Sun, Y. Zhang, Y. Si, C. Zhu, Z. Shui, K. Zhang, J. Li,
X. Lyu, T. Lin, and L. Yang, “Pathgen-1.6m: 1.6 million pathology

image-text pairs generation through multi-agent collaboration,”
2024. [Online]. Available: https://arxiv.org/abs/2407.00203

[279] X. Cai, C. Wang, Q. Long, Y. Zhou, and M. Xiao, “Knowledge hi-
erarchy guided biological-medical dataset distillation for domain
llm training,” arXiv preprint arXiv:2501.15108, 2025.

[280] Z. Chen, C. Hu, M. Wu, Q. Long, X. Wang, Y. Zhou, and
M. Xiao, “Genesum: Large language model-based gene summary
extraction,” in 2024 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). IEEE, 2024, pp. 1438–1443.

[281] K. Keshavjee, J. Bosomworth, J. Copen, J. Lai, B. Kucukyazici,
R. Lilani, and A. M. Holbrook, “Best practices in emr implementa-
tion: a systematic review,” in AMIA Annual Symposium Proceedings,
vol. 2006, 2006, p. 982.

[282] X. Ye, M. Xiao, Z. Ning, W. Dai, W. Cui, Y. Du, and Y. Zhou,
“Needed: Introducing hierarchical transformer to eye diseases
diagnosis,” in Proceedings of the 2023 SIAM International Conference
on Data Mining (SDM). SIAM, 2023, pp. 667–675.

[283] J. Li, Y. Lai, W. Li, J. Ren, M. Zhang, X. Kang, S. Wang, P. Li, Y.-Q.
Zhang, W. Ma et al., “Agent hospital: A simulacrum of hospital
with evolvable medical agents,” arXiv preprint arXiv:2405.02957,
2024.

[284] W. Yan, H. Liu, T. Wu, Q. Chen, W. Wang, H. Chai, J. Wang,
W. Zhao, Y. Zhang, R. Zhang et al., “Clinicallab: Aligning agents
for multi-departmental clinical diagnostics in the real world,”
arXiv preprint arXiv:2406.13890, 2024.

[285] H. Yu, J. Zhou, L. Li, S. Chen, J. Gallifant, A. Shi, X. Li,
W. Hua, M. Jin, G. Chen, Y. Zhou, Z. Li, T. Gupte, M.-L. Chen,
Z. Azizi, Y. Zhang, T. L. Assimes, X. Ma, D. S. Bitterman,
L. Lu, and L. Fan, “Aipatient: Simulating patients with ehrs
and llm powered agentic workflow,” 2024. [Online]. Available:
https://arxiv.org/abs/2409.18924

[286] N. Sharma, “Cxr-agent: Vision-language models for chest x-ray
interpretation with uncertainty aware radiology reporting,” arXiv
preprint arXiv:2407.08811, 2024.

[287] A. Fallahpour, J. Ma, A. Munim, H. Lyu, and B. Wang, “Medrax:
Medical reasoning agent for chest x-ray,” 2025. [Online]. Available:
https://arxiv.org/abs/2502.02673

[288] R. W. Lee, K. H. Lee, J. S. Yun, M. S. Kim, and H. S. Choi,
“Comparative analysis of m4cxr, an llm-based chest x-ray report
generation model, and chatgpt in radiological interpretation,”
Journal of Clinical Medicine, vol. 13, no. 23, p. 7057, 2024.

[289] X. Feng, Y. Luo, Z. Wang, H. Tang, M. Yang, K. Shao, D. Mguni,
Y. Du, and J. Wang, “Chessgpt: Bridging policy learning and
language modeling,” in NeurIPS, 2023, pp. 7216–7262.

[290] T. Carta, C. Romac, T. Wolf, S. Lamprier, O. Sigaud, and P.-
Y. Oudeyer, “Grounding large language models in interactive
environments with online reinforcement learning,” in ICML, 2023,
pp. 3676–3713.

[291] A. Zhu, L. Martin, A. Head, and C. Callison-Burch, “Calypso:
Llms as dungeon master’s assistants,” in AAAI, 2023, pp. 380–390.

[292] D. Chen, H. Wang, Y. Huo, Y. Li, and H. Zhang, “Gamegpt: Multi-
agent collaborative framework for game development,” arXiv
preprint arXiv:2310.08067, 2023.

[293] Y. Sun, Z. Li, K. Fang, C. H. Lee, and A. Asadipour, “Language as
reality: a co-creative storytelling game experience in 1001 nights
using generative ai,” in AAAI, 2023, pp. 425–434.

[294] N. Li, C. Gao, M. Li, Y. Li, and Q. Liao, “Econagent: large lan-
guage model-empowered agents for simulating macroeconomic
activities,” ACL, pp. 15 523–15 536, 2024.

[295] Y. Li, Y. Yu, H. Li, Z. Chen, and K. Khashanah, “Tradinggpt:
Multi-agent system with layered memory and distinct charac-
ters for enhanced financial trading performance,” arXiv preprint
arXiv:2309.03736, 2023.

[296] Q. Zhao, J. Wang, Y. Zhang, Y. Jin, K. Zhu, H. Chen, and X. Xie,
“Competeai: Understanding the competition dynamics in large
language model-based agents,” in ICML, 2024, pp. 61 092–61 107.

[297] Z. Ma, Y. Mei, and Z. Su, “Understanding the benefits and chal-
lenges of using large language model-based conversational agents
for mental well-being support,” in AMIA Annual Symposium
Proceedings, vol. 2023, 2024, p. 1105.

[298] J. Zhang, X. Xu, N. Zhang, R. Liu, B. Hooi, and S. Deng, “Exploring
collaboration mechanisms for llm agents: A social psychology
view,” in ACL, 2024, pp. 14 544–14 607.

[299] G. V. Aher, R. I. Arriaga, and A. T. Kalai, “Using large language
models to simulate multiple humans and replicate human subject
studies,” in ICML, 2023, pp. 337–371.

https://github.com/zhoujieli/Awesome-LLM-Agents-Scientific-Discovery
https://github.com/zhoujieli/Awesome-LLM-Agents-Scientific-Discovery
https://aaai.org/wp-content/uploads/2025/03/AAAI-2025-PresPanel-Report-FINAL.pdf
https://aaai.org/wp-content/uploads/2025/03/AAAI-2025-PresPanel-Report-FINAL.pdf
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202413523
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202413523
https://arxiv.org/abs/2502.16069
https://arxiv.org/abs/2304.05376
https://arxiv.org/abs/2407.10022
https://arxiv.org/abs/2503.00821
https://arxiv.org/abs/2407.08940
https://arxiv.org/abs/2405.16205
https://arxiv.org/abs/2407.00203
https://arxiv.org/abs/2409.18924
https://arxiv.org/abs/2502.02673


26

[300] R. Liu, R. Yang, C. Jia, G. Zhang, D. Zhou, A. M. Dai, D. Yang,
and S. Vosoughi, “Training socially aligned language models on
simulated social interactions,” in ICLR, 2024.

[301] C. Gao, X. Lan, Z. Lu, J. Mao, J. Piao, H. Wang, D. Jin, and Y. Li,
“S3: Social-network simulation system with large language model-
empowered agents,” arXiv preprint arXiv:2307.14984, 2023.

[302] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code
generation via chatgpt,” ACM Transactions on Software Engineering
and Methodology, vol. 33, no. 7, pp. 1–38, 2024.

[303] C. Qian, X. Cong, C. Yang, W. Chen, Y. Su, J. Xu, Z. Liu, and M. Sun,
“Chatdev: Communicative agents for software development,” in
ACL, 2024, pp. 15 174–15 186.

[304] A. Zhang, Y. Chen, L. Sheng, X. Wang, and T.-S. Chua, “On
generative agents in recommendation,” in SIGIR, 2024, pp. 1807–
1817.

[305] J. Zhang, Y. Hou, R. Xie, W. Sun, J. McAuley, W. X. Zhao, L. Lin,
and J.-R. Wen, “Agentcf: Collaborative learning with autonomous
language agents for recommender systems,” in WWW, 2024, pp.
3679–3689.

[306] Z. Wang, Y. Yu, W. Zheng, W. Ma, and M. Zhang, “Macrec: A
multi-agent collaboration framework for recommendation,” in
SIGIR, 2024, pp. 2760–2764.

[307] Y. Wang, Z. Jiang, Z. Chen, F. Yang, Y. Zhou, E. Cho, X. Fan,
X. Huang, Y. Lu, and Y. Yang, “Recmind: Large language
model powered agent for recommendation,” arXiv preprint
arXiv:2308.14296, 2023.

[308] C. Qian, Z. Xie, Y. Wang, W. Liu, Y. Dang, Z. Du, W. Chen, C. Yang,
Z. Liu, and M. Sun, “Scaling large-language-model-based multi-
agent collaboration,” arXiv:2406.07155, 2024.

[309] C.-M. Chan, W. Chen, Y. Su, J. Yu, W. Xue, S. Zhang, J. Fu, and
Z. Liu, “Chateval: Towards better llm-based evaluators through
multi-agent debate,” arXiv preprint arXiv:2308.07201, 2023.

[310] O. F. Rana and K. Stout, “What is scalability in multi-agent
systems?” in Proceedings of the fourth international conference on
Autonomous agents, 2000, pp. 56–63.

[311] R. Deters, “Scalable multi-agent systems,” in Proceedings of the
2001 joint ACM-ISCOPE conference on Java Grande, 2001, p. 182.

[312] G. Verma, R. Kaur, N. Srishankar, Z. Zeng, T. Balch, and
M. Veloso, “Adaptagent: Adapting multimodal web agents with
few-shot learning from human demonstrations,” arXiv preprint
arXiv:2411.13451, 2024.

[313] Y. Jin, M. Choi, G. Verma, J. Wang, and S. Kumar, “Mm-soc:
Benchmarking multimodal large language models in social media
platforms,” in ACL Findings, 2024.

[314] Z. Yao, Z. Tang, J. Lou, P. Shen, and W. Jia, “Velo: A vector
database-assisted cloud-edge collaborative llm qos optimization
framework,” in ICWS. IEEE, 2024, pp. 865–876.

[315] X. Cheng, X. Wang, X. Zhang, T. Ge, S.-Q. Chen, F. Wei, H. Zhang,
and D. Zhao, “xrag: Extreme context compression for retrieval-
augmented generation with one token,” in NeurIPS, 2024.

[316] Y. Jin, M. Chandra, G. Verma, Y. Hu, M. De Choudhury, and
S. Kumar, “Better to ask in english: Cross-lingual evaluation of
large language models for healthcare queries,” in WWW, 2024, pp.
2627–2638.

[317] V. Agarwal, Y. Jin, M. Chandra, M. De Choudhury, S. Kumar, and
N. Sastry, “Medhalu: Hallucinations in responses to healthcare
queries by large language models,” arXiv:2409.19492, 2024.

[318] C. Lu, C. Lu, R. T. Lange, J. Foerster, J. Clune, and D. Ha,
“The ai scientist: Towards fully automated open-ended scientific
discovery,” arXiv preprint arXiv:2408.06292, 2024.

[319] G. Agrawal, T. Kumarage, Z. Alghamdi, and H. Liu, “Can
knowledge graphs reduce hallucinations in llms?: A survey,” in
NAACL, 2024, pp. 3947–3960.

[320] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim,
C. Hesse, S. Jain, V. Kosaraju, W. Saunders et al., “Webgpt: Browser-
assisted question-answering with human feedback,” arXiv preprint
arXiv:2112.09332, 2021.

[321] T. Gao, H. Yen, J. Yu, and D. Chen, “Enabling large language
models to generate text with citations,” in EMNLP, 2024.

[322] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-consistency improves chain of
thought reasoning in language models,” in ICLR, 2023.

[323] S. Zhou, U. Alon, S. Agarwal, and G. Neubig, “Codebertscore:
Evaluating code generation with pretrained models of code,” in
EMNLP, 2023, pp. 13 921–13 937.

[324] Z. Wang, S. Zhou, D. Fried, and G. Neubig, “Execution-based
evaluation for open-domain code generation,” in EMNLP, 2023,
pp. 1271–1290.

[325] K. Zhu, J. Chen, J. Wang, N. Z. Gong, D. Yang, and X. Xie, “Dyval:
Dynamic evaluation of large language models for reasoning tasks,”
in ICLR, 2024.

[326] K. Zhu, J. Wang, Q. Zhao, R. Xu, and X. Xie, “Dynamic evaluation
of large language models by meta probing agents,” in ICML.
PMLR, 2024, pp. 62 599–62 617.

[327] X. Yi, J. Yao, X. Wang, and X. Xie, “Unpacking the ethical value
alignment in big models,” arXiv preprint arXiv:2310.17551, 2023.

[328] X. Wang, L. Jiang, J. Hernandez-Orallo, D. Stillwell, L. Sun, F. Luo,
and X. Xie, “Evaluating general-purpose ai with psychometrics,”
arXiv preprint arXiv:2310.16379, 2023.

[329] Y. Wu, Z. Jiang, A. Khan, Y. Fu, L. Ruis, E. Grefenstette, and
T. Rocktäschel, “Chatarena: Multi-agent language game environ-
ments for large language models,” 2023.

[330] J. Yao, X. Yi, Y. Gong, X. Wang, and X. Xie, “Value fulcra: Mapping
large language models to the multidimensional spectrum of basic
human value,” in NAACL, 2024, pp. 8754–8777.

[331] V. C. Nguyen, M. Taher, D. Hong, V. K. Possobom, V. T. Gopalakr-
ishnan, E. Raj, Z. Li, H. J. Soled, M. L. Birnbaum, S. Kumar
et al., “Do large language models align with core mental health
counseling competencies?” in NAACL, 2025.


	Introduction
	Agent Methodology
	Agent Construction
	Profile Definition
	Memory Mechanism
	Planning Capability
	Action Execution

	Agent Collaboration
	Centralized Control
	Decentralized Collaboration
	Hybrid Architecture

	Agent Evolution
	Autonomous Optimization and Self-Learning
	Multi-Agent Co-Evolution
	Evolution via External Resources


	Evaluation and Tools
	Evaluation Benchmarks and Datasets
	General Assessment Frameworks
	Domain-Specific Evaluation System
	Collaborative Evaluation of Complex Systems

	Tools
	Tools used by LLM agents
	Tools created by LLM agents
	Tools for deploying LLM agents


	Real-World Issues
	Agent-centric Security
	Adversarial Attacks and Defense
	Jailbreaking Attacks and Defense
	Backdoor Attacks and Defense
	Model Collaboration Attacks and Defense

	Data-centric Security
	External Data Attack and Defense
	Interaction Attack and Defense

	Privacy
	LLM Memorization Vulnerabilities
	LM Intellectual Property Exploitation

	Social Impact and Ethical Concerns
	Benefits to Sociaty
	Ethical Concerns


	Applications
	Scientific Discovery
	Agentic AI Across Scientific Disciplines
	Agentic AI in Chemistry, Materials Science and Astronomy
	Agentic AI in Biology
	Agentic AI in Scientific Dataset Construction
	Agentic AI in Medical

	Gaming
	Social Science
	Productivity Tools

	Challenges and Future Trends
	Scalability and Coordination
	Memory Constraints and Long-Term Adaptation.
	Reliability and Scientific Rigor
	Multi-turn, Multi-agent Dynamic Evaluation
	Regulatory Measures for Safe Deployment
	Role-playing Scenarios

	Conclusion
	References

