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Abstract

Although state-ofthe-art reinforcement learning (RL) systems has led to break-
throughs in many difficult tasks, the sample inefficiency of standard reinforcement
learning methods still precludes their application to more extremely complex tasks.
Such limitation will make many reinforcement learning systems cannot be applied
to real-world problem, in which environment samples are expensive. To solve
this problem, MineRL (13) provide an ideal develop environment to facilitate the
research that leveraging fewer human demonstrations with more efficient rein-
forcement learning systems. Based on the MineRL environmnet, we proposed an
enhanced Gaussian cross entropy (EGCE) loss for imitation learnning problems
to achieve ideal performance. In the ObtainDiamond task, our EGCE achieves
about 7.7% improvement than a strong baseline imitation learning pipeline. The
demo video is available at here.

1 Introduction

As deep reinforcement learning (DRL) methods are applied to increasingly difficult as well as complex
problems, the number of samples used for training increases: AlphaGo uses about 5 million games
of self-play (27), while AlphaStar uses over 200 years of StarCraft II (3). Moreover, OpenAI Five
spend more than 11, 000 years of Dota2 gameplay (4).

1.1 Task Formulation

Although there exist many data augmentation methods and designed real-world environments for
limited numbers of trials, these methods are remain not sufficiently sample efficient for a large part
of complex real-world domains. Therefore an effective environment is necessary for such situation.
In MineRL (13), a large scale dataset that contains over 60 million state-action pairs of human
demonstrations, several related tasks is designed with Minecraft game environment.

The main task in MineRL (13) solving the ObtainDiamond environment (12; 14) in MineCraft.
Minecraft is a 3D, first-person, open-world game that centered around the resource gathering and
items/structures creation. These structures and items have prerequisite tools and materials required for
their creation. As a result, many items require the completion of a series of natural subtasks. Solving
the ObtainDiamond environment consists of controlling an embodied agent to obtain a diamond
by navigating the complex item hierarchy of Minecraft. In solving this task, a learning algorithm
has direct access to a 64 × 64 pixel observation from the perspective of the embodied Minecraft
agent, and a set of discrete observations consisting of each item required for obtaining a diamond
that the agent has in its possession. The action space is the Cartesian product of continuous view
adjustment (turning and pitching), binary movement commands (left/right, forward/backward), and
discrete actions for placing blocks, crafting items, smelting items, and mining/hitting enemies. An
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Figure 1: These stages exhibit the different periods that a agent/player gets the first diamond in
MineCraft ObtainDiamond environment.

agent receives reward for completing the full task of obtaining a diamond. The full task of obtaining
a diamond can be decomposed into a sequence of prerequisite subtasks of increasing difficulty. An
agent also receives reward for the first time it accomplishes each subtask in the sequence. An agent
receives twice the reward as received for accomplishing the previous subtask (starting from a reward
of 1). The exception to this rule is achieving the full ObtainDiamond task by obtaining a diamond:
accomplishing the final task is worth four times as much as completing the previous subtask.

1.2 Environments and Dataset

Figure 2: Setting an environment in MineRL.

MineRL (13) define one primary ObtainDiamond environment, and six other auxiliary environments
(Navigate, Treechop, ObtainCookedMeat, ObtainBed, and ObtainIronPickaxe) that encompass a
significant portion of human Minecraft play. By training agent in these environment domains,
many of the hardest challenges in reinforcement learning, such as sparse rewards, long reward
horizons, and efficient hierarchical planning can be completely revealed. The main task is solving the
ObtainDiamond environment, where the agent begins in a random initializing location without any
items or structures, and is tasked with obtaining one diamond. The agent receives a high reward for
obtaining a diamond as well as smaller rewards for obtaining prerequisite items. Episodes will end
once the agent dying, successfully obtaining a diamond, or reaching the maximum step limitation of
18, 000 frames ( about 800 seconds). The ObtainDiamond environment is a difficult environment.
Diamonds only exist in a small portion of the world and are 2-10 times rarer than other ores in
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Milestone Reward Milestone Reward
log 1 furnace 32
planks 2 stone_pickaxe 32
stick 4 iron_ore 64
crafting_table 4 iron_ingot 128
wooden_pickaxe 8 iron_pickaxe 256
stone 16 diamond 1024

Table 1: Rewards for achieving sub-goals and main goal (diamond) for ObtainDiamond.

Baseline Method Reward Type
SQIL (22) 2.94 Imitation Learning
Rainbow (15) 0.35 Reinforcement Learning
DQFD (29) 0.24 Imitation Learning with Reinforcement Learning
PDDDQN (26) 0.11 Reinforcement Learning

Table 2: Some baselines of ObtainDiamond environment.

Minecraft. Additionally, obtaining a diamond requires many prerequisite items. Hence it is almost
impossible for an agent to obtain a diamond via any random exploration policies.

The MineRL (13) dataset consists of over 60 million state-action-reward tuples of recorded human
expert demonstrations over all the seven environments. Each trajectory is contiguously sampled
every Minecraft game tick (at 20 game ticks every second). Each state is comprised of an RGB video
frame of the player’s point-of-view and a comprehensive set of features from the game-state at that
tick: player inventory, item collection events, distances to objectives, player attributes (health, level,
achievements), and details about the current GUI the player has open. The action recorded at each
tick consists of: all the keyboard presses, the change in view pitch and mouse movements, player GUI
interactions, and agglomerative actions such as item crafting. Human trajectories are accompanied by
automatically generated annotations. All environments include metrics that indicate the quality of the
demonstration, such as timestamped rewards, number of no-ops, number of deaths, and total score.
Additionally, trajectory meta-data includes timestamped markers for hierarchical labelings; e.g. when
a house-like structure is built or certain objectives such as chopping down a tree are met.

1.3 Evaluation Metrics and some Baselines

Once following training, the gained agent will be evaluated on the average score over 500 episodes.
Scores are computed as the sum of the milestone rewards achieved by the agent in a given episode as
outlined in Table 1. A milestone is reached when an agent obtains the first instance of the specified
item. Ties are broken by the number of episodes required to achieve the last milestone.

Here are some baseline for ObtainDiamond. These results in MineRL-2020 challenge (12) are
listed in Table 2. For all these methods, K-means are applied to cluster the action space with the
human demonstration data, and then train the agent. The implementations are included into PFRL
agents library. According to these baseline and experience, imitation learning is more effective in
ObtainDiamond environment because human experts can provide efficient samples for the agent.

2 Related Work of Imitation Learning

In imitation learning (IL) instead of trying to learn from the sparse rewards or manually specifying a
reward function, an expert (typically a human) provides us with a set of demonstrations. The agent
tries to learn the optimal policy π that produce similar behaviors by following, imitating the expert’s
decisions. The IL is composed of the environment, which is essentially a Markov Decision Process
(MDP). Generally, the environment has a set of states, denoted by S, a set of actions A, a transition
model P (s′|s, a), which presents the probability that an action a in the state s leads to state s′) and
an unknown R(s, a) reward function. The demonstrations are composed of the state and action
sequences, which actually are some demonstration trajectories with the form:

τe = {(st, at)} (1)
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where the actions based on the expert’s optimal π policy.

Generally, the imitation learning can be roughly split into two main categories behavioral cloning
(BC) and inverse reinforcement learning (IRL).

2.1 Behavioral Cloning

The simplest imitation learning algorithms of imitation learning is behaviour cloning (BC) (28; 24;
6), which focuses on learning the expert’s policy using supervised learning given demonstration
trajectories τe. The first application of behaviour cloning is ALVINN (21), where a vehicle is equipped
with sensors, which learned to map the sensor inputs into steering angles and drive autonomously.
More specifically, the demonstrations are divided into state-action pairs and treated as i.i.d. examples
and then learned by supervised learning with suitable loss functions. Behavioral cloning has been
widely used in the context of autonomous driving (5) and control of aerial vehicles (10). Behavioural
cloning can work excellently in some cases where it require only demonstration data to learn an
imitation policy directly and have no need for further interaction between the environment and agent.
However, some applications break the i.i.d assumption and errors made in different states will be
added up. A mistake made by the agent can easily put it into a state that the expert has never visited
and the agent has never trained on. In such states, the behaviour is undefined and this can lead to
catastrophic failures (23).

2.2 Inverse Reinforcement Learning

Another major category of imitation learning method is based on inverse reinforcement learning
(IRL). The main idea of IRL is to learn the reward function of the environment based on expert
demonstrations, and then use reinforcement learning to find the optimal policy (25; 19). This can
often get better imitation results than direct behavioral cloning.

Instead of directly learning a mapping from states to actions using the demonstration data, IRL-based
methods iternatively alternate between using the demonstration to infer a hidden reward function and
using RL with the inferred reward function to learn an imitating policy. Specifically, starting with a
group of experts’ presentations (assuming these presentations are optimal) and then trying to estimate
the parameterized reward function, which would cause the expert’s behavior. By repeating the
following process until a good enough policy is found: first, updating the reward function parameters
and then solving the reinforced learning problem (given the reward function, trying to find the optimal
policy). Finally, comparing the newly learned policy with the expert’s policy (18).

IRF-based techniques have been used for a variety of tasks such as maneuvering a helicopter (1)
and object manipulation (8). Using RL to optimize the policy given the inferred reward function
requires the agent to interact with its environment, which can be costly from a time and safety
perspective. Moreover, theIRL step typically requires the agent to solve an MDP in the inner loop of
iterative reward optimization (1; 30), which can be extremely costly from a computational perspective.
However, recently, a number of methods have been developed which do not make this requirement
(8; 16; 9) . One of these approaches is called generative adversarial imitation from observation (GAIL)
(16), which uses an architecture similar to generative adversarial networks (GANs) (11), and the
associated algorithm can be thought of as trying to induce an imitator state-action occupancy measure
that is similar to that of the demonstrator.

The general IRL algorithm is the following: Depending on the actual problem, there can be two main
methods of IRL: the model-based and the model-free methods.

In the model-based case, the reward function is linear. In each iteration, the full RL problem need
to be solved, so to be able to do this efficiently, assuming that the environment’s (the MDP’s) state
space is small. Also suppose that the state transition dynamics of the environment is known. This is
needed so that our learned policy is compared with the expert’s one effectively.

The model-free method is a more general case. Here, supposing that the state space of the MDP is
large or continuous, therefore in each iteration, only a single step of the RL problem is solved. In this
case, the state transitions dynamics of the environment is unknowable, but assume that a simulator or
the environment can be access to. Therefore, comparing our policy to the expert’s one is trickier.
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In both cases, however, learning the reward function is ambiguous. The reason for this is that many
rewards functions can correspond to the same optimal policy (the expert’s policy). To this end, the
maximum entropy principle proposed by Ziebart (32) can be utilized by selecting the largest entropy
trajectory distribution.

3 Method

Since we have found that all demonstration samples in ObtainDiamond are failed in digging a
diamond and the main reward is from Treechop and ObtainIronPickaxe tasks. Therefore the
provided demonstration samples is more about these tasks.

In the environment that can be described with time series, the agent can get an observation s and then
take an action a according to a specified policy π(s). This can be annotated with the time step index
t: the agent receives an observation st, then according to the policy π(st), the agent chooses action
at. After the action, the agent gets a reward rt as well as the next st+1. In total, the target for the
agent is to find a policy π(s) and get the most reward R =

∑T
t=0 rt over an episode.

Since we already have some demonstration samples that contains human trajectories, imitating these
behaviors will be a good way to get the policy π(s). Accordingly, we can train a mapping between
received observations from demonstration samples and expert actions. This well-trained mapping
will give a certain action according to the observation. Therefore the pipeline will be a classification
task: different actions is for different classes while the observation is the input feature that need to be
classified.

Now we input an observation s into a deep network model f(·) with an f(s) ∈ Rn vector. For all
N kinds of actions, each of them has a prototype vector wa ∈ Rn. In (2), the outputs of last fully
connection layer of model are applied in softmax function. Here we propose an enhanced mixed
Gaussian softmax distribution:

π(s, a(i)) = pπ(a
(i)|s) = eαg(s,a

(i))∑N
k=1 e

αg(s,a(k))
, (2)

where g(s, a) = e|f(s)−wa|2 is the RBF kernel that related to the Gaussian distance. α is the scaling
parameter. This policy will trained with a modified cross entropy loss function in training:

L(s) =

N∑
k=1

−q(a(k)) log π(s, a(k)). (3)

The q(a(k)) is a β-smoothed target. That means if the expert in demonstration samples chooses a(i)

as the action, q(a(i)) = β. For k 6= i, q(a(k)) = 1−β
N−1 . Thus there are two parameters α and β in our

objective function.

4 Experiment

More training details and resutls are described in this section. We first introduce action and state
space, and the architecture of network with training settings. Then we outperform the proposed
EGCE with a high baseline.

4.1 Action and State Space

The environment observations are the main components of the states, which actually are 64 × 64
RGB images. In the ObtainIronPickaxe task, an additional vector state is provided, which contains
information about the following: collected resources and hand tools, as well as items currently held.
The held is encoded as a one-hot vector, and the items are encoded as multi-hot vectors (the quantity
in the sub-vector is equal to the number of corresponding products in the inventory).

For our action space, there are three parts. The first one contains eight binary actions, which is related
with the movement in the environment. The eight actions are forward, backward, left, right, jump,
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sprint, attack, sneak. You can use multiple movement actions at the same time step generating 256
combinations. The second one is about the pitch control and continuous yaw of the agent’s camera
position. The last one is the actions related to the production, equipment and placement of items.
Some items needs to be placed on the ground before it can be used such as crafting tables.

Therefore, the simple combination of the actions creates a huge action space. Here we follow (5),
who is the first tor propose quantize the continuous control and use 22.5 degrees for each direction.

After quantifying the motion of the camera, there are 1280 possible motion combinations. We only
allow up to 3 simultaneous actions, and remove any superfluous actions, such as rotating left and
right at the same time. So there are 112 different movements finally. More complete description of
motion and state encoding is available in supplementary materials.

4.2 Architecture and Training Setup

The proposed strategy neural network consists of three parts. The first part is a convolutional
perception for image, the second part is a fully connected layer for the input and the vector part of the
state are connected after the last layer. The last layer has softmax or linear output for cross entropy or
margin loss. We investigated the relationship between network size and performance by testing three
different networks. Architecture of network awareness part: DQN architecture with 3 convolutional
layers (17), Impala architecture with 6 remaining blocks (7) and Deep Impala architecture with 8
remaining blocks remaining blocks and Fixup initialization ( (20; 31)). During the last architecture
tested, the channel sizes of all convolutional layers and fully connected layers are doubled.

We used Adam optimizer to train the network, with a learning rate of 6.25 × 10−5 and a weight
attenuation of 10−5 with maximum 3 × 106 steps. From the demo dataset, we used human tra-
jectories to successfully achieve environmental goals within the time limits of the respective tasks
(i.e., ObtainDiamond and ObtainIronPickaxe). We also delete all states where humans have not
taken any action. For a complete network architecture, please refer to supplementary materials.
In addition, we also tested various enhancements, such as contrast, rectangle removal, horizontal
flipping (where the left and right actions are also flipped), sharpness, brightness and descendant
adjustments. In addition to assessing policy performance, we tested two additional performance
indicators: training losses and testing losses on invisible human trajectories to assess their relevance
to actual performance policy.

4.3 Additional Data Incorporation

We use the human track from the ObtainDiamond and ObtainIronPickaxe tasks in the default training
settings. In order to create a more realistic observation of the additional data, we first sample the
random states and ObtainDiamond tracks, where the rewards have not yet reached. Then vector
observation are used to observe part of the sample state to complete the Treechop observation.
Therefore, until whole of the Treechop states are totally observed the process is ended.

4.4 Resutls

In this section, we compared imitation learning performance with different losses. Following (2),
we record 8 snapshots of the deep impala network (7). Image flipping is the only applied data
augmentations. The reward is the average of 40 episodes for each snapshot. Then the best performed
snapshot is recorded as the running results. According to the results in Table 3, our proposed enhanced
Gaussian cross entropy (EGCE) can obtain the highest reward among these three losses applied
in imitation learning: the average reward of EGCE without TreeChop data achieves 50.30, which
surpass the original cross entropy in (2) about 7.7%. This implies EGCE can actually improve the
performance of imitation learning pipeline.

5 Conclusion

The MineRL ObtainDiamon task is a very challenge domain. Applying imitation learning with
demonstration samples can achieve ideal performances. Since our proposed enhanced Gaussian
cross-entorpy can significantly improve the reward, this fact implies that weak cor-realtion between

6



Methods Reward Settings
Cross Entropy 46.72 -
Cross Entropy 65.36 with TreeChop data
Margin Loss 42.48 -
Margin Loss 34.21 with TreeChop data
EGCE (Ours) 50.30 α = 25, β = 0.9
EGCE (Ours) 66.56 α = 25, β = 0.9, with TreeChop data

Table 3: Some results of exist solution and proposed methods.

loss values and policy performance can be partly relieved by a well-designed loss. The proposed
EGCE can stabilize the loss and set up a strong connection with policy performance.
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