
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RANDOMIZED GRADIENT SUBSPACES FOR EFFICIENT
LARGE LANGUAGE MODEL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language models (LLMs) in single or limited node settings is of-
ten bottlenecked by extreme memory demands, with optimizer states dominating
the footprint. Recent works mitigates this cost by projecting gradients into low-
dimensional subspaces using sophisticated update strategies. In this paper, we
analyze the dynamics of gradient space and its underlying subspaces. We find that
while a small subspace captures most gradient energy, a significant portion still re-
sides in the residual bulk; moreover, the influence of the core subspace diminishes
over time and in deeper layers. We also observe that the gradient space exhibits
near-flat curvature, calling for algorithms that explicitly account for this geome-
try. Motivated by these insights, we introduce a suite of randomized algorithms,
GrassWalk and GrassJump , which exploit subspace and achieve state-of-the-art
memory savings while improving performance on LLaMA-1B and LLaMA-7B
pretraining.

1 INTRODUCTION

Training large language models (LLMs) demands extreme computational and memory resources,
with a significant portion related to optimizer states. A promising line of work reduces this cost
by exploiting the observation that gradients evolve in a low-dimensional subspace (Gur-Ari et al.,
2018; Schneider et al., 2024). Recent methods project gradients into such subspaces, reducing
the size of the optimizer state and memory while still updating all parameters (Zhao et al., 2024a;
Robert et al., 2025; Anonymous, 2025; Chen et al., 2025b; Zhu et al., 2025). Structured approaches
such as GaLore (Zhao et al., 2024a), Fira (Chen et al., 2025b), LDAdam (Robert et al., 2025) and
SubTrack++ (Anonymous, 2025) estimate the subspace using SVDs, PowerSGD or Grassmannian
optimization. In contrast, other alternatives such as APOLLO (Zhu et al., 2025) and FRUGAL
(Zmushko et al., 2025) rely on random projections to avoid computation cost, while GoLore (He
et al., 2025) utilizes randomness in the latter iterations to improve convergence.

While recent works have alleviated some limitations of low-rank gradient methods, through strate-
gies that recover lost information (Chen et al., 2025b; Zmushko et al., 2025; Zhu et al., 2025;
Anonymous, 2025) or techniques that adjust optimizer states when the coordinates change (Xiao
et al., 2025; Robert et al., 2025; Zmushko et al., 2025; Anonymous, 2025), they do not fully ex-
plain why certain randomized strategies succeed or fail. By analyzing the subspace structure of
gradients, we clarify this behavior and, importantly, guide the design of more effective randomized
algorithms. This perspective reframes the open question: what role can randomized algorithms play
in the efficient training of LLMs, once we account for their underlying gradient subspaces?

Analyzing gradient dynamics, we observe that while a low-rank subspace captures most of the gra-
dient energy early on, its share declines over time and is markedly smaller in deeper layers; though
it remains non-negligible. This suggests that as training progresses, particularly in later layers, an
increasing fraction of learning occurs outside the core subspace. Moreover, we observe that this
core gradient subspace often evolves in a nearly flat curvature, underscoring the need to account for
this structure when exploiting gradient information. This perspective not only clarifies why certain
random-based methods succeed, but also highlights opportunities to design more principled and ef-
ficient training algorithms. Based on these insights, and through controlled interventions, we show
that our proposed methods, GrassWalk and GrassJump, can achieve state-of-the-art results when de-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

signed with awareness of gradient dynamics and the underlying optimization landscape. Ultimately,
the key is to exploit all available information and not mislead the optimizer.

Specifically, in this paper, we investigate these questions by analyzing (i) different subspace update
methods, (ii) the benefits of projection-aware optimizers (Robert et al., 2025; Anonymous, 2025;
Zmushko et al., 2025; Xiao et al., 2025), and strategies for recovering information lost during low-
rank projection (Chen et al., 2025b; Zhu et al., 2025; Anonymous, 2025; Zmushko et al., 2025), all
through the lens of gradient subspace dynamics. Based on these experiments, we introduce Grass-
Walk and GrassJump , which apply random walks and random jumps on the Grassmannian manifold
to update the underlying subspace, while simultaneously adapting the optimizer to subspace changes
and restoring information lost in projection, before each weight update. Our proposed methods con-
sistently outperform strong baselines, matching GaLore-like memory efficiency while delivering
superior performance and faster convergence on LLaMA-1B and LLaMA-7B pretraining.

Our key contributions:

• We provide a comprehensive analysis of gradient subspaces during LLaMA pretraining,
revealing (i) the diminishing dominance of low-rank subspaces over time, especially in
deeper layers, and (ii) their evolution in a nearly flat curvature.

• By connecting randomized projections to gradient subspace dynamics, we establish princi-
ples that clarify when and why randomization can be effective, offering the first systematic
explanation of these methods’ strengths and limitations.

• We introduce two methods, GrassWalk and GrassJump , that perform random walks and
jumps on the Grassmannian manifold, achieving superior convergence and accuracy.

2 LOW-RANK GRADIENT METHODS

Training large-scale models such as LLMs places extreme demands on both computation and mem-
ory, with optimizer states often consuming much more memory than the parameters. Gradient low-
rank methods address this bottleneck by exploiting the observation that gradients during training
often evolve in a low-dimensional subspace of the full parameter space (Gur-Ari et al., 2018; Schnei-
der et al., 2024; Zhao et al., 2024a). They reduce memory usage while supporting full-parameter
updates by projecting the gradients Gt ∈ Rm×n into a subspace of dimension r ≪ m,n (Zhao
et al., 2024a; Robert et al., 2025; Zhu et al., 2025; Chen et al., 2025b; Anonymous, 2025), as shown
in equation 1. where St ∈ Rm×r is an orthonormal basis that spans the subspace. In this paper, we
assume m ≤ n without loss of generality.

G̃t = S⊤
t Gt (1)

Optimizers such as Adam are then applied in this reduced space, and the results are mapped back
to the full parameter space for weight updates. This design yields a significant reduction in the
optimizer state size from O(2mn) to O(mr + 2nr) (Zhao et al., 2024a).

Assuming the gradients lie in an underlying low-rank subspace with a known rank r, a natural
approach is to compute the SVD of the gradient matrix and construct its rank-r approximation
(Zhao et al., 2024a), since SVD inherently provides such an estimation, as shown in equation 2.

Gt = UtStV
⊤
t ≈

r∑
i=1

situ
i
tv

i
t
⊤
, St = [u1

t , . . . , u
r
t ] ∈ Rm×r. (2)

Projecting gradients into a rank-r subspace offers an effective way to reduce an optimizer’s memory
footprint while still enabling full-parameter tuning. Unlike low-rank weight adaptation methods
such as LoRA (Hu et al., 2021), this approach is applicable to both pre-training and fine-tuning.
However, it also introduces several challenges.

Gradient subspaces are inherently unstable. Although prior works suggest the existence of a low-
rank core subspace in the gradient space, they also show that this subspace is not always stable and
that its variations must be captured (Zhao et al., 2024a). Several strategies have been developed for
updating the low-rank subspace; methods such as GaLore (Zhao et al., 2024a) and FiRA (Chen et al.,
2025b) periodically compute the SVD of the gradient matrix to identify the dominant directions,
however, SVD is computationally heavy and sensitive to noise (Anonymous, 2025; Zhu et al., 2025;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(a) Attention-Output Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(b) Attention-Value Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(c) Attention-Query Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(d) Attention-Key Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(e) MLP-Gate Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(f) MLP-Up Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(g) MLP-Down Proj.

Layer
0
1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16
17

18
19
20
21
22
23

(h) Legend

Figure 1: Each decoder layer stack includes seven layer types in the Llama-1B model. The plots
show the fraction of gradient-matrix energy explained by a rank 512 approximation. Despite a
high lower bound, this fraction declines over training, and deeper layers generally exhibit smaller
fractions.

Robert et al., 2025), particularly in later training stages when the gradients are small, leading to
instability and slower convergence (He et al., 2025). To mitigate these drawbacks, methods such
as APOLLO (Zhu et al., 2025) and FRUGAL (Zmushko et al., 2025) leverage random projections
to reduce computational cost. On the other hand, LDAdam (Robert et al., 2025), Online Subspace
Descent (Liang et al., 2024), and SubTrack++ (Anonymous, 2025), employ iterative approximation
techniques or subspace tracking to estimate dominant gradient subspaces.

Momentum states misalign under changing subspaces. Common optimizers such as AdamW as-
sume a fixed coordinate system and update their internal states accordingly. As a result, momentum
states may become misaligned whenever the subspace is updated. To mitigate this issue, COAP
(Xiao et al., 2025) proposes aligning subspace updates with the first momentum direction, thereby
leveraging information already encoded in the optimizer states. FRUGAL (Zmushko et al., 2025), in
contrast, addresses this by either projecting the old states into the new subspace or resetting the mo-
menta altogether upon subspace adjustment. However, simple projections cannot be directly applied
to Adam states, as it is not limited to linear operations. To handle this, methods such as LDAdam
(Robert et al., 2025) explicitly account for the nonlinearity. In particular, LDAdam reformulates
Adam’s state as a statistical estimator of the first and second momentum of the gradient matrix and
introduces an alternative formulation to address this challenge.

Low-rank Projections sacrifice gradient information. A low-rank projection discards gradient
components orthogonal to the chosen subspace, thereby losing potentially useful training signals.
LDAdam (Robert et al., 2025) addresses this by introducing an error-feedback mechanism that feeds
the discarded gradient back into the model in the next iteration. FRUGAL (Zmushko et al., 2025)
instead adapts state-free optimizers to handle the discarded portion of the gradients. Building on a
different insight, Fira (Chen et al., 2025b) observed that the scaling factor remains consistent across
both the dominant and residual subspaces. Leveraging this property, it employs the scaling factor
computed by a stateful optimizer (AdamW) to rescale the discarded components before applying
weight updates. SubTrack++ (Anonymous, 2025) adopts a similar approach, enabling stateful up-
dates without incurring additional optimizer memory costs.

3 IS THERE A CORE SUBSPACE?

Prior work Gur-Ari et al. (2018); Yaras et al. (2023) shows that during gradient descent, gradients
evolve within a low-dimensional subspace that carries most of the signal. However, recent work
Song et al. (2025) argues that learning is not confined to this core subspace and that constrain-
ing updates to it can hinder progress. To study gradient behavior in LLM training, we adopt the
SubTrack++ (Anonymous, 2025) setting to leverage a geometrically principled notion of a “core”
subspace and its evolution. We then quantify the fraction of gradient energy preserved by the low-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0

4000 Training Iteration (t)
0

20

SV Index (i)

m
ax L

i,t

(a) Attention-Output Proj.

0

4000 Training Iteration (t)
0

20

SV Index (i)

m
ax L

i,t

(b) Attention-Value Proj.

0

4000 Training Iteration (t)
0

20

SV Index (i)

m
ax L

i,t

(c) Attention-Query Proj.

0

4000 Training Iteration (t)
0

20

SV Index (i)

m
ax L

i,t

(d) Attention-Key Proj.

0

4000 Training Iteration (t)
0

20

SV Index (i)

m
ax L

i,t

(e) MLP-Gate Proj.

0

4000 Training Iteration (t)
0

20

SV Index (i)

m
ax L

i,t

(f) MLP-Up Proj.

0

4000 Training Iteration (t)
0

20

SV Index (i)

m
ax L

i,t

(g) MLP-Down Proj.

1e 07

1e 06

1e 05

1e 04

1e 03

1e 02

(h) Legend

Figure 2: Evolution of the top 20 singular values of the subspace estimation error derivative across
different projection layers in the LLaMA-1B architecture. Each plot shows the maximum i-th singu-
lar value within a given layer type (aggregated across all 24 decoder layers) as training progresses.
While MLP down-projection layers exhibit the largest singular values (g), their magnitude remains
small and decays rapidly. Other projection layers (a-d) show values close to zero throughout training.
The overall distribution of singular values becomes more uniform as training advances, suggesting
that the gradient subspace evolves in an almost flat curvature.

rank approximation by computing the ratio Rt in equation 3, where the Frobenius norms of the
low-rank gradient equation 1 and the full-rank gradient are used to calculate this ratio.

Rt =
∥G̃t∥F
∥Gt∥F

(3)

We computed this ratio across all layers during training using a LLaMA-based architecture with
1B parameters (Touvron et al., 2023) and with subspace rank r = 512. The ratio for training with
subspace ranks 256 and 1024 are also reported in Appendix A. The model consists of 24 decoder
layers, each containing an attention block followed by an MLP block. The low-rank structure applies
to the linear projections, of which there are seven per decoder layer. In the attention block, the
key, query, and value projections generate the essential attention representations, while the output
projection aggregates the resulting information from all heads. In the MLP block, the up projection
expands the hidden representation, the gate projection modulates which features are suppressed or
retained, and the down projection compresses the result back to the model dimension. To provide
more detailed insights, we clustered the results according to these projection types across all 24
decoder layers.

As shown in Figure 1, across all layer types more than 50% of the gradient energy lies in the core
subspace. However, in most layers this fraction decreases as training progresses. The decline is
most pronounced in deeper layers, where the fraction is consistently lower, suggesting that during
pre-training the subspaces of later layers vary more rapidly and play a less “core” role. This aligns
with the common view of LLM pre-training: early layers quickly learn broad, shared features, while
continued training shifts capacity toward rarer, more specialized features captured by later layers.

Despite the observed gradient energy, it is essential to understand the space in which we aim to
find the optimal projection. To this end, at each subspace update step we compute the derivative
of the subspace estimation error with respect to the underlying subspace. This derivative specifies
the update direction on the manifold to reduce the estimation error. For every layer in the LLaMA-
1B architecture, we then extract the top 20 singular values of this matrix. Figure 2 shows how the
distribution of these singular values evolves during training across different layer types.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

At each iteration, we report the maximum i-th singular value within each layer cluster (e.g., At-
tention Query or MLP up-projection), aggregated across all 24 decoder layers, thus providing an
upper-bound distribution. Notably, even in the MLP down-projection (Figure 2-g), where the largest
singular values appear, the range remains small and decays rapidly. For other layer types, the largest
singular values are already close to zero. In addition, as training progresses, the singular value distri-
bution becomes increasingly uniform, despite the overall magnitudes being extremely small. Taken
together with the results in Figures 1 and 2, these observations suggest that the gradient subspace
evolves within an almost flat curvature, while there is a considerable portion of energy carried by
the bulk component of the gradient. As in other optimization landscapes, such flatness implies that
random steps can be advantageous, preventing the model from being trapped in sharp local optima.

4 GRASSWALK AND GRASSJUMP

The Grassmannian manifold, denoted Gr(r, n), is the space of all r-dimensional subspaces of an
n-dimensional space (Bendokat et al., 2024). By definition, when we are using low-rank gradient
methods, we aim to find a point on Gr(r, n) onto which the gradients are projected. Building on
our analysis of gradient subspace dynamics, we introduce two randomized methods, GrassWalk and
GrassJump. These methods generate diverse subspaces through random exploration, preventing the
optimizer from being trapped in flat regions of the manifold. At the same time, they leverage all
available gradient information by retaining contributions both inside and outside the subspace. As
highlighted in Figure 1, both the bulk and dominant subspaces capture significant gradient energy;
our methods are designed to exploit both.

Subspace Adjustment. GrassWalk and GrassJump, differ only in how they adjust the subspace. In
GrassWalk, we first initialize the subspace from the initial gradient matrix, G0, using a rank-r SVD
as in equation 2. The subspace is subsequently updated every T iterations, which we refer to as the
subspace update interval. To update, we employ the exponential map on the Grassmannian manifold
(Bendokat et al., 2024), moving in a random direction from the current subspace. Concretely, we
sample a random matrix X ∈ Rm×r to define the update direction in the tangent space. The update
rule in equation 4 requires the SVD of X to move along the corresponding geodesic. Since we
employ random directions, we approximate this decomposition using randomized SVD to reduce
computational cost, denoting the result as ÛXΣ̂X V̂ ⊤

X . Here, η denotes the update step size.

St+1(η) = (StV̂X ÛX)

(
cos Σ̂Xη

sin Σ̂Xη

)
V̂ ⊤
X + St(I − V̂X V̂ ⊤

X ) (4)

For GrassJump, we adopt fully random projection matrices, effectively jumping from one point on
the Grassmannian to another every T iterations. At each update, we generate a random orthonormal
matrix by applying QR decomposition to a randomly sampled matrix. This approach yields fine-
grained random projections, in contrast to block-wise or column-wise subspace selection.

Informing the Optimizer of Subspace Updates. A key factor in the success of low-rank gradient
methods is properly adapting the optimizer states when the underlying gradient subspace changes.
This adaptation becomes especially critical when leveraging the optimizer’s history to recover infor-
mation lost during projection, as we discuss next.

In Adam, the momentum update rules compute weighted averages of the first- and second-order
gradient moments using the parameters β1 and β2, as shown in the following equations.

Mt ← β1 ·Mt−1 + (1− β1) · G̃t (5)

Vt ← β2 · Vt−1 + (1− β2) · G̃2
t (6)

When the subspace is updated, we rotate Adam’s moments onto the new basis so that the optimizer
remains aligned with the updated subspace. Orthogonal projection works well for the first moment
but not for the second, since Adam involves nonlinear operations. To handle this, we treat Adam’s
states as statistical estimates of the first and second moments of each gradient coordinate, and thus
using equation 7 and equation 8 for our adaptive optimizer (AO). A similar perspective has also been
adopted in prior state-of-the-art methods (Robert et al., 2025; Anonymous, 2025).

Mt ← β1(S
⊤
t St−1Mt−1) + (1− β1)G̃t (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1
GrassWalk , GrassJump

Require: Wt, Gt ∈ Rm×n with m ≤ n (w.l.o.g.), learning rate α, decay rates β1 and β2, subspace update
interval T , recovery scaling limiter factor ζ.
S0 ← U [:, : r] , where U, S, V ← SVD(G0)
while Convergence do

if step mod T == 0 then
St ← random rank-r orthonormal matrix

generate a random matrix; update the subspace in its direction as per equation 4

calculate low-rank gradient G̃t = S⊤
t Gt

adaptive optimizer as in equation 7 and equation 8
else

St = St−1

regular adam as in equation 5 and equation 6
end if
G̃O

t ← optimizer’s output, Ĝt = StG̃
O
t

compute Λt as in equation 9
Wt ←Wt−1 − α · Ĝt −α · Λt

end while

Vt ← β2

[
(1− βt−1

2 )|(S⊤
t St−1)

2 · (Vt−1 −M2
t−1) + (S⊤

t St−1 ·Mt−1)
2|
]
+ (1− β2)G̃

2
t . (8)

Recovering Information Lost in Low-Rank Projections. The low-rank projection discards the
residual ∆t = Gt − StG̃t when mapping the gradient into a lower-dimensional subspace. Based on
the observation that the scale ratio between dominant and bulk subspaces is consistent (Zhu et al.,
2025; Chen et al., 2025b), we reintroduce this signal by columnwise rescaling of ∆t according to the
ratio between the optimizer’s output G̃O

t and the raw low-rank gradient G̃t, as shown in equation 9.
This enables the use of stateful optimizer dynamics without storing the full optimizer states. With a
growth-rate limiter ζ, we prevent the scaling from diverging. Specifically, if ∥Λt∥/∥Λt−1∥ > ζ, we
rescale as per equation 10.

ϕt(Gt)i =
∥G̃O

t,:,i∥
∥G̃t,:,i∥

, Λt = ϕt(Gt)∆t, (9)

Λt ← Λt ·
ζ∥Λt−1∥
∥Λt∥

. (10)

Several works (Anonymous, 2025; Zmushko et al., 2025; Chen et al., 2025b; Zhu et al., 2025; Robert
et al., 2025) have employed various recovery scaling (RS) techniques, and we found this structure to
be the most effective complement to our fine-grained random projection matrices. The final weight
update is then expressed as:

Wt ←Wt−1 − α Ĝt − αΛt. (11)

The pseudo code of GrassWalk and GrassJump can be found in Algorithm 1.

5 RESULTS AND ABLATIONS

Systematic Ablation. We ablate the role of the three discussed components by considering four
baseline subspace update rules: (a) Grassmannian subspace tracking from SubTrack++ (Anony-
mous, 2025) that tracks the subspace by minimizing a projection error and updating along a Grass-
mannian geodesic. From the estimation error, they form a tangent vector to find the optimum sub-
space; see their paper for further details. (b) Random walk on Grassmannian which is the sub-
space update rule of GrassWalk as per equation 4; (c) Random projections, which recompute a
fresh orthonormal basis at each update and is used in GrassJump ; and (d) SVD-based updates as in
GaLore (Zhao et al., 2024a). To isolate the effect of each component, we subsequently incorporate
AO and RS both individually and jointly into each baseline, and report the resulting evaluation loss
under matched training and evaluation conditions across all configurations. The experiments are
performed on the pre-training of a Llama-1B architecture using the C4 dataset.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Subspace Adjustment
(Baseline)

+AO +RS +AO+RS

Grassmannian
Subspace Tracking

Random Walk on
Grassmannian

Random
Projections

SVD

5.97 4.74 5.06 3.89

6.18 4.66 5.06 3.86

6.16 4.94 4.89 3.87

6.17 4.79 5.30 4.00

Evaluation Loss

4.0

4.5

5.0

5.5

6.0

(a)

Subspace Adjustment
(Baseline)

+AO +RS +AO+RS

4.0

4.5

5.0

5.5

6.0

Ev
al

ua
tio

n 
Lo

ss

No Subspace Update

Grassmannian
Subspace Tracking
Random Walk on
Grassmannian
Random
Projections
SVD

(b)

Figure 3: We ablate (i) the subspace update method: Grassmannian tracking, Grassmannian random
walk, random projections, and SVD; (ii) adaptive-optimizer (AO), and (iii) recovery scaling (RS),
reporting evaluation loss (lower is better). The “No Subspace Update” variant freezes the initial
SVD subspace S0; because the subspace is fixed, AO is inapplicable and only RS is active.

As shown in Figure 3, Grassmannian subspace tracking achieves the lowest loss among the update
rules when neither AO nor RS is applied, demonstrating the effectiveness of structured manifold-
based updates, particularly in comparison to SVD. This result further underscores the limitations
of SVD, which is known to be sensitive to noise (He et al., 2025) and to discard prior information
(Anonymous, 2025), yielding performance comparable to our random subspace updates.

Adding AO to subspace adjustment strategies yields the largest improvement in nearly all set-
tings, with the notable exception of random projections. We attribute this to the extent to which
each method preserves the “core” gradient subspace. Grassmannian updates modify the previously
learned subspace through controlled rank-1 rotations; whether it is subspace tracing or a random
walk on the manifold, the divergence remains small. Similarly, SVD explicitly captures dominant
directions; although it is susceptible to noise, the resulting projection still retains most of the in-
formative components. In contrast, random projections select arbitrary subspaces that may discard
salient signal. Consequently, RS plays a more critical role in this setting, as the discarded informa-
tion is more likely to be essential, making its recovery significantly more beneficial. By contrast,
the weaker performance of RS without AO is expected. RS relies on the scale factors computed by
the Adam optimizer; however, if the optimizer is not informed of subspace changes, these scales are
corrupted by outdated bases and fail to reflect the intended columnwise rescaling.

In a complementary setting, we freeze the initial subspace S0, obtained via an SVD of the first
gradient matrix at the start of training. With the subspace fixed, AO remains inactive and only
RS is applied. As shown in Figure 3, this frozen variant performs comparably to Grassmannian
updates + RS, suggesting that the core subspace is largely captured from the very first iteration and
can yield competitive performance once the lost information from low-rank projection is recovered.
Nevertheless, because the true subspace inherently evolves during training, enabling all components
continues to provide substantial gains across all subspace adjustment methods.

The results reveal an important finding: when lost information is effectively recovered and the op-
timizer is informed of subspace changes, random projections can outperform other subspace update
methods. Thus, they are not merely an efficient substitute for more expensive approaches; owing to
the relatively flat curvature of the gradient space during training, random projections can also aid in
escaping local minima and act as a form of systematic regularization in the optimization process.

We have included additional ablations for investigating the sensitiviy of GrassWalk and GrassJump
to different hyperparameters, which are reported at Appendix B.

Pre-Taining Experiments. We evaluate multiple baselines to compare them during LLaMA-1B
and Qwen-1.5B pretraining for 10K steps under identical settings. All experiments are conducted
on a single A6000 GPU, and we report the final evaluation loss. Method-specific parameters are
set according to reported configurations in the original paper, with the subspace updated every 100
steps. Hyperparameters are reported in Appendix D.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000 25000 30000
Wall Time (s)

4

5

6

7

8

9

10

11

Tr
ai

ni
ng

 L
os

s

FRUGAL
APOLLO
LDAdam
GaLore
SubTrack++
GrassJump
GrassWalk

(a) Pre-training Llama-1B

0 10000 20000 30000 40000 50000 60000 70000 80000
Iteration

4

5

6

7

8

9

10

11

Tr
ai

ni
ng

 L
os

s

SubTrack++
GrassWalk
GrassJump

(b) Pre-training Llama-7B

Figure 4: Comparison of different methods on LLaMA pretraining. (a) Wall-clock training curves
for LLaMA-1B across all baselines. (b) Pretraining results for LLaMA-7B across selected methods,
excluding weaker baselines due to their large performance gap.

The results in Table 1 show that, while offering GaLore-level memory and low computational cost,
GrassWalk and GrassJump achieve superior performance. As illustrated in Figure 4-a, the wall-clock
time of our randomised methods matches that of the most computationally efficient methods, such
as APOLLO (Zhu et al., 2025), FRUGAL (Zmushko et al., 2025) and SubTrack++ (Anonymous,
2025), demonstrating superior convergence compared with other methods.

Table 1: Comparison of low-rank methods on pretraining LLaMA-1B and Qwen 1.5B models. We
report evaluation loss (↓), peak memory (GB), and wall-time (m). Best results are in bold, and
second best are underlined.

Arch. Method Eval. Loss Peak Mem. (GB) Wall Time (m)

L
la

M
A

-1
B

AdamW [Full-Rank] 4.10 35.2 417.0
GaLore (Zhao et al., 2024a) 6.17 31.1 522.2
APOLLO (Zhu et al., 2025) 5.71 35.5 410.5
LDAdam (Robert et al., 2025) 4.10 34.9 532.8
FRUGAL (Zmushko et al., 2025) 4.22 39.3 405.1
SubTrack++ (Anonymous, 2025) 3.89 32.6 429.2
GrassWalk [Ours] 3.86 32.0 418.6
GrassJump [Ours] 3.87 32.1 432.5
GrassJump - No QR [Ours] 3.87 32.1 415.2

Q
w

en
-1

.5
B AdamW [Full-Rank] 4.84 37.7 421.0

SubTrack++ (Anonymous, 2025) 4.70 33.1 436.4
GrassWalk [Ours] 4.68 33.6 436.6
GrassJump [Ours] 4.66 33.1 437.0

To assess the generalizability in larger models and for long-run trainings, we report the evaluation
loss when pre-training a Llama-7B architecture up to 100K iterations (Table 2). In this experiments,
GrassJump outperforms GrassWalk and other baselines, highlighting the importance of thoroughly
exploring model parameters and applying regularization at scale. Here, we exclude other baselines,
as their performance was consistently weaker. Also, the training dynamics and evaluation loss during
training are attached in Appendix C, with hyperparameters reported in Appendix D.

6 RELATED WORKS

Efficient training background. LoRA (Hu et al., 2021) reduces fine-tuning memory via low-rank
adapters, with extensions such as QLoRA (Dettmers et al., 2024) and Deep LoRA (Yaras et al.,
2024) improving efficiency and robustness. Further variants enhance adaptation (Lialin et al., 2023;
Renduchintala et al., 2024; Xia et al., 2024; Pan et al., 2024), while other approaches boost memory
efficiency by compressing activations (Miles et al., 2024) or reformulating optimization via block

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of low-rank gradient methods for pretraining LLaMA-7B. We report evaluation
loss (↓), peak memory usage (GB), and wall-clock time (hours) after 10k and 100k of training
iterations. Other baselines are omitted as their performance differs substantially from these three
methods. Best results are in bold.

Method Eval. Loss - 10k (Wall Time) Eval. Loss - 100k (Wall Time) Peak Mem. (GB)

SubTrack++ (Anonymous, 2025) 4.37 (15.1 hours) 3.36 (93.2 hours) 49.4
GrassWalk [Ours] 4.37 (15.1 hours) 3.37 (93.2 hours) 49.4
GrassJump [Ours] 4.27 (14.9 hours) 3.34 (92.6 hours) 49.4

coordinate descent (Luo et al., 2024). FLora (Hao et al., 2024) provides a complementary perspec-
tive by showing that LoRA can be interpreted as a random projection–based gradient compressor.
They resamples projection matrices to achieve effectively high-rank updates while maintaining sub-
linear optimizer state complexity. Another line of work exploits the structure of high-dimensional
data by projecting it into evolving low-dimensional subspaces. Incremental and Grassmannian-
based methods have been proposed for subspace tracking under partial observations (Balzano et al.,
2011), noise (Zhang & Balzano, 2016; Kasai, 2017), and geodesic evolution (Blocker et al., 2023),
offering a principled foundation for gradient projection techniques in LLM training.

Low-rank gradient methods. As optimizers like Adam (Kingma & Ba, 2017) account for a sig-
nificant portion of memory, there are many methods (Modoranu et al., 2024), (Zhang et al., 2024)
that aim to reduce optimizer states. MicroAdam (Modoranu et al., 2024) compresses gradients with
feedback correction, while Adam-mini (Zhang et al., 2024) partitions models into blocks with shared
learning rates. (Gur-Ari et al., 2018), (Schneider et al., 2024) show that a substantial portion of gra-
dients lies within a largely consistent subspace. GaLore (Zhao et al., 2024a) first leverage this fact to
reduce optimizer’s memory by projecting gradients onto a low-rank subspace, yielding large mem-
ory savings. Jaiswal et al. (2024) fine-tune only layers with low-dimensional gradient subspaces,
while Grass (Muhamed et al., 2024) saves memory via sparse gradient projections. Ramesh et al.
(2024) achieve efficiency by dynamically updating only a subset of parameters. GoLore (He et al.,
2025) addresses GaLore’s convergence issue and by injecting random projections in later iterations,
ensures convergence. Fira (Chen et al., 2025b) uses norm-based scaling to transfer the adaptive
behavior of a low-rank optimizer to full-rank updates while performing SVD for subspace update.

APOLLO (Zhu et al., 2025) approximates channel-wise scaling using an auxiliary random low-rank
space, effectively coarsening learning-rate adaptation with SGD-like memory. The RSO framework
(Chen et al., 2025c) decomposes training into sequences of randomized lower-dimensional subprob-
lems. Adapprox (Zhao et al., 2024b) targets Adam’s second moment with randomized low-rank
approximations, adaptive rank and similarity guidance. GreedyLore (Chen et al., 2025a) explores
greedy low-rank gradient compression with error-feedback and semi-lazy subspace updates. Also,
FRUGAL(Zmushko et al., 2025) leverages gradient splitting: it applies stateful updates in a low-
dimensional space and state-free methods (SGD/signSGD) (Bernstein et al., 2018) along remaining
directions, using columnwise random projections.

7 DISCUSSION AND CONCLUSION

Our analysis showed that while a low-rank core subspace captures substantial gradient energy, its
dominance fades over time and across deeper layers, and that the subspace evolves within a nearly
flat curvature. These findings explain both the strengths and weaknesses of existing randomized and
structured approaches, and motivate our proposed algorithms. By incorporating subspace-aware
random walks and jumps, together with optimizer adaptation and recovery mechanisms, GrassWalk
and GrassJump consistently outperform prior state-of-the-art methods, while retaining GaLore-level
memory efficiency. The results demonstrate that randomized strategies are not merely computational
shortcuts: when designed with awareness of gradient dynamics, they can become principled tools
for stability, generalization, and convergence speed. More broadly, our study reframes randomiza-
tion as a feature of low-rank gradient training, and highlights the importance of investigating the
training dynamics. We hope our work helps establish a stronger foundation for the next generation
of memory-efficient optimization methods.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anonymous. Subtrack++ : Gradient subspace tracking for scalable LLM training. In The Thirty-
ninth Annual Conference on Neural Information Processing Systems, 2025. URL https://
openreview.net/forum?id=6geRIdlFWJ.

Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification and tracking of subspaces
from highly incomplete information, 2011. URL https://arxiv.org/abs/1006.4046.

Thomas Bendokat, Ralf Zimmermann, and P.-A. Absil. A grassmann manifold handbook: basic
geometry and computational aspects. Advances in Computational Mathematics, 50(1), January
2024. ISSN 1572-9044. doi: 10.1007/s10444-023-10090-8. URL http://dx.doi.org/
10.1007/s10444-023-10090-8.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:
Compressed optimisation for non-convex problems, 2018. URL https://arxiv.org/abs/
1802.04434.

Cameron J. Blocker, Haroon Raja, Jeffrey A. Fessler, and Laura Balzano. Dynamic subspace estima-
tion with grassmannian geodesics, 2023. URL https://arxiv.org/abs/2303.14851.

Chuyan Chen, Yutong He, Pengrui Li, Weichen Jia, and Kun Yuan. Greedy low-rank gradi-
ent compression for distributed learning with convergence guarantees, 2025a. URL https:
//arxiv.org/abs/2507.08784.

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang. Fira:
Can we achieve full-rank training of LLMs under low-rank constraint?, 2025b. URL https:
//openreview.net/forum?id=lR7rqLtsXZ.

Yiming Chen, Yuan Zhang, Yin Liu, Kun Yuan, and Zaiwen Wen. A memory efficient randomized
subspace optimization method for training large language models. In Forty-second International
Conference on Machine Learning, 2025c. URL https://openreview.net/forum?id=
XuCf87V8OF.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace,
2018. URL https://arxiv.org/abs/1812.04754.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors, 2024. URL https://arxiv.org/abs/2402.03293.

Yutong He, Pengrui Li, Yipeng Hu, Chuyan Chen, and Kun Yuan. Subspace optimiztion for large
language models with convergence guarantees, 2025. URL https://openreview.net/
forum?id=udtrtwkvk5.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. From galore to welore: How low-rank weights non-uniformly emerge from low-rank
gradients, 2024. URL https://arxiv.org/abs/2407.11239.

Hiroyuki Kasai. Fast online low-rank tensor subspace tracking by cp decomposition using recursive
least squares from incomplete observations, 2017. URL https://arxiv.org/abs/1709.
10276.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates, 2023. URL https://arxiv.org/abs/2307.05695.

10

https://openreview.net/forum?id=6geRIdlFWJ
https://openreview.net/forum?id=6geRIdlFWJ
https://arxiv.org/abs/1006.4046
http://dx.doi.org/10.1007/s10444-023-10090-8
http://dx.doi.org/10.1007/s10444-023-10090-8
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2303.14851
https://arxiv.org/abs/2507.08784
https://arxiv.org/abs/2507.08784
https://openreview.net/forum?id=lR7rqLtsXZ
https://openreview.net/forum?id=lR7rqLtsXZ
https://openreview.net/forum?id=XuCf87V8OF
https://openreview.net/forum?id=XuCf87V8OF
https://arxiv.org/abs/1812.04754
https://arxiv.org/abs/2402.03293
https://openreview.net/forum?id=udtrtwkvk5
https://openreview.net/forum?id=udtrtwkvk5
https://arxiv.org/abs/2407.11239
https://arxiv.org/abs/1709.10276
https://arxiv.org/abs/1709.10276
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2307.05695


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaizhao Liang, Bo Liu, Lizhang Chen, and qiang liu. Memory-efficient LLM training with online
subspace descent. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=P8rTCT6g45.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter optimization
method for large language models, 2024. URL https://arxiv.org/abs/2404.02827.

Roy Miles, Pradyumna Reddy, Ismail Elezi, and Jiankang Deng. Velora: Memory efficient training
using rank-1 sub-token projections, 2024. URL https://arxiv.org/abs/2405.17991.

Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter
Richtarik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space over-
head and provable convergence, 2024. URL https://arxiv.org/abs/2405.15593.

Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Com-
pute efficient low-memory llm training with structured sparse gradients, 2024. URL https:
//arxiv.org/abs/2406.17660.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Lay-
erwise importance sampling for memory-efficient large language model fine-tuning, 2024. URL
https://arxiv.org/abs/2403.17919.

Amrutha Varshini Ramesh, Vignesh Ganapathiraman, Issam H. Laradji, and Mark Schmidt. Block-
llm: Memory-efficient adaptation of llms by selecting and optimizing the right coordinate blocks,
2024. URL https://arxiv.org/abs/2406.17296.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-LoRA: Enhancing parameter
efficiency of LoRA with weight tying. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 8694–8705,
Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.naacl-long.481. URL https://aclanthology.org/2024.naacl-long.481.

Thomas Robert, Mher Safaryan, Ionut-Vlad Modoranu, and Dan Alistarh. LDAdam: Adaptive
optimization from low-dimensional gradient statistics. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
Zkp1GuHerF.

Jan Schneider, Pierre Schumacher, Simon Guist, Le Chen, Daniel Häufle, Bernhard Schölkopf, and
Dieter Büchler. Identifying policy gradient subspaces, 2024. URL https://arxiv.org/
abs/2401.06604.

Minhak Song, Kwangjun Ahn, and Chulhee Yun. Does SGD really happen in tiny subspaces?
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=v6iLQBoIJw.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning, 2024. URL https://arxiv.org/abs/2401.04151.

11

https://openreview.net/forum?id=P8rTCT6g45
https://arxiv.org/abs/2404.02827
https://arxiv.org/abs/2405.17991
https://arxiv.org/abs/2405.15593
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/2403.17919
https://arxiv.org/abs/2406.17296
https://aclanthology.org/2024.naacl-long.481
https://openreview.net/forum?id=Zkp1GuHerF
https://openreview.net/forum?id=Zkp1GuHerF
https://arxiv.org/abs/2401.06604
https://arxiv.org/abs/2401.06604
https://openreview.net/forum?id=v6iLQBoIJw
https://openreview.net/forum?id=v6iLQBoIJw
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2401.04151


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinqi Xiao, Shen Sang, Tiancheng Zhi, Jing Liu, Qing Yan, Yuqian Zhang, Linjie Luo, and Bo Yuan.
Coap: Memory-efficient training with correlation-aware gradient projection, 2025. URL https:
//arxiv.org/abs/2412.00071.

Can Yaras, Peng Wang, Wei Hu, Zhihui Zhu, Laura Balzano, and Qing Qu. Invariant low-
dimensional subspaces in gradient descent for learning deep matrix factorizations. In NeurIPS
2023 Workshop on Mathematics of Modern Machine Learning, 2023.

Can Yaras, Peng Wang, Laura Balzano, and Qing Qu. Compressible dynamics in deep overparame-
terized low-rank learning & adaptation. arXiv preprint arXiv:2406.04112, 2024.

Dejiao Zhang and Laura Balzano. Global convergence of a grassmannian gradient descent algorithm
for subspace estimation, 2016. URL https://arxiv.org/abs/1506.07405.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo,
and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more, 2024. URL https:
//arxiv.org/abs/2406.16793.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024a. URL
https://arxiv.org/abs/2403.03507.

Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kölker, Zhefeng Wang, and Xi-
aoming Yuan. Adapprox: Adaptive approximation in adam optimization via randomized low-rank
matrices, 2024b. URL https://arxiv.org/abs/2403.14958.

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z.
Pan, Zhangyang Wang, and Jinwon Lee. Apollo: Sgd-like memory, adamw-level performance,
2025. URL https://arxiv.org/abs/2412.05270.

Philip Zmushko, Aleksandr Beznosikov, Martin Takáč, and Samuel Horváth. FRUGAL: Memory-
efficient optimization by reducing state overhead for scalable training. In Forty-second Interna-
tional Conference on Machine Learning, 2025. URL https://openreview.net/forum?
id=B4TyAILcE4.

A CORE SUBSPACE ENERGY VS. RANK

In Figure 1, we illustrate the fraction of gradient energy captured by the core subspace, as defined
in equation 3. These plots were generated during pre-training of a Llama-1B architecture using a
subspace rank of r = 512. To further examine this phenomenon across different subspace capacities,
we additionally include results for ranks 256 (Figure 5) and 1024 (Figure 6).

As anticipated, increasing the rank also increases the energy fraction. Crucially, even with rank
1024, a considerably high rank for a 1B model, the fractions stabilize between 70% and 80% after
initial iterations (with a significant 20% to 30% scattered on the orthogonal space), consistently
demonstrating the decay pattern across nearly all layer types, except for MLP-down projection.
For rank 256, the fractions are significantly lower, settling around 40% to 50%. This extended
experimentation strongly validates the conclusion drawn from Figure 1.

B ADDITIONAL ABLATIONS

In this section we report the result of ablations against different hyperparameters.

B.1 SUBSPACE RANK

The rank of the core subspace, when pre-training the Llama-1B architecture with a subspace update
interval of 200, impacts the evaluation loss as shown in the Table 3. While a higher rank generally
yields better loss, the marginal benefit is limited. Notably, in the GrassJump, the reduced depen-
dency on a specific subspace allows for effective performance even with significantly lower ranks.

12

https://arxiv.org/abs/2412.00071
https://arxiv.org/abs/2412.00071
https://arxiv.org/abs/1506.07405
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.14958
https://arxiv.org/abs/2412.05270
https://openreview.net/forum?id=B4TyAILcE4
https://openreview.net/forum?id=B4TyAILcE4


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.6

0.8

1.0

En
er

gy
 R

at
io

 R
t

(a) Attention-Output Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.6

0.8

1.0

En
er

gy
 R

at
io

 R
t

(b) Attention-Value Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.6

0.8

1.0

En
er

gy
 R

at
io

 R
t

(c) Attention-Query Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.6

0.8

1.0

En
er

gy
 R

at
io

 R
t

(d) Attention-Key Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.6

0.8

1.0

En
er

gy
 R

at
io

 R
t

(e) MLP-Gate Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.6

0.8

1.0

En
er

gy
 R

at
io

 R
t

(f) MLP-Up Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.4

0.6

0.8

1.0

En
er

gy
 R

at
io

 R
t

(g) MLP-Down Proj.

Layer
0
1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16
17

18
19
20
21
22
23

(h) Legend

Figure 5: Each decoder layer stack includes seven layer types in the Llama-1B model. The plots
show the fraction of gradient-matrix energy explained by a rank 256 approximation. Despite a high
lower bound for this rank, this fraction declines over training, and deeper layers generally exhibit
smaller fractions.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(a) Attention-Output Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(b) Attention-Value Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(c) Attention-Query Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(d) Attention-Key Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(e) MLP-Gate Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(f) MLP-Up Proj.

0 1000 2000 3000 4000 5000 6000
Training Iteration

0.5

0.6

0.7

0.8

0.9

1.0

En
er

gy
 R

at
io

 R
t

(g) MLP-Down Proj.

Layer
0
1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16
17

18
19
20
21
22
23

(h) Legend

Figure 6: Each decoder layer stack includes seven layer types in the Llama-1B model. The plots
show the fraction of gradient-matrix energy explained by a rank 1024 approximation. Despite large
rank for this model size and a high lower bound, this fraction declines over training, and deeper
layers generally exhibit smaller fractions.

Table 3: Final evaluation loss (↓) after pre-training a Llama-1B architecture for 10k iterations and
with different subspace ranks.

Method r = 256 r = 512 r = 1024
GrassWalk 4.62 4.52 4.43
GrassJump 4.54 4.50 4.45

B.2 SUBSPACE UPDATE INTERVAL

Table 4 summarizes the impact of update frequency on pre-training of aLlama-1B architecture with
rank 512. Notably, no subspace update results in a final evaluation loss of 5.06 (Figure 3), under-
scoring the necessity of subspace adaptation. Crucially, excessively frequent GrassJump updates
degrade performance, suggesting that drastic subspace changes disrupt the optimizer’s effectiveness
and necessitate sufficient iteration for convergence.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

101

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

GrassWalk - 1.01
GrassWalk - off
GrassWalk - 10
GrassWalk - 0.1

(a) GrassWalk

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

101

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

GrassJump - 1.01
GrassJump - 0.1
GrassJump - 10
GrassJump - off

(b) GrassJump

Figure 7: Training dynamics of pre-training a Llama-1B architecture with rank 512 for 10k iterations
using different values for norm-growth limiter ζ.

B.3 NORM-GROWTH LIMITER

In Figure 7, we examine the effect of different norm-growth limiter values on the training dynam-
ics of a Llama-1B model trained with rank 512 using the GrassWalk and GrassJump methods. As
shown, this parameter acts similarly to a gradient-clipping coefficient, regulating training spikes.
Furthermore, Table 5 demonstrates that mitigating these spikes, while avoiding excessive suppres-
sion of the recovered signal (e.g., (ζ = 0.1)) has a substantial impact on the final evaluation loss.

Table 4: Final evaluation loss (↓) after pre-training a Llama-1B architecture for 10k iterations with
r = 512 and with different subspace update intervals.

Method T = 20 T = 50 T = 100 T = 200 T = 500 T = 1K T = 2K
SubTrack++ (Anonymous, 2025) NC 3.86 3.89 3.99 4.25 4.45 4.68
GrassWalk [Ours] 3.72 3.79 3.86 3.98 4.25 4.46 4.68
GrassJump [Ours] 4.33 4.34 3.87 3.96 4.15 4.75 4.89

Table 5: Final evaluation loss (↓) after pre-training a Llama-1B architecture for 10k iterations with
r = 512 and with different values for the norm-growth limiter ζ.

Method ζ = 0.1 ζ = 1.01 ζ = 10 ζ =∞
GrassWalk 3.44 3.26 3.41 3.42
GrassJump 3.45 3.30 3.44 3.44

B.4 THE STEP-SIZE OF THE GRASSMANNIAN UPDATES

GrassJump employs purely random subspace selection for maximal exploration. Conversely, Grass-
Walk incorporates an η parameter, representing the step-size for updates on the Grassmannian man-
ifold that can affect its performance. Ablation studies indicate that the step-size is inconsequential
to the final pre-training evaluation loss of GrassWalk on pre-training a Llama-1B model, as demon-
strated in Table 6. Notably, the step-size’s appearance in the sine and cosine terms of equation 4
inherently leads to oscillatory behavior after scaling.

Table 6: Final evaluation loss (↓) after pre-training a Llama-1B architecture for 10k iterations with
r = 512 using GrassWalk with diffent subspace update step-size η.

Method η = 10 η = 100 η = 1000 η = 10000

GrassWalk 3.9812 3.9786 3.9815 3.9890

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 100000 200000 300000 400000
Wall Time (s)

101

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

GaLore
SubTrack++
GrassWalk
GrassJump

(a) Training Loss vs. Wall-Time

20000 40000 60000 80000 100000
Iteration

4 × 100

5 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

GaLore
Subtrack++
GrassJump
GrassWalk

(b) Evaluation Loss vs. Training Iterations

Figure 8: Training and evaluation dynamics of pre-training a Llama-7B architecture with rank 1024
for 100k iterations across different methods.

C LONG-RUN TRAINING OF 7B MODEL

We pre-trained the Llama-7B architecture using GrassWalk, GrassJump, and SubTrack++ (Anony-
mous, 2025) for 100K steps. The results are presented in Table 2, and Figure 8 shows GrassJump
consistently outperforms both in training dynamics and evaluation loss. Notably, GrassWalk
achieves comparable performance without requiring gradient tracking.

D PRE-TRAINING HYPERPARAMETERS

The hyperparameters of the experiments are reported in Table 7. All experiments are conducted on
A6000 GPUs.

Table 7: Hyperparameters of pre-training Llama-based and Qwen architectures.

Llama-1B Llama-7B Qwen-1.5B

Architectural Hidden 2048 4096 1536
Parameters Intermediate 5461 11008 8960

Heads 24 32 12
Layers 32 32 28

Shared Parameters Learning Rate 1e-4 1e-4 1e-4
Batch Size 32 8 16

Gradient Accumulation 2 4 4
Iterations 10k 100k 10k

Gradient Clipping 1.0
Warmup Steps 1000

scale 0.25
dtype bfloat16

Low-Rank Optimizer Rank 512 1024 256
Methods Parameters Subspace Update Interval 100 500 100

Step-Size 10000

E FLAT CURVATURE

Figure 2 shows the distribution of the singular values of the tangent vectors of the subspace-
estimation error across layers and training iterations. Figure 9 plots the Frobenius norm of these
singular values for each layer over the course of training. As illustrated, nearly all layers exhibit ex-
tremely small values, indicating that the subspace-estimation error has very low sensitivity in almost
every direction.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Training Iteration

10−7

10−6

10−5

10−4

10−3

‖σ
t‖ F

(a) Attention-Output Proj.

Training Iteration
10−7

10−6

10−5

10−4

10−3

‖σ
t‖ F

(b) Attention-Value Proj.

Training Iteration

10−9

10−8

10−7

10−6

10−5

10−4

10−3

‖σ
t‖ F

(c) Attention-Query Proj.

Training Iteration

10−9

10−8

10−7

10−6

10−5

10−4

10−3

‖σ
t‖ F

(d) Attention-Key Proj.

Training Iteration
10−7

10−6

10−5

10−4

10−3

‖σ
t‖ F

(e) MLP-Gate Proj.

Training Iteration
10−7

10−6

10−5

10−4

10−3

‖σ
t‖ F

(f) MLP-Up Proj.

Training Iteration
10−4

10−3

10−2

‖σ
t‖ F

(g) MLP-Down Proj.

Layer
0
1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16
17

18
19
20
21
22
23

(h) Legend

Figure 9: Frobenius norm of singular values of the subspace estimation error derivative across dif-
ferent projection layers in the LLaMA-1B architecture. Each plot shows the norm within a given
layer type (aggregated across all 24 decoder layers) as training progresses. Almost all the layers
demonstrate extremely small values, indicating the flat curvature of the gradient subspace optimiza-
tion space.

16


	Introduction
	Low-Rank Gradient Methods
	Is There A Core Subspace?
	GrassWalk and GrassJump 
	Results and Ablations
	Related Works
	Discussion and Conclusion
	blue Core Subspace Energy vs. Rank
	blue Additional Ablations
	blueSubspace Rank
	blue Subspace Update Interval
	blue Norm-Growth Limiter
	blue The Step-Size of the Grassmannian Updates

	blue Long-Run Training of 7B Model
	blue Pre-Training Hyperparameters
	blue Flat Curvature

