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Abstract

Contrastive learning has achieved remarkable001
results in sentence representation, but its se-002
mantic representation remains independent in003
the process of training and inference, and004
could not pay attention to the interactive in-005
formation of sentence pairs. This paper pro-006
poses InterCSE, a interactive contrastive learn-007
ing method for sentence embedding, which008
not only focuses on the semantic similarity009
sorting of sentence pairs, but also increases010
the interactive information as a supplement011
for sentence representation. Meanwhile, we012
propose a loss decaying strategy to balance013
embedding similarity and interactive infor-014
mation objectives. We evaluate the perfor-015
mance of InterCSE on standard semantic tex-016
tual similarity (STS) tasks, and experiments017
show that our model using BERTbase and018
BERTlarge achieve 82.11% and 82.88% spear-019
man’s correlation, 0.54% and 0.43% improve-020
ment compared to SimCSE respectively. We021
also conduct experiments that adding interac-022
tive network based on Sentence-Transformers,023
which get 85.18%(+0.88% BERTbase) and024
85.69%(+1.07% RoBERTabase) spearman’s025
correlation on STS Benchmark. Hence, adding026
interactive features to the traditional siamese027
network performs very well, and achieves new028
state-of-the-art performance on sentence repre-029
sentation tasks.030

1 Introduction031

Sentence representation learning is a vital com-032

ponent of natural language processing tasks (Cer033

et al., 2017). The rapid development of sentence034

representation technology has made a wide range035

of downstream tasks more intelligent, especially036

information retrieval and text clustering.037

Recently, the pre-trained language model has be-038

come the cornerstone of natural language process-039

ing technology, such as BERT(Devlin et al., 2019;040

Liu et al., 2019), GPT(Radford et al., 2018, 2019;041

Figure 1: The architecture of single tower network(left)
and siamese network(right).

Brown et al., 2020), ERNIE(Sun et al., 2019a,b, 042

2021), which greatly affects the development of 043

various downstream tasks. 044

Many sentence representation approaches 045

are transformed into point-wise classification 046

tasks(Reimers and Gurevych, 2019), and there is a 047

gap between the training optimization objectives 048

and good sentence representation. Sentence 049

representation could not get high performance 050

directly with pre-trained language model because 051

of anisotropic phenomenon (Gao et al., 2019), 052

but contrastive learning play the role of a bridge. 053

Comparative learning applys the sorting method 054

with InfoNCE(van den Oord et al., 2019) con- 055

trastive loss function, which is more suitable for 056

the optimization goal of sentence representation. 057

The sentence representation model(Gao et al., 058

2022; Yan et al., 2021) of contrastive learning com- 059

bined with pre-trained model is a siamese network, 060

which encodes all sentences independently. The 061

structure of the siamese network makes it possible 062

to quickly produce the vector representation of the 063

sentences and calculate the similarity during train- 064

ing and prediction, so as to complete the retrieval 065

or sentence clustering task in massive data. How- 066
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Network Type Model Spearman

Siamese Network

SBERT-base ♡ 84.7
SBERT-large ♡ 84.5
SimCSE-BERT-base ♠ 84.3
SimCSE-BERT-large(reproduce) 85.4
SRoBERTa-base ♡ 84.9
SRoBERTa-large ♡ 85.0
SimCSE-RoBERTa-base ♠ 85.8
SimCSE-RoBERTa-large ♠ 86.7

Single Tower Network

BERT-base ♦ 85.8
BERT-large ♦ 86.5
RoBERTa-base ♢ 87.2
RoBERTa-large ♢ 88.1

Table 1: Comparison of singel tower network and siamese network on STS-Benchmark(Cer et al., 2017) test set
with spearman’s correlation. ♡: results from Sentence-Transformers(Reimers and Gurevych, 2019), ♠: results from
SimCSE(Gao et al., 2022), ♦ : results from BERT (Devlin et al., 2019), ♢: the performance of RoBERTa-base and
RoBERTa-large in single tower network are reproduce through fairseq(Ott et al., 2019). SimCSE models are trained
on NLI datasets(Bowman et al., 2015), and the other models are trained on STS-Benchmark train set. All results are
rounded to one decimal place for comparison.

ever, the structure of independent encoding makes067

the sentences pair lose the interactive information,068

which reduces the accuracy rate.069

There are obvious differences between single070

tower network and siamese network. The network071

structure is depicted in Figure 1. The single tower072

network is like the original BERT(Devlin et al.,073

2019) model structure. After concating the sen-074

tence pairs, the semantic features of the sentence075

pairs are extracted and input to the downstream076

classification or regression network. The siamese077

network(Koch et al., 2015) has two encoders that078

encode each sentence individually where the two079

encoders share model parameters. After encoding,080

it can perform similarity calculation or put into081

the downstream network using sentence embed-082

ding, such as Sentence-Transformers(Reimers and083

Gurevych, 2019).084

The performance of the single-tower network085

and the siamese network on the STS Benchmark086

test dataset is shown in Table 1. On the whole, the087

single tower network has a good improvement in088

spearman’s correlation index compared with the089

siamese network. We consider that when the single090

tower network encodes a sentence pair, the sen-091

tence is not an independent individual. It will re-092

fer to its counterparts for encoding and use the093

attention mechanism to extract features, which094

makes the single tower network in the sentence pair095

similarity task has a higher correlation coefficient.096

Recently, most sentence representation tasks use097

siamese networks. Although it could bring compu- 098

tational advantages on massive data, it inevitably 099

reduces the accuracy of correlation. 100

In order to take full advantage of the accuracy ad- 101

vantages of single tower networks and the inference 102

speed advantages of siamese networks, this paper 103

proposes a multi-task contrastive learning method. 104

On the basis of SimCSE, we added a single tower 105

network as a supplement to form a framework for 106

multi-task learning. This method could fully obtain 107

the interaction information between sentence pairs 108

during the process of training sentence representa- 109

tion. 110

Our contributions can be summarized as follows: 111

1. We propose an effective framework of multi- 112

task contrastive learning for sentence represen- 113

tation tasks which could introduce sentence 114

interactive semantic information. 115

2. We design a loss function for the proposed 116

framework. When the interactive network in- 117

troduce information increment, try to mini- 118

mize the hurt to the original sentence repre- 119

sentation. 120

3. Experiments show that our approach achieves 121

new state-of-the-art performance on STS 122

tasks. 123

4. We also introduce sentences interactive net- 124

work based on Sentence-Transformers, and 125
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get a quite outstanding performance on STS126

benchmark task.127

2 Related Work128

2.1 Language Model129

Recently, transformer(Vaswani et al., 2017) struc-130

ture shines in the field of deep learning and lays the131

foundation for large models. The attention mecha-132

nism is good at capturing the semantic relationship133

between sequences. Using transformer’s encoder,134

many language models have been born, such as135

GPT(Radford et al., 2018), BERT(Devlin et al.,136

2019), RoBERTa(Liu et al., 2019), XLNet(Yang137

et al., 2019), Ernie(Sun et al., 2019a), etc. These138

models mainly have some differences in masking139

mechanism, pre-training data and methods. Among140

them, the BERT model mainly masks 15% words in141

the sentence and predicts the origin words as a unsu-142

pervised pre-training task. After obtaining the pre-143

trained model, NLP downstream tasks only need to144

complete fine-tuning on the model to achieve high145

performances, including sentence classification, se-146

quence tagging, question answering, machine read-147

ing and comprehension and sentence-pair classifi-148

cation or regression.149

2.2 Contrastive Learning and Sentence150

Representation151

Contrastive learning was first proposed in the field152

of computer vision. It mainly wants to optimize153

the similarity of sample pairs in a representation154

space, and make similar sample pairs gather and155

dissimilar sample pairs stay away. After the sample156

representation is obtained using siamese network157

embedding, the sample similarity is calculated to158

maximize the similarity of the positive samples.159

Contrastive learning could take a cross-entropy ob-160

jective with in-batch-negatives. This optimization161

scenario is very suitable for unsupervised scenarios.162

Usually, positive samples can be obtained through163

simple data enhancement, and a large number of164

negative samples can be obtained through negative165

sampling.166

In terms of sentence representation, the idea of167

contrastive learning continues to be used, leading168

to many research results, such as ConSERT(Yan169

et al., 2021), SimCSE(Gao et al., 2022) and ES-170

imCSE(Wu et al., 2022). ConSERT proposes four171

different data augmentation strategies to generate172

views for contrastive learning, including adver-173

sarial attack, token shuffling, cutoff and dropout.174

SimCSE first describes an unsupervised approach, 175

which takes an input sentence and predicts itself in 176

a contrastive objective, with only standard dropout 177

used as noise. Only using dropout as data augmen- 178

tation becomes a popular method for contrastive 179

learning. ESimCSE introduces two modifications 180

based on SimCSE. It applies a simple repetition 181

operation to modify the input sentence, and then 182

passes the input sentence and its modified counter- 183

part to the pre-trained Transformer encoder, respec- 184

tively, to get the positive pair. And it introduces a 185

momentum contrast, enlarging the number of nega- 186

tive pairs. 187

2.3 Multi-Task Learning 188

Multi-Task Learning (MTL) is an important re- 189

search topic in machine learning, which aims to 190

learn multiple tasks simultaneously. In MTL, mul- 191

tiple tasks are divided into multiple learning units, 192

and a learner can learn multiple tasks by making 193

multiple small models. 194

One of the important research directions in MTL 195

is to develop efficient algorithms and theoretical 196

models. In recent years, many works have been 197

carried out in this direction, including deep neu- 198

ral networks, attention mechanism, joint attention, 199

graph attention, and so on. MTL has been suc- 200

cessfully used in natural language processing ap- 201

plications, including text classification(Liu et al., 202

2017), machine translation(Luong et al., 2016), se- 203

quence labeling(Rei, 2017) and sentence represen- 204

tations(Ahmad et al., 2018). These algorithms and 205

theoretical models can help MTL learn multiple 206

tasks with better performance. 207

3 InterCSE 208

In this section, we present InterCSE (introducing 209

Interactive semantic information in Contrastive 210

Sentences Embedding) for sentence representation 211

task. Firstly, we present the overall framework 212

of our approach. Then, we introduce the training 213

dataset for our model. Finally, we talk about the 214

combination strategies of loss function for multiple 215

objectives. 216

3.1 Framework 217

The main idea of our approach is to introduce in- 218

teractive information while encoding a sentence. 219

Hence, a single tower network which we call inter- 220

active network in InterCSE is added on the basis 221

of SimCSE(Gao et al., 2022) as shown in Figure 3. 222
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Figure 2: The architecture of InterCSE. Independent network focuses on the representation of sentence, and
interactive network perceives sentences interactive semantic. Independent network encodes sentences individually,
while interactive network concatenates two sentences and predicts the degree of semantic relevance. Three encoders
share same parameters when training.

There are two major components in our framework:223

independent network and interactive network. Dur-224

ing the training process, the interactive network225

completes the interactive feature extraction of sen-226

tence pairs. While inference, only independent227

network works and generates sentence embedding.228

All the transformer encoders share same parame-229

ters.230

Independent Network The goal of the inde-231

pendent network is to quickly produce semantic232

representation of single sentence without relying233

on other sentences. The independent network is234

composed of a transformer encoder and cosine net-235

work. Transformer encoder is a siamese network236

based on BERT-like model, and cosine network is237

generally cosine similarity calculation. The input238

is exactly two sentence, such as sentence A and239

sentence A+ (or sentence A−)1, and independent240

network encodes the sentence pairs independently241

by [CLS] representation, then calculates the cosine242

similarity. There are a high semantic score between243

sentence A and sentence A+, and a low semantic244

score between sentence A and sentence A−.245

Interactive Network The goal of the interac-246

1For convenience of description, sentence A refers Two
dogs are running., sentence A+ refers There are animals
outdoors., and sentence A− refers The pets sitting on a couch.
in Figure 3.

tive network is to obtain non-independent sentence 247

semantic information through the attention inter- 248

action of words between sentence pairs. Non- 249

independent sentences semantic information is an 250

important correlation signal, which can keenly per- 251

ceive the semantics of sentence to details. The 252

interactive network consists of an transformer en- 253

coder and a feed forward network. Transformer 254

encoder is a BERT-like model, and the input is the 255

concatenation of two sentence and [SEP] token. 256

The [CLS] embedding of transformer encoder is 257

input into the feed forward network to evaluate the 258

similarity of sentence pairs or classification. For 259

example, concatenation of sentence A and sentence 260

A+ is positive, concatenation of sentence A and 261

sentence A− is negative. 262

3.2 Training Dataset 263

The model we proposed is suitable for supervised 264

tasks, and the in-batch-negative sampling method 265

of the independent network requires discrete label 266

data, so we introduce natural language inference 267

(NLI) datasets to train our model, including the 268

SNLI(Bowman et al., 2015) and MNLI(Williams 269

et al., 2018) datasets. NLI datasets consist of high- 270

quality pairs, and given a premise, human anno- 271

tators generate three types of sentences: entail- 272

ment(is absolutely true), neutral(might be true), 273
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Type of NLI datasets Numbers
Entailment 314k
Neutral 314k
Contradiction 314k
Entailment+Contradiction 270k

Table 2: Statistics of different type of SNLI+MNLI
datasets.

and contradiction(is definitely false).274

Following the work of SimCSE(Gao et al., 2022),275

we adopt the hard negative strategy, using entail-276

ment and contradiction to represent positive and277

negative samples, respectively. Therefore, a triplet278

is generated, (xi, x+i , x
−
i ), where xi is the premise,279

x+i and x−i are entailment and contradiction hy-280

potheses. Statistics of training datasets are shown281

in Table 2.282

3.3 Loss Expression283

The model we proposed is a multi-task model, in-284

cluding two modules of interactive network and285

independent network. The modeling objectives of286

the two modules are different, and the correspond-287

ing loss functions are also different. The following288

describes the loss functions corresponding to the289

two modules in detail.290

For the independent encoding module, the input291

is a mini-batch of data, we take a cross-entropy292

objective with in-batch negative sampling. We also293

use hard negative in our model, and the contrastive294

loss losscl can be expressed as:295

−log
esim(hi,h

+
i )/τ∑N

j=1(e
sim(hi,h

+
i )/τ + esim(hi,h

−
i )/τ )

(1)296

where sim(·) indicates cosine similarity function,297

τ controls the temperature, hi, h+i and h−i is the298

embedding of xi, x+i and x−i respectively.299

For the interaction module, the input is a mini-300

batch data where there are N pairs (x, x+) and301

(x, x−), and the label of (x, x+) and (x, x−) are302

1 and 0 respectively. We consider two kind of303

loss functions to perceive the interactive semantic304

information.305

The first is classification loss for all sentences in306

a mini-batch, and we use cross entropy loss lossce307

to express as:308

−
2N∑
i=1

(yilog(pi) + (1− yi)log(1− pi)) (2)309

Figure 3: α piecewise constant decaying when training.

where yi is the label, pi is the predicted score of 310

feed forward network. 311

The second is margin ranking loss for the rank- 312

ing relation between positive and negative samples 313

in a mini-batch. Margin ranking loss lossmr could 314

enhance the pairwise distinction in semantic space, 315

and it can be express as: 316

N∑
i=1

max(0,margin− (p+i − p−i )) (3) 317

where p+i and p−i is the predicted score of feed 318

forward network of (xi, x+i ) and (xi, x
−
i ), margin 319

controls the boundary. 320

With classification loss and margin ranking loss, 321

we get supervised loss for interactive network as: 322

losssl = lossce + lossmr (4) 323

Multi-task learning needs to integrate different 324

loss functions. We propose the weighted decaying 325

methods to regularize three different loss functions: 326

While capturing the interactive semantic infor- 327

mation, we need to minimize the hurt to siamese 328

encoder. We propose the loss decaying methods to 329

regularize two different loss functions as: 330

loss = loss_cl + α ∗ loss_sl (5) 331

where α is piecewise constant decaying when train- 332

ing. For example, we evenly divide the train- 333

ing process into 5 stages, each stage corresponds 334

to a different α. When the value list of α is 335

[10, 1, 0.1, 0.01, 0.001], the decaying is shown on 336

Figure 4. 337

4 Experiments 338

Our approach is mainly proposed for supervised 339

tasks, and we conducted multiple experiments on 340

Semantic Textual Similarity (STS) task to verify 341

the effectiveness of this approach. 342
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4.1 Setups343

Datasets Following previous works(Reimers and344

Gurevych, 2019; Gao et al., 2022; Yan et al., 2021),345

we evaluate our approach on 7 STS tasks: STS346

2012-2016(Agirre et al., 2012, 2013, 2014, 2015,347

2016), STS Benchmark(Cer et al., 2017) and SICK-348

Relatedness(Marelli et al., 2014). A pair of sen-349

tences in those datasets has a gold score between350

0 and 5 to indicate their semantic similarity. The351

higher the score, the higher the similarity of sen-352

tences pair.353

Since the gold score label of the STS datasets354

is not suitable for the training process of the inde-355

pendent network, we introduce the SNLI(Bowman356

et al., 2015) and MNLI(Williams et al., 2018) (NLI)357

datasets as supervised data to train our model. The358

details of NLI datasets have described in Section359

3.2.360

Evaluation When evaluating the trained model,361

we first obtain the representation of sentences362

by [CLS] token embeddings, then we report the363

spearman correlation between the cosine similarity364

scores of sentence representations and the human-365

annotated gold scores. When calculating spearman366

correlation, we merge all sentences together in a367

STS task, and calculate the mean of spearman cor-368

relation.369

4.2 Training Details370

Our implementation is based on the SimCSE.371

We start from pre-trained checkpoints of BERT-372

base(uncased) and BERT-large (uncased), take the373

[CLS] representation as the sentence embedding,374

and train model on the combination of MNLI375

and SNLI datasets on 4 Telsa V100 gpus for 4376

epochs. Hyper-parameters τ and margin are set377

to 0.04 and 0.5. Since α is used to learn interac-378

tive information and could not hurt performance379

of sentence embedding, the value is chose from380

[10, 1, 0.1, 0.01, 0.001] following with the training381

process.382

4.3 Main Results383

We compare our approach to previous state-of-384

the-art sentence embedding methods on STS385

tasks, including InferSent(Conneau et al., 2017),386

Universal Sentence Encoder(Cer et al., 2018),387

Sentence-BERT(Reimers and Gurevych, 2019),388

ConSERT(Yan et al., 2021), SimCSE(Gao et al.,389

2022) and PromCSE(Jiang et al., 2022a).390

Table 5 shows the evaluation results on 7 STS391

tasks. InterCSE can substantially improve results 392

on all the datasets, greatly outperforming the previ- 393

ous state-of-the-art models. Specifically, InterCSE- 394

BERT(base) improves the averaged spearman’s 395

correlation from 81.57% to 82.11% compared 396

to SimCSE-BERT(base). InterCSE-BERT(large) 397

achieve 82.88% spearman’s correlation, 0.43% 398

improvement compared to SimCSE-BERT(large). 399

Our models achieve new state-of-the-art perfor- 400

mance on STS tasks. 401

5 Inter-Sentence-Transformers 402

In this section, for demonstrating the generality 403

of interactive information on sentence representa- 404

tion tasks, we propose to add interactive network 405

to the Sentence-Transformers , and conduct some 406

experiments to verify the performance on the STS- 407

Benchmark dataset. 408

5.1 Model and Loss Function 409

Our proposed model is called Inter-Sentence- 410

Transformers . It also consists of independent net- 411

work and interactive network. 412

The independent network follows Sentence- 413

Transformers with siamese transformers, and uses 414

the mean of all tokens embedding as sentences 415

representation. The predicted score produced by 416

cosine-similarity on sentences representation is 417

called indep_score. 418

The interactive network extracts the [CLS] token 419

representation as input of a layer of regression net- 420

work which is made up of fully-connected layer and 421

sigmoid function. The predicted score produced by 422

sigmoid function is called inter_score. 423

Interactive and independent network both use 424

mean-square error as loss function, and we com- 425

bine these to generate a final loss with piecewise- 426

constant decay as shown in equation (6) to (8). 427

Lindep =
1

N

N∑
i=1

(yi − indep_scorei)2 (6) 428

Linter =
1

N

N∑
i=1

(yi − inter_scorei)2 (7) 429

Loss = Lindep + α ∗ Linter (8) 430

where yi is the true score of sentences pair, α is 431

decaying as training. 432

5.2 Experiment Results 433

We conduct experiments on the STS-Benchmark 434

dataset that use STS-Benchmark training dataset to 435
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg
InferSent-Glove ♣ 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
Universal Sentence Encoder ♣ 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
SBERT(base) ♣ 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SBERT-flow(base) ♠ 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERT-whitening(base) ♠ 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
ConSERT-joint(base) ♢ 70.53 79.96 74.85 81.45 76.72 78.82 77.53 77.12
SimCSE-BERT(base) ♠ 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
PromCSE-BERT(base)△ 75.58 84.33 79.67 85.79 81.24 84.25 80.79 81.81
InterCSE-BERT(base) ♡ 75.83 85.05 80.82 86.00 81.07 84.86 81.16 82.11
SBERT(large) ♣ 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
SimCSE-BERT(large) ♦ 76.15 86.29 80.80 86.27 81.29 85.39 80.98 82.45
InterCSE-BERT(large) ♡ 76.59 86.69 81.83 86.32 81.85 85.78 81.12 82.88

Table 3: Sentence embedding performance on STS tasks (Spearman’s correlation, "all" setting). ♡: results of our
approach, ♣: results from sentence-transformer(Reimers and Gurevych, 2019), ♢: results from ConSERT(Yan
et al., 2021), ♠: results from SimCSE(Gao et al., 2022), △: results from PromCSE(Jiang et al., 2022b), ♦ : results
from our reproduced.

train our model and evaluate on test dataset with436

spearman’s correlation. The label of dataset is a437

number between 0 and 5, so we divide it by 5.0 as438

the two sentences semantic similarity.439

The piecewise constant value α is chose from440

[10, 1, 0.1, 0.01, 0.001] in BERT-like base mod-441

els and [1, 0.1, 0.01, 0.001, 0.0001] in BERT-like442

large models. Training epochs is 32, and the other443

parameters are the same as Sentence-Transformer.444

The final performance is shown in the table445

4. Inter-Sentence-Transformers get a state-of-446

the-art performances. It improves 0.88% and447

1.07% based on BERT-base and RoBERTa-base re-448

spectively compared with Sentence-Transformers.449

And it slight increases based on BERT-large450

and RoBERTa-large. Inter-Sentence-Transformers451

treats sentence representation as a regression task.452

Experiment results show that our interactive net-453

work plays an effective role for sentence represen-454

tation.455

6 Ablation Experiment456

In this section, we conduct further analyses to457

understand the role of interactive network in In-458

terCSE, including training strategy, loss combina-459

tion and loss decay.460

Training Strategy We think that there are three461

training strategies that can help the model to con-462

sider the interaction information of sentence pairs463

while capturing sentence independent semantics:464

(a) Single-Siamese, we firstly train single tower465

network, and then train siamese network;466

Model Spearman
SBERT-STSb-base ♣ 84.30
SBERT-STSb-large ♣ 84.28
SRoBERTa-STSb-base ♣ 84.62
SRoBERTa-STSb-large ♣ 84.41
Inter-SBERT-STSb-base ♢ 85.18
Inter-SBERT-STSb-large ♢ 84.91
Inter-SRoBERTa-STSb-base ♢ 85.69
Inter-SRoBERTa-STSb-base ♢ 84.82

Table 4: Evaluation on the STS Benchmark test set with
spearman’s correlation. ♣: reproduced on Sentence-
Transformers(Reimers and Gurevych, 2019); ♢: adding
interactive network based on Sentence-Transformers.
All results are trained on STS Benchmark train set.

Training Strategy STS-B Spearman
Single-Siamese 37.74
Siamese-Single 84.76
InterCSE 86.25

Table 5: Evaluation on the STS Benchmark dev set with
spearman’s correlation of training strategies, and the
initial checkpoint is BERT-base.

(b) Siamese-Single, we firstly train siamese net- 467

work, and then train single tower network; 468

(c) InterCSE, we use joint training strategy with 469

loss decay. 470

The performance of three training strategy are 471

shown as Table 5, and the joint training strategy 472

has a obvious advantage. 473

Loss Combination From the experimental re- 474

sults of InterCSE and Inter-Sentence-Transformers, 475

7



Model STS-B STS Avg.
Loss

w/o lossce 86.19 82.02
w/o lossmr 86.16 81.97
constant α 86.08 81.75
square penalty 86.09 81.76
decay α 86.25 82.11

Table 6: Evaluation on the STS Benchmark dev set with
spearman’s correlation of loss function.

we can see the effectiveness of the interaction net-476

work for improving the overall performance. At477

the same time, in the section Training Stragegy, the478

benefits of multi-task methods for training two sub-479

networks at the same time are also confirmed. And480

there are still many methods how to combine the481

loss of multi-tasking. Therefore, we have carried482

out a variety of combination strategies:483

(a) remove lossce from equation (4),484

(b) remove lossmr from equation (4),485

(c) set α as a constant value, and we use 1.0,486

(d) add square penalty as below,487

loss = loss_cl2 + loss_sl2 (9)488

(e) use loss decay method.489

The performance of different loss is shown in490

Table 6. Removing lossce or lossmr lose some491

semantic supervision signal which lower overall492

performance, and loss decay get an awesome result493

than constant α and square penalty.494

Loss Decay In our approach, we use a dynami-495

cally changing loss to express the multi-task learn-496

ing goal, which does not affect the sentence se-497

mantic representation while taking more semantic498

information. Hence, we propose an attenuation499

strategy for the loss of the interactive network, as500

shown in the equation (5), and α gradually de-501

creases with the training process going on. The502

value of α represents the degree of interactive in-503

formation introduced. The larger the α, the more504

sufficient the interactive information introduced,505

but it will also affect the sentence representation of506

the original siamese network. The results of differ-507

ent descent methods we compared are shown in Ta-508

ble 7. When α decay list is [10, 1, 0.1, 0.01, 0.001],509

our model get best performance. In the early stage510

of training, the interactive network has a large loss,511

which makes the model perceive the interactive512

α decay list STS-B Spearman
[100, 10, 1, 0.1, 0.01] 86.19
[10, 1, 0.1, 0.01, 0.001] 86.25
[1, 0.1, 0.01, 0.001, 0.0001] 86.09
[0.1, 0.01, 0.001, 0.0001, 0.00001] 86.02

Table 7: Evaluation on the STS Benchmark dev set with
spearman’s correlation of α decay list.

information and update the model parameters by 513

back-propagation. In the later stage of training, the 514

interaction network is weakened, and the model 515

fully learns the semantic embedding of the sen- 516

tence. 517

7 Conclusion 518

In this paper, we propose multiple task method 519

joint contrastive learning for sentence representa- 520

tion which is termed InterCSE. Experiments shows 521

that InterCSE achieves considerable performance 522

on 7 semantic text similarity tasks. Through In- 523

terCSE uses a simple framework, it makes a pre- 524

fect combination of the advantages of single tower 525

network and siamese network by decaying loss 526

function. When perceiving fine-grained word infor- 527

mation, our approach try to minimize damage to 528

sentence semantics. Meanwhile, the performance 529

of Inter-Sentence-Transformers is improved a lot 530

than Sentence-Transformers, it proves that the in- 531

teractive network can bring a good positive gain 532

again. In the future, we could focus on designing re- 533

inforcement learning method with human feedback, 534

which help to enhance the sentence embedding. 535

Limitations 536

One limitation of our work is that we can not ex- 537

periment on unsupervised setting, though the in- 538

teractive network of InterCSE and Inter-Sentence- 539

Transformers needs labeled sentence pairs. In the 540

unsupervised task of sentence representation, how 541

to extract interaction information is still a tough 542

challenge. 543
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