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Abstract

Contrastive learning has achieved remarkable
results in sentence representation, but its se-
mantic representation remains independent in
the process of training and inference, and
could not pay attention to the interactive in-
formation of sentence pairs. This paper pro-
poses InterCSE, a interactive contrastive learn-
ing method for sentence embedding, which
not only focuses on the semantic similarity
sorting of sentence pairs, but also increases
the interactive information as a supplement
for sentence representation. Meanwhile, we
propose a loss decaying strategy to balance
embedding similarity and interactive infor-
mation objectives. We evaluate the perfor-
mance of InterCSE on standard semantic tex-
tual similarity (STS) tasks, and experiments
show that our model using BERT},s. and
BERTqr4e achieve 82.11% and 82.88% spear-
man’s correlation, 0.54% and 0.43% improve-
ment compared to SImCSE respectively. We
also conduct experiments that adding interac-
tive network based on Sentence-Transformers,
which get 85.18%(+0.88% BERT}qs.) and
85.69%(+1.07% RoBERT ap,se) Spearman’s
correlation on STS Benchmark. Hence, adding
interactive features to the traditional siamese
network performs very well, and achieves new
state-of-the-art performance on sentence repre-
sentation tasks.

1 Introduction

Sentence representation learning is a vital com-
ponent of natural language processing tasks (Cer
et al., 2017). The rapid development of sentence
representation technology has made a wide range
of downstream tasks more intelligent, especially
information retrieval and text clustering.

Recently, the pre-trained language model has be-
come the cornerstone of natural language process-
ing technology, such as BERT(Devlin et al., 2019;
Liu et al., 2019), GPT(Radford et al., 2018, 2019;
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Figure 1: The architecture of single tower network(left)
and siamese network(right).

Brown et al., 2020), ERNIE(Sun et al., 2019a,b,
2021), which greatly affects the development of
various downstream tasks.

Many sentence representation approaches
are transformed into point-wise classification
tasks(Reimers and Gurevych, 2019), and there is a
gap between the training optimization objectives
and good sentence representation.  Sentence
representation could not get high performance
directly with pre-trained language model because
of anisotropic phenomenon (Gao et al., 2019),
but contrastive learning play the role of a bridge.
Comparative learning applys the sorting method
with InfoNCE(van den Oord et al., 2019) con-
trastive loss function, which is more suitable for
the optimization goal of sentence representation.

The sentence representation model(Gao et al.,
2022; Yan et al., 2021) of contrastive learning com-
bined with pre-trained model is a siamese network,
which encodes all sentences independently. The
structure of the siamese network makes it possible
to quickly produce the vector representation of the
sentences and calculate the similarity during train-
ing and prediction, so as to complete the retrieval
or sentence clustering task in massive data. How-



Network Type Model Spearman
SBERT-base © 84.7
SBERT-large ¢ 84.5
SimCSE-BERT-base # 84.3
. SimCSE-BERT-large(reproduce) 85.4
Stamese Network SROBERTa-base ¢ 84.9
SRoBERTa-large ¢ 85.0
SimCSE-RoBERTa-base # 85.8
SimCSE-RoBERTa-large # 86.7
BERT-base ¢ 85.8
) BERT-large ¢ 86.5
Single Tower Network RoBERTx.base ¢ 872
RoBERTa-large ¢ 88.1

Table 1: Comparison of singel tower network and siamese network on STS-Benchmark(Cer et al., 2017) test set
with spearman’s correlation. ©: results from Sentence-Transformers(Reimers and Gurevych, 2019), #: results from
SimCSE(Gao et al., 2022), 4 : results from BERT (Devlin et al., 2019), ¢: the performance of RoOBERTa-base and
RoBERTa-large in single tower network are reproduce through fairseq(Ott et al., 2019). SimCSE models are trained
on NLI datasets(Bowman et al., 2015), and the other models are trained on STS-Benchmark train set. All results are

rounded to one decimal place for comparison.

ever, the structure of independent encoding makes
the sentences pair lose the interactive information,
which reduces the accuracy rate.

There are obvious differences between single
tower network and siamese network. The network
structure is depicted in Figure 1. The single tower
network is like the original BERT(Devlin et al.,
2019) model structure. After concating the sen-
tence pairs, the semantic features of the sentence
pairs are extracted and input to the downstream
classification or regression network. The siamese
network(Koch et al., 2015) has two encoders that
encode each sentence individually where the two
encoders share model parameters. After encoding,
it can perform similarity calculation or put into
the downstream network using sentence embed-
ding, such as Sentence-Transformers(Reimers and
Gurevych, 2019).

The performance of the single-tower network
and the siamese network on the STS Benchmark
test dataset is shown in Table 1. On the whole, the
single tower network has a good improvement in
spearman’s correlation index compared with the
siamese network. We consider that when the single
tower network encodes a sentence pair, the sen-
tence is not an independent individual. It will re-
fer to its counterparts for encoding and use the
attention mechanism to extract features, which
makes the single tower network in the sentence pair
similarity task has a higher correlation coefficient.
Recently, most sentence representation tasks use

siamese networks. Although it could bring compu-
tational advantages on massive data, it inevitably
reduces the accuracy of correlation.

In order to take full advantage of the accuracy ad-
vantages of single tower networks and the inference
speed advantages of siamese networks, this paper
proposes a multi-task contrastive learning method.
On the basis of SImCSE, we added a single tower
network as a supplement to form a framework for
multi-task learning. This method could fully obtain
the interaction information between sentence pairs
during the process of training sentence representa-
tion.

Our contributions can be summarized as follows:

1. We propose an effective framework of multi-
task contrastive learning for sentence represen-
tation tasks which could introduce sentence
interactive semantic information.

2. We design a loss function for the proposed
framework. When the interactive network in-
troduce information increment, try to mini-
mize the hurt to the original sentence repre-
sentation.

3. Experiments show that our approach achieves
new state-of-the-art performance on STS
tasks.

4. We also introduce sentences interactive net-
work based on Sentence-Transformers, and



get a quite outstanding performance on STS
benchmark task.

2 Related Work

2.1 Language Model

Recently, transformer(Vaswani et al., 2017) struc-
ture shines in the field of deep learning and lays the
foundation for large models. The attention mecha-
nism is good at capturing the semantic relationship
between sequences. Using transformer’s encoder,
many language models have been born, such as
GPT(Radford et al., 2018), BERT(Devlin et al.,
2019), RoBERTa(Liu et al., 2019), XLNet(Yang
et al., 2019), Ernie(Sun et al., 2019a), etc. These
models mainly have some differences in masking
mechanism, pre-training data and methods. Among
them, the BERT model mainly masks 15% words in
the sentence and predicts the origin words as a unsu-
pervised pre-training task. After obtaining the pre-
trained model, NLP downstream tasks only need to
complete fine-tuning on the model to achieve high
performances, including sentence classification, se-
quence tagging, question answering, machine read-
ing and comprehension and sentence-pair classifi-
cation or regression.

2.2 Contrastive Learning and Sentence
Representation

Contrastive learning was first proposed in the field
of computer vision. It mainly wants to optimize
the similarity of sample pairs in a representation
space, and make similar sample pairs gather and
dissimilar sample pairs stay away. After the sample
representation is obtained using siamese network
embedding, the sample similarity is calculated to
maximize the similarity of the positive samples.
Contrastive learning could take a cross-entropy ob-
jective with in-batch-negatives. This optimization
scenario is very suitable for unsupervised scenarios.
Usually, positive samples can be obtained through
simple data enhancement, and a large number of
negative samples can be obtained through negative
sampling.

In terms of sentence representation, the idea of
contrastive learning continues to be used, leading
to many research results, such as ConSERT(Yan
et al., 2021), SimCSE(Gao et al., 2022) and ES-
imCSE(Wu et al., 2022). ConSERT proposes four
different data augmentation strategies to generate
views for contrastive learning, including adver-
sarial attack, token shuffling, cutoff and dropout.

SimCSE first describes an unsupervised approach,
which takes an input sentence and predicts itself in
a contrastive objective, with only standard dropout
used as noise. Only using dropout as data augmen-
tation becomes a popular method for contrastive
learning. ESimCSE introduces two modifications
based on SimCSE. It applies a simple repetition
operation to modify the input sentence, and then
passes the input sentence and its modified counter-
part to the pre-trained Transformer encoder, respec-
tively, to get the positive pair. And it introduces a
momentum contrast, enlarging the number of nega-
tive pairs.

2.3 Multi-Task Learning

Multi-Task Learning (MTL) is an important re-
search topic in machine learning, which aims to
learn multiple tasks simultaneously. In MTL, mul-
tiple tasks are divided into multiple learning units,
and a learner can learn multiple tasks by making
multiple small models.

One of the important research directions in MTL
is to develop efficient algorithms and theoretical
models. In recent years, many works have been
carried out in this direction, including deep neu-
ral networks, attention mechanism, joint attention,
graph attention, and so on. MTL has been suc-
cessfully used in natural language processing ap-
plications, including text classification(Liu et al.,
2017), machine translation(Luong et al., 2016), se-
quence labeling(Rei, 2017) and sentence represen-
tations(Ahmad et al., 2018). These algorithms and
theoretical models can help MTL learn multiple
tasks with better performance.

3 InterCSE

In this section, we present InterCSE (introducing
Interactive semantic information in Contrastive
Sentences Embedding) for sentence representation
task. Firstly, we present the overall framework
of our approach. Then, we introduce the training
dataset for our model. Finally, we talk about the
combination strategies of loss function for multiple
objectives.

3.1 Framework

The main idea of our approach is to introduce in-
teractive information while encoding a sentence.
Hence, a single tower network which we call inter-
active network in InterCSE is added on the basis
of SimCSE(Gao et al., 2022) as shown in Figure 3.
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Figure 2: The architecture of InterCSE. Independent network focuses on the representation of sentence, and
interactive network perceives sentences interactive semantic. Independent network encodes sentences individually,
while interactive network concatenates two sentences and predicts the degree of semantic relevance. Three encoders

share same parameters when training.

There are two major components in our framework:
independent network and interactive network. Dur-
ing the training process, the interactive network
completes the interactive feature extraction of sen-
tence pairs. While inference, only independent
network works and generates sentence embedding.
All the transformer encoders share same parame-
ters.

Independent Network The goal of the inde-
pendent network is to quickly produce semantic
representation of single sentence without relying
on other sentences. The independent network is
composed of a transformer encoder and cosine net-
work. Transformer encoder is a siamese network
based on BERT-like model, and cosine network is
generally cosine similarity calculation. The input
is exactly two sentence, such as sentence A and
sentence A (or sentence A7)!, and independent
network encodes the sentence pairs independently
by [CLS] representation, then calculates the cosine
similarity. There are a high semantic score between
sentence A and sentence A1, and a low semantic
score between sentence A and sentence A~.

Interactive Network The goal of the interac-

"For convenience of description, sentence A refers Two
dogs are running., sentence AT refers There are animals
outdoors., and sentence A~ refers The pets sitting on a couch.
in Figure 3.

tive network is to obtain non-independent sentence
semantic information through the attention inter-
action of words between sentence pairs. Non-
independent sentences semantic information is an
important correlation signal, which can keenly per-
ceive the semantics of sentence to details. The
interactive network consists of an transformer en-
coder and a feed forward network. Transformer
encoder is a BERT-like model, and the input is the
concatenation of two sentence and [SEP] token.
The [CLS] embedding of transformer encoder is
input into the feed forward network to evaluate the
similarity of sentence pairs or classification. For
example, concatenation of sentence A and sentence
AT is positive, concatenation of sentence A and
sentence A~ is negative.

3.2 Training Dataset

The model we proposed is suitable for supervised
tasks, and the in-batch-negative sampling method
of the independent network requires discrete label
data, so we introduce natural language inference
(NLI) datasets to train our model, including the
SNLI(Bowman et al., 2015) and MNLI(Williams
et al., 2018) datasets. NLI datasets consist of high-
quality pairs, and given a premise, human anno-
tators generate three types of sentences: entail-
ment(is absolutely true), neutral(might be true),



Type of NLI datasets Numbers
Entailment 314k
Neutral 314k
Contradiction 314k
Entailment+Contradiction 270k

Table 2: Statistics of different type of SNLI+MNLI
datasets.

and contradiction(is definitely false).

Following the work of SimCSE(Gao et al., 2022),
we adopt the hard negative strategy, using entail-
ment and contradiction to represent positive and
negative samples, respectively. Therefore, a triplet
is generated, (z;, l’;_, x; ), where x; is the premise,
z and x; are entailment and contradiction hy-
potheses. Statistics of training datasets are shown
in Table 2.

3.3 Loss Expression

The model we proposed is a multi-task model, in-
cluding two modules of interactive network and
independent network. The modeling objectives of
the two modules are different, and the correspond-
ing loss functions are also different. The following
describes the loss functions corresponding to the
two modules in detail.

For the independent encoding module, the input
is a mini-batch of data, we take a cross-entropy
objective with in-batch negative sampling. We also
use hard negative in our model, and the contrastive
loss loss,; can be expressed as:

esim(hi,hj)/f

(esim(hi,hj)/"r + esim(hi,h;)/T)

ey

—log v
j=1

where sim(-) indicates cosine similarity function,
T controls the temperature, h;, hj and h; is the
embedding of x;, xf and z; respectively.

For the interaction module, the input is a mini-
batch data where there are N pairs (z,2") and
(z,z7), and the label of (z,z") and (z,z~) are
1 and O respectively. We consider two kind of
loss functions to perceive the interactive semantic
information.

The first is classification loss for all sentences in
a mini-batch, and we use cross entropy loss [0sS¢e
to express as:

2N
- Z(yilog(pi) +(1—y)log(1 —p)) (2

o
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Figure 3: o piecewise constant decaying when training.

where y; is the label, p; is the predicted score of
feed forward network.

The second is margin ranking loss for the rank-
ing relation between positive and negative samples
in a mini-batch. Margin ranking loss [0ss,, could
enhance the pairwise distinction in semantic space,
and it can be express as:

N

Z maz (0, margin — (pf -p;)) 3)
i=1

where pj and p; is the predicted score of feed
forward network of (z;, z;") and (z;, z;), margin
controls the boundary.

With classification loss and margin ranking loss,
we get supervised loss for interactive network as:

l08Sg) = 108Sce + L0SS 4

Multi-task learning needs to integrate different
loss functions. We propose the weighted decaying
methods to regularize three different loss functions:

While capturing the interactive semantic infor-
mation, we need to minimize the hurt to siamese
encoder. We propose the loss decaying methods to
regularize two different loss functions as:

loss = loss_cl + o x loss_sl 5)

where « is piecewise constant decaying when train-
ing. For example, we evenly divide the train-
ing process into 5 stages, each stage corresponds
to a different «. When the value list of « is
[10,1,0.1,0.01,0.001], the decaying is shown on
Figure 4.

4 Experiments

Our approach is mainly proposed for supervised
tasks, and we conducted multiple experiments on
Semantic Textual Similarity (STS) task to verify
the effectiveness of this approach.



4.1 Setups

Datasets Following previous works(Reimers and
Gurevych, 2019; Gao et al., 2022; Yan et al., 2021),
we evaluate our approach on 7 STS tasks: STS
2012-2016(Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark(Cer et al., 2017) and SICK-
Relatedness(Marelli et al., 2014). A pair of sen-
tences in those datasets has a gold score between
0 and 5 to indicate their semantic similarity. The
higher the score, the higher the similarity of sen-
tences pair.

Since the gold score label of the STS datasets
is not suitable for the training process of the inde-
pendent network, we introduce the SNLI(Bowman
etal., 2015) and MNLI(Williams et al., 2018) (NLI)
datasets as supervised data to train our model. The
details of NLI datasets have described in Section
3.2.

Evaluation When evaluating the trained model,
we first obtain the representation of sentences
by [CLS] token embeddings, then we report the
spearman correlation between the cosine similarity
scores of sentence representations and the human-
annotated gold scores. When calculating spearman
correlation, we merge all sentences together in a
STS task, and calculate the mean of spearman cor-
relation.

4.2 Training Details

Our implementation is based on the SimCSE.
We start from pre-trained checkpoints of BERT-
base(uncased) and BERT-large (uncased), take the
[CLS] representation as the sentence embedding,
and train model on the combination of MNLI
and SNLI datasets on 4 Telsa V100 gpus for 4
epochs. Hyper-parameters 7 and margin are set
to 0.04 and 0.5. Since « is used to learn interac-
tive information and could not hurt performance
of sentence embedding, the value is chose from
[10,1,0.1,0.01, 0.001] following with the training
process.

4.3 Main Results

We compare our approach to previous state-of-
the-art sentence embedding methods on STS
tasks, including InferSent(Conneau et al., 2017),
Universal Sentence Encoder(Cer et al., 2018),
Sentence-BERT(Reimers and Gurevych, 2019),
ConSERT(Yan et al., 2021), SimCSE(Gao et al.,
2022) and PromCSE(Jiang et al., 2022a).

Table 5 shows the evaluation results on 7 STS

tasks. InterCSE can substantially improve results
on all the datasets, greatly outperforming the previ-
ous state-of-the-art models. Specifically, InterCSE-
BERT(base) improves the averaged spearman’s
correlation from 81.57% to 82.11% compared
to SImCSE-BERT(base). InterCSE-BERT (large)
achieve 82.88% spearman’s correlation, 0.43%
improvement compared to SimCSE-BERT (large).
Our models achieve new state-of-the-art perfor-
mance on STS tasks.

5 Inter-Sentence-Transformers

In this section, for demonstrating the generality
of interactive information on sentence representa-
tion tasks, we propose to add interactive network
to the Sentence-Transformers , and conduct some
experiments to verify the performance on the STS-
Benchmark dataset.

5.1 Model and Loss Function

Our proposed model is called Inter-Sentence-
Transformers . It also consists of independent net-
work and interactive network.

The independent network follows Sentence-
Transformers with siamese transformers, and uses
the mean of all tokens embedding as sentences
representation. The predicted score produced by
cosine-similarity on sentences representation is
called indep_score.

The interactive network extracts the [CLS] token
representation as input of a layer of regression net-
work which is made up of fully-connected layer and
sigmoid function. The predicted score produced by
sigmoid function is called inter_score.

Interactive and independent network both use
mean-square error as loss function, and we com-
bine these to generate a final loss with piecewise-
constant decay as shown in equation (6) to (8).

N
1 )
Lindep = N E (yi — indep_score;)*  (6)
=1

N
1 ,
Linter = N E (yi — mter_scorei)2 @)
i=1

Loss = Lindep + @ * Linter (8)

where y; is the true score of sentences pair, « is
decaying as training.
5.2 Experiment Results

We conduct experiments on the STS-Benchmark
dataset that use STS-Benchmark training dataset to



Model

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R  Avg

InferSent-Glove & 52.86  66.75 62.15 7277  66.87 68.03 65.65 65.01
Universal Sentence Encoder & 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
SBERT (base) ¢ 7097 76,53 73.19  79.09 7430 77.03 72.91 74.89
SBERT-flow(base) & 69.78 7727  74.35 82.01 7746  79.12 76.21 76.60
SBERT-whitening(base) # 69.65 7757 74.66 8227 7839 79.52 76.91 77.00
ConSERT-joint(base) <> 70.53 7996  74.85 8145 76.72  78.82 77.53 77.12
SimCSE-BERT(base) & 7530 84.67 80.19 8540 80.82 84.25 80.39 81.57
PromCSE-BERT(base)A 7558 84.33 79.67 8579 81.24 8425 80.79 81.81
InterCSE-BERT (base) ¢ 7583 85.05 80.82 86.00 81.07 84.86 81.16 82.11
SBERT(large) & 7227 7846 7490 8099 7625 79.23 73.75 76.55
SimCSE-BERT(large) ¢ 76.15 86.29 80.80 86.27 8129 85.39 80.98 82.45
InterCSE-BERT (large) © 7659 86.69 81.83 8632 81.85 85.78 81.12 82.88

Table 3: Sentence embedding performance on STS tasks (Spearman’s correlation, "all" setting). ©: results of our
approach, &: results from sentence-transformer(Reimers and Gurevych, 2019), {: results from ConSERT(Yan
et al., 2021), #: results from SimCSE(Gao et al., 2022), A: results from PromCSE(Jiang et al., 2022b), ¢ : results

from our reproduced.

train our model and evaluate on test dataset with
spearman’s correlation. The label of dataset is a
number between 0 and 5, so we divide it by 5.0 as
the two sentences semantic similarity.

The piecewise constant value « is chose from
[10, 1, 0.1, 0.01, 0.001] in BERT-like base mod-
els and [1, 0.1, 0.01, 0.001, 0.0001] in BERT-like
large models. Training epochs is 32, and the other
parameters are the same as Sentence-Transformer.

The final performance is shown in the table
4. Inter-Sentence-Transformers get a state-of-
the-art performances. It improves 0.88% and
1.07% based on BERT-base and RoBERTa-base re-
spectively compared with Sentence-Transformers.
And it slight increases based on BERT-large
and RoBERTa-large. Inter-Sentence-Transformers
treats sentence representation as a regression task.
Experiment results show that our interactive net-
work plays an effective role for sentence represen-
tation.

6 Ablation Experiment

In this section, we conduct further analyses to
understand the role of interactive network in In-
terCSE, including training strategy, loss combina-
tion and loss decay.

Training Strategy We think that there are three
training strategies that can help the model to con-
sider the interaction information of sentence pairs
while capturing sentence independent semantics:

(a) Single-Siamese, we firstly train single tower
network, and then train siamese network;

Model Spearman
SBERT-STSb-base & 84.30
SBERT-STSb-large & 84.28
SROBERTa-STSb-base & 84.62
SROBERTa-STSb-large & 84.41
Inter-SBERT-STSb-base > 85.18
Inter-SBERT-STSb-large 84.91
Inter-SRoBERTa-STSb-base <> 85.69
Inter-SRoBERTa-STSb-base <> 84.82

Table 4: Evaluation on the STS Benchmark test set with
spearman’s correlation. &: reproduced on Sentence-
Transformers(Reimers and Gurevych, 2019); {>: adding
interactive network based on Sentence-Transformers.
All results are trained on STS Benchmark train set.

Training Strategy STS-B Spearman

Single-Siamese 37.74
Siamese-Single 84.76
InterCSE 86.25

Table 5: Evaluation on the STS Benchmark dev set with
spearman’s correlation of training strategies, and the
initial checkpoint is BERT-base.

(b) Siamese-Single, we firstly train siamese net-
work, and then train single tower network;

(c) InterCSE, we use joint training strategy with
loss decay.

The performance of three training strategy are
shown as Table 5, and the joint training strategy
has a obvious advantage.

Loss Combination From the experimental re-
sults of InterCSE and Inter-Sentence-Transformers,



Model STS-B STS Avg.
Loss
W/0 1088 e 86.19 82.02
w/0 l0SSimy 86.16 81.97
constant « 86.08 81.75
square penalty  86.09 81.76
decay o 86.25 82.11

Table 6: Evaluation on the STS Benchmark dev set with
spearman’s correlation of loss function.

we can see the effectiveness of the interaction net-
work for improving the overall performance. At
the same time, in the section Training Stragegy, the
benefits of multi-task methods for training two sub-
networks at the same time are also confirmed. And
there are still many methods how to combine the
loss of multi-tasking. Therefore, we have carried
out a variety of combination strategies:

(a) remove loss,. from equation (4),
(b) remove l0ss,,, from equation (4),
(c) set « as a constant value, and we use 1.0,

(d) add square penalty as below,

loss = loss_cl? + loss_sl? )

(e) use loss decay method.

The performance of different loss is shown in
Table 6. Removing [05S.. Or 0SSy, lose some
semantic supervision signal which lower overall
performance, and loss decay get an awesome result
than constant o and square penalty.

Loss Decay In our approach, we use a dynami-
cally changing loss to express the multi-task learn-
ing goal, which does not affect the sentence se-
mantic representation while taking more semantic
information. Hence, we propose an attenuation
strategy for the loss of the interactive network, as
shown in the equation (5), and « gradually de-
creases with the training process going on. The
value of « represents the degree of interactive in-
formation introduced. The larger the «, the more
sufficient the interactive information introduced,
but it will also affect the sentence representation of
the original siamese network. The results of differ-
ent descent methods we compared are shown in Ta-
ble 7. When « decay list is [10, 1,0.1,0.01, 0.001],
our model get best performance. In the early stage
of training, the interactive network has a large loss,
which makes the model perceive the interactive

« decay list STS-B Spearman

[100, 10, 1,0.1,0.01] 86.19
[10,1,0.1,0.01, 0.001] 86.25
[1,0.1,0.01,0.001,0.0001] 86.09
[0.1,0.01,0.001, 0.0001, 0.00001] 86.02

Table 7: Evaluation on the STS Benchmark dev set with
spearman’s correlation of « decay list.

information and update the model parameters by
back-propagation. In the later stage of training, the
interaction network is weakened, and the model
fully learns the semantic embedding of the sen-
tence.

7 Conclusion

In this paper, we propose multiple task method
joint contrastive learning for sentence representa-
tion which is termed InterCSE. Experiments shows
that InterCSE achieves considerable performance
on 7 semantic text similarity tasks. Through In-
terCSE uses a simple framework, it makes a pre-
fect combination of the advantages of single tower
network and siamese network by decaying loss
function. When perceiving fine-grained word infor-
mation, our approach try to minimize damage to
sentence semantics. Meanwhile, the performance
of Inter-Sentence-Transformers is improved a lot
than Sentence-Transformers, it proves that the in-
teractive network can bring a good positive gain
again. In the future, we could focus on designing re-
inforcement learning method with human feedback,
which help to enhance the sentence embedding.

Limitations

One limitation of our work is that we can not ex-
periment on unsupervised setting, though the in-
teractive network of InterCSE and Inter-Sentence-
Transformers needs labeled sentence pairs. In the
unsupervised task of sentence representation, how
to extract interaction information is still a tough
challenge.
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