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ABSTRACT

We introduce and formalize the Synthetic Dataset Quality Estimation (SYNQUE)
problem: ranking synthetic datasets by their expected real-world task performance
using only limited unannotated real data. This addresses a critical and open
challenge where data is scarce due to collection costs or privacy constraints. We
establish the first comprehensive benchmarks for this problem by introducing and
evaluating proxy metrics that choose synthetic data for training to maximize task
performance on real data. We introduce the first proxy metrics for SYNQUE by
adapting distribution and diversity-based distance measures to our context via
embedding models. To address the shortcomings of these metrics on complex
planning tasks, we propose LENS, a novel proxy that leverages large language
model reasoning. Our results show that SYNQUE proxies correlate with real task
performance across diverse tasks, including sentiment analysis, Text2SQL, web
navigation, and image classification, with LENS consistently outperforming others
on complex tasks by capturing nuanced characteristics. For instance, on text-to-
SQL parsing, training on the top-3 synthetic datasets selected via SYNQUE proxies
can raise accuracy from 30.4% to 38.4 (+8.1)% on average compared to selecting
data indiscriminately. This work establishes SYNQUE as a practical framework for
synthetic data selection under real-data scarcity and motivates future research on
foundation model-based data characterization and fine-grained data selection.

1 INTRODUCTION

Data scarcity hinders effective machine learning, especially for tasks requiring specialized expertise
like autonomous navigation or natural language interfaces, where data collection is costly and
slow (Xie et al., 2024; Yang et al., 2024). In sensitive domains such as healthcare and finance (Tan
et al., 2024; Jordan & Mitchell, 2015), privacy concerns further complicate data acquisition. Large
generative models have emerged as capable synthetic data generators, producing annotated data for
tasks like policy learning (Xu et al., 2024), Text2SQL (Yang et al., 2024), sentiment analysis (Ye
et al., 2022; Li et al., 2023c), and image classification (Geng et al., 2025). While synthetic data
can improve real-world performance under scarcity, results vary widely depending on task and data
quality (Huang et al., 2025; Geng et al., 2025).

Can we distinguish between high-quality synthetic data that improves real-world task performance
and low-quality data that offers little benefit, without any annotated real data and without costly
model training? Crucially, increasing the size of synthetic datasets does not always lead to better
downstream performance as it does with real data; in some cases, larger synthetic datasets can even
degrade performance, exhibiting inverse scaling trends (Geng et al., 2025; Li et al., 2023c; Setlur
et al., 2024; Gao et al., 2022; Møller et al., 2023). Therefore, selecting a synthetic dataset from a
pool of datasets to train on to optimize downstream performance is important.

We introduce Synthetic Dataset Quality Estimation, or SYNQUE, the problem of ranking multiple
synthetic datasets by quality using only limited unannotated samples of real data. A synthetic dataset
A is of higher quality than B if a model trained on A outperforms one trained on B on a real-world
test set. This ability is crucial when real data annotation is costly or infeasible. For example, in
text-to-SQL parsing, SYNQUE helps select the synthetic dataset that yields better generalization from
a small set of unannotated real queries. Similarly, for intelligent web agents, it identifies the synthetic
interactions that produce agents performing best on real navigation tasks.
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Figure 1: SYNQUE uses synthetic data and unlabeled samples of real data to estimate synthetic data
quality. Proxy scores are used to rank and select the datasets that lead to the best task performance

This work makes three main contributions. 1) We formalize the SYNQUE problem and establish the
first comprehensive benchmark. As part of this, we introduce and evaluate a suite of proxy metrics:
computable scores that estimate a synthetic dataset’s quality using only a subset of unannotated real
data. We adapt proxy metrics using established distributional measures such as mean distance to
medoids (Cox et al., 2021), diversity measures such as Proxy-A-Distance (Ben-David et al., 2006),
and divergence measures such as MAUVE (Pillutla et al., 2021) — none have been systematically
evaluated for the purpose of synthetic data selection. 2) We propose LLM-Evaluated Normalized
Score (LENS), a novel proxy measure that leverages large language model (LLM) reasoning to create
dataset rubrics that highlight difference between synthetic data and real data in language. 3) We
conduct a comprehensive experiment across diverse domains in sentiment analysis, Text2SQL, web
navigation, and image classification in order to evaluate how well these proxy metrics are able to
select synthetic data to maximize performance on real test data.

Our empirical evaluation shows that SYNQUE proxies exhibit moderate to strong correlation with
real task performance across diverse domains including sentiment analysis, Text-to-SQL, image
classification, and web navigation. While the best proxy varies by task, most can effectively predict
downstream performance without any labeled real data, enabling practical synthetic data selection that
outperforms indiscriminate synthetic data selection. We find that the reliability of proxies depends on
task complexity, with higher variance on noisy data like synthetic images. Among the proxies, LENS,
leveraging LLM reasoning and a principled debiasing strategy, consistently achieves superior gains
on complex tasks like web navigation by capturing nuanced task details beyond embedding-based
metrics. These results establish SYNQUE as a robust framework for selecting high-quality synthetic
data and motivate future work on stronger foundation model methods to characterize data and perform
fine-grained, example-level data selection.

2 RELATED WORK

Data synthesis Synthesizing training data with generative models is a promising way to address
data scarcity by leveraging instruction-following abilities (Touvron et al., 2023; Ouyang et al., 2022)
and vast pre-trained knowledge (Long et al., 2024; Honovich et al., 2022; Mishra et al., 2022). This
has been applied across domains such as text classification (Ye et al., 2022), Text-to-SQL (Yang et al.,
2024; Lei et al., 2024; Li et al., 2024), planning (Sun et al., 2024; Hu et al., 2024; Xu et al., 2024;
Murty et al., 2025), and computer vision (Geng et al., 2025; Li et al., 2022). While synthetic data
often improves downstream models (Liu et al., 2024; Ye et al., 2022), challenges remain in ensuring
quality due to issues such as hallucination (Huang et al., 2025), mode collapse (Goodfellow et al.,
2014; Durall et al., 2020; Shumailov et al., 2024), and counterfactual artifacts (Li et al., 2023c; Yu
et al., 2023). Our work introduces the SYNQUE framework for selecting synthetic data to maximize
task performance without access to large amounts of real data and without training task models.

Evaluating data quality Metrics like Proxy-A-Distance (PAD) estimate domain divergence by
training classifiers to distinguish source and target data (Ben-David et al., 2010; 2006; Quinonero-
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Candela et al., 2022). While effective in some NLP tasks (Elsahar & Gallé, 2019), PAD struggles in
noisy, complex settings such as agent planning (He et al., 2024). Diversity metrics like mean-distance-
to-medoids (MDM)(Cox et al., 2021) and DCScore(Zhu et al., 2025) approximate the coverage of
synthetic data. However, these measures do not capture common synthetic data factual inconsistencies
from generative model hallucinations (Huang et al., 2025; Li et al., 2023b; Gunjal et al., 2023), which
can harm downstream performance (Geng et al., 2025; Yu et al., 2023; Casco-Rodriguez et al., 2023;
Li et al., 2023c; Hataya et al., 2023; Briesch et al., 2023). Other works focus on data selection using
scaling laws by training a regression model on the results of short training runs to predict the best
data mixture on a labeled validation set (Liu et al., 2025; Magnusson et al., 2025). This approach,
while effective, is computationally expensive and fundamentally requires labeled real data, which is
unavailable in the SYNQUE setting. Finally, another group of works try to distinguish between human
and machine text using divergence measures (Pillutla et al., 2021) or LLM-as-a-judge (Gu et al.,
2025; Krumdick et al., 2025; Zheng et al., 2023). Neither of these two techniques have been studied
for synthetic data selection. Furthermore, the latter also suffers from limitations of generative models
previously mentioned such as hallucination. Our work establishes the first systematic benchmark and
results for synthetic data selection in a practical, fully unsupervised regime.

3 THE SYNTHETIC DATASET QUALITY ESTIMATION PROBLEM

We define the SYNQUE problem and establish notation. Let Dr = {x(i)
r , y

(i)
r }nr

i=1 be a real dataset,
which we assume is scarce and for which labels are unavailable for validation. Instead, we only have
access to a small, unannotated collection of real-world inputs Ur = {xi}mr

i=1 ∈ Dr. Our goal is to
use Ur to estimate the quality of K synthetic datasets {D(1)

s , . . . ,D(K)
s }. These datasets might be

generated by different methods and thus vary in quality. We aim to select the synthetic dataset D∗
s

that yields the best model performance on Dr, without using labeled real data or training models on
any synthetic dataset.

Consider a model f(·; θk) trained on the synthetic dataset D(k)
s with parameters θk. Let M(f,De)

denote model f ’s performance on the evaluation dataset De, for instance task completion rate or
accuracy. The ideal synthetic dataset D∗

s satisfies:

D∗
s = argmaxD(k)

s
M (f (·; θk) ,De) (1)

In practice, Eq 1 is infeasible because it requires labeled real data for evaluation and ex-
tensive model training across K synthetic datasets. Instead, SYNQUE seeks proxy metrics
Q(D(k)

s ,Ur)—computable using only the synthetic dataset D(k)
s and unannotated real samples

Ur—that correlate strongly with true downstream performance. The SYNQUE problem thus re-
duces to designing or learning a proxy function Q : (D(k)

s ,Ur) → R such that a higher score indicates
the synthetic dataset D(k)

s is more likely to produce better real-world task performance. This for-
mulation enables efficient and effective use of synthetic data in low-resource or privacy-sensitive
scenarios. For ease of exposition, we refer to the score produced by the proxy function Q as the
SYNQUE score.

4 SYNQUE PROXY METRICS

In this section, we introduce the suite of proxy metrics designed to solve the SYNQUE problem. We
study the potential of leveraging several distributional distance measures as a vehicle to quantify
synthetic datasets quality. As the distributional distance measures have not been applied to synthetic
dataset evaluation nor for tackling SYNQUE, we adapt them to tackle SYNQUE by embedding raw
text or image data into representations, so distributional distances can be quantified through these
traditional measures.

To address representation-based failure on evaluating long-horizon tasks, we introduce LENS a
LLM-based measure that operates directly on the raw data to be evaluated, therefore providing
contextual understanding instead of sole depending on a universal embedding model. We introduce
both our adapted representation-based metrics and LLM-based metrics in the following section.
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Listing 1: Rubric prompt
You are shown samples
from datasets A and B.
Give up to 10 points
describing how dataset B
is similar to dataset A.

Samples from dataset A:
${location A}

Samples from dataset B:
${location B}

Listing 2: Scorer Prompt
Given similarities and differences between
datasets, how likely is the given sample
from dataset ${prediction}? Choose from very
unlikely, unlikely, unsure, likely, and very
likely.

Similarities: ${similarities}

Differences: ${differences}

Sample: ${sample}

Table 1: Simplified LENS prompt templates. Appendix C contains detailed prompts for each task.

4.1 REPRESENTATION-BASED PROXY METRICS

Mean Distance to Medoid Our first proxy metric adapts Mean Distance to Medoid (MDM),
a measure of dataset diversity (Cox et al., 2021; Laliberté & Legendre, 2010; Lehman & Stanley,
2011; Risi et al., 2009). The rationale is that high-diversity synthetic datasets may offer broader
coverage in the embedding space and thus yield higher performance on real data. For SYNQUE,
MDM characterizes this diversity by measuring the sparsity of data points around medoids. Given
Ds, we compute N medoids using clustering algorithms such as kMedoids 1. For each medoid x̃M ,
we aggregate the Euclidean distances from all points within their corresponding cluster: MDM =
1
N

∑N
i=1 d(x

M
i , x̃M ). Intuitively, if points within each cluster are centered around the medoid,

MDM will be small, and therefore less diverse in the embedding space. In contrast, high-diversity
synthetic datasets to have broader coverage, and therefore higher performance on real data. A higher
MDM score suggests greater diversity, so we use it directly as the SYNQUE score.

Maximum Mean Discrepancy Next, we propose a proxy based on Maximum Mean Discrepancy
(MMD2), a nonparametric test that assesses whether two samples originate from the same distribu-
tion (Gretton et al., 2012; Borgwardt et al., 2006; Lu et al., 2022; Li et al., 2015). As a SYNQUE
proxy, we use MMD2 to measure the discrepancy between the synthetic dataset and the real data
distribution. Given ns synthetic input samples xi ∈ Ds of size ns and mr unannotated real input
samples yi ∈ Ur, MMD2 quantifies the distance between these two empirical distributions in a
reproducing kernel Hilbert space using a kernel function k(·).

MMD2 =
1

mr
2

mr∑
i,j=1

k(xi, xj) +
1

ns
2

ns∑
i,j=1

k(yi, yj)−
2

mrns

ns,mr∑
i,j=1

k(xi, yj) (2)

A smaller MMD2 score indicates the synthetic data distribution is closer to the real one. To maintain
consistency with other proxies where higher is better, we use −MMD2 as the SYNQUE score.

Proxy-A-Distance Our third representation-based proxy adapts Proxy-A-Distance (PAD), a
discriminative measure from domain adaptation that quantifies the divergence between two distri-
butions (Ben-David et al., 2006; Elsahar & Gallé, 2019). The PAD proxy measures how well a
classifier can discriminate between samples from the synthetic dataset Ds and real dataset Dr. We
compute PAD = 1 − 2E(G) by training a binary domain classifier G : x → [0, 1] (e.g., a linear
SVM, a multi-layer perceptron) to distinguish between synthetic and real inputs (i.e. we do not
assume access to labels), where the error of the classifier E can be computed as:

E (G) = 1− 1

ns +mr

∑
xi∈Ds,Ur

|G (xi)− I (xi ∈ Ds)| (3)

A higher classification error implies the datasets are not easily separable, indicating lower divergence
and thus higher synthetic data quality. For consistency with other divergence metrics, use −PAD as
the SYNQUE score.

1https://pypi.org/project/kmedoids/
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MAUVE Our final representation-based proxy is an adaptation of MAUVE (Pillutla et al., 2021), a
metric that quantifies the divergence between text distributions. MAUVE summarizes both Type I and
Type II errors. Given a synthetic data distribution Q and a real data distribution P, Type I error means
Q generates text that is unlikely under P (unrealistic samples), while Type II error means Q fails to
generate text that is plausible under P (lacks diversity). MAUVE captures both error types in a single
score, which approaches 1 as the distributions become more similar. Since a higher score indicates
better alignment with real data, we use the MAUVE score directly as the SYNQUE score.

4.2 LLM-EVALUATED NORMALIZED SCORE (LENS)

The representation-based proxies described so far rely on high-quality continuous representations
of inputs. In low-resource settings where such representations are unavailable, or in long-horizon
settings where it is intractable to compress a long sequence of observations and states into a compact,
fixed-size representation, these representation-based proxies may fall short. To address this, we
introduce LLM-Evaluated Normalized Score (LENS), a novel method that leverages LLMs as zero-
shot discriminators. LENS first derives a language rubric describing the similarities and differences
between samples of unannotated real data Ur and inputs from the synthetic dataset Ds. A subsequent
(potentially smaller) LLM then scores how likely each synthetic example is to belong to the real
dataset, guided by the rubric. The average score across the synthetic dataset is used as the final
SYNQUE score. The intuition is similar to that behind PAD: a higher classification error by the
rubric-guided scorer implies higher synthetic data quality. We now detail how LENS is computed.

Rubric compilation Given real input samples Ur, we collect an equal number of samples Us from
the synthetic dataset Ds. Both collections are given to a reasoning LLM (e.g. DeepSeek R1 or
o4-mini) to generate three sets of characteristic descriptions: commonalities (C), differences of
real from synthetic (Cr,s), and differences of synthetic from real (Cs,r). Listing 1 shows a simplified
rubric compilation prompt template. Our design is backed by the principled idea of approximating
domain divergence through discriminator error (Ben-David et al., 2006): LENS’s scoring is motivated
by PAD, where the error of a classifier (here, the LLM-based scorer) reflects the distance between
distributions. Unlike PAD, however, LENS does not require a pretrained encoder to map samples into
fixed-length representations; instead, it operates directly on the native data format and characterizes
differences using language rubrics.

Principled Debiasing and Scoring We now describe how to compute the score of a synthetic
dataset. A key challenge of scoring is in mitigating LLM biases. We identified three primary sources:

1. Order Bias: The set of differences an LLM derives when comparing A to B can differ
significantly from when comparing B to A.

2. Label Bias: When asked how likely an example x belongs to A or B, an LLM may score
both as “very likely”, a contradiction.

3. Score Bias: LLMs may have an inherent preference for certain score values (e.g., “likely”)
regardless of the input.

To address these systematically, we employ a minimal design involving four scoring permutations
for each sample. We denote the LLM scoring function as gD|C , which outputs a score (0-4) for how
likely an example x belongs to dataset D given characteristic descriptions C.

First, to mitigate score bias, we compute baseline scores by averaging the LLM’s judgments on real
inputs x ∈ Ur for each of the four permutations. For instance, the baseline for scoring an example as
real, given the description of how synthetic differs from real, is:

zr|Cs,r
= E

[
gr|Cs,r

(x)
]
≈ 1

nr

nr∑
i=1

gr|Cs,r
(xi) (4)

We then compute a score-debiased score h for each synthetic sample by normalizing its raw score
against this baseline:

hr|Cs,r
=

gr|Cs,r
(x)

max(ε, zr|Cs,r
)

(5)
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Here, ε is a small constant to avoid division by zero. Intuitively, this scores-debiased score expresses
how much the LLM scores the example compared to how it usually scores real examples. Next, to
compute a label-debiased score, we normalize the LLM’s preference for the “real” label over the
“synthetic” label for each synthetic example:

pr|Cs,r
=

hr|Cs,r

hr|Cs,r
+ hs|Cs,r

+ ε
(6)

Finally, to create an order-debiased score, we average the label-debiased scores obtained using both
sets of difference descriptions (Cs,r and Cr,s):

p̂(x) =
1

2

[
pr|Cs,r

(x) + pr|Cr,s
(x)

]
(7)

The final LENS score for a synthetic dataset is the empirical mean of these fully debiased scores
across all its samples:

LENS(Ds) = E [p̂(x)] =
1

n

ns∑
i=1

p̂(xi) (8)

5 EXPERIMENTS

We choose four diverse tasks spanning different machine learning domains to examine how well
each candidate proxy metric extrapolate to real data performance on tasks with varying complexities
and modalities. For LENS, we incorporate Deepseek-R1 to generate 10 points about similar and
different characteristics Cs,r between synthetic data samples Us and real data samples Ur. We then
use Qwen2.5-32B-Instruct (Qwen et al., 2025) and 8B to score synthetic examples according
to the rubric. For image domain, we use OpenAI o4-mini to compile rubrics and Qwen2.5-VL-
32B-Instruct to score. For representation-based metrics PAD,MDM, and MMD2, we use
state-of-the-art qte-Qwen2-7B-Instruct to embed text inputs and E5-V (Jiang et al., 2024) to
embed image inputs for proxy scoring. We use XGBoost (Chen & Guestrin, 2016) to compute PAD
and polynomial kernel for MMD2 (Gretton et al., 2012). We include additional kernel ablations in
Appendix 10. We use the official release2 from MAUVE, with the default hyperparameter setting for
MAUVE calculation.

We also include an experiment with perplexity-based metric as additional baseline in Text2SQL (see
table 5). PERPLEXITY, inspired by scaling law methods (Magnusson et al., 2025; Liu et al., 2025),
fine-tunes a model on each synthetic data set and measures its perplexity on the unannotated real data
subset; a lower perplexity is expected to indicate higher quality.

We use Pearson (Pearson & Galton, 1997) and Spearman rank (Spearman, 1904) correlation coef-
ficients to measure how strongly task performance and proxy scores are related. Pearson focuses
on predictability by capturing linear relationships, while Spearman focuses on trend by evaluating
whether the relationship between variables is consistently increasing or decreasing (i.e., monotonic),
regardless of the exact shape. To reduce variance in correlation analysis across different sample
subsets, for all tasks, we construct subsets Ur by sampling with five different seeds. Final correlation
scores are averaged across seeds.

Sentiment Analysis Recent work shows LLMs overfit widely-used datasets due to data contam-
ination (Balloccu et al., 2024; Sainz et al., 2023; Oren et al., 2023). To mitigate this, we evaluate
on a domain-specific financial tweets sentiment dataset3. We create 32 synthetic class-balanced
datasets (998 samples each) using eight prompt types: zero-shot, zero-shot with background knowl-
edge, with train-time or test-time stock ticker info, and few-shot variants. We use Qwen2.5-7B-
Instruct, Qwen2.5-32B-Instruct, Llama3.1-8B-Instruct, and Llama3.3-70B-
Instruct (Grattafiori et al., 2024) for each prompt type. Background knowledge uses detailed
guideline instructions for better task alignment. Stock tickers are sampled one at a time for synthesis.
Details are in section C. We train task models using XGBoost and evaluate F1 score on a 2,388-item
test set. Rubrics are compiled by randomly sampling 200 points from each real and synthetic dataset.

2https://pypi.org/project/mauve-text/
3https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
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Table 2: Top-3 task performance for all candidate proxies of SYNQUE. Top-3 task performance
is computed by averaging task performance of synthetic datasets chosen using each proxy metric.
Improvements are calculated based on increase over average performance of all synthetic datasets.

Top-3 Ranked Average Task Performance across Proxy Metrics
Tasks Test LENS 7B LENS 32B PAD MMD2 MDM Mauve

mean debiased biased debiased biased

Sentiment 49.6 50.5 +0.8 51.2 +1.6 52.0 +2.4 51.0 +1.4 55.3 +5.7 54.7 +5.1 54.2 +4.6 54.6 +4.9

Text2SQL
Computer 45.8 46.6 +0.7 46.4 +0.6 48.3 +2.5 46.3 +0.5 48.3 +2.5 47.4 +1.6 48.2 +2.3 48.3 +2.5

Apps 30.4 34.7 +4.4 36.3 +5.9 33.8 +3.4 35.2 +4.9 33.5 +3.2 38.4 +8.1 33.9 +3.5 38.4 +8.1

Movies 37.3 41.0 +3.7 41.4 +4.1 43.8 +6.5 44.7 +7.4 44.2 +6.9 43.0 +5.7 46.9 +9.6 44.6 +7.3

Average 37.8 40.8 +2.9 41.4 +3.5 42.0 +4.1 42.1 +4.3 42.0 +4.2 42.9 +5.1 43.0 +5.2 43.8 +6.0

Image
Split 1 57.2 57.3 +0.2 56.7 -0.4 56.4 -0.8 53.4 -3.7 55.9 -1.3 57.3 +0.1 57.0 -0.1 56.0 -1.1

Split 2 55.8 55.3 -0.4 55.8 +0.0 56.2 +0.4 56.0 +0.2 55.4 -0.4 54.5 -1.3 54.8 -1.0 56.3 +0.5

Split 3 57.7 59.1 +1.4 58.7 +1.0 60.2 +2.5 57.0 -0.7 58.2 +0.6 64.1 +6.5 52.2 -5.5 58.4 +0.7

Average 56.9 57.2 +0.4 57.0 +0.2 57.6 +0.7 55.5 -1.4 56.5 -0.4 58.6 +1.8 54.7 -2.2 56.9 +0

WebNav 25.8 26.5 +0.7 26.3 +0.5 26.3 +0.5 26.0 +0.2 25.7 -0.1 26.5 +0.7 25.8 -0.1 26.3 +0.5

Table 3: Spearman (left) and Pearson (right) correlation scores of SYNQUE proxy metrics. LENS
uses a fraction of samples for rubric compilation except for Web Navigation tasks.

Tasks LENS 7B LENS 32B PAD MMD2 MDM Mauve
debiased biased debiased biased

Sentiment .25 .33 .26 .17 .38 .26 .24 .23 .53 .65 .45 .67 .68 .85 .53 .57
Text2SQL
Computer .19 .13 .10 .10 .41 .45 .18 .23 .46 .69 .33 .85 .39 .63 .24 .78
Apps .38 .37 .42 .49 .46 .40 .55 .61 .43 .42 .53 .79 .44 .56 .74 .52
Movies .41 .50 .41 .26 .50 .46 .56 .47 .50 .64 .38 .46 .61 .41 .65 .68
Average .33 .33 .31 .28 .46 .43 .43 .44 .46 .58 .41 .70 .48 .53 .55 .66
Image
Split 1 -.18 -.19 -.30 -.35 -.28 -.28 -.68 -.67 -.06 -.05 .66 .52 -.37 -.27 -.04 -.20
Split 2 .02 -.04 .14 .05 .20 .05 .20 .05 .20 .31 .09 .17 .03 -.32 .03 .13
Split 3 -.10 -.01 -.15 -.03 .31 .33 .37 .44 .02 -.15 .26 .21 -.54 -.76 .46 .34
Average -.09 -.08 -.10 -.11 .08 .03 -.04 -.06 .05 .04 .33 .30 -.30 -.45 .15 .09

WebNav .15 .17 .11 .18 .15 .15 .08 .09 .11 .08 -.02 .06 -.11 -.08 -.09 -.10

Text2SQL We evaluate SYNQUE on Text2SQL using three DBs from the BIRD benchmark
(Movies, App Store, Computer Students — we the last two as Apps and Computers) (Li et al., 2023a).
We synthesize 1,000 data points with 4 prompt types: zero-shot with background knowledge (guide-
lines and schema), zero-shot with test-time info (random table rows), and few-shot (three examples).
Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct models are used for dataset genera-
tion. Task models are finetuned from Qwen2.5-Coder-1.5B-Instruct following CodeS4 and
evaluated using execution accuracy on the real test set. For rubrics, we sample 30 points per synthetic
and real dataset. Real data sizes are 60, 69, and 164 for Apps, Computers, and Movies respectively.

Table 4: Division of the 15 selected ImageNet
classes into three 5-class splits for image clas-
sification tasks. Each row corresponds to one
split used in our experiments.

Splits ImageNet classes

1 bra, mask, lion, cloak, tank
2 hammer, backpack, stage, throne, tray
3 plate, desk, kimono, shield, church

Image Classification In addition to text-only set-
tings, we evaluate SYNQUE on image classifica-
tion using synthetic datasets curated from unmet-
promise5. These datasets are created with different
prompts using Stable Diffusion 1.1 and 1.5: label, la-
bel plus physical relation, and label plus background
description (Geng et al., 2025). Images are mapped
to ImageNet classes (Deng et al., 2009) via cap-
tion analysis C, then filtered with a vision-language
model to remove noisy labels. Data cleaning details

4https://github.com/RUCKBReasoning/codes
5https://huggingface.co/datasets/scottgeng00/unmet-promise
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Table 6: Spearman (left) and Pearson (right) correlations with different number of real samples for
scoring Text2SQL. LENS uses debiased 32B scoring. Note that results in table 3 use 30 real samples.

|Ur| = 25 |Ur| = 50
LENS PAD MMD2 MDM Mauve LENS PAD MMD2 MDM Mauve

Comput-
ers

.22 .22 .36 .65 .28 .80 -.39 -.65 .19 .65 .64 .38 .51 .78 .34 .87 -.39 -.62 .87 .78

Apps .29 .48 -.20 -.23 .40 .77 -.44 -.56 .65 .70 .64 .66 .68 .76 .57 .80 -.44 -.56 .32 .65
Movies .33 .48 .33 .36 .52 .57 -.60 -.40 -.14 -.35 .43 .49 .57 .37 .81 .56 -.67 -.45 .81 .60
Average .28 .39 .16 .26 .40 .71 -.47 -.54 .23 .33 .57 .51 .59 .64 .57 .74 -.50 -.55 .67 .68

are provided in Appendix section C. The final set includes 15 classes with 300 images each. Due to
limited samples, the 15-class task is split into three 5-class tasks (table 4). We train ResNet-50 (He
et al., 2015) from scratch for 50 epochs, early stopping on 10% validation data. Evaluation uses
mean reciprocal rank (MRR) for finer performance measurement. Rubrics are constructed from 100
sampled images per real and synthetic data, consistent across SYNQUE methods.

Web Navigation Our fourth task evaluates SYNQUE on agentic web navigation planning using
WebVoyager (He et al., 2024) and synthetic data from NNetNav (Murty et al., 2025). Inputs include
task objectives, current step observations (accessibility tree), and past actions; targets are actions
leading to task success. WebVoyager has 15 websites; we exclude Google Flights and Booking which
are no longer feasible (Zhou et al., 2024; Murty et al., 2025), leaving 13 sites with 557 tasks. Each
site forms a test domain split into 5 synthetic subsets. Models are fine-tuned with LoRA (Hu et al.,
2021) on Qwen2.5-7B-Instruct. We use all synthetic and 20 real samples per method.

5.1 RESULTS ANALYSIS

Table 5: Spearman (left) and
Pearson (right) correlations
with PERPLEXITY scoring on
the BIRD Text2SQL bench-
mark

PERPLEXITY

Computers -.31 -.33
Apps -.25 -.29
Movies .24 .31
Average -.11 -.10

SYNQUE proxies correlate with task performance and improve
selection. table 3 shows that SYNQUE proxy metrics demonstrate
moderate to strong correlation with downstream task performance.
To show the practical utility of these proxies, we simulate selecting
the top 3 datasets based on each metric’s score and compare their av-
erage task performance against the mean performance of all available
synthetic datasets. As shown in table 2, nearly all proxy metrics sig-
nificantly improve dataset selection over selecting synthetic datasets
non-discriminately (i.e. uniform selection). This demonstrates that
SYNQUE is an effective framework for maximizing real-data per-
formance, despite not having access to labeled real data and only
a limited sample of real data. We also conduct an experiment with
PERPLEXITY on Text2SQL, to examine the effectiveness as a potential proxy. As shown in table 5, it
correlates poorly with even text data, therefore we conclude that scaling methods would not work
under our setting, where no annotated data is available for evaluation to build a regression model that
predicts the best data mixture.

Performance on ambiguous image data shows high variance. The synthetic image classification
data contains significant visual variability and label ambiguity, especially in Split 1 between classes
like “stage” and “throne” (fig. 2a, fig. 2b). This confuses most proxy metrics, resulting in inconsistent
correlations across splits (table 3). However, table 2 shows that when used for selection, several
proxies (e.g. debiased LENS 32B, MMD2) still improve average task performance.

Using more real samples improves correlation. As shown in table 6, increasing the number
of unannotated real samples mr consistently leads to stronger correlations for all proxy metrics.
This indicates that even a modest increase in available real-world data can significantly improve the
reliability of synthetic data quality estimation.

LENS excels on complex, long-horizon tasks. As shown in both tables, the 32B debiased LENS is
the only proxy that consistently achieves positive correlation and improves top-3 task performance
across all tasks and splits. Its advantage is particularly pronounced in web navigation, a complex
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planning task where representation-based metrics struggle. LENS leverages LLM reasoning over rich,
structured inputs like accessibility trees to generate interpretable rubrics. For instance, an example
characteristic point for the website “Wolfram Alpha” is: “Dataset B tasks focus on data retrieval
(e.g. temperature anomalies, moon phases) while Dataset A emphasizes applied computational
problem-solving”. These specific nuances in long text (e.g. instructions, state observations) are
difficult to capture using general-purpose dense vector embedders, which explains why LENS
outperforms representation-based proxy metrics on complex, abstract tasks like web navigation.
This method does exhibit weaker correlation in image classification. We hypothesize that this stems
from the inability of VLMs to capture meaning characteristics descriptions in batches of images
during rubric generation, and VLM rubric generation will likely improve as VLMs improve in quality.

5.2 ABLATION STUDIES AND COST ANALYSIS

Cost-Effectiveness of SYNQUE Proxies A key motivation for SYNQUE is efficiency. Our
representation-based proxies require a one-time embedding computation, after which scoring all
datasets is nearly instantaneous (e.g., 19 seconds for MMD on 32 datasets). LENS, using modern
LLM serving frameworks, is also highly efficient, taking ∼ 15 seconds per dataset with a 32B model
on a H200 GPU. In contrast, perplexity-based data selection, inspired by scaling-law studies (Liu
et al., 2025), require training many (e.g., 512 1M models used in their experiment) small models
on the mixture of all synthetic datasets, a significantly more costly procedure, yet yield weaker
correlations (table 3). This highlights the practical advantage of the SYNQUE framework.

Larger scorers lead to stronger correlations We find that larger scoring models yield stronger
correlations between LENS and task performance, as shown in table 3. Intuitively, this is expected
because larger models generally possess more robust instruction-following and reasoning capabilities,
enabling them to better assess data quality and align proxy scores with downstream performance.

LENS is robust to preferential bias in LLM training data. To address concerns that an LLM
evaluator might favor data it generated, we tested LENS with different scoring models on data
generated by Qwen2.5. The results, detailed in Appendix table 7, show that performance is
consistent across evaluators, including those distinct from models used to generate the synthetic data,
indicating minimal preferential bias.

Principled debiasing and rubrics are critical for LENS. As illustrated in table 3, the correlations
between LENS and task performance consistently increase when debiasing is applied, indicating that
raw scores may be systematically biased and do not reliably reflect true data quality. Once debiasing
is introduced, the correlation becomes strongly positive and consistently outperforms the biased
scores. This demonstrates that debiasing effectively corrects for these systematic errors and aligns
LENS scores with actual task performance. Further ablations show that using a rubric consistently
improves correlation over a zero-shot baseline (Appendix table 8), and that 10 rubric points generally
offers the best trade-off between specificity and generality (Appendix table 9).

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We formalized the SYNQUE problem of ranking synthetic datasets by their impact on real-world
task performance using limited unannotated real data. Our comprehensive evaluation established that
various proxies can reliably predict downstream performance, offering a cost-effective alternative to
full model training. We proposed LENS, a novel proxy leveraging LLM reasoning and principled
debiasing, which consistently outperforms others on challenging, long-horizon tasks. Overall,
SYNQUE offers a robust framework for synthetic data selection when labeled real data is scarce.

SYNQUE assume that real data is scarce, a setting not all deployments face. While LENS performs
well on the complex tasks studied, its effectiveness should be validated on more diverse tasks.
Additionally, we experiment with limited-size LLMs due to resource constraints. Future work should
explore 1) scaling LENS to larger sizes and different architectures, especially strong VLMs, to assess
generality and improvements. 2) using rubric feedback to guide LLMs in synthesizing more realistic
data, and 3) developing fine-grained, example-level proxy use to directly improve task model training.
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A VISUALIZATION OF AMBIGUOUS IMAGE

(a) Sample synthetic images of class "stage"

(b) Sample synthetic images of class "throne"

Figure 2: Visualization of synthetic images from second split for classes (a) "stage" and (b) "throne"
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B ADDITIONAL ABLATIONS

B.1 ABLATION STUDY ON LENS PREFERENTIAL BIAS

Table 7: We use two non-Qwen scoring models on tasks where synthetic data was generated by
Qwen2.5 models. The consistent positive correlations of the debiased scores demonstrate that LENS
is robust to this potential bias.

LENS (Granite-8B) Debiased Biased
Task Spearman Pearson Spearman Pearson

Sentiment .21 .30 -.04 -.02
Text2SQL .22 .20 .19 .23

LENS (Ministral-8B) Debiased Biased
Task Spearman Pearson Spearman Pearson

Sentiment .28 .39 .52 .31
Text2SQL .32 .29 .16 .16
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B.2 ABLATION STUDY ON LENS RUBRIC DESIGN

Table 8: LENS with vs. without a rubric on sentiment analysis, showing the rubric’s effectiveness.
We use Qwen2.5-7B-Instruct for scoring.

LENS Model w/ Rubric Spearman Pearson

Qwen2.5-7B-Instruct NO 0.23 0.21
Qwen2.5-32B-Instruct NO 0.32 0.13
Qwen2.5-7B-Instruct YES 0.25 0.33
Qwen2.5-32B-Instruct YES 0.38 0.26

Table 9: Bottom: Varying the number of rubric points, where 10 points provides a good balance.

# Rubric Points Sentiment Analysis Text2SQL (Avg)
(Debiased) Spearman Pearson Spearman Pearson

5 0.14 0.19 0.38 0.30
10 0.25 0.33 0.33 0.33
15 -0.06 0.05 0.23 0.21
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B.3 ABLATION STUDY ON MMD2 KERNEL FUNCTIONS

Table 10: We report Pearson / Spearman correlation coefficients. The Laplacian kernel performs best
on text tasks, but all kernels show limited effectiveness on more complex domains.

Task Polynomial RBF Laplacian Linear Sigmoid

Sentiment .67 / .45 .67 / .45 .78 / .60 .67 / .45 .67 / .46
Text2SQL (avg) .51 / .43 .52 / .44 .70 / .51 .52 / .44 .53 / .44
Image (avg) .22 / .30 .22 / .30 .21 / .30 .22 / .30 .22 / .30
WebNav .06 / -.02 .06 / -.01 .05 / -.04 .06 / -.02 .05 / -.03
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DATA CURATION

Sentiment analysis For sentiment analysis, we used a cleaned version of the original validation
split as the test set, removing URLs from the data. Synthetic samples are generated and validated
to ensure each output is non-empty, alphabetic ’headline’ and a ’sentiment’ label restricted to the
values ’0’, ’1’, or ’2’. Only samples meeting these structural and content criteria were retained for
downstream analysis.

Text2SQL During Text2SQL data synthesis, we validate generated question–SQL pairs by ensuring
both fields are non-empty, contain alphanumeric content, and are formatted as a dictionary with
’question’ and ’SQL’ keys. For non-zero-shot generations, SQL queries are executed against the target
database; pairs failing execution are discarded. This process enforces correct structure, meaningful
content, and SQL executability.

Image classification We classify each image in the unmet-promise dataset into one of three
categories: label_only, label_relation, or label_background, based on its caption. Captions are
lowercased and stemmed. If a class-specific background keyword appears in the caption, the image is
assigned to label_background. If a relation keyword is present, it is assigned to label_relation. Images
not matching either are assigned to label_only. We balance the number of samples per category and
class, and store the processed data for downstream tasks. To further ensure fidelity of images, we
use Qwen2.5-VL-7B-Instruct to filter noisy images. Prompt used for filtering is provided in
listing 8.

Web navigation We first group individual trajectories into tasks. Then we use different seeds to
create 5 disjoint subsets with equal amount of tasks. We fine-tune using LoRA rank of 64 and the
open-instruct 6 fine-tuning codebase.

6https://github.com/allenai/open-instruct
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C.2 SYNQUE SCORING

For PAD, we reserve 20% of all embeddings as a holdout test set to train the classifier, and compute
the classification error on this set to obtain the final PAD score. For MMD2, we generate the
proxy score using a polynomial kernel 7 with degree 3 and Coef0 parameter 1. For MDM, we
use Fasterpam (Schubert & Rousseeuw, 2019) to compute k medoids in the embeddings, setting k
to 3 for sentiment analysis and 5 for other tasks, using Euclidean distance for clustering; MDM
is then calculated by averaging the Euclidean distance from each data point to its corresponding
medoid. For LENS, the prompts used for rubric compilation and scoring are provided in section C.5.3
and section C.5.4, respectively. For MAUVE calculation, we use the default hyperparameter, the
same embedding model as the other representation-based proxies (qte-Qwen2-7B-Instruct), and the
scaling factor is 5. For PERPLEXITY calculation in Text2SQL, we first reformat each Text2SQL
question as a string: "question": <sample> . We then use Qwen2.5-7B to compute the
perplexity, considering only the tokens corresponding to the question text (i.e., the <sample> portion),
and excluding the prompt tokens (such as "question":).

7https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
pairwise.polynomial_kernel.html
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C.3 STANDARD DEVIATION OF CORRELATION COEFFICIENTS

Table 11: Standard deviation of Spearman (left) and Pearson (right) correlation coefficients of
SYNQUE proxy metrics across 5 seeds. MDM only scores on synthetic datasets therefore no change
in input data.

Tasks LENS 7B LENS 32B PAD MMD MDM
debiased biased debiased biased

Sentiment .23 .17 .12 .14 .09 .11 .07 .07 .02 .02 .02 .02 .00 .00
Text2SQL
Computer .48 .39 .38 .44 .21 .21 .18 .14 .04 .08 .03 .08 .00 .00
Apps .38 .34 .25 .21 .22 .22 .22 .14 .36 .48 .05 .15 .00 .00
Movies .32 .32 .33 .24 .22 .24 .11 .14 .07 .13 .05 .14 .00 .00
Average .39 .35 .32 .30 .22 .22 .17 .14 .15 .23 .04 .12 .00 .00
Image
Split 1 .47 .48 .51 .51 .39 .38 .28 .22 .08 .06 .00 .02 .00 .00
Split 2 .43 .47 .43 .42 .40 .41 .43 .53 .11 .08 .00 .04 .00 .00
Split 3 .52 .39 .47 .39 .40 .42 .29 .22 .07 .07 .00 .05 .00 .00
Average .47 .44 .47 .44 .40 .40 .33 .32 .09 .07 .00 .04 .00 .00
WebNav .15 .17 .11 .13 .09 .11 .15 .19 .04 .02 .02 .02 .00 .00
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C.4 EXAMPLE RUBRICS

Listing 3: Example characteristic descriptions Cs,r

"Dataset B consistently specifies the analyst behind actions...",
"Dataset B maintains strict financial focus without political or

entertainment tangents present in A...",
"Dataset B entries always directly connect stock movements to specific

analyst actions...",
"Dataset B shows more frequent price target amount disclosures...",
"Dataset B uses standardized financial terminology consistently...",
"Dataset B maintains neutral tone in earnings reports...",
"Dataset B focuses exclusively on institutional analyst

perspectives...",
"Dataset B headlines strictly follow ’[Analyst] [Action] on [Ticker]

[Rationale]’ structure...",
"Dataset B contains no social media tags/hashtags...",
"Dataset B shows higher frequency of ETF coverage..."

Listing 4: Example characteristic descriptions Cr,s

"Dataset B includes headlines without stock tickers ...",
"Dataset B contains non-financial news ...",
"Dataset B incorporates social media-style commentary...",
"Dataset B includes international/non-English company names...",
"Dataset B references non-institutional analysts/sources...",
"Dataset B features headlines about dividends...",
"Dataset B includes legal/regulatory actions unrelated to markets...",
"Dataset B uses technical trading jargon...",
"Dataset B contains macroeconomic commentary without stock links...",
"Dataset B includes non-company-specific index/currency forecasts..."

C.5 LLM USAGE

Model serving We use vLLM (Kwon et al., 2023) to serve open source models such as for data
synthesis and dataset scoring. For Llama3.3-70B-Instruct model, we use Ollama 8 Q4_K
quantized version to construct synthetic datasets for sentiment analysis. We use 2 * Nvidia A40 48GB
GPUs for other models for synthesis and scoring. To improve LLMs’ generation throughput, we use
vLLM’s batched inference feature and enable prefix-caching to further improve generation efficiency.

LLM hyperparameter For LENS rubric compilation and scoring, we set temperature to 0 and
top_p to 0.95.

C.5.1 DATA SYNTHESIS PROMPTS

Listing 5: Zero-shot prompt used for sentiment analysis dataset generation.
Generate three realistic financial news headlines for sentiment analysis.

Guidelines for Generating Headlines:

Sentiment Labeling:
Each headline must be assigned a sentiment label based on its tone:

- Bearish (0): Indicates negative sentiment about a stock or market
trend.

- Bullish (1): Indicates positive sentiment about a stock or market
trend.

- Neutral (2): Indicates neutral or informational tone.

Now, generate three new financial news headlines following these
guidelines. Please use JSON format and generate one type of each
sentiment label (0, 1, 2) in your response.

8https://ollama.com/
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Listing 6: Zero-shot with background knowledge prompt used for sentiment analysis dataset genera-
tion.

Generate three realistic financial news headlines about stock tickers
following real-world financial reporting for sentiment analysis.

Guidelines for Generating Headlines:

1. Format & Style:
- Headlines must be concise and mimic real financial news.
- Use sentence case formatting (capitalize only the first word and

proper nouns).
- Some headlines should start with a stock ticker (e.g., $AAPL -),

while others should begin with the company name or a broader
market trend.

2. Ticker Inclusion:
- At least one headline should include a stock ticker (e.g., $TSLA

- or $NVDA -).
- Some headlines should refer to companies by name instead of

tickers (e.g., "Alphabet and Meta see price targets cut at
Barclays").

3. Common Financial Themes:

Ensure headlines reflect realistic financial news topics,
including:

- Stock downgrades/upgrades
- Price target adjustments
- Market trends/economic outlook
- Company performance concerns
- Company news
- Company announcements
- Company events

4. Source Attribution:
- When relevant, mention an investment firm, analyst, or research

group (e.g., Morgan Stanley, Barclays, Oppenheimer).
- Do not fabricate research firms-use only well-known institutions.

5. Sentiment Labeling:

Each headline must be assigned a sentiment label based on its tone:
- Bearish (0): Indicates negative sentiment about a stock or market

trend.
- Bullish (1): Indicates positive sentiment about a stock or market

trend.
- Neutral (2): Indicates neutral or informational tone.

Sentiment Labeling:
Each headline must be assigned a sentiment label based on its tone:

- Bearish (0): Indicates negative sentiment about a stock or market
trend.

- Bullish (1): Indicates positive sentiment about a stock or market
trend.

- Neutral (2): Indicates neutral or informational tone.

Now, generate three new financial news headlines following these
guidelines. Please use JSON format and generate one type of each
sentiment label (0, 1, 2) in your response.
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Listing 7: Zero-shot with background and stock ticker information prompt used for sentiment analysis
dataset generation.
Generate three realistic financial news headlines about stock tickers

following real-world financial reporting for sentiment analysis.

Guidelines for Generating Headlines:

1. Format & Style:
- Headlines must be concise and mimic real financial news.
- Use sentence case formatting (capitalize only the first word and

proper nouns).
- Some headlines should start with a stock ticker (e.g., $AAPL -),

while others should begin with the company name or a broader
market trend.

2. Ticker Inclusion:
- At least one headline should include a stock ticker (e.g., $TSLA

- or $NVDA -).
- Some headlines should refer to companies by name instead of

tickers (e.g., "Alphabet and Meta see price targets cut at
Barclays").

3. Common Financial Themes:

Ensure headlines reflect realistic financial news topics, including:
- Stock downgrades/upgrades
- Price target adjustments
- Market trends/economic outlook
- Company performance concerns
- Company news
- Company announcements
- Company events

4. Source Attribution:
- When relevant, mention an investment firm, analyst, or research

group (e.g., Morgan Stanley, Barclays, Oppenheimer).
- Do not fabricate research firms-use only well-known institutions.

5. Sentiment Labeling:

Each headline must be assigned a sentiment label based on its tone:
- Bearish (0): Indicates negative sentiment about a stock or market

trend.
- Bullish (1): Indicates positive sentiment about a stock or market

trend.
- Neutral (2): Indicates neutral or informational tone.

Now, generate three new financial news headlines about stock tickers: {
stock_ticker} following these guidelines. Please use JSON format and
generate one type of each sentiment label (0, 1, 2) for diversity.
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C.5.2 DATA CLEANING PROMPTS

Listing 8: Prompt used for filtering noisy synthetic images
You are a helpful assistant that filters out an image. You will be given

an image and its corresponding text caption.

You should return true if the primary object in the image is not a ${
label} in common sense. Return false otherwise.

Image:
{image}

Caption:
{caption}
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C.5.3 LENS RUBRIC COMPILATION PROMPTS

Listing 9: Rubric compilation prompt used in sentiment analysis (commonalities)
You are a world class data analyst on financial news headline. You will

be given some financial news headline samples from dataset A and
dataset B. Based on the provided similar characteristics between them
, list how B is similar to A. Return {num} points as a JSON list of
strings. Please focus on specific and granular similarities between
the two datasets, your generated characteristic points should apply
to all the samples from the two datasets.

Samples from A:
{A}

Samples from B:
{B}

Listing 10: Rubric compilation prompt used in sentiment analysis (differences)
You are a world class data analyst on financial news headlines. You will

be given some financial news headline samples from dataset A and
dataset B. Based on the provided similar characteristics between them
, list how B is {feedback} A. Please focus on granular differences
between the two datasets, your generated characteristic points should
apply to all the samples from the corresponding dataset (A or B).

Return {num} points as a JSON list of strings.

Similar characteristics between A and B:
{similar_points}

Samples from A:
{A}

Samples from B:
{B}
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Listing 11: Rubric compilation prompt used in Text2SQL (commonalities)
You are a world class data analyst on database queries in natural

language. Given samples from dataset A and dataset B, list how B is {
feedback} A. Return {num} points as a JSON list of strings. Please
focus on specific and granular similarities between the two datasets,
your generated characteristic points should apply to all the samples

.

Question samples from A:
{A}

Question samples from B:
{B}

Listing 12: Rubric compilation prompt used in Text2SQL (differences)
You are a world class data analyst on database queries in natural

language. Given query samples from dataset A and dataset B. Based on
the provided similar characteristics between them, list how B is {
feedback} A. Return {num} points as a JSON list of strings. Please
focus on specific and granular differences between the two datasets,
your generated characteristic points should apply to all the samples
from the corresponding dataset (A or B).

Similar characteristics between A and B:
{similar_points}

Question samples from A:
{A}

Question samples from B:
{B}
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Listing 13: Rubric compilation prompt used in image classification (commonalities)
Below are {num_image} images from dataset B:
{B}

Below are {num_images} images from dataset A:
{A}

Given some samples from image classification dataset A and dataset B,
list how dataset B is similar to dataset A. Return ${num_points}
points that summarize the similar characteristics of the two datasets
. Focus on the characteristics of the image in terms of how they are
structured, styled, or captured (e.g., lighting, background,
composition, etc.) rather than the image specifications such as
resolution, size, etc. Your generated characteristic points should
apply to all the samples from the corresponding dataset (A or B).
Output should be a JSON list of strings.

Your listed points:

Listing 14: Rubric compilation prompt used in image classification (differences)
Below are {num_image} images from dataset B:
{B}

Below are {num_images} images from dataset A:
{A}

Given some samples from image classification dataset A and dataset B,
list how dataset B is different from dataset A. Similar
characteristics are provided below for reference. Return ${num_points
} points that summarize the characteristics of the two datasets (e.g
., dataset A is ... dataset B is ...). Focus on the characteristics
of the images in terms of how they are structured, styled, or
captured (e.g., lighting, background, composition, etc.) rather than
the image specifications such as resolution, size, etc. Your
generated characteristic points should apply to all the samples from
the corresponding dataset (A or B). Output should be a JSON list of
strings.

Similar characteristics:
${similar_characteristics}

Your listed points:
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Listing 15: Rubric compilation prompt used in web navigation (commonalities)
Given some samples of web navigation tasks and the web accessibility tree

of dataset A and dataset B, list how B is {feedback} A. Return {num}
points that summarize the characteristics of the two datasets. The

two accessibility trees generated from the same website are provided.
Please only list out characteristics that are related to the

proposed web navigation tasks, the accessibility trees are provided
to only help you understand the context of the proposed tasks,
therefore do not mention the accessibility tree in your response.
Please focus on granular and specific characteristics, and your
generated characteristic points should apply to all the samples.
Output should be a JSON list of strings.

Accessibility Tree for dataset A:
{A_tree}

Sampled web navigation tasks from dataset A:
{A}

Accessibility Tree for dataset B:
{B_tree}

Sampled web navigation tasks from dataset B:
{B}

Listing 16: Rubric compilation prompt used in web navigation (differences)
Given some samples of proposed web navigation tasks and the web

accessibility tree of dataset A and dataset B. Based on the similar
characteristics between them. List how B is {feedback} A. Return {num
} points that summarize the characteristics of the two datasets. The
two accessibility trees of the same website are provided. Please only
list out characteristics that are related to the proposed web

navigation tasks, the accessibility trees are only provided to help
you understand the context of the proposed tasks. Therefore do not
list any characteristics that are related to the accessibility tree
in your response. Please focus on granular and specific
characteristics, and your generated characteristic points should
apply to all samples in corresponding dataset (A or B). Output should
be a JSON list of strings.

Similar characteristics between A and B:
{similar_points}

Accessibility Tree for dataset A:
{A_tree}

Sampled web navigation tasks from dataset A:
{A}

Accessibility Tree for dataset B:
{B_tree}

Sampled web navigation tasks from dataset B:
{B}

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

C.5.4 LENS SCORING PROMPTS

Listing 17: Scorer prompt used in sentiment analysis
You are given similarities and differences between two financial news

headline datasets A and B.

Your task is to judge how likely is the given financial news headline
comes from dataset {prediction}. Answer your judgement with one of
the following strings: "very unlikely", "unlikely", "unsure", "likely
", and "very likely".

Similar characteristics between dataset A and B:
{similar_characteristics}

Differences between dataset A and B:
{differences}

Financial news headline sample to be judged:
{example}

Your judgement in JSON format:

Listing 18: Scorer prompt used in Text2SQL
You are given similarities and differences between datasets A and B about

database queries in natural language.

Your task is to judge how likely is the given database query in natural
language comes from dataset {prediction}. Answer your judgement with
one of the following strings: "very unlikely", "unlikely", "unsure",
"likely", and "very likely".

Similar characteristics between dataset A and B:
{similar_characteristics}

Differences between dataset A and B:
{differences}

Natural language database query to be judged:
{example}

Your judgement in JSON format:

Listing 19: Scorer prompt used in image classification
You are given similarities and differences between datasets A and B.

Your task is to judge how likely is the given image comes from dataset {
prediction}. Answer your judgement with one of the following strings:
"very unlikely", "unlikely", "unsure", "likely", and "very likely".

Format:
{format_instructions}

Similar characteristics between dataset A and B:
{similar_characteristics}

Differences between dataset A and B:
{differences}

Image to be judged:
{image}

your judgement in JSON format:
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Listing 20: Scorer prompt used in web navigation
You are given similar and different characteristics between two datasets

A and B consisting of web navigation tasks.

Your objective is to judge how likely is the given web browsing task
comes from dataset {prediction}. Answer your judgement with one of
the following strings: "very unlikely", "unlikely", "unsure", "likely
", and "very likely".

Format:
{format_instructions}

Similar characteristics between dataset A and B:
{similar_characteristics}

Different characteristics between dataset A and B:
{differences}

Web navigation task to be judged:
{example}

Your judgement in JSON format:
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