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Abstract

Pre-trained Language models (PLMs) are
trained on inherently socially biased sources,
inevitably causing undesirable application im-
pacts. Current debiasing paradigm involves
identifying bias from external corpora, which
have limited quality, diversity, or equivalence
among different groups, potentially impacting
bias location and debiasing effectiveness. In
light of this, we advance fairness in PLMs by
absorbing coherent, balanced, and semantically
informative social Commonsense Knowledge
(CK-Debias) automatically generated from
large language models (LLMs). Our study ad-
dresses the demographic CK generation from
LLM and explores strategies to optimize CK
utilization. This is achieved by employing
causal analysis to align knowledge for estimat-
ing bias space and identifying the most biased
prompts to enhance bias avoidance capabil-
ity. Experiment results on public datasets and
intrinsic and extrinsic metrics show that CK-
Debias can significantly reduce multiple social
biases across various PLMs while keeping their
language expressiveness intact.

1 Introduction

Lightweight pre-trained language models (Devlin
et al., 2019; Liu et al., 2019) have made un-
precedented progress across a broad spectrum of
tasks, ranging from language understanding (Meng
et al., 2022), document classification (Bhardwaj
et al., 2021), to multitasks text generation , which
are more suitable for deployment on resource-
constrained devices compared to LLM. However,
the prevalence of out-of-distribution issues (Lu
et al., 2022) or inherent stereotypical remarks in the
training corpus may inadvertently reinforce biased
or stereotypical representations (Caliskan et al.,
2017), leading to potential unfairness across di-
verse demographic groups. In specialized domains
like law, medicine, or human resources (Jatoba

et al., 2019), ensuring the neutrality and fairness of
their encoded representations becomes crucial.
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Figure 1: Our rationale to generate social CK. Each sub-
knowledge has a knowledge subgraph that includes An-
chor/Entity Node (i.e., specified attribute/target words).
Subgraphs with the same Anchor Node can be associ-
ated by the Linking Edge to form a larger subgraph.

Recent task-agnostic contextualized debiasing
works (Kaneko and Bollegala, 2021; Cheng et al.,
2021; He et al., 2022) are devoted to designing
specific loss functions to fine-tune PLMs toward
mitigating inherent biases. Despite the remarkable
success, they all involve drawing sentences from
external corpora to identify and mitigate biases,
aiming to include sufficient diversity across demo-
graphics. Moreover, some of them (Ghanbarzadeh
et al., 2023; Zhou et al., 2023) try to achieve equiv-
alence among opposite demographics via balanced
counterfactuals, which might yield incoherent or
noisy knowledge when multiple entities are refer-
enced. However, collecting high-quality corpora
is usually costly, and noisy knowledge is easily
introduced (Zheng et al., 2023), resulting in insuffi-
cient or inaccurate bias mitigation. While certain
study (Guo et al., 2022) tries to generate prompts
as a replacement for external corpora, it also relies
on the additional Wikipedia in search space, and
its short prompts often fail to consider syntax or
context, which leads to gaps when used in semantic
downstream tasks.



Recent foundation models like ChatGPT (Chi-
ang et al., 2023), LLaMa (Touvron et al., 2023),
and Gemini (Team et al., 2023) have excelled in
widespread applications, and extensive endeavors
are embarked upon to rectify inherent biases (Gal-
legos et al., 2023) and elevate the commonsense
research (West et al., 2022; Plenz et al., 2023). The
LLMs have exhibited notable knowledgeable abil-
ity (Bian et al., 2023) as knowledge bases to gen-
erate CK accurately, its general success draws our
insights to leverage them for debiasing lightweight
PLMs. Arguably, we attribute PLMs’ bias to lim-
ited social commonsense and bias avoidance capac-
ity, since the debiasing guidance for lightweight
PLMs is generally notably smaller than LLM:s.

In this paper, we refrain from using existing
external corpora as previous studies but resort
to LLMs, and propose a novel paradigm that
integrates automated commonsense knowledge
sourced from LLMs to improve debiasing per-
formance. The rationale is depicted in Fig. 1,
which can be interpreted from a fair tuple of (attry,
target, attrs) like muscles (target) that can be
owned by both countryman (attr;) and country-
woman (attrs). An important observation in our
paradigm is that not all knowledge extracted from
LLMs is directly applicable for debiasing, as it
might lead to negative knowledge transfer (Zheng
et al., 2023). Hence, we employ causal analysis to
distinguish knowledge aligned with PLM’s and in-
tegrate it to advance social fairness. For the remain-
ing unaligned knowledge, we introduce a strategic
bias location and mitigation process, which iden-
tifies the most biased prompts to refine PLM’s de-
biasing capability. To mitigate the impact of the
fine-tuning procedure on the model’s expressive
capabilities, we design a specialized loss function
that can maintain model parameters as stable as
possible. Our contributions are three-fold:

* Differing from reliance on existing external cor-
pora, we are the pioneers in leveraging LLM-
generated commonsense knowledge to supply
rich and high-quality semantic resources for de-
biasing lightweight PLMs.

* We apply a structure causal model (SCM) to ana-
lyze the limitations of traditional debiasing meth-
ods, and an improved causal graph is employed to
effectively harness LLM-generated knowledge.

* CK-Debias can effectively alleviate various types
of biases, demonstrating superior performance
across multiple PLMs, yielding superior perfor-

mance in both intrinsic and extrinsic evaluations,
while maintaining intact model expressiveness.

The code of CK-Debias is anonymously avail-
able at https://anonymous.4open.science/r/
CK-Debias-49B4/.

2 Related Works

Language models, developed with data often im-
bued with inherent biases, can inadvertently intro-
duce biases into their applications, thereby spurring
a growing body of research aimed at mitigating bi-
ases. The earliest efforts mainly focus on debiasing
static word embeddings such as Glove (Penning-
ton et al., 2014) and word2vec (Mikolov et al.,
2013) via projection-based (Bolukbasi et al., 2016;
Kaneko and Bollegala, 2019) or adversarial meth-
ods (Elazar and Goldberg, 2018; Xie et al., 2017).
The in-depth research inspired the follow-up
studies debias pre-trained contextualized embed-
dings, as the widespread use of BERT (Devlin
et al., 2019) and their variants (Lan et al., 2020;
Liu et al., 2019). Based on whether they directly
combine with associated downstream tasks, the
external corpora-based methods can be divided
into: (1) Task-Agnostic methods constitute the
majority: Sent-Debias (Liang et al., 2020) and
FairFil (Cheng et al., 2021) are post-hoc meth-
ods that keep the PLM parameters untouched,
and ADEPT (Yang et al., 2023) proposes a novel
training criterion that only trains the continu-
ous prompt parameters but keeps the base model
frozen; Auto-Debias (Guo et al., 2022), Context-
Debias (Kaneko and Bollegala, 2021), and MA-
BEL (He et al., 2022) remove biases in PLM
via fine-tuning using various well-designed bias-
neutralizing loss functions. (2) Task-Aware ap-
proaches, emerging recently, aim to prevent bias
recurrence when applying debiased models in prac-
tical applications. Recent innovations like Causal-
Debias (Zhou et al., 2023) unifies the debiasing pro-
cedure with downstream fine-tuning via causal in-
variant learning. Similarly, Gender-tuning (Ghan-
barzadeh et al., 2023) deploys a debiasing tool for
any PLM that works with original fine-tuning.
Despite the notable success of debiasing, their
efficacy largely relies on the quality, quantity, and
diversity of the corpora used, such as WikiText-2
(Merity et al., 2017), Standford Sentimente Tree-
bank (Socher et al., 2013), Reddit, etc. They in-
discriminately use the matched sentences to locate
bias, and the simple substitution can cause a nega-
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tive transfer when multiple entities are referenced.
To achieve a more balanced bias distribution across
groups, they typically balance sentence matching
between groups, often at the expense of excluding
redundant sentences. In light of LLMs’ recent ex-
tensive adoption and accomplishments in diverse
NLP tasks (Wang et al., 2023), we are motivated to
create prompts that guide LLMs towards produc-
ing high-quality, abundant, and semantically rich
social commonsense knowledge. The ultimate goal
is to leverage generated social CK to contribute to
our debiasing efforts in PLMs.

3 Methodology

In this section, we answer how to generate knowl-
edge and explore ways to optimize the usage of
generated knowledge (i.e. positive transfer and
bias avoidance), as depicted in Fig. 3. Note that
CK-Debias is generic to various biases or PLMs,
with gender bias serving as just our example.

3.1 Demographic Commonsense Knowledge
Generation from LLMs

Let W, = {(a(ll)a agl)v T va((il))v (a(12)7 a§2)7 Ty

agz)), -+ - } denotes attribute words composed of
multiple d-tuple and W; = {v1, v, - } denotes
target words, respectively. In the case of binary
gender (d = 2), attribute words are gender-specific
pairs: (she, he), (woman, man), (mother, father),
target words consist of gender-neutral words (e.g.,
nurse, engineer, professor). For prompting LLM,
we use two well-designed system prompts to auto-
matically generate a pair of sentences in two steps
(details cf. Fig. 7 in Appendix A). The generated
CK sentences, containing (a;, v¢), (a;,v¢), shape a
bundle sample with identical target words v; over
d-tuple attribute words. Its rationale can be in-
terpreted as a fair triplet (a;, vy, a;), indicating
that each target word v; can establish an associ-
ation with both pairwise attribute words a; and
a;, as illustrated in Fig. 1. For brevity, we denote
() = {:cgn), xé"), e ,arfin)} as the n-th bundle
sample below. We merely alter specific attribute
words, aiming to retain consistency across other
components of each bundle to keep semantic sim-
ilarity. Additionally, we strive for uniformity in
quantity and length, promoting fairness across var-
ious demographic groups. Examples of (a;, vy),
(aj,v;), and their corresponding generated bundle
samples are provided in Appendix A.

3.2 Debiasing the PLMs via Generated
Commonsense Knowledge
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Figure 2: The comparison of SCM between conven-
tional methods and our CK-Debias.

We employ SCM to depict the causal association
among data, models, and hidden factors. Subse-
quently, we apply this SCM to emphasize the chal-
lenges posed by conventional debiasing methods
that rely on external corpora. Finally, we intro-
duce an enhanced causal graph that harnesses com-
monsense knowledge to alleviate bias in PLMs.
Causality between data, models, and hiddens.
As shown in Fig. 2, we denote the pre-trained data
as P; the external corpora as X; the hidden of X
extracted by the initial pre-trained model and fine-
tuned model as Hy and H, respectively; the bias
magnitude predicted by H on external corpora as
B. The causal associations are: (Hh)X - H— B:
X — H denotes the hidden H, which is derived by
PLMs from the matched sentence found in external
corpora, and H — Bis the computed distance to
measure bias magnitude B according to the hidden
H; (2)X — Hy < P: initial hidden Hj is deter-
mined by both pre-trained data P and input external
data X. The collider Hj is the joint outcome of the
independent causes P and X. According to casual
theory (Neal, 2020), once the common effect H is
observed, its causes P and X become dependent,
so in our scenarios, the colliding effect between
pre-trained data and external corpora is preserved
during the fine-tuning based debiasing process.
Conventional debiasing methods in Fig. 2 (a) rely
on X sourced from external corpora, which may
contain noisy data. If directly applying X to locate
biases without distinction, the retained noise knowl-
edge may result in inaccuracies of bias identifica-
tion and hinder negative knowledge transfer (Zheng
et al., 2023). We attribute this issue to the missing
colliding effect between the external corpora X
and pre-trained data P, which can also be viewed
as a deficit in the alignment of their hidden spaces.
Moreover, traditional methods partially mitigate
bias by simply substituting attribute slots to achieve
balanced counterfactual augmentations, but this
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Figure 3: Overview of CK-Debias. (1) Obtain bundle samples by prompting LLM via well-designed system prompts
based on pairwise attribute and target words. (2) Find the aligned knowledge via colliding effect estimation to
achieve positive transfer. (3) Identify the most biased knowledge from remaining unaligned knowledge to enhance
bias avoidance. (4) Debiasing PLMs using knowledge from (2) and (3), while keeping the PLMs’ expressiveness.

can yield incoherent or contradictory text when
multiple entities are referenced within a sentence.
Additionally, when X is more biased towards one
particular bias, debiasing unrelated bias may engen-
der complications (Liang et al., 2020). For those
issues, we employ LLM to generate bias-specific
commonsense knowledge within semantic informa-
tion (cf. Section 3.1), which is more conducive to
locating bias and mitigating bias subsequently.

Our CK-Debias. We observe that the knowledge
extracted from LLM cannot be directly applied
to mitigate biases since the pre-training data for
lightweight PLMs is typically much less than that
of LLM. To achieve a positive transfer of generated
commonsense knowledge and to enhance the debi-
asing impact of PLMs’ contextualized embeddings,
it is crucial to establish an alignment between the
hidden space of PLMs and LLM. As shown in
Fig. 2 (b), we split the generated bundle knowl-
edge into two nodes X and XV¢. X repre-
sents the bundle samples where we calculate collid-
ing effects, and their knowledge should align with
PLMs to enhance their fairness. XVC signifies
samples exempt from collision effect calculation,
presenting biased knowledge due to negative trans-
fer — a phenomenon PLMs should strive to evade.
To maximize its utilization, XV are used to find
the most biased prompts X Z% that induce bias in
PLMs, enabling PLMs to avoid bias when assim-
ilating commonsense knowledge impartially. In
summary, the fine-tuned PLMs assimilate LLM’s
commonsense knowledge by utilizing colliding ef-
fects (P < X© ) while striving to avoid bias via
most biased prompts (X5 — B). When condi-
tioning on HOC the final bias magnitude depends
on the degree of assimilating aligned knowledge
from causal paths P « X¢ — H — B (posi-
tive transfer), and avoiding most biased knowledge
XNC s H — B (bias avoidance), respectively.

3.3 Estimating Colliding Effect and Finding
Most Biased Knowledge

Colliding Effect Estimation. Considering when
predicting B we obtain the hidden state from
initial model h(()") = Mo(z™).
Hy = h(()n) means the input X in the causal graph
represents all samples whose hidden feature is

Controlling

h(()"). Nevertheless, the sole satisfying candidate for
this condition is (™) due to the sparsity inherent
in high-dimensional spaces. Alternatively, if we
slightly loosen this constraint, the colliding effect
is unlikely to vanish instantly. Hence, we choose
to approximate the colliding effect ¥ between P
and X¢ with the joint prediction of K-Nearest-
Neighbor (KNN) samples. When conditioning on
collider Hy, ¥ can be calculated as:

N
n=1
i\[: i B <MH(XC’ x(n,k))) Sy (x(n),m("’k)>

n=1k=0

where N is the total number of bundle samples
from aligned knowledge X, k,, is the number of
KNNs of n-th bundle sample for estimating B®),
2(™k) is the k-th nearest neighbor of 2(") € xN
, whose similarity is greater than or equal to the
preset threshold 6. Sy (-, ) is the similarity func-
tion between z(™ and z("F) (abbreviate as .S, j, for
brevity), and Zilo Su (:U("),x(’“k)) = 1. Given
that (") exhibits the highest similarity with itself,
we set 20 = z(") as the anchor bundle sample
when k = 0. B (My(X© = x(”vk))) represents
the bias magnitude prediction of B™) when (%)
is the model M g’s input. Eq. (1) shows that the
total causal effect W is the sum of /V aligned bun-
dle sample’s causal effect ¥, and each 1™ can
be approximated by the weighted sum of the bias



prediction when the model input is the anchor bun-
dle sample z(™ and its KNNs. The rationale is
matching KNNs using the parameters in PLM is
essentially a process of aligning the commonsense
extracted from LLLM with PLM.

Most Biased Knowledge Identification. For the
remaining unaligned knowledge X"¢, we find
knowledge with highly biased prompts among
them, enabling the location of bias in PLMs. For
each bundle sentence z(") € XNC| the identi-
cal component in z(™ is regarded as the prompt ,
namely excluding the attribute and target words uti-
lized in generating the CK sentence, as well as the
personal pronouns altered by the LLM. The most
biased prompt has the highest disagreement when
M predicts target words v (replaced by [MASK]
placeholder in advance) over each bundle sample
(™ regarding different demographic groups a;, a;.
So, when traversing through V¢ if one bundle
sample contains the most biased prompt, we regard
it as the most biased knowledge X BP ~ yNC
which is the subset of unaligned knowledge. In
practice, we compute Jensen—Shannon divergence
(JSD) score between distributions p( [MASK] =
v | M, x%}};), vy € W, on each group a;, a; to mea-
sure the disagreement. The obtained most biased
knowledge can locate bias and then subsequently
enable PLMs to avoid bias, thus also maximizing
the usage of the extracted knowledge. More details
about the most biased knowledge c¢f. Appendix F.

3.4 Training Objective

After obtaining the aligned knowledge X ¢ and
the unaligned knowledge with most biased prompt
XBP we proceed our CK-Debias as follows: given
a pre-trained model M with initial hidden Hg, we
aim to fine-tune M to attain the optimal hidden
H with minimal biases B. The overall debiasing
objective is as follows:

kn
Lo =-a) T YoD(XT =505,

x(M)exC k=0
Co
ta Y Dy(XPP =) (2)
z(n) g xBP
Lpp

where the first term L¢ is a rewrite of colliding
effect U estimated from X. To integrate the
aligned knowledge X into PLMs, we distinguish
the strength of knowledge preservation for each

bundle sample by selecting the KNNs — z("%) for
the anchor sample 2, D; quantifies the rela-
tive JSD between bundle samples with pairwise
attribute words and those with neutral words in a
high-dimensional space, which is defined as:

Dy (+™)= 3 {JS (Rwﬁ")\Rﬂfﬁ"’>}

1,5€{1,...,d}i<j
where R = Distance(Et”get\ewEm) measures
the distance from sentence azgn) containing attribute
words a(7) to sentences containing all target words,
and E'r9¢ = [e¢®v1 e%2 ...]. Lpp mitigates
bias derived from the obtained most biased knowl-

edge, and D; is defined as:
(n) (n)
{JS <Pzi | P*i )}

Dy (x(")> = Y
p( IMASKT = ve| M, 21) v, € W,

i,5€{1,...,d}i<j

(n)
P

where Dy computes the JSD scores to minimize the
disagreement between the predicted [MASK] token,
which means a fair NLP system should yield scores
independent of the selection of the attribute con-
cepts. Two distance losses are linearly interpolated
by a tunable coefficient c.

As fine-tuning with full parameter modifications
can potentially harm the expressiveness of PLM,
we add an auxiliary representation loss £, to pre-
serve the inherent language modeling capability,
which is defined as:

Lre = MSEMup()||[MFp()) 3)

where Lg. measures disparity between the origi-
nal model’s hidden states M g and the debiased
model’s hidden states M/, via Mean Squared Er-
ror (MSE), striving to minimally alter the PLM’s
parameters. The overall training loss is as follows:

L= ['Bias + A LRG)

wherein Lg, is tempered by the hyper-parameter
A. Detailed formula derivation, hyper-parameter
configuration, and algorithm process are presented
in Appendix B.

4 Experiments

Benchmarks. We compare CK-Debias with bench-
marks based on external corpora: Task-Agnostic
models including: Context-Debias (Kaneko and
Bollegala, 2021), Auto-Debias (Guo et al., 2022),



FairFil (Cheng et al., 2021), and MABEL (He
et al., 2022); and Task-Aware methods including
Causal-Debias (Zhou et al., 2023) and Gender-
Tuning (Ghanbarzadeh et al., 2023). In Task-
Agnostic methods, the debiasing stage is indepen-
dent of fine-tuning downstream tasks, and CK-
Debias belongs to it. Task-Aware methods directly
combining downstream tasks for debiasing.

LLM and PLMs. We utilize GPT-3.5-turbo API
as the source LM for CK generation. In practice,
we establish multiple threads to enhance the effi-
ciency of knowledge generation, which query GPT
in parallel and meanwhile store the results. Three
masked PLMs are as the backbones: BERT (De-
vlin et al., 2019), ALBERT (Lan et al., 2020),
and RoBERTa (Liu et al., 2019). Following (Guo
et al., 2022), we implement them using Hugging-
face Transformers library (Wolf et al., 2020).

Bias Word Lists. We generate commonsense
knowledge sentences by prompting GPT-3.5 based
on human-created word lists. Following prior stud-
ies, we choose the gender/racial/religion word lists
from (Kaneko and Bollegala, 2021), (Manzini et al.,
2019), and (Liang et al., 2020) respectively — cf.
Appendix C for details.

Evaluating Metrics. Given the diverse ways in
which bias can be embedded in language, we quan-
tify biases in PLM embeddings against a diverse
set of intrinsic and extrinsic indicators, including
intrinsic metrics with SEAT (May et al., 2019),
CrowS-Pairs (Nangia et al., 2020) and StereoSet
(Nadeem et al., 2020), and extrinsic metrics with
WinoBias (Zhao et al., 2018). Following Guo
et al. (2022); Liang et al. (2020), we apply all met-
rics to measure gender bias, use SEAT to measure
racial bias, and use mean average cosine similarity
(MAC) (Manzini et al., 2019), a modified SEAT
version to measure multi-class religion bias. Specif-
ically, we apply SEAT 6, 6b, 7, 7b, 8, and 8b tests
to measure gender bias, and use SEAT 3, 3b, 4, 5,
5b tests for racial bias evaluation. The measure of
bias in the SEAT is indicated by its effect size — the
closer to 0, the less biased the model is. Follow-
ing (He et al., 2022), we first fine-tune the model
on OntoNotes 5.0 dataset (Hovy et al., 2006), and
then evaluate on the coreference resolution task
WinoBias, which assesses a system’s ability to ac-
curately associate a gendered pronoun to occupa-
tions in both pro- and anti-stereotypical scenarios.
Coreference is deduced via syntax cues in Type
1 sentences or trickier semantic cues in Type 2.
Detailed metrics are provided in Appendix D.

Other Details. To verify debiased PLMs whether
still preserve general language understanding, we
examine them on six GLUE benchmarks (Wang
etal., 2019), including SST-2, CoLA, QNLI, RTE,
WNLI, and QQP tasks. We trained CK-Debias in
4 epochs with learning rate 5 x e~° on a single
GeForce RTX 3090 GPU, and all results are av-
eraged over 4 runs. Due to space constraints, we
include gender results in the main text and provide
details on race and religion cases in Appendix G.

4.1 Results on Intrinsic and Extrinsic Metrics

Intrinsic Metrics. As indicated by the remark-
able ICAT metric score in Table 1, our CK-
Debias strikes a favorable balance between lan-
guage expressiveness and fairness. Notably, CK-
Debias even exhibits a slight improvement in LM
metrics compared to the original BERT model, with
the score rising from 84.17 to 85.42. For the SEAT
value, CK-Debias achieves the best score, and im-
proves 0.075 compared to the SOTA model Auto-
Debias. Additionally, CK-Debias outperforms oth-
ers in CrowS-Pairs with the best score of 50.45
(Stereo score: 51.55, Anti-Stereo score: 49.3).
While CK-Debias does not rank top in terms
of the SS value in StereoSet, we note that this
metric should be considered alongside LM, rather
than evaluated in isolation. For instance, FairFil
achieves the highest SS, yet its language model-
ing capability, as indicated by the lower LM score,
suffers a marked decline and trails other methods.
Extrinsic Metrics. CK-Debias and other models
achieve similar average F1 scores on OntoNotes,
suggesting indistinguishable coreference resolu-
tion capabilities. For the evaluation on Wino-
Bias, CK-Debias has a notable improvement com-
pared to all backbones. Specifically on BERT, CK-
Debias shows noteworthy advancements in anti-
and pro-stereotypical tasks, with an average in-
crease of 2.37% and 0.61% on Type 1 and Type 2
sentences, indicating CK-Debias effectively miti-
gates the stereotypical token-level associations be-
tween occupations and gender. Meanwhile, CK-
Debias exhibits the most substantial improvement
in fairness, notably lowering average TPR-1 and
TPR-2 (a reduction in true positive rates by 6.08).
Compared to Auto-Debias, CK-Debias is more ef-
fective in mitigating gender bias, with an average
improvement of 1.99%, 0.5% across Type 1 and
Type 2 sentences, respectively, and notably lowers
TPR-1 and TPR-2 by an average of 3.09. However,
CK-Debias does not surpass MABEL on several in-



| StereoSet |

Methods SEAT | LMt SSo ICAT? | CrowS-P*c  OntoN* 1A 1P 2A 2P TPR-1 TPR-2
BERT 0.35 84.17 6028  66.86 57.25 73.94 5547 86.7 91.8 96.74 31.22 9.94
+CONTEXT-D* 0.53 8542 5935 6945 58.01 73.76 59.81 84.21 83.63 9297 234 9.62
+FAIRFIL 0.15 | 4485 5093 44.01 49.07 71.79 5324 8577 7737 9140 3243 14.03
+AUTO-D* 0.14 | 74.08 5288  69.81 54.92 73.84 57.04 85.88 91.21 97.54 28.84 6.33
+MABEL 0.582 | 84.80 56.92  73.07 50.76 73.07 59.82 8421 8939 95.1 24.39 5.71
+CK-D*(Ours) | 0.065 | 8542 5554  75.96 50.45 73.98 59.78 8712 9214 97.61  22.93 6.07
ALBERT 028 | 90.73 63.58  66.09 56.87 39.98 27.07 4621 3396 51.69 19.14 17.72
+CONTEXT-D* 0.33 91.02 60.23  72.40 5391 40.53 18.35 23.61 16.67 33.26 5.26 16.6
+AUTO-D* 0.18 88.43 61.76  67.62 47.86 40.32 2235 24.83 2747 3623 8.61 13.21
+CK-D*(Ours) 0.15 | 91.32 5893 7493 48.07 40.79 2721 4389 37.12 52.58 4.56 11.82
RoBERT 0.67 | 71.75 53.65  66.50 54.96 40.61 22.02 3534 9.62 1321 13.32 3.59
+CONTEXT-D* 1.09 | 70.85 5474 64.13 59.48 40.67 267 3737 1538 19.59  10.68 421
+AUTO-D* 020 | 69.85 5421 63.13 49.77 40.53 23.62 3774 1754 21.71 12.25 5.87
+CK-D*(Ours) 0.15 | 72.63 5293  68.37 50.21 40.71 29.24 3654 19.12 24.34 9.12 6.23

Table 1: Gender debiasing results on intrinsic and extrinsic metrics. *: abbreviations for a model or metric. ¢: the
closer to 50, the better. OntoN*, 1A, 1P, 2A, 2P: the larger, the better. TPR-1, TPR-2: the smaller, the better.

dicators. This may stem from that MABEL exploits
supervised entailment pairs including gendered
terms derived from natural language inference data,
which involve learned linguistic reasoning abilities
crucial for gender-specific coreference resolution
tasks. Conversely, our unsupervised sentences have
limited inference ability, posing challenges for pro-
ficient reasoning in all WinoBias tasks.

4.2 Ablation Study

To verify the effectiveness of CK-Debias, we con-

sider the following ablated version:

* (V1) w/o Lpp: Removing the most biased
knowledge X 2% and corresponding loss Lz p;

(V2) w/o L¢: Removing the aligned knowledge
X and corresponding loss L¢;

(V3) w/o Lg.: Removing the designed represen-
tation preserving loss L ge;

(V4) Rand-1: Replacing KNNss for colliding ef-
fect estimation with randomly selected samples;

(V5) Rand-2: Replacing the most biased prompt
with random samples from unaligned knowledge.
As illustrated in Figure 4, all variants are inferior
to the full model CK-Debias. The notable perfor-
mance drop without Lgp suggests that keeping
non-colliders (i.e., unaligned knowledge) is bene-
ficial for mitigating model bias. Compared to the
full model CK-Debias, removing L has a greater
decline (both in ICAT and Acc.) than V1, indi-
cating estimating the colliding effect for aligned
knowledge acquisition is crucial to ensure positive
transfer. The removal of Lg. obviously weakens
SST-2 accuracy and the ICAT value, indicating its
role in preserving language modeling ability. For
Rand-1 and Rand-2 variants, the ICAT score shows
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Figure 5: The number impact of the CK sentences.

their performance is inferior to CK-Debias model.
Rand-1 results demonstrate the KNNs are crucial
for estimating the collision effect, which intention-
ally transfers aligned commonsense knowledge re-
garding social diversity from LLM to PLM, ensur-
ing semantic richness. Meanwhile, Rand-2 results
emphasize that acquiring the most biased prompt
helps the LM mitigate biases by learning to avoid
absorbing biased CK.

As the number of CK sentences increases in
Fig. 5, CK-Debias improves in expressiveness and
fairness, as reflected by the debiasing effectiveness
(SS, CrowS-Pairs, SEAT metrics) and language un-
derstanding (LM metric and SST-2, QNLI tasks).
However, this improvement diminishes beyond 90k
sentences, indicating an optimal quantity for debi-
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Figure 6: t-SNE plots on BERT.

asing. When comparing all indicators with an equal
number of sentences, CK-Debias significantly out-
performs Auto-Debias. This difference may stem
from the short biased prompts in Auto-Debias lack-
ing syntax or context, highlighting the common-
sense knowledge extracted from LLM is a valuable
resource, as it provides semantically rich informa-
tion across diverse demographic groups.

4.3 Results on Language Understanding

Table 2 reports three GLUE results on debiased
models (more GLUE results c¢f. Appendix H). No-
tably, CK-Debias shows slightly superior perfor-
mance compared to Auto-Debias across CoLA and
SST-2 tasks. Our unimpaired downstream task per-
formance highlights that our designed L. loss ef-
fectively tackles the widespread issue of declining
language understanding ability found in most debi-
asing models (He et al., 2022; Liang et al., 2020).
However, in the BERT backbone, CK-Debias has
a drop result compared to the task-aware SOTA
model Causal-Debias over the QNLI task. We cau-
tion that Causal-Debias integrates the debiasing
process with fine-tuning downstream tasks, while
ours operates upstream in a task-agnostic manner.
This distinction might pose greater challenges com-
pared to task-aware methods. Surprisingly, our
indicators for each task do not decrease compared
to the original BERT model, and the Accuracy on
SST-2 even shows a significant improvement.

The ¢-SNE visualization in Fig. 6 explores the
debiasing effects and model expressiveness by ex-
amining the words’ correlation. In Fig. (6d), CK-
Debias successfully preserves relative distances
between words while pulling attribute words closer

to each other. In contrast, Fig. (6b) shows that
Auto-Debias clusters male and female words sepa-
rately, an undesirable behavior indicating that con-
cepts with opposing gender directions are pushed
far apart in the hidden space, even when they have
significant contextual similarities, thereby intro-
ducing biases. In Fig. (6¢c), MABEL separates
target words and gender words, yet the distance
between attribute terms and target words is signif-
icantly maximal compared to the gaps among at-
tribute words. This may lead to substantial damage
to model expressiveness.

Methods | SST-2 | CoLA | QNLI
BERT 92.7 57.6 91.3
+AUTO-DEBIAS 92.1 52.1 91.1

+GENDER-TUNING 92.1 56.6 91.3
+CAUSAL-DEBIAS 92.9 58.1 91.6

+CK-DEBIAS (ours) 93.0 60.07 91.4
ALBERT 92.6 58.5 91.3
+AUTO-DEBIAS 94.1 58.3 92.1

+GENDER-TUNING 91.7 58.4 92.1
+CAUSAL-DEBIAS 92.9 57.1 91.6
+CK-DEBIAS (ours) 94.3 58.7 92.9

Table 2: GLUE results over benchmarks.

5 Conclusion

In this paper, we offer a flexible, universally ap-
plicable solution CK-Debias capable of debiasing
lightweight PLMs by harnessing rich, contextually
relevant commonsense knowledge sourced from
LLM, unlike existing methods reliant on crafted ex-
ternal corpora. CK-Debias roots in SCM to reveal
the limitations of traditional task-agnostic debias-
ing methods, such as negative knowledge transfer
and inaccurate bias identification. This analysis
laid the groundwork for our improved causal graph,
optimizing the utilization of LLM-generated knowl-
edge by distinguishing aligned knowledge benefi-
cial for positive transfer and unaligned knowledge
for strategic bias identification and mitigation. Ex-
tensive evaluations show CK-Debias’s efficacy in
mitigating diverse biases across various PLM ar-
chitectures, and achieving superior performance
in both intrinsic and extrinsic assessments while
preserving model expressiveness. Our paper pro-
motes the NLP fairness fields by utilizing LLM-
generated knowledge strategically for effective de-
biasing PLMs. We aim for this study to offer in-
sights into mitigating biases for building fair and
accountable NLP systems, hoping to inspire further
exploration in other fields using knowledgeable
LLM to address practical problems.



6 Limitations

Considering limitations of our debiasing work CK-
Debias, we draw inspiration from previous debias-
ing efforts (Cheng et al., 2021; He et al., 2022;
Ghanbarzadeh et al., 2023) and utilize human-
collected word lists related to gender, race, and
religion to extract commonsense knowledge con-
taining demographic information from LLM. Obvi-
ously, human-collected word lists are insufficient
to cover all demographic groups related to specific
biases. We believe a potential improvement is to
use these word lists as a foundation, encouraging
the linguistically capable LLM to generate seman-
tically similar words or inspiring the generation of
intersectional words (Abbasi et al., 2021) through
lexical associations to enrich the existing word lists.

We also noticed that although our work CK-
Debias achieves satisfactory results on StereoSet
and CrowS-Pairs, there is a weak correlation be-
tween their stereotype scores. Taking MABEL (He
et al., 2022) as an example, which utilizes SNLI
entailment data for training, its stereotype score is
the worst on StereoSet, but it is one of the best in
CrowS-Pairs. Given that CrowS-Pairs comprises
only 266 example pairs, significantly fewer than
StereoSet’s 2,313 example pairs, it often serves
as a more ambiguous metric. This inconsistency
raises concerns about the lack of universality and
consistency within the existing evaluations, pre-
senting a fundamental challenge in this field.

Our experimental setup relies on a crucial as-
sumption: the pre-training data size of the LLM
is significantly larger, potentially covering the pre-
training data of the majority of lightweight PLMs.
However, given the unavailability of both pre-
training datasets, we employ causal collision ef-
fects as a soft constraint to filter out the jumbled
data extracted from LLM, aiming to mitigate nega-
tive transfer (Zheng et al., 2023). All knowledge ac-
quired from LLM is first directly incorporated into
PLM, establishing a connection between the pre-
training data of the two models to distinguish data
with collision effects for positive transfer. Nonethe-
less, this approach may not precisely assess the
extent of negative transfer attenuation. Therefore,
optimizing the alignment between the two models
is a potential enhancement for future work.

Moreover, the knowledge we automatically ex-
tract is entirely reliant on LLM. We enhance the
prompt quality by specifying a range of answer
lengths and emphasizing logical, creative, and di-

verse responses. While these prompt improve-
ments ensure that generated sentences surpass sim-
ple structures, enhancing the overall quality of ex-
tracted sentences, there is still considerable poten-
tial for further enhancement. Currently, we lack a
guided evaluation of the LLM’s responses, relying
solely on mechanical sentence generation without
fully harnessing the potential of the LLM as a ro-
bust corpus. Additionally, despite using KNN as a
soft constraint to filter out sentences unaligned with
PLMs, we cannot guarantee the complete absence
of bias in the generated sentences.

7 Ethics Statement

For the ethical considerations, it is essential to
underscore that our primary contribution centers
around methodology. The bias word lists and eval-
uation metrics utilized in our study are consistent
with prior research (Cheng et al., 2021; Zhou et al.,
2023). However, owing to their availability con-
straints, our examination of social biases is con-
fined to binary gender, race, and religion. This
simplification might inadvertently perpetuate or
reinforce other stereotypes. Binary remains a com-
mon challenge in most debiasing methods, and
we acknowledge the limitations concerning indi-
viduals who identify with third genders, such as
transgender, non-binary, etc. We acknowledge the
diversity of gender, but due to the limitations of
existing word lists and comparison benchmarks,
we are constrained to a binary gender. Hence, our
research highlights the need for future research to
delve into collecting additional attributes regarding
more bias diversity or conduct cross-analyses of
intersectional biases. During the debiasing process,
researchers should pay more attention to alleviating
the potential risk of unintended re-propagation.

Another ethical dimension pertains to the fact
that current debiasing methods predominantly rely
on the English system or high-resource languages,
which may inadvertently overlook biases present in
various cultural and regional contexts. The applica-
tion of debiasing methods necessitates an ongoing
and thorough evaluation of potential ethical issues
to maintain the rationality, impartiality, and social
value of research.

Our commitment to ethical practices includes
ongoing reflection and consideration of the broader
social implications of our work. We are dedicated
to fostering inclusivity, diversity, and fairness in Al
research and applications.
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A Designed Prompts and Instances of
Generated Commonsense Knowledge
Sentences

Initially, we designed a prompt that generates com-
monsense knowledge at once, as shown below:

P: Please use the word pair (a;,v;) to generate
five commonsense sentences simultaneously, then
substitute the word a; with a; to generate the cor-
responding five sentences. The word count of each
sentence should not exceed 25.

In practice, we observed that with a more in-
tricate prompt, the LLM tends to focus on a spe-
cific segment of the prompt. The resulting single
commonsense sentence includes either three words
from the triple (a;, a;, v;) or incorporates only the
sole word from the triple. This phenomenon be-
came notably apparent when generating a large
number of bundle samples simultaneously. Further-
more, the generation of a substantial quantity of
bundle samples with similar components is char-
acterized by high instability. However, we an-
ticipate the content in bundle samples to exhibit
maximum consistency, excluding placeholders (at-
tribute/target words). In this manner, we aim to
mitigate the impact on length inconsistency, other
component words (excluding placeholders), and
semantics, among bundle samples. Consequently,
it narrows relative distance between attribute words
and target words, thereby preserving fairness.

Hence, we opt for a two-step prompting method.
By introducing two simplified, comprehensible,
and clear prompts P; and P» (depicted in Fig-
ure 7), we prevent the LLM from deviating from
instructions and excessive imagination, ensuring
better alignment with our specified requirements.
a; € {ay,az, -+ ,aq}, and a; used for replace-
ment comes from other d — 1 elements, and v €
W;. The generated CK sentences, containing
(@i, ve), (aj,v:), shape a bundle sample with iden-
tical target words v; over d-tuple attribute words.
The prompts are enhanced by imposing the answer
length and emphasizing logical, creative, and di-
verse responses, ensuring that the generated sen-
tences go beyond simple structures and improve
the overall quality of the extracted sentences.

In Table 3, we present the resulting bundle sam-
ples 2(™ produced by GPT-3.5-turbo through our
crafted prompts P; and P>, which contain our
specifilized pairwise attribute and target words
(@i, ve), (aj,ve). Also, their corresponding KNNs
are provided in Table 3.

12

P;: Please generate ten commonsense knowledge
sentences containing the words in a tuple (a;, v¢)
simultaneously. Control the word count in every
generated sentence to around 20. The generated
sentences strive for creativity, diversity, and logic.

1.The scientist mothers conducted groundbreaking
research in the field of genetics.

2.The mothers, who were also scientists, balanced
their careers with raising their children.

< Py:Replace the term a; to a;, and correct personal
pronouns in above generated ten sentences.

1.The scientist fathers conducted groundbreaking
research in the field of genetics.

2.The fathers, who were also scientists, balanced
their careers with raising their children.

Figure 7: A two-step prompting for generating com-
monsense knowledge.

B More Derivation Details and Algorithm
Process

(n) . .
R*i " measures the relative distance from sentence

xgn) with attribute words a(7) to those sentences

with all target words in W, which is defined as:

(n) (n)
R* = Distance(E"" 9 |e" ") 4)
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where each p,, |4(;) In Rmz(‘n) serves as a normaliza-
tion factor, quantifying the extent to which infor-
mation from attribute a (i) can be recovered from
target word v; in M, and p is a hyperparameter.

The Jensen—Shannon divergence used in D; and
D5 of Section 3.4 is defined as:

JS(p17p27"'7pm) (6)

1
~ Ly krp (pi|p1 +p2t +pm>
m )

m
where p1, pa, ..., pm are distributions, the Kull-
back-Leibler divergence (KLD) between two dis-
tributions p;, p; is calculated as K'LD (p;||p;)

5 v pi(v) log (23

from the PLM. Moreover, the detailed algorithm
process of CK-Debias is provided in Algorithm 1.

), and v is the vocabulary



(fraternal, soldiers), (sororal, soldiers)

(african people, beauty), (caucasian people, beauty)

Bundle samples

P : In times of war, soldiers rely on their fraternal in-
stincts to protect and defend their comrades, displaying
unwavering bravery and selflessness on the front lines.
P>: In times of war, soldiers rely on their sororal in-
stincts to protect and defend their comrades, displaying
unwavering bravery and selflessness on the front lines.

P : African people appreciate the beauty of traditional
attire, and romantic occasions often involve dressing in
traditional garments that symbolize cultural pride and
heritage. P»: Caucasian people appreciate the beauty
of traditional attire, and romantic occasions often involve
dressing in traditional garments that symbolize cultural
pride and heritage.

KNNs

P : During times of war, soldiers display unwavering
loyalty to their countrymen, willingly sacrificing their
own safety and comfort, while remaining submissive
to the chain of command. F»: During times of war,
soldiers display unwavering loyalty to their country-
women, willingly sacrificing their own safety and com-
fort, while remaining submissive to the chain of com-
mand.

P1: Sewing has become a means of social cohesion
for african people, as they come together to sew quilts
and blankets for those in need, promoting solidarity and
compassion. P: Sewing has become a means of social
cohesion for white people, as they come together to
sew quilts and blankets for those in need, promoting
solidarity and compassion.

Pp: Throughout history, men have been drawn to the
allure of becoming warriors, seeking glory on the bat-
tlefield and proving their valor in the face of adversity.
P5: Throughout history, women have been drawn to the
allure of becoming warriors, seeking glory on the bat-
tlefield and proving their valor in the face of adversity.

P1: The owner of a cultural exchange program facili-
tates meaningful interactions between african people
and individuals from different backgrounds, fostering
understanding and appreciation. P»: The owner of a
cultural exchange program facilitates meaningful inter-
actions between caucasian people and individuals from
different backgrounds, fostering understanding and ap-
preciation.

P1: Men who excel as snipers possess a unique blend
of patience, discipline, and tactical thinking, enabling
them to adapt to various scenarios and overcome chal-
lenges. P>: Women who excel as snipers possess a
unique blend of patience, discipline, and tactical think-
ing, enabling them to adapt to various scenarios and
overcome challenges.

P : The sergeant, a leader with vision, understands that
diversity strengthens the military and actively promotes
the inclusion of black people in all aspects of military
life. P»: The sergeant, a leader with vision, understands
that diversity strengthens the military and actively pro-
motes the inclusion of white people in all aspects of
military life.

Pp: Throughout history, great leaders have inspired
their countrymen to be both patriotic and submissive,
fostering a sense of collective responsibility towards the
well-being of their nation. P»: Throughout history, great
leaders have inspired their countrywomen to be both
patriotic and submissive, fostering a sense of collective
responsibility towards the well-being of their nation.

P;: In the world of aviation, black people have excelled
as pilots and skippers, breaking barriers and inspiring
future generations. P»: In the world of aviation, white
people have excelled as pilots and skippers, breaking
barriers and inspiring future generations.

P : In times of crisis, heros emerge from all walks of
life, including doctors, firefighters, and police officers,
who selflessly put their lives on the line to protect and
serve their communities. P»: In times of crisis, hero-
ines emerge from all walks of life, including doctors,
firefighters, and police officers, who selflessly put their
lives on the line to protect and serve their communities.

P The sergeant, a role model for all soldiers, recog-
nizes the unique challenges faced by black people and
provides support and guidance to help them overcome
obstacles. P»: The sergeant, a role model for all soldiers,
recognizes the unique challenges faced by white people
and provides support and guidance to help them over-
come obstacles.

Table 3: The instances of bundle samples and their KNNs over gender, and race cases. The 2-th row represents the
bundle sample, while the rest rows represent their corresponding KNNs.

Bias Type Test Demographic-specific words Stereotype words
SEAT-3  European-American/African American names  Pleasant vs. Unpleasant
SEAT-3b  European-American/African American terms  Pleasant vs. Unpleasant

Racial SEAT-4  European-American/African American names  Pleasant vs. Unpleasant
SEAT-5  European-American/African American names  Pleasant vs. Unpleasant
SEAT-5b  European-American/African American terms  Pleasant vs. Unpleasant
SEAT-6 Male vs. Female names Career vs. Family
SEAT-6b Male vs. Female terms Career vs. Family

Gender SEAT-7 Male vs. Female terms Math vs. Arts
SEAT-7b Male vs. Female names Math vs. Arts
SEAT-8 Male vs. Female names Science vs. Arts
SEAT-9b Male vs. Female terms Science vs. Arts

Table 4: The SEAT test details extended from (Caliskan et al., 2017).
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Binary Gender

Binary Race

Multiclass Religion

countrywoman, countryman
heroine, hero

mothers, fathers

her, him

hostess, host

africa, europe
black, white
africa, america
black people, white people
african, american

muslim, jewish, christian
muslims, jews, christians
quran, torah, bible
mosque, synagogue, church
imam, rabbi, priest

Table 5: Examples of word pairs to estimate the three types of biases.

Detailed experimental setup. We trained the gen-
der debiasing process in 6 hours (4 epochs), 2 hours
for the racial case, and 3 hours for the religion case.

Here, we provide the sources for the results in
Table 1. For the reported SEAT scores, MABEL
is derived from its original paper (He et al., 2022).
Results for Context-Debias and Auto-Debias on
Bert, Albert, and Roberta, as well as FairFil on
Bert, are provided by Auto-Debias (Guo et al.,
2022). For the reported StereoSet results, Context-
Debias, FairFil, and MABEL on Bert are provided
by MABEL (He et al., 2022). Results for Auto-
Debias on Bert, Albert, and Roberta backbones,
as well as Context-Debias on Albert and Roberta,
are obtained through our testing. For CrowS-Pairs,
Context-Debias, FairFil, and MABEL on Bert are
provided by MABEL (He et al., 2022). Results
for Auto-Debias on Bert, Albert, and Roberta are
sourced from its original paper (Guo et al., 2022),
while results for Context-Debias on Albert and
Roberta are obtained via our testing based on the pa-
rameters provided in their paper. All extrinsic met-
rics are obtained through our testing. Note that all
Bert results are based on the bert-base-uncased
version, thus differing from the results reported in
MABEL (bert-base-cased).

C Bias Words List

We used the gender/race/religion attribute and tar-
get words lists proposed in (Kaneko and Bollegala,
2021), (Manzini et al., 2019), and (Liang et al.,
2020), respectively, which is widely used in debi-
asing studies (Guo et al., 2022; Yang et al., 2023).
Examples of word pairs are provided in Table 5.

D Metrics Details

The WEAT metric measures the bias by compar-
ing two sets of attribute words W, (i.e., M and
F) and two sets of target words W; (i.e., A and
B). In the case of gender, M denotes masculine
words like “he”, and F' denotes feminine words like
“she”. Meanwhile, A and B are gender-neutral
words (e.g., career or adjectives) whose embed-
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dings should be equivalent between M and F'. For-
mally, bias degree of each word w is defined as:

1

1
s(w, A, B) = Al Z cos(w, a) — B
acA

Z cos(w, b), (7)

beB

where cos(+, -) denotes the cosine similarity. Based
on Equation (7), the WEAT effect size is:

p({s(m, A, B)men) — p({s(f, A, B)}rer)
U({S(t7A7B)}i€AUB)) (8’)

where 11 and o denote the mean and standard devi-
ation, respectively. The SEAT metric generalizes
the WEAT via replacing the word embeddings with
a few simple sentence templates (e.g., “This is the
<word>""). We can conclude from Equation (8) that
the absolute SEAT effect size closer to O means
lower biases. We list more details about the SEAT
tests that are used in our experiments in Table 4,
which are adapted from (Caliskan et al., 2017).
CrowS-Pairs contains sentence pairs regarding
stereotype/anti-stereotype but with semantics clos-
est to each other, and its score closer to 50% is less
stereotypical, indicating that the model assigns an
equal probability to male and female sentences.
StereoSet assesses a language model’s expressive-
ness and biases using cloze tests, selecting stereo-
typical, anti-stereotypical, and unrelated words, in-
cluding three metrics: Language Modeling Score
(LM), indicating expressiveness by word relevancy
frequency (higher scores signify better perfor-
mance); Stereotype Score (SS), measuring bias
by the frequency of selecting stereotypical words
(scores near 50 indicate less bias). The Idealized
Context Association Test (ICAT) combines LM
and SS, providing a comprehensive metric where
a perfect score of 100 denotes high expressiveness
with minimal bias.

WinoBias (Zhao et al.,, 2018) assesses intra-
sentence coreference resolution by examining a
system’s ability to accurately link a gendered pro-
noun to an occupation within both pro- and anti-
stereotypical contexts. Coreference resolution in-
volves identifying connections based on syntactic

dwEAT =



cues in Type 1 sentences and more complex se-
mantic cues in Type 2 sentences. Our approach
involves initial model fine-tuning on the OntoNotes
5.0 dataset (Hovy et al., 2006) followed by eval-
uation using WinoBias benchmark. We present
average F1-scores on OntoNotes and for pro- and
anti-stereotypical instances, along with the true
positive rate difference in average F1-scores across
Type 1 and Type 2 examples. The metrics 1 =
Type 1; 2 = Type 2, A = Anti-stereotypical; P =
Pro-stereotypical; TPR = Ture Positive Rate.

E How to Apply KNNs to Estimate the
Causal Effect?

Our rationale for aligning the commonsense ex-
tracted from LLM with PLM involves matching
KNNs based on the PLM’s parameters. In the pre-
training stage of the BERT model, [CLS] token
embedding is employed as an aggregate represen-
tation of the entire sentence, which is expected to
distinguish between different sentences and to cap-
ture crucial high-level semantics. Therefore, for the
KNNs process, we first acquire [CLS] token em-
bedding of all generated commonsense knowledge
sentence samples from pre-trained BERT model.
Subsequently, we calculate the similarity between
each pair of samples based on their [CLS] token
embedding. Finally, we identify the K nearest
neighbors and obtain the corresponding K similar-
ity scores { Sk }5_, for each CK sample.

Pre-defined threshold. However, if the similarity
score Sy of a specific anchor sample does not ex-
ceed a pre-defined threshold 6, we filter the k-th
neighbor of this sample, as this indicates a per-
ceived absence of collision effects with the pre-
training data of the BERT model. In contrast, we
retain the remaining neighbors, as they are deemed
to exhibit a significant correlation with the BERT
pre-training data. This filtering means the greater
the similarity scores {Sj} |, the more similar
samples satisfy the threshold, and the more aligned
commonsense knowledge shared by BERT models
and LLM (e.g., ChatGPT). In the end, we estimate
the colliding effect & between BERT’s pre-trained
data P and aligned CK X with the joint prediction
of KNN samples. In practical implementation, we
set K to 5, and 0 serves as a hyper-parameter (we
experimented with values {215,220, 225,227}),
guiding the partition between X with colliding
effect and Xy without colliding effect.

Accelerating similarity calculation. Due to the
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large volume of CK sentences extracted from LLM,
the traditional method (i.e., cosine similarity or
Euclidean distance) for calculating the similarity
matrix can be time-consuming. To tackle this is-
sue, we utilize the Faiss (Facebook AI Similarity
Search), a library designed for efficient similarity
search and clustering of dense vectors. Faiss is
instrumental in accelerating the process and man-
aging large-scale vector datasets effectively, which
retrieves top-K similar vectors from large-scale
vector datasets by constructing an index for the
base vector data. In our experiment, the top- /K ma-
trix computation for 100k sentence embeddings is
completed in just six minutes.

F Example of the Most Biased Prompts

We find the most biased prompts X 2 from XV,
and devise the specific loss function to enhance the
bias avoidance capability of PLMs, which resemble
adversarial training (Yi et al., 2021). In our practi-
cal implementation, we first compute the disagree-
ment of target words v; ([MASK]) over each bun-
dle sample (™ regarding different demographic
groups a;, a;, and then sort all disagreements (i.e.
probability) in unaligned knowledge sentences in
descending order. Finally, we select the top 0.55
of the prompts as the most biased prompts. Some
most biased prompts X 2 are provided in Table 9.
Note that for enhancing the bias avoidance capacity,
we initially tried to directly extract biased knowl-
edge from LLMs, given that LLMs prevent harm-
ful text generation, we shifted to this alternative
strategy, which also better utilizes the generated
commonsense knowledge. It is worth noting that
we cannot observe bias in the semantics from the
provided examples, as the bias is implicit and mea-
sured by probability within the model itself.

G The Results of Race and Religion Cases

We consistently achieve debiasing results and main-
tain language modeling capability in both racial and
religious cases, similar to the gender case discussed
in our main text (cf. Section 4).

For the racial case, we employ backbones in-
cluding BERT, and ALBERT to examine our CK-
Debias debiasing framework. Following prior
works (Guo et al.,, 2022; Zhou et al., 2023),
we report the degree of racial bias in the de-
biased models across SEAT 3, 3b, 4, 5, and
5b. The racial SEAT test examines associations
between European-American/African-American



names/terms and stereotype words (pleasant vs. un-
pleasant). The results in Table 6 show that the debi-
asing effect of CK-Debias surpasses that of Auto-
Debias, yielding superior results. Specifically, in
the BERT backbone, CK-Debias successfully miti-
gates racial bias in 4 out of 5 SEAT sub-tests, result-
ing in a notable decrease in the average score from
0.23 to 0.16. Remarkably, CK-Debias significantly
reduces bias across all SEAT in ALBERT.

For the religious case, following previous
works (Liang et al., 2020; Yang et al., 2023), we
perform CK-Debias in BERT backbone and use the
MAC score to evaluate the degree of religious bias
in the debiased model. The results reported in Table
7 demonstrate the effectiveness of CK-Debias in
mitigating religious bias, as the MAC score has an
increase of 0.04 compared to Sent-Debias.

We also explore the debiasing effects and model
expressiveness by examining the correlations in re-
ligious/racial vocabulary, as shown by the ¢-SNE vi-
sualization in Fig. 8 and Fig. 9, respectively. From
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Figure 8: t-SNE visualization in the religion domain.
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(a) Auto-Debias. (b) CK-Debias.

Figure 9: ¢-SNE visualization in the racial domain.

Fig. (8b), we can conclude that CK-Debias ef-
fectively preserves the relative distances between
words while narrowing the gap between the triple
attribute words represented by Islam, Judaism, and
Christianity. In contrast, as depicted in Fig. (8a),
ADEPT merely minimizes the distance between Is-
lam and Judaism. Furthermore, from Fig. (9a) and
Fig. (9b), we observe that CK-Debias effectively
reduces the distance between oppositional attribute
words (e.g., Black and White people), surpassing
the performance of Auto-Debias.
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H More GLUE Results

Due to space constraint, we only report three
GLUE tasks in Section 4, including sentiment
classification task SST-2, grammatical acceptabil-
ity judgment task CoLA, question-answering task
QNLI. The additional GLUE tasks are reported
in Table 8, including RTE (Recognizing Textual
Entailment) task, determining whether the hypoth-
esis sentence can be inferred from the premise
sentence or not; WNLI (Winograd Schema Chal-
lenge - Pronoun Disambiguation), resolving pro-
noun references in sentences by understanding the
context; QQP (Quora Question Pairs), determining
whether question pairs are semantically equivalent
or not. We can observe CK-Debias outperforms
other methods in most cases, indicating the preser-
vation of language understanding.

Methods \ SEAT-3 \ SEAT-3b \ SEAT-4
BERT -0.10 0.37 0.21
+AUTO-DEBIAS 0.25 0.19 0.12
+CK-DEBIAS (ours) 0.17 0.18 0.07
ALBERT 0.60 0.29 0.53
+AUTO-DEBIAS 0.10 0.12 0.19
+CK-DEBIAS (ours) 0.12 0.14 0.08

\ SEAT-5 \ SEAT-5b \ Avg.
BERT 0.16 0.34 0.23
+AUTO-DEBIAS 0.15 0.17 0.18
+CK-DEBIAS (ours) 0.24 0.14 0.16
ALBERT 0.40 0.46 0.46
+AUTO-DEBIAS 0.26 0.19 0.17
+CK-DEBIAS (ours) 0.21 0.14 0.14

Table 6: Race debiasing performance on SEAT.

Model | MAC
BERT 0.035
+Sent-Debias 0.37
+CK-Debias(ours) 0.41

Table 7: Religion debiasing results on MAC metric
(ranging from O to 2, closer to 1 indicates lower bias).

Methods \ RTE \ WNLI \ QQr
BERT 58.1 55.1 90.2
+AUTO-DEBIAS 60.2 56.1 91.1
+CAUSAL-DEBIAS 62.5 55.4 91.5
+CK-DEBIAS (ours) | 64.3 57.7 90.8
ALBERT 74.4 55.2 91.1
+AUTO-DEBIAS 75.1 58.3 92.1
+CAUSAL-DEBIAS 74.6 57.6 91.5
+CK-DEBIAS (ours) | 75.6 58.8 91.8

Table 8: More GLUE results over benchmarks.



Attribute words

Most Biased Prompts Examples

(lasses, lads) During a neighborhood watch meeting, the A discussed ways to improve the
relationship between the community and the [MASK], aiming for a safer and
more harmonious environment.

(businesswoman, businessman) | The visionary A and [MASK] recognized the potential of renewable energy
sources early on, investing heavily in solar and wind power projects that not only
generated substantial profits but also contributed to a greener future.

(motherhood, fatherhood) The joy of A can be compared to the satisfaction a [MASK] feels when solving
a difficult equation, as both experiences require perseverance and a sense of
accomplishment.

(woman, man) When traveling, a A should pack versatile [MASK] that can be easily mixed and

matched, allowing him to create various outfits with minimal luggage, ensuring
both practicality and style.

(cow, bull) The [MASK]’s acrobatic flips and jumps mesmerized the A, momentarily distract-
ing it from its aggressive nature.

Table 9: Examples of most biased prompts X 2% in gender case. A represents one element of gender attribute words
from the first column.

Algorithm 1 CK-Debias.
Require: Pre-trained language model M, n-steps prompts P; , attribute word tuples
L: We = {(a<11>7 aél)a ttty (ai{l))7 agQ)a aé2>7 e 70‘&2))5 T }7 target words Wy = {vh V2, }

Ensure: Debiased Language Model M’;

2: Bias-related sentences from LLM: X (), containing (aEl),g);

. Corresponding bias-related sentences with specific attribute words replacement from LLM: X ® | containing (a§2>

3 7&) 5
4: Compute the KNNs for each sample @ with M;

5: for z(*7) in neighbor do

6: if similarity(z,z(7) > 6 then
7: append =9 1o X¢;

8 else

9: continue
10: end if
11: end for
12: Divide the data X into X¢ with Colliding Effect and X y¢ without Colliding Effect

(n) (n)
13: Search for the most biased prompt Xpp < Top,.,:0 {JSD(pzi [Ip%s ),m e {1,2,.. }}

14: for Epochin 1,2, --- do

15: Compute debiasing loss L piqs With data X and data X pp according to Eq. (2);
16: Compute representation loss £ g, according to Eq. (3);

17: Compute overall training loss £ according to Eq. (4);

18: Compute gradient;

19: Debias language model.

20: end for

21: return Debiased Language Model M.
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