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Abstract

Pre-trained Language models (PLMs) are001
trained on inherently socially biased sources,002
inevitably causing undesirable application im-003
pacts. Current debiasing paradigm involves004
identifying bias from external corpora, which005
have limited quality, diversity, or equivalence006
among different groups, potentially impacting007
bias location and debiasing effectiveness. In008
light of this, we advance fairness in PLMs by009
absorbing coherent, balanced, and semantically010
informative social Commonsense Knowledge011
(CK-Debias) automatically generated from012
large language models (LLMs). Our study ad-013
dresses the demographic CK generation from014
LLM and explores strategies to optimize CK015
utilization. This is achieved by employing016
causal analysis to align knowledge for estimat-017
ing bias space and identifying the most biased018
prompts to enhance bias avoidance capabil-019
ity. Experiment results on public datasets and020
intrinsic and extrinsic metrics show that CK-021
Debias can significantly reduce multiple social022
biases across various PLMs while keeping their023
language expressiveness intact.024

1 Introduction025

Lightweight pre-trained language models (Devlin026

et al., 2019; Liu et al., 2019) have made un-027

precedented progress across a broad spectrum of028

tasks, ranging from language understanding (Meng029

et al., 2022), document classification (Bhardwaj030

et al., 2021), to multitasks text generation , which031

are more suitable for deployment on resource-032

constrained devices compared to LLM. However,033

the prevalence of out-of-distribution issues (Lu034

et al., 2022) or inherent stereotypical remarks in the035

training corpus may inadvertently reinforce biased036

or stereotypical representations (Caliskan et al.,037

2017), leading to potential unfairness across di-038

verse demographic groups. In specialized domains039

like law, medicine, or human resources (Jatobá040

et al., 2019), ensuring the neutrality and fairness of 041

their encoded representations becomes crucial. 042

[INT] The countrywoman is a remarkable 

individual with her well-defined muscles ...

[INT] The countryman is a remarkable 

individual with his well-defined muscles ...

[INT] The countryman is not only a 

visionary leader, but also a trailblazer ...

[INT] The countrywoman is not only a 

visionary leader, but also a trailblazer ...
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Figure 1: Our rationale to generate social CK. Each sub-
knowledge has a knowledge subgraph that includes An-
chor/Entity Node (i.e., specified attribute/target words).
Subgraphs with the same Anchor Node can be associ-
ated by the Linking Edge to form a larger subgraph.

Recent task-agnostic contextualized debiasing 043

works (Kaneko and Bollegala, 2021; Cheng et al., 044

2021; He et al., 2022) are devoted to designing 045

specific loss functions to fine-tune PLMs toward 046

mitigating inherent biases. Despite the remarkable 047

success, they all involve drawing sentences from 048

external corpora to identify and mitigate biases, 049

aiming to include sufficient diversity across demo- 050

graphics. Moreover, some of them (Ghanbarzadeh 051

et al., 2023; Zhou et al., 2023) try to achieve equiv- 052

alence among opposite demographics via balanced 053

counterfactuals, which might yield incoherent or 054

noisy knowledge when multiple entities are refer- 055

enced. However, collecting high-quality corpora 056

is usually costly, and noisy knowledge is easily 057

introduced (Zheng et al., 2023), resulting in insuffi- 058

cient or inaccurate bias mitigation. While certain 059

study (Guo et al., 2022) tries to generate prompts 060

as a replacement for external corpora, it also relies 061

on the additional Wikipedia in search space, and 062

its short prompts often fail to consider syntax or 063

context, which leads to gaps when used in semantic 064

downstream tasks. 065
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Recent foundation models like ChatGPT (Chi-066

ang et al., 2023), LLaMa (Touvron et al., 2023),067

and Gemini (Team et al., 2023) have excelled in068

widespread applications, and extensive endeavors069

are embarked upon to rectify inherent biases (Gal-070

legos et al., 2023) and elevate the commonsense071

research (West et al., 2022; Plenz et al., 2023). The072

LLMs have exhibited notable knowledgeable abil-073

ity (Bian et al., 2023) as knowledge bases to gen-074

erate CK accurately, its general success draws our075

insights to leverage them for debiasing lightweight076

PLMs. Arguably, we attribute PLMs’ bias to lim-077

ited social commonsense and bias avoidance capac-078

ity, since the debiasing guidance for lightweight079

PLMs is generally notably smaller than LLMs.080

In this paper, we refrain from using existing081

external corpora as previous studies but resort082

to LLMs, and propose a novel paradigm that083

integrates automated commonsense knowledge084

sourced from LLMs to improve debiasing per-085

formance. The rationale is depicted in Fig. 1,086

which can be interpreted from a fair tuple of (attr1,087

target, attr2) like muscles (target) that can be088

owned by both countryman (attr1) and country-089

woman (attr2). An important observation in our090

paradigm is that not all knowledge extracted from091

LLMs is directly applicable for debiasing, as it092

might lead to negative knowledge transfer (Zheng093

et al., 2023). Hence, we employ causal analysis to094

distinguish knowledge aligned with PLM’s and in-095

tegrate it to advance social fairness. For the remain-096

ing unaligned knowledge, we introduce a strategic097

bias location and mitigation process, which iden-098

tifies the most biased prompts to refine PLM’s de-099

biasing capability. To mitigate the impact of the100

fine-tuning procedure on the model’s expressive101

capabilities, we design a specialized loss function102

that can maintain model parameters as stable as103

possible. Our contributions are three-fold:104

• Differing from reliance on existing external cor-105

pora, we are the pioneers in leveraging LLM-106

generated commonsense knowledge to supply107

rich and high-quality semantic resources for de-108

biasing lightweight PLMs.109

• We apply a structure causal model (SCM) to ana-110

lyze the limitations of traditional debiasing meth-111

ods, and an improved causal graph is employed to112

effectively harness LLM-generated knowledge.113

• CK-Debias can effectively alleviate various types114

of biases, demonstrating superior performance115

across multiple PLMs, yielding superior perfor-116

mance in both intrinsic and extrinsic evaluations, 117

while maintaining intact model expressiveness. 118

The code of CK-Debias is anonymously avail- 119

able at https://anonymous.4open.science/r/ 120

CK-Debias-49B4/. 121

2 Related Works 122

Language models, developed with data often im- 123

bued with inherent biases, can inadvertently intro- 124

duce biases into their applications, thereby spurring 125

a growing body of research aimed at mitigating bi- 126

ases. The earliest efforts mainly focus on debiasing 127

static word embeddings such as Glove (Penning- 128

ton et al., 2014) and word2vec (Mikolov et al., 129

2013) via projection-based (Bolukbasi et al., 2016; 130

Kaneko and Bollegala, 2019) or adversarial meth- 131

ods (Elazar and Goldberg, 2018; Xie et al., 2017). 132

The in-depth research inspired the follow-up 133

studies debias pre-trained contextualized embed- 134

dings, as the widespread use of BERT (Devlin 135

et al., 2019) and their variants (Lan et al., 2020; 136

Liu et al., 2019). Based on whether they directly 137

combine with associated downstream tasks, the 138

external corpora-based methods can be divided 139

into: (1) Task-Agnostic methods constitute the 140

majority: Sent-Debias (Liang et al., 2020) and 141

FairFil (Cheng et al., 2021) are post-hoc meth- 142

ods that keep the PLM parameters untouched, 143

and ADEPT (Yang et al., 2023) proposes a novel 144

training criterion that only trains the continu- 145

ous prompt parameters but keeps the base model 146

frozen; Auto-Debias (Guo et al., 2022), Context- 147

Debias (Kaneko and Bollegala, 2021), and MA- 148

BEL (He et al., 2022) remove biases in PLM 149

via fine-tuning using various well-designed bias- 150

neutralizing loss functions. (2) Task-Aware ap- 151

proaches, emerging recently, aim to prevent bias 152

recurrence when applying debiased models in prac- 153

tical applications. Recent innovations like Causal- 154

Debias (Zhou et al., 2023) unifies the debiasing pro- 155

cedure with downstream fine-tuning via causal in- 156

variant learning. Similarly, Gender-tuning (Ghan- 157

barzadeh et al., 2023) deploys a debiasing tool for 158

any PLM that works with original fine-tuning. 159

Despite the notable success of debiasing, their 160

efficacy largely relies on the quality, quantity, and 161

diversity of the corpora used, such as WikiText-2 162

(Merity et al., 2017), Standford Sentimente Tree- 163

bank (Socher et al., 2013), Reddit, etc. They in- 164

discriminately use the matched sentences to locate 165

bias, and the simple substitution can cause a nega- 166
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tive transfer when multiple entities are referenced.167

To achieve a more balanced bias distribution across168

groups, they typically balance sentence matching169

between groups, often at the expense of excluding170

redundant sentences. In light of LLMs’ recent ex-171

tensive adoption and accomplishments in diverse172

NLP tasks (Wang et al., 2023), we are motivated to173

create prompts that guide LLMs towards produc-174

ing high-quality, abundant, and semantically rich175

social commonsense knowledge. The ultimate goal176

is to leverage generated social CK to contribute to177

our debiasing efforts in PLMs.178

3 Methodology179

In this section, we answer how to generate knowl-180

edge and explore ways to optimize the usage of181

generated knowledge (i.e. positive transfer and182

bias avoidance), as depicted in Fig. 3. Note that183

CK-Debias is generic to various biases or PLMs,184

with gender bias serving as just our example.185

3.1 Demographic Commonsense Knowledge186

Generation from LLMs187

LetWa = {(a(1)1 , a
(1)
2 , · · · , a(1)d ), (a

(2)
1 , a

(2)
2 , · · · ,188

a
(2)
d ), · · · } denotes attribute words composed of189

multiple d-tuple and Wt = {v1, v2, · · · } denotes190

target words, respectively. In the case of binary191

gender (d = 2), attribute words are gender-specific192

pairs: (she, he), (woman, man), (mother, father),193

target words consist of gender-neutral words (e.g.,194

nurse, engineer, professor). For prompting LLM,195

we use two well-designed system prompts to auto-196

matically generate a pair of sentences in two steps197

(details cf. Fig. 7 in Appendix A). The generated198

CK sentences, containing (ai, vt), (aj , vt), shape a199

bundle sample with identical target words vt over200

d-tuple attribute words. Its rationale can be in-201

terpreted as a fair triplet (ai, vt, aj), indicating202

that each target word vt can establish an associ-203

ation with both pairwise attribute words ai and204

aj , as illustrated in Fig. 1. For brevity, we denote205

x(n) = {x(n)1 , x
(n)
2 , · · · , x(n)d } as the n-th bundle206

sample below. We merely alter specific attribute207

words, aiming to retain consistency across other208

components of each bundle to keep semantic sim-209

ilarity. Additionally, we strive for uniformity in210

quantity and length, promoting fairness across var-211

ious demographic groups. Examples of (ai, vt),212

(aj , vt), and their corresponding generated bundle213

samples are provided in Appendix A.214

3.2 Debiasing the PLMs via Generated 215

Commonsense Knowledge 216

𝑷𝑩
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Causal Path

Positive Transferring
Colliding Effect

Causal Intervention
𝑷𝑩

𝑿𝑪

𝑿𝑵𝑪

𝑯𝟎
𝑪

𝑯
෡𝑩

𝑿𝑩𝑷

𝑿𝑵𝑩𝑷

𝑷𝑳

Figure 2: The comparison of SCM between conven-
tional methods and our CK-Debias.

We employ SCM to depict the causal association 217

among data, models, and hidden factors. Subse- 218

quently, we apply this SCM to emphasize the chal- 219

lenges posed by conventional debiasing methods 220

that rely on external corpora. Finally, we intro- 221

duce an enhanced causal graph that harnesses com- 222

monsense knowledge to alleviate bias in PLMs. 223

Causality between data, models, and hiddens. 224

As shown in Fig. 2, we denote the pre-trained data 225

as P ; the external corpora as X; the hidden of X 226

extracted by the initial pre-trained model and fine- 227

tuned model as H0 and H , respectively; the bias 228

magnitude predicted by H on external corpora as 229

B̂. The causal associations are: (1) X → H → B̂: 230

X → H denotes the hiddenH , which is derived by 231

PLMs from the matched sentence found in external 232

corpora, and H → B̂ is the computed distance to 233

measure bias magnitude B̂ according to the hidden 234

H; (2)X → H0 ← P : initial hidden H0 is deter- 235

mined by both pre-trained data P and input external 236

data X . The collider H0 is the joint outcome of the 237

independent causes P and X . According to casual 238

theory (Neal, 2020), once the common effect H0 is 239

observed, its causes P and X become dependent, 240

so in our scenarios, the colliding effect between 241

pre-trained data and external corpora is preserved 242

during the fine-tuning based debiasing process. 243

Conventional debiasing methods in Fig. 2 (a) rely 244

on X sourced from external corpora, which may 245

contain noisy data. If directly applying X to locate 246

biases without distinction, the retained noise knowl- 247

edge may result in inaccuracies of bias identifica- 248

tion and hinder negative knowledge transfer (Zheng 249

et al., 2023). We attribute this issue to the missing 250

colliding effect between the external corpora X 251

and pre-trained data P , which can also be viewed 252

as a deficit in the alignment of their hidden spaces. 253

Moreover, traditional methods partially mitigate 254

bias by simply substituting attribute slots to achieve 255

balanced counterfactual augmentations, but this 256
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𝑃1:Please generate…containing…(𝑎𝑖, 𝑣𝑡)…

The scientist father…

The fathers, who were 

also scientists…
The scientist mother…

The mothers, who were 

also scientists…

(4) Debiasing the PLMs(3) Most Biased Knowledge Identification

𝑿𝑪

𝑿𝑵𝑪

𝑥(𝑛,𝑘)

𝑯𝟎
𝑪

𝑿𝑩𝑷

𝑿𝑵𝑩𝑷
𝑷[𝑴𝑨𝑺𝑲]

𝑥(𝑛)

ℒ𝐵𝑖𝑎𝑠

𝒟2( || )

(1) Commonsense Knowledge Generation (2) Colliding Effect Estimation

Bundle Samples:

𝑃2: Replace the term 𝑎𝑖 𝑡𝑜 𝑎𝑗…

𝒟1( || )

ℒ𝑅𝑒

KNNs

𝑥(𝑛,2)

𝑥(𝑛,1)

Figure 3: Overview of CK-Debias. (1) Obtain bundle samples by prompting LLM via well-designed system prompts
based on pairwise attribute and target words. (2) Find the aligned knowledge via colliding effect estimation to
achieve positive transfer. (3) Identify the most biased knowledge from remaining unaligned knowledge to enhance
bias avoidance. (4) Debiasing PLMs using knowledge from (2) and (3), while keeping the PLMs’ expressiveness.

can yield incoherent or contradictory text when257

multiple entities are referenced within a sentence.258

Additionally, when X is more biased towards one259

particular bias, debiasing unrelated bias may engen-260

der complications (Liang et al., 2020). For those261

issues, we employ LLM to generate bias-specific262

commonsense knowledge within semantic informa-263

tion (cf. Section 3.1), which is more conducive to264

locating bias and mitigating bias subsequently.265

Our CK-Debias. We observe that the knowledge266

extracted from LLM cannot be directly applied267

to mitigate biases since the pre-training data for268

lightweight PLMs is typically much less than that269

of LLM. To achieve a positive transfer of generated270

commonsense knowledge and to enhance the debi-271

asing impact of PLMs’ contextualized embeddings,272

it is crucial to establish an alignment between the273

hidden space of PLMs and LLM. As shown in274

Fig. 2 (b), we split the generated bundle knowl-275

edge into two nodes XC and XNC . XC repre-276

sents the bundle samples where we calculate collid-277

ing effects, and their knowledge should align with278

PLMs to enhance their fairness. XNC signifies279

samples exempt from collision effect calculation,280

presenting biased knowledge due to negative trans-281

fer – a phenomenon PLMs should strive to evade.282

To maximize its utilization, XNC are used to find283

the most biased prompts XBP that induce bias in284

PLMs, enabling PLMs to avoid bias when assim-285

ilating commonsense knowledge impartially. In286

summary, the fine-tuned PLMs assimilate LLM’s287

commonsense knowledge by utilizing colliding ef-288

fects (P ↔ XC ) while striving to avoid bias via289

most biased prompts (XBP → B̂). When condi-290

tioning on HC
0 , the final bias magnitude depends291

on the degree of assimilating aligned knowledge292

from causal paths P ↔ XC → H → B̂ (posi-293

tive transfer), and avoiding most biased knowledge294

XNC → H → B̂ (bias avoidance), respectively.295

3.3 Estimating Colliding Effect and Finding 296

Most Biased Knowledge 297

Colliding Effect Estimation. Considering when 298

predicting B̂(n), we obtain the hidden state from 299

initial model h(n)0 = M0(x
(n)). Controlling 300

H0 = h
(n)
0 means the input X in the causal graph 301

represents all samples whose hidden feature is 302

h
(n)
0 . Nevertheless, the sole satisfying candidate for 303

this condition is x(n) due to the sparsity inherent 304

in high-dimensional spaces. Alternatively, if we 305

slightly loosen this constraint, the colliding effect 306

is unlikely to vanish instantly. Hence, we choose 307

to approximate the colliding effect Ψ between P 308

and XC with the joint prediction of K-Nearest- 309

Neighbor (KNN) samples. When conditioning on 310

collider H0, Ψ can be calculated as: 311

Ψ =
N∑

n=1

ψ(n) ≈ (1) 312

N∑
n=1

kn∑
k=0

B
(
MH(XC = x(n,k))

)
SH

(
x(n), x(n,k)

)
313

where N is the total number of bundle samples 314

from aligned knowledge XC , kn is the number of 315

KNNs of n-th bundle sample for estimating B̂(n). 316

x(n,k) is the k-th nearest neighbor of x(n) ∈ XN 317

, whose similarity is greater than or equal to the 318

preset threshold θ. SH (·, ·) is the similarity func- 319

tion between x(n) and x(n,k) (abbreviate as Sn,k for 320

brevity), and
∑kn

k=0 SH
(
x(n), x(n,k)

)
= 1. Given 321

that x(n) exhibits the highest similarity with itself, 322

we set x(n,0) = x(n) as the anchor bundle sample 323

when k = 0. B
(
MH(XC = x(n,k))

)
represents 324

the bias magnitude prediction of B̂(n) when x(n,k) 325

is the modelMH ’s input. Eq. (1) shows that the 326

total causal effect Ψ is the sum of N aligned bun- 327

dle sample’s causal effect ψ(n), and each ψ(n) can 328

be approximated by the weighted sum of the bias 329
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prediction when the model input is the anchor bun-330

dle sample x(n) and its KNNs. The rationale is331

matching KNNs using the parameters in PLM is332

essentially a process of aligning the commonsense333

extracted from LLM with PLM.334

Most Biased Knowledge Identification. For the335

remaining unaligned knowledge XNC , we find336

knowledge with highly biased prompts among337

them, enabling the location of bias in PLMs. For338

each bundle sentence x(n) ∈ XNC , the identi-339

cal component in x(n) is regarded as the prompt ,340

namely excluding the attribute and target words uti-341

lized in generating the CK sentence, as well as the342

personal pronouns altered by the LLM. The most343

biased prompt has the highest disagreement when344

M predicts target words vt (replaced by [MASK]345

placeholder in advance) over each bundle sample346

x(n) regarding different demographic groups ai, aj .347

So, when traversing through XNC , if one bundle348

sample contains the most biased prompt, we regard349

it as the most biased knowledge XBP ⊂ XNC ,350

which is the subset of unaligned knowledge. In351

practice, we compute Jensen–Shannon divergence352

(JSD) score between distributions p( [MASK] =353

vt|M, x
(n)
BP ), vt ∈ Wt on each group ai, aj to mea-354

sure the disagreement. The obtained most biased355

knowledge can locate bias and then subsequently356

enable PLMs to avoid bias, thus also maximizing357

the usage of the extracted knowledge. More details358

about the most biased knowledge cf. Appendix F.359

3.4 Training Objective360

After obtaining the aligned knowledge XC and361

the unaligned knowledge with most biased prompt362

XBP , we proceed our CK-Debias as follows: given363

a pre-trained modelM0 with initial hidden H0, we364

aim to fine-tune M to attain the optimal hidden365

H with minimal biases B̂. The overall debiasing366

objective is as follows:367

LBias =(1− α)
∑

x(n)∈XC

kn∑
k=0

D1

(
XC = x(n,k)

)
Sn,k︸ ︷︷ ︸

LC

368

+α
∑

x(n)∈XBP

D2

(
XBP = x(n)

)
︸ ︷︷ ︸

LBP

(2)369

where the first term LC is a rewrite of colliding370

effect Ψ estimated from XC . To integrate the371

aligned knowledge XC into PLMs, we distinguish372

the strength of knowledge preservation for each373

bundle sample by selecting the KNNs – x(n,k) for 374

the anchor sample x(n). D1 quantifies the rela- 375

tive JSD between bundle samples with pairwise 376

attribute words and those with neutral words in a 377

high-dimensional space, which is defined as: 378

D1

(
x(n)

)
=

∑
i,j∈{1,...,d},i<j

{
JS

(
Rx

(n)
i ∥Rx

(n)
j

)}
379

whereRx
(n)
i = Distance(Etarget|ex

(n)
i ) measures 380

the distance from sentence x(n)i containing attribute 381

words a(i) to sentences containing all target words, 382

and Etarget = [exv1 , exv2 , · · · ]. LBP mitigates 383

bias derived from the obtained most biased knowl- 384

edge, and D2 is defined as: 385

D2

(
x(n)

)
=

∑
i,j∈{1,...,d},i<j

{
JS

(
P x

(n)
i ∥P x

(n)
j

)}
386

P x
(n)
i = p( [MASK] = vt|M, x

(n)
BP ), vt ∈ Wt 387

whereD2 computes the JSD scores to minimize the 388

disagreement between the predicted [MASK] token, 389

which means a fair NLP system should yield scores 390

independent of the selection of the attribute con- 391

cepts. Two distance losses are linearly interpolated 392

by a tunable coefficient α. 393

As fine-tuning with full parameter modifications 394

can potentially harm the expressiveness of PLM, 395

we add an auxiliary representation loss LRe to pre- 396

serve the inherent language modeling capability, 397

which is defined as: 398

LRe =MSE(MH(·)||M′
H(·)) (3) 399

where LRe measures disparity between the origi- 400

nal model’s hidden states MH and the debiased 401

model’s hidden statesM′
H via Mean Squared Er- 402

ror (MSE), striving to minimally alter the PLM’s 403

parameters. The overall training loss is as follows: 404

L = LBias + λ · LRe, 405

wherein LRe is tempered by the hyper-parameter 406

λ. Detailed formula derivation, hyper-parameter 407

configuration, and algorithm process are presented 408

in Appendix B. 409

4 Experiments 410

Benchmarks. We compare CK-Debias with bench- 411

marks based on external corpora: Task-Agnostic 412

models including: Context-Debias (Kaneko and 413

Bollegala, 2021), Auto-Debias (Guo et al., 2022), 414
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FairFil (Cheng et al., 2021), and MABEL (He415

et al., 2022); and Task-Aware methods including416

Causal-Debias (Zhou et al., 2023) and Gender-417

Tuning (Ghanbarzadeh et al., 2023). In Task-418

Agnostic methods, the debiasing stage is indepen-419

dent of fine-tuning downstream tasks, and CK-420

Debias belongs to it. Task-Aware methods directly421

combining downstream tasks for debiasing.422

LLM and PLMs. We utilize GPT-3.5-turbo API423

as the source LM for CK generation. In practice,424

we establish multiple threads to enhance the effi-425

ciency of knowledge generation, which query GPT426

in parallel and meanwhile store the results. Three427

masked PLMs are as the backbones: BERT (De-428

vlin et al., 2019), ALBERT (Lan et al., 2020),429

and RoBERTa (Liu et al., 2019). Following (Guo430

et al., 2022), we implement them using Hugging-431

face Transformers library (Wolf et al., 2020).432

Bias Word Lists. We generate commonsense433

knowledge sentences by prompting GPT-3.5 based434

on human-created word lists. Following prior stud-435

ies, we choose the gender/racial/religion word lists436

from (Kaneko and Bollegala, 2021), (Manzini et al.,437

2019), and (Liang et al., 2020) respectively – cf.438

Appendix C for details.439

Evaluating Metrics. Given the diverse ways in440

which bias can be embedded in language, we quan-441

tify biases in PLM embeddings against a diverse442

set of intrinsic and extrinsic indicators, including443

intrinsic metrics with SEAT (May et al., 2019),444

CrowS-Pairs (Nangia et al., 2020) and StereoSet445

(Nadeem et al., 2020), and extrinsic metrics with446

WinoBias (Zhao et al., 2018). Following Guo447

et al. (2022); Liang et al. (2020), we apply all met-448

rics to measure gender bias, use SEAT to measure449

racial bias, and use mean average cosine similarity450

(MAC) (Manzini et al., 2019), a modified SEAT451

version to measure multi-class religion bias. Specif-452

ically, we apply SEAT 6, 6b, 7, 7b, 8, and 8b tests453

to measure gender bias, and use SEAT 3, 3b, 4, 5,454

5b tests for racial bias evaluation. The measure of455

bias in the SEAT is indicated by its effect size – the456

closer to 0, the less biased the model is. Follow-457

ing (He et al., 2022), we first fine-tune the model458

on OntoNotes 5.0 dataset (Hovy et al., 2006), and459

then evaluate on the coreference resolution task460

WinoBias, which assesses a system’s ability to ac-461

curately associate a gendered pronoun to occupa-462

tions in both pro- and anti-stereotypical scenarios.463

Coreference is deduced via syntax cues in Type464

1 sentences or trickier semantic cues in Type 2.465

Detailed metrics are provided in Appendix D.466

Other Details. To verify debiased PLMs whether 467

still preserve general language understanding, we 468

examine them on six GLUE benchmarks (Wang 469

et al., 2019), including SST-2, CoLA, QNLI, RTE, 470

WNLI, and QQP tasks. We trained CK-Debias in 471

4 epochs with learning rate 5 × e−5 on a single 472

GeForce RTX 3090 GPU, and all results are av- 473

eraged over 4 runs. Due to space constraints, we 474

include gender results in the main text and provide 475

details on race and religion cases in Appendix G. 476

4.1 Results on Intrinsic and Extrinsic Metrics 477

Intrinsic Metrics. As indicated by the remark- 478

able ICAT metric score in Table 1, our CK- 479

Debias strikes a favorable balance between lan- 480

guage expressiveness and fairness. Notably, CK- 481

Debias even exhibits a slight improvement in LM 482

metrics compared to the original BERT model, with 483

the score rising from 84.17 to 85.42. For the SEAT 484

value, CK-Debias achieves the best score, and im- 485

proves 0.075 compared to the SOTA model Auto- 486

Debias. Additionally, CK-Debias outperforms oth- 487

ers in CrowS-Pairs with the best score of 50.45 488

(Stereo score: 51.55, Anti-Stereo score: 49.3). 489

While CK-Debias does not rank top in terms 490

of the SS value in StereoSet, we note that this 491

metric should be considered alongside LM, rather 492

than evaluated in isolation. For instance, FairFil 493

achieves the highest SS, yet its language model- 494

ing capability, as indicated by the lower LM score, 495

suffers a marked decline and trails other methods. 496

Extrinsic Metrics. CK-Debias and other models 497

achieve similar average F1 scores on OntoNotes, 498

suggesting indistinguishable coreference resolu- 499

tion capabilities. For the evaluation on Wino- 500

Bias, CK-Debias has a notable improvement com- 501

pared to all backbones. Specifically on BERT, CK- 502

Debias shows noteworthy advancements in anti- 503

and pro-stereotypical tasks, with an average in- 504

crease of 2.37% and 0.61% on Type 1 and Type 2 505

sentences, indicating CK-Debias effectively miti- 506

gates the stereotypical token-level associations be- 507

tween occupations and gender. Meanwhile, CK- 508

Debias exhibits the most substantial improvement 509

in fairness, notably lowering average TPR-1 and 510

TPR-2 (a reduction in true positive rates by 6.08). 511

Compared to Auto-Debias, CK-Debias is more ef- 512

fective in mitigating gender bias, with an average 513

improvement of 1.99%, 0.5% across Type 1 and 514

Type 2 sentences, respectively, and notably lowers 515

TPR-1 and TPR-2 by an average of 3.09. However, 516

CK-Debias does not surpass MABEL on several in- 517
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StereoSet

Methods SEAT LM↑ SS ⋄ ICAT ↑ CrowS-P*⋄ OntoN* 1A 1P 2A 2P TPR-1 TPR-2

BERT 0.35 84.17 60.28 66.86 57.25 73.94 55.47 86.7 91.8 96.74 31.22 9.94
+CONTEXT-D* 0.53 85.42 59.35 69.45 58.01 73.76 59.81 84.21 83.63 92.97 23.4 9.62
+FAIRFIL 0.15 44.85 50.93 44.01 49.07 71.79 53.24 85.77 77.37 91.40 32.43 14.03
+AUTO-D* 0.14 74.08 52.88 69.81 54.92 73.84 57.04 85.88 91.21 97.54 28.84 6.33
+MABEL 0.582 84.80 56.92 73.07 50.76 73.07 59.82 84.21 89.39 95.1 24.39 5.71
+CK-D*(Ours) 0.065 85.42 55.54 75.96 50.45 73.98 59.78 87.12 92.14 97.61 22.93 6.07

ALBERT 0.28 90.73 63.58 66.09 56.87 39.98 27.07 46.21 33.96 51.69 19.14 17.72
+CONTEXT-D* 0.33 91.02 60.23 72.40 53.91 40.53 18.35 23.61 16.67 33.26 5.26 16.6
+AUTO-D* 0.18 88.43 61.76 67.62 47.86 40.32 22.35 24.83 27.47 36.23 8.61 13.21
+CK-D*(Ours) 0.15 91.32 58.93 74.93 48.07 40.79 27.21 43.89 37.12 52.58 4.56 11.82

RoBERT 0.67 71.75 53.65 66.50 54.96 40.61 22.02 35.34 9.62 13.21 13.32 3.59
+CONTEXT-D* 1.09 70.85 54.74 64.13 59.48 40.67 26.7 37.37 15.38 19.59 10.68 4.21
+AUTO-D* 0.20 69.85 54.21 63.13 49.77 40.53 23.62 37.74 17.54 21.71 12.25 5.87
+CK-D*(Ours) 0.15 72.63 52.93 68.37 50.21 40.71 29.24 36.54 19.12 24.34 9.12 6.23

Table 1: Gender debiasing results on intrinsic and extrinsic metrics. *: abbreviations for a model or metric. ⋄: the
closer to 50, the better. OntoN*, 1A, 1P, 2A, 2P: the larger, the better. TPR-1, TPR-2: the smaller, the better.

dicators. This may stem from that MABEL exploits518

supervised entailment pairs including gendered519

terms derived from natural language inference data,520

which involve learned linguistic reasoning abilities521

crucial for gender-specific coreference resolution522

tasks. Conversely, our unsupervised sentences have523

limited inference ability, posing challenges for pro-524

ficient reasoning in all WinoBias tasks.525

4.2 Ablation Study526

To verify the effectiveness of CK-Debias, we con-527

sider the following ablated version:528

• (V1) w/o LBP : Removing the most biased529

knowledge XBP and corresponding loss LBP ;530

• (V2) w/o LC : Removing the aligned knowledge531

XC and corresponding loss LC ;532

• (V3) w/o LRe: Removing the designed represen-533

tation preserving loss LRe;534

• (V4) Rand-1: Replacing KNNs for colliding ef-535

fect estimation with randomly selected samples;536

• (V5) Rand-2: Replacing the most biased prompt537

with random samples from unaligned knowledge.538

As illustrated in Figure 4, all variants are inferior539

to the full model CK-Debias. The notable perfor-540

mance drop without LBP suggests that keeping541

non-colliders (i.e., unaligned knowledge) is bene-542

ficial for mitigating model bias. Compared to the543

full model CK-Debias, removing LC has a greater544

decline (both in ICAT and Acc.) than V1, indi-545

cating estimating the colliding effect for aligned546

knowledge acquisition is crucial to ensure positive547

transfer. The removal of LRe obviously weakens548

SST-2 accuracy and the ICAT value, indicating its549

role in preserving language modeling ability. For550

Rand-1 and Rand-2 variants, the ICAT score shows551
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Figure 4: Ablation results. The higher ICAT score and
higher SST-2 accuracy are better.
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Figure 5: The number impact of the CK sentences.

their performance is inferior to CK-Debias model. 552

Rand-1 results demonstrate the KNNs are crucial 553

for estimating the collision effect, which intention- 554

ally transfers aligned commonsense knowledge re- 555

garding social diversity from LLM to PLM, ensur- 556

ing semantic richness. Meanwhile, Rand-2 results 557

emphasize that acquiring the most biased prompt 558

helps the LM mitigate biases by learning to avoid 559

absorbing biased CK. 560

As the number of CK sentences increases in 561

Fig. 5, CK-Debias improves in expressiveness and 562

fairness, as reflected by the debiasing effectiveness 563

(SS, CrowS-Pairs, SEAT metrics) and language un- 564

derstanding (LM metric and SST-2, QNLI tasks). 565

However, this improvement diminishes beyond 90k 566

sentences, indicating an optimal quantity for debi- 567
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Figure 6: t-SNE plots on BERT.

asing. When comparing all indicators with an equal568

number of sentences, CK-Debias significantly out-569

performs Auto-Debias. This difference may stem570

from the short biased prompts in Auto-Debias lack-571

ing syntax or context, highlighting the common-572

sense knowledge extracted from LLM is a valuable573

resource, as it provides semantically rich informa-574

tion across diverse demographic groups.575

4.3 Results on Language Understanding576

Table 2 reports three GLUE results on debiased577

models (more GLUE results cf. Appendix H). No-578

tably, CK-Debias shows slightly superior perfor-579

mance compared to Auto-Debias across CoLA and580

SST-2 tasks. Our unimpaired downstream task per-581

formance highlights that our designed LRe loss ef-582

fectively tackles the widespread issue of declining583

language understanding ability found in most debi-584

asing models (He et al., 2022; Liang et al., 2020).585

However, in the BERT backbone, CK-Debias has586

a drop result compared to the task-aware SOTA587

model Causal-Debias over the QNLI task. We cau-588

tion that Causal-Debias integrates the debiasing589

process with fine-tuning downstream tasks, while590

ours operates upstream in a task-agnostic manner.591

This distinction might pose greater challenges com-592

pared to task-aware methods. Surprisingly, our593

indicators for each task do not decrease compared594

to the original BERT model, and the Accuracy on595

SST-2 even shows a significant improvement.596

The t-SNE visualization in Fig. 6 explores the597

debiasing effects and model expressiveness by ex-598

amining the words’ correlation. In Fig. (6d), CK-599

Debias successfully preserves relative distances600

between words while pulling attribute words closer601

to each other. In contrast, Fig. (6b) shows that 602

Auto-Debias clusters male and female words sepa- 603

rately, an undesirable behavior indicating that con- 604

cepts with opposing gender directions are pushed 605

far apart in the hidden space, even when they have 606

significant contextual similarities, thereby intro- 607

ducing biases. In Fig. (6c), MABEL separates 608

target words and gender words, yet the distance 609

between attribute terms and target words is signif- 610

icantly maximal compared to the gaps among at- 611

tribute words. This may lead to substantial damage 612

to model expressiveness.

Methods SST-2 CoLA QNLI

BERT 92.7 57.6 91.3
+AUTO-DEBIAS 92.1 52.1 91.1
+GENDER-TUNING 92.1 56.6 91.3
+CAUSAL-DEBIAS 92.9 58.1 91.6
+CK-DEBIAS (ours) 93.0 60.07 91.4

ALBERT 92.6 58.5 91.3
+AUTO-DEBIAS 94.1 58.3 92.1
+GENDER-TUNING 91.7 58.4 92.1
+CAUSAL-DEBIAS 92.9 57.1 91.6
+CK-DEBIAS (ours) 94.3 58.7 92.9

Table 2: GLUE results over benchmarks. 613

5 Conclusion 614

In this paper, we offer a flexible, universally ap- 615

plicable solution CK-Debias capable of debiasing 616

lightweight PLMs by harnessing rich, contextually 617

relevant commonsense knowledge sourced from 618

LLM, unlike existing methods reliant on crafted ex- 619

ternal corpora. CK-Debias roots in SCM to reveal 620

the limitations of traditional task-agnostic debias- 621

ing methods, such as negative knowledge transfer 622

and inaccurate bias identification. This analysis 623

laid the groundwork for our improved causal graph, 624

optimizing the utilization of LLM-generated knowl- 625

edge by distinguishing aligned knowledge benefi- 626

cial for positive transfer and unaligned knowledge 627

for strategic bias identification and mitigation. Ex- 628

tensive evaluations show CK-Debias’s efficacy in 629

mitigating diverse biases across various PLM ar- 630

chitectures, and achieving superior performance 631

in both intrinsic and extrinsic assessments while 632

preserving model expressiveness. Our paper pro- 633

motes the NLP fairness fields by utilizing LLM- 634

generated knowledge strategically for effective de- 635

biasing PLMs. We aim for this study to offer in- 636

sights into mitigating biases for building fair and 637

accountable NLP systems, hoping to inspire further 638

exploration in other fields using knowledgeable 639

LLM to address practical problems. 640
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6 Limitations641

Considering limitations of our debiasing work CK-642

Debias, we draw inspiration from previous debias-643

ing efforts (Cheng et al., 2021; He et al., 2022;644

Ghanbarzadeh et al., 2023) and utilize human-645

collected word lists related to gender, race, and646

religion to extract commonsense knowledge con-647

taining demographic information from LLM. Obvi-648

ously, human-collected word lists are insufficient649

to cover all demographic groups related to specific650

biases. We believe a potential improvement is to651

use these word lists as a foundation, encouraging652

the linguistically capable LLM to generate seman-653

tically similar words or inspiring the generation of654

intersectional words (Abbasi et al., 2021) through655

lexical associations to enrich the existing word lists.656

We also noticed that although our work CK-657

Debias achieves satisfactory results on StereoSet658

and CrowS-Pairs, there is a weak correlation be-659

tween their stereotype scores. Taking MABEL (He660

et al., 2022) as an example, which utilizes SNLI661

entailment data for training, its stereotype score is662

the worst on StereoSet, but it is one of the best in663

CrowS-Pairs. Given that CrowS-Pairs comprises664

only 266 example pairs, significantly fewer than665

StereoSet’s 2, 313 example pairs, it often serves666

as a more ambiguous metric. This inconsistency667

raises concerns about the lack of universality and668

consistency within the existing evaluations, pre-669

senting a fundamental challenge in this field.670

Our experimental setup relies on a crucial as-671

sumption: the pre-training data size of the LLM672

is significantly larger, potentially covering the pre-673

training data of the majority of lightweight PLMs.674

However, given the unavailability of both pre-675

training datasets, we employ causal collision ef-676

fects as a soft constraint to filter out the jumbled677

data extracted from LLM, aiming to mitigate nega-678

tive transfer (Zheng et al., 2023). All knowledge ac-679

quired from LLM is first directly incorporated into680

PLM, establishing a connection between the pre-681

training data of the two models to distinguish data682

with collision effects for positive transfer. Nonethe-683

less, this approach may not precisely assess the684

extent of negative transfer attenuation. Therefore,685

optimizing the alignment between the two models686

is a potential enhancement for future work.687

Moreover, the knowledge we automatically ex-688

tract is entirely reliant on LLM. We enhance the689

prompt quality by specifying a range of answer690

lengths and emphasizing logical, creative, and di-691

verse responses. While these prompt improve- 692

ments ensure that generated sentences surpass sim- 693

ple structures, enhancing the overall quality of ex- 694

tracted sentences, there is still considerable poten- 695

tial for further enhancement. Currently, we lack a 696

guided evaluation of the LLM’s responses, relying 697

solely on mechanical sentence generation without 698

fully harnessing the potential of the LLM as a ro- 699

bust corpus. Additionally, despite using KNN as a 700

soft constraint to filter out sentences unaligned with 701

PLMs, we cannot guarantee the complete absence 702

of bias in the generated sentences. 703

7 Ethics Statement 704

For the ethical considerations, it is essential to 705

underscore that our primary contribution centers 706

around methodology. The bias word lists and eval- 707

uation metrics utilized in our study are consistent 708

with prior research (Cheng et al., 2021; Zhou et al., 709

2023). However, owing to their availability con- 710

straints, our examination of social biases is con- 711

fined to binary gender, race, and religion. This 712

simplification might inadvertently perpetuate or 713

reinforce other stereotypes. Binary remains a com- 714

mon challenge in most debiasing methods, and 715

we acknowledge the limitations concerning indi- 716

viduals who identify with third genders, such as 717

transgender, non-binary, etc. We acknowledge the 718

diversity of gender, but due to the limitations of 719

existing word lists and comparison benchmarks, 720

we are constrained to a binary gender. Hence, our 721

research highlights the need for future research to 722

delve into collecting additional attributes regarding 723

more bias diversity or conduct cross-analyses of 724

intersectional biases. During the debiasing process, 725

researchers should pay more attention to alleviating 726

the potential risk of unintended re-propagation. 727

Another ethical dimension pertains to the fact 728

that current debiasing methods predominantly rely 729

on the English system or high-resource languages, 730

which may inadvertently overlook biases present in 731

various cultural and regional contexts. The applica- 732

tion of debiasing methods necessitates an ongoing 733

and thorough evaluation of potential ethical issues 734

to maintain the rationality, impartiality, and social 735

value of research. 736

Our commitment to ethical practices includes 737

ongoing reflection and consideration of the broader 738

social implications of our work. We are dedicated 739

to fostering inclusivity, diversity, and fairness in AI 740

research and applications. 741
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A Designed Prompts and Instances of940

Generated Commonsense Knowledge941

Sentences942

Initially, we designed a prompt that generates com-943

monsense knowledge at once, as shown below:944

P : Please use the word pair (ai, vt) to generate945

five commonsense sentences simultaneously, then946

substitute the word aj with ai to generate the cor-947

responding five sentences. The word count of each948

sentence should not exceed 25.949

In practice, we observed that with a more in-950

tricate prompt, the LLM tends to focus on a spe-951

cific segment of the prompt. The resulting single952

commonsense sentence includes either three words953

from the triple (ai, aj , vt) or incorporates only the954

sole word from the triple. This phenomenon be-955

came notably apparent when generating a large956

number of bundle samples simultaneously. Further-957

more, the generation of a substantial quantity of958

bundle samples with similar components is char-959

acterized by high instability. However, we an-960

ticipate the content in bundle samples to exhibit961

maximum consistency, excluding placeholders (at-962

tribute/target words). In this manner, we aim to963

mitigate the impact on length inconsistency, other964

component words (excluding placeholders), and965

semantics, among bundle samples. Consequently,966

it narrows relative distance between attribute words967

and target words, thereby preserving fairness.968

Hence, we opt for a two-step prompting method.969

By introducing two simplified, comprehensible,970

and clear prompts P1 and P2 (depicted in Fig-971

ure 7), we prevent the LLM from deviating from972

instructions and excessive imagination, ensuring973

better alignment with our specified requirements.974

ai ∈ {a1, a2, · · · , ad}, and aj used for replace-975

ment comes from other d − 1 elements, and vt ∈976

Wt. The generated CK sentences, containing977

(ai, vt), (aj , vt), shape a bundle sample with iden-978

tical target words vt over d-tuple attribute words.979

The prompts are enhanced by imposing the answer980

length and emphasizing logical, creative, and di-981

verse responses, ensuring that the generated sen-982

tences go beyond simple structures and improve983

the overall quality of the extracted sentences.984

In Table 3, we present the resulting bundle sam-985

ples x(n) produced by GPT-3.5-turbo through our986

crafted prompts P1 and P2, which contain our987

specifilized pairwise attribute and target words988

(ai, vt), (aj , vt). Also, their corresponding KNNs989

are provided in Table 3.990

𝑃𝑃1: Please generate ten commonsense knowledge 
sentences containing the words in a tuple (𝑎𝑎𝑖𝑖 , 𝑣𝑣𝑡𝑡)
simultaneously. Control the word count in every 
generated sentence to around 20. The generated 
sentences strive for creativity, diversity, and logic.

𝑃𝑃2:Replace the term 𝑎𝑎𝑖𝑖 to 𝑎𝑎𝑗𝑗, and correct personal 
pronouns in above generated ten sentences.

1.The scientist mothers conducted groundbreaking 
research in the field of genetics.
2.The mothers, who were also scientists, balanced 
their careers with raising their children.

1.The scientist fathers conducted groundbreaking 
research in the field of genetics. 
2.The fathers, who were also scientists, balanced 
their careers with raising their children.

…

…

Figure 7: A two-step prompting for generating com-
monsense knowledge.

B More Derivation Details and Algorithm 991

Process 992

Rx
(n)
i measures the relative distance from sentence 993

x
(n)
i with attribute words a(i) to those sentences 994

with all target words inWt, which is defined as: 995

Rx
(n)
i = Distance(Etarget|ex

(n)
i ) (4) 996

= [pv1|a(i), pv2|a(i), ...] 997

pvj |a(i) =
exp(− ||ea(i)−evj ||2

2ρ2
)∑

vk∈Wt
{exp(− ||ea(i)−evk ||2

2ρ2
)}

(5) 998

where each pvj |a(i) in Rx
(n)
i serves as a normaliza- 999

tion factor, quantifying the extent to which infor- 1000

mation from attribute a(i) can be recovered from 1001

target word vj inMH , and ρ is a hyperparameter. 1002

The Jensen–Shannon divergence used in D1 and 1003

D2 of Section 3.4 is defined as: 1004

JS (p1, p2, . . . , pm) (6) 1005

=
1

m

∑
i

KLD

(
pi∥

p1 + p2 + . . .+ pm
m

)
1006

where p1, p2, . . ., pm are distributions, the Kull- 1007

back–Leibler divergence (KLD) between two dis- 1008

tributions pi, pj is calculated as KLD (pi∥pj) = 1009∑
v∈V pi(v) log

(
pi(v)
pj(v)

)
, and v is the vocabulary 1010

from the PLM. Moreover, the detailed algorithm 1011

process of CK-Debias is provided in Algorithm 1. 1012
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(fraternal, soldiers), (sororal, soldiers) (african people, beauty), (caucasian people, beauty)

Bundle samples P1: In times of war, soldiers rely on their fraternal in-
stincts to protect and defend their comrades, displaying
unwavering bravery and selflessness on the front lines.
P2: In times of war, soldiers rely on their sororal in-
stincts to protect and defend their comrades, displaying
unwavering bravery and selflessness on the front lines.

P1: African people appreciate the beauty of traditional
attire, and romantic occasions often involve dressing in
traditional garments that symbolize cultural pride and
heritage. P2: Caucasian people appreciate the beauty
of traditional attire, and romantic occasions often involve
dressing in traditional garments that symbolize cultural
pride and heritage.

KNNs

P1: During times of war, soldiers display unwavering
loyalty to their countrymen, willingly sacrificing their
own safety and comfort, while remaining submissive
to the chain of command. P2: During times of war,
soldiers display unwavering loyalty to their country-
women, willingly sacrificing their own safety and com-
fort, while remaining submissive to the chain of com-
mand.

P1: Sewing has become a means of social cohesion
for african people, as they come together to sew quilts
and blankets for those in need, promoting solidarity and
compassion. P2: Sewing has become a means of social
cohesion for white people, as they come together to
sew quilts and blankets for those in need, promoting
solidarity and compassion.

P1: Throughout history, men have been drawn to the
allure of becoming warriors, seeking glory on the bat-
tlefield and proving their valor in the face of adversity.
P2: Throughout history, women have been drawn to the
allure of becoming warriors, seeking glory on the bat-
tlefield and proving their valor in the face of adversity.

P1: The owner of a cultural exchange program facili-
tates meaningful interactions between african people
and individuals from different backgrounds, fostering
understanding and appreciation. P2: The owner of a
cultural exchange program facilitates meaningful inter-
actions between caucasian people and individuals from
different backgrounds, fostering understanding and ap-
preciation.

P1: Men who excel as snipers possess a unique blend
of patience, discipline, and tactical thinking, enabling
them to adapt to various scenarios and overcome chal-
lenges. P2: Women who excel as snipers possess a
unique blend of patience, discipline, and tactical think-
ing, enabling them to adapt to various scenarios and
overcome challenges.

P1: The sergeant, a leader with vision, understands that
diversity strengthens the military and actively promotes
the inclusion of black people in all aspects of military
life. P2: The sergeant, a leader with vision, understands
that diversity strengthens the military and actively pro-
motes the inclusion of white people in all aspects of
military life.

P1: Throughout history, great leaders have inspired
their countrymen to be both patriotic and submissive,
fostering a sense of collective responsibility towards the
well-being of their nation. P2: Throughout history, great
leaders have inspired their countrywomen to be both
patriotic and submissive, fostering a sense of collective
responsibility towards the well-being of their nation.

P1: In the world of aviation, black people have excelled
as pilots and skippers, breaking barriers and inspiring
future generations. P2: In the world of aviation, white
people have excelled as pilots and skippers, breaking
barriers and inspiring future generations.

P1: In times of crisis, heros emerge from all walks of
life, including doctors, firefighters, and police officers,
who selflessly put their lives on the line to protect and
serve their communities. P2: In times of crisis, hero-
ines emerge from all walks of life, including doctors,
firefighters, and police officers, who selflessly put their
lives on the line to protect and serve their communities.

P1: The sergeant, a role model for all soldiers, recog-
nizes the unique challenges faced by black people and
provides support and guidance to help them overcome
obstacles. P2: The sergeant, a role model for all soldiers,
recognizes the unique challenges faced by white people
and provides support and guidance to help them over-
come obstacles.

Table 3: The instances of bundle samples and their KNNs over gender, and race cases. The 2-th row represents the
bundle sample, while the rest rows represent their corresponding KNNs.

Bias Type Test Demographic-specific words Stereotype words

Racial

SEAT-3 European-American/African American names Pleasant vs. Unpleasant
SEAT-3b European-American/African American terms Pleasant vs. Unpleasant
SEAT-4 European-American/African American names Pleasant vs. Unpleasant
SEAT-5 European-American/African American names Pleasant vs. Unpleasant

SEAT-5b European-American/African American terms Pleasant vs. Unpleasant

Gender

SEAT-6 Male vs. Female names Career vs. Family
SEAT-6b Male vs. Female terms Career vs. Family
SEAT-7 Male vs. Female terms Math vs. Arts

SEAT-7b Male vs. Female names Math vs. Arts
SEAT-8 Male vs. Female names Science vs. Arts

SEAT-9b Male vs. Female terms Science vs. Arts

Table 4: The SEAT test details extended from (Caliskan et al., 2017).
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Binary Gender Binary Race Multiclass Religion

countrywoman, countryman africa, europe muslim, jewish, christian
heroine, hero black, white muslims, jews, christians
mothers, fathers africa, america quran, torah, bible
her, him black people, white people mosque, synagogue, church
hostess, host african, american imam, rabbi, priest

Table 5: Examples of word pairs to estimate the three types of biases.

Detailed experimental setup. We trained the gen-1013

der debiasing process in 6 hours (4 epochs), 2 hours1014

for the racial case, and 3 hours for the religion case.1015

Here, we provide the sources for the results in1016

Table 1. For the reported SEAT scores, MABEL1017

is derived from its original paper (He et al., 2022).1018

Results for Context-Debias and Auto-Debias on1019

Bert, Albert, and Roberta, as well as FairFil on1020

Bert, are provided by Auto-Debias (Guo et al.,1021

2022). For the reported StereoSet results, Context-1022

Debias, FairFil, and MABEL on Bert are provided1023

by MABEL (He et al., 2022). Results for Auto-1024

Debias on Bert, Albert, and Roberta backbones,1025

as well as Context-Debias on Albert and Roberta,1026

are obtained through our testing. For CrowS-Pairs,1027

Context-Debias, FairFil, and MABEL on Bert are1028

provided by MABEL (He et al., 2022). Results1029

for Auto-Debias on Bert, Albert, and Roberta are1030

sourced from its original paper (Guo et al., 2022),1031

while results for Context-Debias on Albert and1032

Roberta are obtained via our testing based on the pa-1033

rameters provided in their paper. All extrinsic met-1034

rics are obtained through our testing. Note that all1035

Bert results are based on the bert-base-uncased1036

version, thus differing from the results reported in1037

MABEL (bert-base-cased).1038

C Bias Words List1039

We used the gender/race/religion attribute and tar-1040

get words lists proposed in (Kaneko and Bollegala,1041

2021), (Manzini et al., 2019), and (Liang et al.,1042

2020), respectively, which is widely used in debi-1043

asing studies (Guo et al., 2022; Yang et al., 2023).1044

Examples of word pairs are provided in Table 5.1045

D Metrics Details1046

The WEAT metric measures the bias by compar-1047

ing two sets of attribute words Wa (i.e., M and1048

F ) and two sets of target words Wt (i.e., A and1049

B). In the case of gender, M denotes masculine1050

words like “he”, and F denotes feminine words like1051

“she”. Meanwhile, A and B are gender-neutral1052

words (e.g., career or adjectives) whose embed-1053

dings should be equivalent between M and F . For- 1054

mally, bias degree of each word w is defined as: 1055

s(w,A,B) =
1

|A|
∑
a∈A

cos(w, a)− 1

|B|
∑
b∈B

cos(w, b), (7) 1056

where cos(·, ·) denotes the cosine similarity. Based 1057

on Equation (7), the WEAT effect size is: 1058

dWEAT =
µ({s(m,A,B)}m∈M )− µ({s(f,A,B)}f∈F )

σ({s(t, A,B)}t∈A∪B))
,

(8) 1059

where µ and σ denote the mean and standard devi- 1060

ation, respectively. The SEAT metric generalizes 1061

the WEAT via replacing the word embeddings with 1062

a few simple sentence templates (e.g., “This is the 1063

<word>”). We can conclude from Equation (8) that 1064

the absolute SEAT effect size closer to 0 means 1065

lower biases. We list more details about the SEAT 1066

tests that are used in our experiments in Table 4, 1067

which are adapted from (Caliskan et al., 2017). 1068

CrowS-Pairs contains sentence pairs regarding 1069

stereotype/anti-stereotype but with semantics clos- 1070

est to each other, and its score closer to 50% is less 1071

stereotypical, indicating that the model assigns an 1072

equal probability to male and female sentences. 1073

StereoSet assesses a language model’s expressive- 1074

ness and biases using cloze tests, selecting stereo- 1075

typical, anti-stereotypical, and unrelated words, in- 1076

cluding three metrics: Language Modeling Score 1077

(LM), indicating expressiveness by word relevancy 1078

frequency (higher scores signify better perfor- 1079

mance); Stereotype Score (SS), measuring bias 1080

by the frequency of selecting stereotypical words 1081

(scores near 50 indicate less bias). The Idealized 1082

Context Association Test (ICAT) combines LM 1083

and SS, providing a comprehensive metric where 1084

a perfect score of 100 denotes high expressiveness 1085

with minimal bias. 1086

WinoBias (Zhao et al., 2018) assesses intra- 1087

sentence coreference resolution by examining a 1088

system’s ability to accurately link a gendered pro- 1089

noun to an occupation within both pro- and anti- 1090

stereotypical contexts. Coreference resolution in- 1091

volves identifying connections based on syntactic 1092
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cues in Type 1 sentences and more complex se-1093

mantic cues in Type 2 sentences. Our approach1094

involves initial model fine-tuning on the OntoNotes1095

5.0 dataset (Hovy et al., 2006) followed by eval-1096

uation using WinoBias benchmark. We present1097

average F1-scores on OntoNotes and for pro- and1098

anti-stereotypical instances, along with the true1099

positive rate difference in average F1-scores across1100

Type 1 and Type 2 examples. The metrics 1 =1101

Type 1; 2 = Type 2, A = Anti-stereotypical; P =1102

Pro-stereotypical; TPR = Ture Positive Rate.1103

E How to Apply KNNs to Estimate the1104

Causal Effect?1105

Our rationale for aligning the commonsense ex-1106

tracted from LLM with PLM involves matching1107

KNNs based on the PLM’s parameters. In the pre-1108

training stage of the BERT model, [CLS] token1109

embedding is employed as an aggregate represen-1110

tation of the entire sentence, which is expected to1111

distinguish between different sentences and to cap-1112

ture crucial high-level semantics. Therefore, for the1113

KNNs process, we first acquire [CLS] token em-1114

bedding of all generated commonsense knowledge1115

sentence samples from pre-trained BERT model.1116

Subsequently, we calculate the similarity between1117

each pair of samples based on their [CLS] token1118

embedding. Finally, we identify the K nearest1119

neighbors and obtain the corresponding K similar-1120

ity scores {Sk}Kk=1 for each CK sample.1121

Pre-defined threshold. However, if the similarity1122

score Sk of a specific anchor sample does not ex-1123

ceed a pre-defined threshold θ, we filter the k-th1124

neighbor of this sample, as this indicates a per-1125

ceived absence of collision effects with the pre-1126

training data of the BERT model. In contrast, we1127

retain the remaining neighbors, as they are deemed1128

to exhibit a significant correlation with the BERT1129

pre-training data. This filtering means the greater1130

the similarity scores {Sk}Kk=1, the more similar1131

samples satisfy the threshold, and the more aligned1132

commonsense knowledge shared by BERT models1133

and LLM (e.g., ChatGPT). In the end, we estimate1134

the colliding effect Φ between BERT’s pre-trained1135

data P and aligned CKXC with the joint prediction1136

of KNN samples. In practical implementation, we1137

set K to 5, and θ serves as a hyper-parameter (we1138

experimented with values {215, 220, 225, 227}),1139

guiding the partition between XC with colliding1140

effect and XNC without colliding effect.1141

Accelerating similarity calculation. Due to the1142

large volume of CK sentences extracted from LLM, 1143

the traditional method (i.e., cosine similarity or 1144

Euclidean distance) for calculating the similarity 1145

matrix can be time-consuming. To tackle this is- 1146

sue, we utilize the Faiss (Facebook AI Similarity 1147

Search), a library designed for efficient similarity 1148

search and clustering of dense vectors. Faiss is 1149

instrumental in accelerating the process and man- 1150

aging large-scale vector datasets effectively, which 1151

retrieves top-K similar vectors from large-scale 1152

vector datasets by constructing an index for the 1153

base vector data. In our experiment, the top-K ma- 1154

trix computation for 100k sentence embeddings is 1155

completed in just six minutes. 1156

F Example of the Most Biased Prompts 1157

We find the most biased prompts XBP from XNC , 1158

and devise the specific loss function to enhance the 1159

bias avoidance capability of PLMs, which resemble 1160

adversarial training (Yi et al., 2021). In our practi- 1161

cal implementation, we first compute the disagree- 1162

ment of target words vt ([MASK]) over each bun- 1163

dle sample x(n) regarding different demographic 1164

groups ai, aj , and then sort all disagreements (i.e. 1165

probability) in unaligned knowledge sentences in 1166

descending order. Finally, we select the top 0.55 1167

of the prompts as the most biased prompts. Some 1168

most biased prompts XBP are provided in Table 9. 1169

Note that for enhancing the bias avoidance capacity, 1170

we initially tried to directly extract biased knowl- 1171

edge from LLMs, given that LLMs prevent harm- 1172

ful text generation, we shifted to this alternative 1173

strategy, which also better utilizes the generated 1174

commonsense knowledge. It is worth noting that 1175

we cannot observe bias in the semantics from the 1176

provided examples, as the bias is implicit and mea- 1177

sured by probability within the model itself. 1178

G The Results of Race and Religion Cases 1179

We consistently achieve debiasing results and main- 1180

tain language modeling capability in both racial and 1181

religious cases, similar to the gender case discussed 1182

in our main text (cf. Section 4). 1183

For the racial case, we employ backbones in- 1184

cluding BERT, and ALBERT to examine our CK- 1185

Debias debiasing framework. Following prior 1186

works (Guo et al., 2022; Zhou et al., 2023), 1187

we report the degree of racial bias in the de- 1188

biased models across SEAT 3, 3b, 4, 5, and 1189

5b. The racial SEAT test examines associations 1190

between European-American/African-American 1191
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names/terms and stereotype words (pleasant vs. un-1192

pleasant). The results in Table 6 show that the debi-1193

asing effect of CK-Debias surpasses that of Auto-1194

Debias, yielding superior results. Specifically, in1195

the BERT backbone, CK-Debias successfully miti-1196

gates racial bias in 4 out of 5 SEAT sub-tests, result-1197

ing in a notable decrease in the average score from1198

0.23 to 0.16. Remarkably, CK-Debias significantly1199

reduces bias across all SEAT in ALBERT.1200

For the religious case, following previous1201

works (Liang et al., 2020; Yang et al., 2023), we1202

perform CK-Debias in BERT backbone and use the1203

MAC score to evaluate the degree of religious bias1204

in the debiased model. The results reported in Table1205

7 demonstrate the effectiveness of CK-Debias in1206

mitigating religious bias, as the MAC score has an1207

increase of 0.04 compared to Sent-Debias.1208

We also explore the debiasing effects and model1209

expressiveness by examining the correlations in re-1210

ligious/racial vocabulary, as shown by the t-SNE vi-1211

sualization in Fig. 8 and Fig. 9, respectively. From
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Figure 8: t-SNE visualization in the religion domain.
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Figure 9: t-SNE visualization in the racial domain.
1212

Fig. (8b), we can conclude that CK-Debias ef-1213

fectively preserves the relative distances between1214

words while narrowing the gap between the triple1215

attribute words represented by Islam, Judaism, and1216

Christianity. In contrast, as depicted in Fig. (8a),1217

ADEPT merely minimizes the distance between Is-1218

lam and Judaism. Furthermore, from Fig. (9a) and1219

Fig. (9b), we observe that CK-Debias effectively1220

reduces the distance between oppositional attribute1221

words (e.g., Black and White people), surpassing1222

the performance of Auto-Debias.1223

H More GLUE Results 1224

Due to space constraint, we only report three 1225

GLUE tasks in Section 4, including sentiment 1226

classification task SST-2, grammatical acceptabil- 1227

ity judgment task CoLA, question-answering task 1228

QNLI. The additional GLUE tasks are reported 1229

in Table 8, including RTE (Recognizing Textual 1230

Entailment) task, determining whether the hypoth- 1231

esis sentence can be inferred from the premise 1232

sentence or not; WNLI (Winograd Schema Chal- 1233

lenge - Pronoun Disambiguation), resolving pro- 1234

noun references in sentences by understanding the 1235

context; QQP (Quora Question Pairs), determining 1236

whether question pairs are semantically equivalent 1237

or not. We can observe CK-Debias outperforms 1238

other methods in most cases, indicating the preser- 1239

vation of language understanding. 1240

Methods SEAT-3 SEAT-3b SEAT-4

BERT -0.10 0.37 0.21
+AUTO-DEBIAS 0.25 0.19 0.12
+CK-DEBIAS (ours) 0.17 0.18 0.07

ALBERT 0.60 0.29 0.53
+AUTO-DEBIAS 0.10 0.12 0.19
+CK-DEBIAS (ours) 0.12 0.14 0.08

SEAT-5 SEAT-5b Avg.

BERT 0.16 0.34 0.23
+AUTO-DEBIAS 0.15 0.17 0.18
+CK-DEBIAS (ours) 0.24 0.14 0.16

ALBERT 0.40 0.46 0.46
+AUTO-DEBIAS 0.26 0.19 0.17
+CK-DEBIAS (ours) 0.21 0.14 0.14

Table 6: Race debiasing performance on SEAT.

Model MAC

BERT 0.035
+Sent-Debias 0.37
+CK-Debias(ours) 0.41

Table 7: Religion debiasing results on MAC metric
(ranging from 0 to 2, closer to 1 indicates lower bias).

Methods RTE WNLI QQP

BERT 58.1 55.1 90.2
+AUTO-DEBIAS 60.2 56.1 91.1
+CAUSAL-DEBIAS 62.5 55.4 91.5
+CK-DEBIAS (ours) 64.3 57.7 90.8

ALBERT 74.4 55.2 91.1
+AUTO-DEBIAS 75.1 58.3 92.1
+CAUSAL-DEBIAS 74.6 57.6 91.5
+CK-DEBIAS (ours) 75.6 58.8 91.8

Table 8: More GLUE results over benchmarks.
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Attribute words Most Biased Prompts Examples

(lasses, lads) During a neighborhood watch meeting, the A discussed ways to improve the
relationship between the community and the [MASK], aiming for a safer and
more harmonious environment.

(businesswoman, businessman) The visionary A and [MASK] recognized the potential of renewable energy
sources early on, investing heavily in solar and wind power projects that not only
generated substantial profits but also contributed to a greener future.

(motherhood, fatherhood) The joy of A can be compared to the satisfaction a [MASK] feels when solving
a difficult equation, as both experiences require perseverance and a sense of
accomplishment.

(woman, man) When traveling, a A should pack versatile [MASK] that can be easily mixed and
matched, allowing him to create various outfits with minimal luggage, ensuring
both practicality and style.

(cow, bull) The [MASK]’s acrobatic flips and jumps mesmerized the A, momentarily distract-
ing it from its aggressive nature.

Table 9: Examples of most biased prompts XBP in gender case. A represents one element of gender attribute words
from the first column.

Algorithm 1 CK-Debias.
Require: Pre-trained language modelM, n-steps prompts Pi , attribute word tuples
1: Wa = {(a(1)

1 , a
(1)
2 , · · · , (a(1)

d ), a
(2)
1 , a

(2)
2 , · · · , a(2)

d ), · · · }, target wordsWt = {v1, v2, · · · }.
Ensure: Debiased Language ModelM′;
2: Bias-related sentences from LLM: X(1), containing (a

(1)
i , vt);

3: Corresponding bias-related sentences with specific attribute words replacement from LLM: X(2), containing (a
(2)
j , vt) ;

4: Compute the KNNs for each sample x(i) withM;
5: for x(i,j) in neighbor do
6: if similarity(x(i), x(i,j)) ≥ θ then
7: append x(i,j) to XC ;
8: else
9: continue

10: end if
11: end for
12: Divide the data X into XC with Colliding Effect and XNC without Colliding Effect

13: Search for the most biased prompt XBP ← Topratio

{
JSD(px

(n)
i ||px

(n)
j ), n ∈ {1, 2, . . .}

}
14: for Epoch in 1, 2, · · · do
15: Compute debiasing loss LBias with data XC and data XBP according to Eq. (2);
16: Compute representation loss LRe according to Eq. (3);
17: Compute overall training loss L according to Eq. (4);
18: Compute gradient;
19: Debias language model.
20: end for
21: return Debiased Language ModelM′.
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