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ABSTRACT

Blind image deconvolution is a challenging ill-posed inverse problem, where both
the latent sharp image and the blur kernel are unknown. Traditional methods often
rely on handcrafted priors, while modern deep learning approaches typically re-
quire extensive pre-training on large external datasets, limiting their adaptability
to real-world scenarios. In this work, we propose DeblurSDI, a zero-shot, self-
supervised framework based on self-diffusion (SDI) that requires no prior training.
DeblurSDI formulates blind deconvolution as an iterative reverse self-diffusion
process that starts from pure noise and progressively refines the solution. At each
step, two randomly-initialized neural networks are optimized continuously to re-
fine the sharp image and the blur kernel. The optimization is guided by an ob-
jective function combining data consistency with a sparsity-promoting ℓ1-norm
for the kernel. A key innovation is our noise scheduling mechanism, which stabi-
lizes the optimization and provides remarkable robustness to variations in blur ker-
nel size. These allow DeblurSDI to dynamically learn an instance-specific prior
tailored to the input image. Extensive experiments demonstrate that DeblurSDI
consistently achieves superior performance, recovering sharp images and accurate
kernels even in highly degraded scenarios.

1 INTRODUCTION

Image deblurring is a fundamental task in computer vision, aiming to recover a sharp image from a
blurred observation. The blur can arise from various sources, such as camera shake, object motion,
or defocus, whose degradation model is typically formulated with the convolution between the latent
sharp image and the blur kernel. In blind image deconvolution, both image and kernel are unknown
and must be jointly estimated from a blurry image alone, which is a particularly challenging ill-
pose inverse problem. Traditional blind deblurring methods rely on handcrafted priors, such as
gradient sparsity (Fergus et al., 2006) or variational Bayesian frameworks (Levin et al., 2007), and
are effective for simple blur scenarios but can be sensitive to complex blurs and noise. In contrast,
modern deep learning approaches leverage large-scale datasets to learn complex mappings from
blurred to sharp images (Nah et al., 2017; Kupyn et al., 2018; Laroche et al., 2024). However,
these methods often require extensive pre-training, which limits their generalization to new blur
types or real-world conditions with varying blurring conditions. More recently, a different line of
research has emerged that applies the principles of Deep Image Prior (DIP) to this task (Ren et al.,
2020). While these methods optimize a randomly-initialized network to fit a single observed image,
leveraging its implicit structure as a regularizer without external training data, they are often sensitive
to the joint optimization process and require careful adjustment of parameters, such as the kernel
size, which poses a significant challenge for practical applications.

In this work, we introduce DeblurSDI, a novel framework that uniquely addresses the challenges of
blind image deblurring. Our primary contribution is the reformulation of this ill-posed problem as a
zero-shot, reverse self-diffusion process, which allows for dynamic, instance-specific optimization
without reliance on large training datasets. To overcome the inherent instability of jointly estimating
the image and blur kernel, we introduce a novel noise scheduler for both the image and kernel prior
networks. This design is central to our method’s success, providing exceptional robustness to varia-
tions in blur kernel size—a significant limitation of prior methods. Through extensive experiments,
we demonstrate that DeblurSDI consistently recovers sharp images and accurate kernels.
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2 RELATED WORK

Blind image deblurring has been extensively studied under probabilistic frameworks, with Varia-
tional Bayes (VB) methods being a prominent approach (Fergus et al., 2006). VB-based techniques
model both the latent sharp image and the blur kernel as random variables and estimate their pos-
terior distributions, often incorporating priors for image gradients. A drawback is that they can be
more sensitive to initialization and may converge to local minima, limiting their performance in
challenging scenario. Deep Image Prior (DIP) methods have also been explored, where a randomly-
initialized convolutional network is optimized to fit the blurred image, using the network’s implicit
structure as a regularizer (Ulyanov et al., 2018). These methods can be prone to overfitting to noise
and artifacts if not properly regularized or early-stopped.

In recent years, deep learning techniques have emerged as powerful alternatives to traditional VB
and MAP-based blind deblurring methods. Unlike classical approaches that rely on hand-crafted pri-
ors, deep networks are capable of learning complex image statistics and blur distributions directly
from large-scale datasets. Early works, such as multi-scale convolutional networks proposed by
Nah et al. (2017), aim to directly restore sharp images from blurry inputs in an end-to-end fashion,
bypassing explicit kernel estimation. These methods leverage hierarchical features to handle spa-
tially varying blur and have demonstrated significant improvements over conventional approaches in
both qualitative and quantitative evaluations. Another line of research focuses on explicitly predict-
ing the blur kernel using neural networks. Sun et al. (2015) proposed a patch-wise kernel prediction
strategy, where the network estimates local blur kernels that are subsequently used for non-blind
deconvolution. More recent works explore unsupervised or self-supervised learning schemes, incor-
porating cycle-consistency or reconstruction losses to mitigate domain gaps between synthetic and
real-world data Kupyn et al. (2018); Tao et al. (2018).

Recently, diffusion models have emerged as powerful generative priors for solving blind image de-
blurring. (Murata et al., 2023) proposed GibbsDDRM, a partially collapsed Gibbs sampler that
alternates between diffusion-based image restoration and analytical updates of the degradation pa-
rameters. (Whang et al., 2022) introduced a stochastic refinement strategy that leverages diffusion
sampling to iteratively improve deblurring quality. (Ren et al., 2023) further extended this line of
work with a multiscale, structure-guided diffusion model that improves convergence and preserves
fine details. More recently, (Laroche et al., 2024) combined diffusion models with an Expectation–
Maximization framework, where the E-step samples the latent sharp image distribution using a
diffusion prior and the M-step updates the blur kernel via a MAP estimation. Overall, deep learn-
ing approaches have demonstrated remarkable performance in blind image deblurring by learning
flexible priors for both latent images and blur kernels. However, their performance can still degrade
when faced with severe blur, unseen motion patterns, or domain shifts between training and test
data.

3 BLIND DEBLURRING VIA SELF-DIFFUSION

This work addresses blind image deblurring by extending the self-diffusion framework, a general,
zero-shot approach for solving inverse problems Luo & Huang (2025). The original self-diffusion
method was designed for non-blind problems where the degradation operator is known. Our key
contribution is to adapt this powerful framework to the more challenging blind deconvolution setting,
where the degradation operator—specifically the blur kernel—is also unknown. To achieve this, we
introduce a novel process that jointly recovers the clean image and the blur kernel by optimizing two
coupled, untrained neural networks within a self-contained reverse diffusion process.

3.1 SELF-DIFFUSION

Self-diffusion is a training-free paradigm designed to solve general linear inverse problems of the
form Axtrue = y, where A is a known forward operator, xtrue is the unknown solution, and y is
the observation. It operates via an iterative reverse diffusion process that starts from pure Gaussian
noise. At each step t, a noisy version of the current estimate xt is created with

x̂t = xt + σt · ϵt .
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A single, randomly initialized network at the first time step—the denoiser Dθ—is then optimized
continuously by minimizing a data fidelity loss with respect to the original observation y for each
time step t,

Lt(θ) = ∥ADθ,t(x̂t)− y∥22 .

The effectiveness of this process stems from a principle known as noise-regulated spectral bias. The
noise schedule σt implicitly regularizes the optimization, forcing the network to first learn low-
frequency components and progressively refine high-frequency details in a multi-scale manner.

3.2 JOINT IMAGE AND KERNEL ESTIMATION

The forward model for blind image deblurring is given by

y = xtrue ⊛ k+ n ,

where the sharp image xtrue ∈ RH×W×C and the blur kernel k ∈ RK×K are both unknown. To
adapt the self-diffusion framework to this blind setting, we must estimate both variables simulta-
neously. We achieve this by employing two dedicated, randomly initialized networks: an image
denoiser Dθ to restore xtrue, and a kernel generator Gϕ to produce k. Our method simulates a re-
verse diffusion process over T discrete time steps, starting with random noise for both the image
estimate, xT , and the kernel estimate, zT . At each time step t ∈ {T, T − 1, ..., 1}, the current
estimates are perturbed with scheduled noise,

x̂t = xt + σt · ϵx, and ẑt = zt + σ′
t · ϵz,

where ϵx ∼ N (0, I) and ϵz ∼ N (0, I). The noise schedule is σt =
√
1− ᾱt, where ᾱt =

∏t
i=0(1−

βi) and βt = βend +
t

T−1 (βstart − βend), and σ′
t = µσt, µ = 0.15. While the standard self-diffusion

loss relies solely on data fidelity, the joint estimation of x and k is a severely ill-posed problem that
requires additional constraints. Therefore, we augment the loss with an ℓ1 term for the kernel. The
networks are jointly optimized within an inner loop by minimizing the following objective:

Lt(θ, ϕ) = ∥(Dθ(x̂t)⊛Gϕ(ẑt))− y∥22 + λkR(Gϕ(ẑt))

After the inner optimization loop, the improved networks produce cleaner estimates for the next time
step, xt−1 = Dθ(x̂t) and zt−1 = Gϕ(ẑt), continuing the coarse-to-fine reconstruction inherent to
the self-diffusion process. The detailed algorithm is presented in Algorithm 1.

Algorithm 1 Blind Deblurring using self-diffusion (DeblurSDI)
Require: Blurry image y, total steps T , inner iterations S, learning rate η, ℓ1 weights λk

1: Initialize:
2: Image estimate xT ∼ N (0, I); Dθ with random weights θ
3: Kernel estimate zT ∼ N (0, I); Gϕ with random weights ϕ
4: Adam optimizer for (θ, ϕ)
5: Noise schedule σt for t ∈ {1, ..., T}
6: for t = T, T − 1, ..., 1 do
7: Sample noise ϵx, ϵz ∼ N (0, I)
8: Create noisy inputs: x̂t ← xt + σt · ϵx, and ẑt ← zt + σ′

t · ϵz
9: for s = 1, ..., S do

10: Generate kernel: k← Gϕ(ẑt)
11: Compute denoised image: xt ← Dθ(x̂t)
12: Calculate loss: L(θ, ϕ)← ∥(xt ⊛ k)− y∥22 + λkR(k)
13: Update parameters via gradient descent: (θ, ϕ)← (θ, ϕ)− η∇(θ,ϕ)L(θ, ϕ)
14: end for
15: Update image estimate: xt−1 ← Dθ(x̂t)
16: Update kernel latent code: zt−1 ← Gϕ(ẑt)
17: end for
18: return Reconstructed image x← x0 and final blur kernel k← k0

3
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4 IMPLEMENTATION AND ANALYSIS

4.1 NETWORK ARCHITECTURE AND TRAINING

Due to the low-dimensional nature of the blur kernel, we employ a fully-connected network (FCN)
to implement the kernel generator, Gϕ. To ensure the output corresponds to a physical blur kernel,
a softmax activation is applied to the final layer, enforcing non-negativity and a sum-to-one con-
straint. The 1D output of Gϕ is subsequently reshaped into a 2D blur kernel. Besides, we introduced
standard mode for ablation study where the latent vector z is sampled from a normal distribution
and kept fixed during training, and diffusion mode where the zt evolves through the self-diffusion
process. K is the kernel size, n is the number of hidden layers and Hd is the hidden dimension size.
Figure 1 shows how the architecture of Gϕ affects the performance of DeblurSDI. For the image

Table 1: The architecture of the kernel generator Gϕ

Mode Layer Specification

Standard
Input z ∈ R200 ∼ N (0, I)
Hidden layer Linear(200, 2000); ReLU6
Output layer Linear(2000, K ×K); Softmax

Diffusion

Input zt ∈ RK×K

Hidden layer 1 Linear(K ×K, Hd); ReLU
Hidden layer 2 Linear(Hd, Hd); ReLU
. . . . . .
Hidden layer n Linear(Hd, Hd); ReLU
Output layer Linear(Hd, K ×K); Softmax

denoiser Dθ, we employ an encoder-decoder network with skip connections, following a U-Net-like
structure. The network consists of five hierarchical levels. Each level in the encoder path consists
of two convolutional blocks and a stride-2 convolution for downsampling. Correspondingly, the de-
coder path uses bilinear upsampling. Skip connections concatenate features from each encoder level
to the corresponding decoder level. Non-Local Blocks are integrated into the deeper encoder levels
(levels 3, 4, and 5) to capture long-range dependencies. The architecture is detailed in Appendix B.

K
er
n
el

Standard K-diff, n=1 K-diff, n=2 K-diff, n=3 K-diff, n=5 Reference

Im
ag
e

Figure 1: Ablaion study on the network for blur kernel estimation. This figure compares the perfor-
mance of the “Standard” mode against the “Diffusion” mode architecture with a varying number of
hidden layers (n = 1 to n = 5). The results clearly indicate that increasing the depth of the kernel
generator network leads to a more accurate kernel estimation

We use a single Adam optimizer to jointly update the parameters of both the image denoiser, Dθ, and
the kernel generator, Gϕ. The initial learning rate for the image denoiser Dθ is set to 1× 10−3. The
kernel generator Gϕ uses a lower learning rate, typically 25% of the denoiser’s rate (i.e., 2.5×10−4),
as the small change in the kernel can make a bigger impact on the image. The smaller learning
rate helps stable convergence of the kernel estimate. Furthermore, we employ an optional adaptive
learning rate schedule for the kernel generator. The learning rate is decayed by a factor of 0.95 at

4
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the end of each outer time step t, down to a minimum threshold of 1× 10−5. The L1 regularization
weight for the kernel prior is set to λk = 2 × 10−3. The noise level σt for the image perturbation
at each step t is determined by a pre-defined variance schedule. Following common practice in
diffusion models, we use a linear schedule where the variance βt interpolates from βstart = 1×10−4

to βend = 2× 10−2 over T steps. The noise level σt is then derived from the cumulative product of
these variances.

4.2 HYPERPARAMETERS SENSITIVITY

The number of outer diffusion steps T and inner optimization iterations S are two critical hyper-
parameters that directly impact both the reconstruction quality and computational cost. Intuitively,
more diffusion steps allow for a finer coarse-to-fine reconstruction, while more inner iterations en-
able better convergence of the networks at each step. However, increasing either parameter also
leads to longer runtimes. To evaluate the sensitivity of our method to these parameters, we conduct
experiments varying T from 10 to 40 and S from 25 to 500. As shown in Figure 2, performance
improves with higher values of T and S. The most significant gains occur when increasing T from
10 to 30. However, the improvements tend to saturate beyond certain thresholds (e.g., T = 30,
S = 400), with the performance curve for T = 40 closely tracking that of T = 30. This indicates
that our approach can achieve strong deblurring performance without requiring excessively high
iteration counts.

Figure 2: Sensitivity of noise steps, T , and inner iterations, S. The graphs show the SSIM (left) and
PSNR (right) scores for different numbers of outer diffusion steps (T ∈ {10, 20, 30, 40}) and inner
optimization iterations (S ∈ {25, ..., 500}).

4.3 DEBLURRING PROCESS

Figure 3 shows the evolution of estimates of image and kernel through the deblurring process. The
left and right subfigures shows the SSIM and PSNR between the original image and the reconstruc-
tion over noise steps. The estimates of images and kernels at noise steps 5, 10, 15, 20, 30 are shown
on the top. Unlike traditional optimization processes where evaluation metrics typically increase
monotonically, our curves exhibit an up-down-up behavior (especially for PSNR curve), which is
attributed to the noise scheduling strategy. By injecting noise into intermediate reconstruction re-
sults, we effectively enlarge the search space of the inverse solution. The initial reconstructions
are smooth and lack fine detail, while later steps recover sharper features. This aligns with the
coarse-to-fine nature of self-diffusion.

Figure 3: Evolution of image and kernel estimates during DeblurSDI’s reverse diffusion process.

5
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4.4 ROBUSTNESS TO KERNEL SIZE

The joint estimation of the image denoiser and the blur kernel often collapses to trivial solutions,
such as Dirac kernels or reproducing the blurred image itself, especially when the chosen kernel
size is incompatible with the image content. Larger kernels are harder to be recovered accurately,
while smaller kernels may fail to capture long-range motion. For this reason, SelfDeblur (Ren
et al., 2020) carefully selects the kernel size for each image. In contrast, our method exhibits much
greater robustness. As shown in Figure 4, we evaluate ten different kernel sizes from 15 to 33, and
compare the performance of several approaches. Our method not only achieves consistently superior
performance across all kernel sizes but also demonstrates remarkable stability.

Figure 4: Performance and stability comparison across different kernel sizes. The graphs show the
SSIM (left) and PSNR (right) scores for five deblurring methods evaluated on kernel sizes ranging
from 15 to 33. Our method, DeblurSDI (blue), consistently achieves the highest scores and demon-
strates remarkable stability, with its performance remaining largely unaffected by changes in kernel
size. In contrast, other methods exhibit significant volatility, underscoring the superior robustness
of our approach.

5 EVALUATION

5.1 DATASET

To systematically evaluate the performance of our method, we collected four datasets including
Levin (Levin et al., 2007), Cho (Cho & Lee, 2009), Kohler (Köhler et al., 2012), and FFHQ (Kar-
ras et al., 2019). The first three datasets are widely used benchmarks for blind image deblurring,
containing various synthetic blur kernels applied to natural images. The FFHQ dataset consists of
20 random selected human face images and 4 blur kernels from Cho (Cho & Lee, 2009). For our
experiments, we use T = 30 outer reverse diffusion steps. At each step, we run S = 200 inner
optimization iterations. For each dataset, we use the provided blur kernels and generate blurred
images by convolving the sharp images with these kernels to simulate real-world conditions. Each
blur kernel is applied to every image in the dataset. The details of our comprehensive datasets are
shown in Table 2.

Table 2: Details of datasets for evaluation
Image size Kernel Size Pairs

Levin1 255×255 (19, 17, 15, 27, 13, 21, 23, 23) 32
Cho2 622×463, 780×580, 1006×665, 1002×661 (27, 23, 19, 21) 16

Kohler3 800×800 (16, 14, 9, 13, 29, 17, 19, 98, 102, 62, 40, 29) 36
FFHQ4 256×256 (27, 23, 19, 21) 80
Total - - 128

1(Levin et al., 2007) 2(Cho & Lee, 2009) 3(Köhler et al., 2012) 4(Karras et al., 2019)

5.2 COMPARISON WITH OTHER METHODS

We compare our DeblurSDI method with several other blind deblurring approaches, including
Phase-Only (Pan et al., 2019), FFT-ReLU Deblur (Al Radi et al., 2025), SelfDeblur (Ren et al.,
2020), and FastDiffusionEM (Laroche et al., 2024). We evaluate the performance of each method

6
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using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) on the
four datasets mentioned above. The quantitative results are summarized in Table 3. Rather than
setting specific kernel size for each image (Ren et al., 2020), we set a fixed kernel size for each
dataset, i.e., 27 for Levin, 33 for Cho, Kohler and FFHQ. As shown in the table, our DeblurSDI con-
sistently outperforms all compared methods across all datasets, achieving significant improvements
in both PSNR and SSIM metrics. This demonstrates the effectiveness and generalizability of our
self-diffusion approach in recovering sharp images and accurate blur kernels.

Table 3: Quantitative results of blind deblurring performance (PSNR/SSIM) on four datasets.
Phase-Only1 FFT-ReLU Deblur2 SelfDeblur3 FastDiffusionEM4 DeblurSDI (Ours)

Levina 20.68/0.6061 15.56/0.3845 25.06/0.7301 16.55/0.4005 31.85/0.7911
Chob 19.89/0.6746 18.73/0.6546 20.37/0.6844 15.39/0.4687 28.73/0.8859
Kohlerc 28.23/0.8092 25.33/0.7140 21.97/0.5995 18.85/0.4813 29.17/0.7653
FFHQd 25.80/0.7904 21.71/0.6579 19.82/0.5563 15.59/0.3592 33.90/0.9064

1 (Pan et al., 2019), 2 (Al Radi et al., 2025), 3 (Ren et al., 2020), 4 (Laroche et al., 2024)
a (Levin et al., 2007), b (Cho & Lee, 2009), c (Köhler et al., 2012), d (Karras et al., 2019)

Blurred FastDiffusionEM PhaseOnly FFTReLU Deblur SelfDeblur DeblurSDI (Ours) Ground Truth

Figure 5: Deblurring results on the FFHQ dataset (Karras et al., 2019).
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Figure 5 shows deblurring results of different methods on the FFHQ dataset (Karras et al., 2019).
For each estimated image, the recovered kernel is displayed at the top-left corner, and three zoomed-
in regions highlight fine details. As observed, FastDiffusionEM (Laroche et al., 2024) performs the
worst. Despite being pre-trained on the FFHQ dataset, its performance remains poor: the estimated
kernels degenerate into trivial point- or line-like structures. Without reliable kernel estimation,
even a strong image prior cannot yield satisfactory deblurring. In contrast, other four optimization-
based methods produce visibly superior results. PhaseOnly (Pan et al., 2019) and FFTReLU Deblur
(Al Radi et al., 2025) provide good results in some cases, but lack of robustness when facing various
blur kernels. SelfDeblur (Ren et al., 2020) shows the most promising performance out of previ-
ous methods, yet still suffers from poor generalizability, reconstruction shiftting and color distor-
tion. The proposed self-diffusion-based DeblurSDI method consistently outperforms all compared
methods, achieving significant improvements in the long-standing shiftting and robustness issues
of blind deblurring techniques. Moreover, DeblurSDI is also able to recover accurate blur kernels,
which gurantees the performance of the method. More results of other three datasets can be found
in Appendix C.

6 CONCLUSION

This paper presents a novel self-diffusion-based approach for blind image deblurring, which we call
DeblurSDI. Our method leverages the self-diffusion principle to recover accurate blur kernels and
sharp images in a single framework. Experimental results on four benchmark datasets show that De-
blurSDI consistently outperforms other blind deblurring methods on various datasets, demonstrating
its effectiveness and generalizability in recovering sharp images and accurate blur kernels.
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A LLM USAGE STATEMENT

We used a large language models only to refine grammar and improve the clarity of language in this
manuscript. No part of the research ideation, experiment design, or analysis was performed by an
LLM.

B ARCHITECTURE OF THE IMAGE DENOISER (Dθ)

Table 4: The architecture of the image denoiser Dθ, consisting of five encoder units (ei) and five
decoder units (di). The form is Conv(input channels, output channels, kernel size).

Layer Specification

Input Noisy image x̂t ∈ RC×H×W

Output Denoised image xt−1 ∈ RC×H×W

Encoder unit 1 e1(·, 128, 3)
Encoder unit 2 e2(128, 128, 3)
Encoder unit 3 e3(128, 128, 3)
Encoder unit 4 e4(128, 128, 3)
Encoder unit 5 e5(128, 128, 3)
Decoder unit 5 d5(128, 128, 3)
Decoder unit 4 d4(128, 128, 3)
Decoder unit 3 d3(128, 128, 3)
Decoder unit 2 d2(128, 128, 3)
Decoder unit 1 d1(128, 128, 3)
Output layer Conv(128, C, 1); Sigmoid

C MORE RESULTS

Blurred FastDiffusionEM PhaseOnly FFTReLU Deblur SelfDeblur DeblurSDI (Ours) Ground Truth

Figure 6: Deblurring results on the Cho dataset (Cho & Lee, 2009).
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Blurred FastDiffusionEM PhaseOnly FFTReLU Deblur SelfDeblur DeblurSDI (Ours) Ground Truth

Figure 7: Deblurring results on the Kohler dataset (Köhler et al., 2012).

Blurred FastDiffusionEM PhaseOnly FFTReLU Deblur SelfDeblur DeblurSDI (Ours) Ground Truth

Figure 8: Deblurring results on the Levin dataset (Levin et al., 2007).
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