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Abstract

In this work, we study whether multilingual
language models (MultiLMs) can transfer logi-
cal reasoning abilities to other languages when
they are fine-tuned for reasoning in a different
language. We evaluate the cross-lingual rea-
soning abilities of MultiLMs in two schemes:
(1) where the language of the context and the
question remain the same in the new languages
that are tested (i.e., the reasoning is still mono-
lingual, but the model must transfer the learned
reasoning ability across languages), and (2)
where the language of the context and the ques-
tion is different (which we term code-switched
reasoning). On two logical reasoning datasets,
RuleTaker and LeapOfThought, we demon-
strate that although MultiLMs can transfer rea-
soning ability across languages in a monolin-
gual setting, they struggle to transfer reasoning
abilities in a code-switched setting. Following
this observation, we propose a novel attention
mechanism that uses a dedicated set of param-
eters to encourage cross-lingual attention in
code-switched sequences, which improves the
reasoning performance by up to 14% and 4%
on the RuleTaker and LeapOfThought datasets,
respectively.1

1 Introduction

Recent studies show that language models (LMs)
are capable of logically reasoning over natural lan-
guage statements (Clark et al., 2020b), reasoning
with their implicit knowledge (Talmor et al., 2020),
and performing multi-step reasoning via chain-of-
thought prompting when the model size is large
enough (Wei et al., 2022b; Kojima et al., 2022; Wei
et al., 2022a). A separate line of work has focused
on pre-training language models on multilingual
corpora to enable knowledge transfer across dif-
ferent languages. These efforts led to multilingual

*Equal contribution
1Our code is available at https://github.com/negar-

foroutan/multilingual-code-switched-reasoning.

Figure 1: An example of monolingual and code-
switched reasoning. In code-switched reasoning, the
context and question are in different languages.

language models (MultiLM) such as mBERT (De-
vlin et al., 2019), mT5 (Xue et al., 2021), and
XLM-R (Conneau et al., 2020), which have been
shown to generalize in a zero-shot cross-lingual
setting (Pires et al., 2019a; Conneau and Lample,
2019). The cross-lingual transfer is often enabled
by fine-tuning the MultiLM on a high-resource lan-
guage (typically English) and then evaluating it on
other target languages.

However, as most of the recent efforts on
reasoning-related tasks have been centered around
English, our knowledge of the multilingual rea-
soning capabilities of language models remains
limited. In this work, we investigate the logical
reasoning capabilities of MultiLMs, especially in
monolingual and structured code-switched2 set-
tings (Figure 1). In the monolingual setting, the
context and the question are in the same language.
In the structured code-switched setting, we refer
to a setting where the context and question are in
two different languages. The code-switched set-
ting can be found in many realistic scenarios, such
as when non-English speakers may ask questions
about information that is unavailable in their native
language (Asai et al., 2021).

For both reasoning settings, we conduct exper-
iments using the RuleTaker dataset (Clark et al.,
2020b), which contains artificial facts and rules,
and the LeapOfThought dataset (Talmor et al.,
2020), which incorporates real-world knowledge

2Throughout the paper, we will use the terms “structured
code-switching” and “code-switching” interchangeably.

https://github.com/negar-foroutan/multilingual-code-switched-reasoning
https://github.com/negar-foroutan/multilingual-code-switched-reasoning


into the reasoning context. Our results show that
although MultiLMs perform well when fine-tuned
in different languages (i.e., high in-language per-
formance when fine-tuning and testing on the same
language), their cross-lingual transfer can vary con-
siderably, especially in the code-switched setting.
We posit that the lack of code-switched data in
MultiLM pre-training data makes fine-tuning on
code-switched data inconsistent with pre-training.

To improve the code-switched reasoning capabil-
ities of MultiLMs, we propose two methods. First,
we propose a dedicated cross-lingual query matrix
(section 4.1) to better model cross-lingual atten-
tion when the MultiLMs receive code-switched se-
quences as input. This query matrix is pre-trained
on unsupervised code-switched data, either shared
across all language pairs or specific to a single one.
Then, we propose a structured attention dropout
(see section 4.1), in which we randomly mask atten-
tion between tokens from different languages (i.e.,
context-question attentions) during training. This
masking makes the fine-tuning phase more con-
sistent with the pre-training by regularizing cross-
lingual attention.

By mixing the two methods, we also experiment
with an interfered variant of the cross-lingual query,
which considerably improves cross-lingual gener-
alization, especially in code-switched settings. We
evaluate our methods for the code-switched setting
and show they improve the cross-lingual transfer of
MultiLMs by 14% and 4% for the RuleTaker and
LeapOfThought datasets, respectively.

2 Motivation

Most prior work on reasoning with language mod-
els remains limited to monolingual (English) sys-
tems (Han et al., 2021; Sanyal et al., 2022; Shi
et al., 2023; Tang et al., 2023). In this work, we
investigate the reasoning abilities of MultiLMs, for-
mulating an analysis in formal reasoning that eval-
uates MultiLMs on their ability to resolve logical
statements. Given a set of facts and rules as con-
text (in natural language sentences), the task is to
predict whether a given statement is true.

In our multilingual reasoning setting, we assume
a given set of languages = {L1, L2, ..., LN}, and
define Lc and Lq as the context and statement lan-
guages, respectively. Typically, MultiLMs are eval-
uated in a monolingual setup where Lc = Lq. How-
ever, if MultiLMs are truly multilingual, we posit
that they should also be able to reason in a scenario

where Lc ̸= Lq. Thus, to evaluate the multilingual
reasoning ability of MultiLMs, we first define four
different evaluation setups based on the language
of context or statement: (1) both the context and
statement are always in one language (monolingual
reasoning); (2) the context is always in one lan-
guage, and the statement can be in any language;
(3) the context can be in any language, but the state-
ment is always in one language; and (4) both the
context and statement can be in any language.

To have a reasonable baseline to compare with
the code-switched setups, we first focus on the
monolingual evaluation (1), in which we evaluate
the reasoning ability of MultiLMs for nine typolog-
ically different languages. Then, by fine-tuning the
models on code-switched data, we evaluate their
performance for setups (2) and (3) where either
the language of the context or the language of the
question is different from the training data. This
evaluation aims to study the possibility of teach-
ing models to reason across languages in a code-
switched setting, and to investigate the extent they
can transfer their reasoning to other code-switched
data formats. Finally, we hypothesize that in order
to succeed in setup (4), the model would have to
be strong in setups (2) and (3). Since our exper-
imental results show that the MultiLMs struggle
in these two setups, we focus on improving their
performance for setups (2) and (3).

3 Multilingual Reasoning

In this section, we describe our evaluation of the
logical reasoning capabilities of MultiLMs for
monolingual and code-switched settings.

3.1 Analysis Setup

We run our experiments on two datasets focusing
on multi-hop logical reasoning over natural lan-
guage knowledge:

RuleTaker. This is a set of five datasets, each
constrained by the maximum depth of inference re-
quired to prove the facts used in its questions (Clark
et al., 2020b). This dataset is generated with the
closed-world assumption (CWA), assuming a state-
ment is false if it is not provable. Each example
consists of facts and rules (i.e., context) and a state-
ment (more details in Appendix A.1).

LeapOfThought (LoT). This dataset comprises
∼30K true or false hypernymy inferences, ver-
balized using manually written templates (Talmor



et al., 2020). The hypernymy relations and proper-
ties are derived from WORDNET (Fellbaum, 1998)
and CONCEPTNET (Speer et al., 2017). This
dataset contains two main test sets; EXPLICIT REA-
SONING which performs inference over explicit nat-
ural language statements, and IMPLICIT REASON-
ING where the model must reason by combining
the context with missing information that should
be implicitly encoded by the model. We create a
modified version of LoT, and use the IMPLICIT

REASONING test set in our evaluation. The dataset
modification pipeline and the reason behind using
only the IMPLICIT evaluation setting is further dis-
cussed in Appendix A.2.

Models. We conduct all our experiments using
the cased version of multilingual BERT (mBERT;
Devlin et al. 2019) and the base version of XLM-
R (Conneau et al., 2020). We train a binary clas-
sifier on top of the model’s classification token
(e.g., [CLS] in mBERT) to predict whether a given
statement/question is true or false. The model’s
input is [CLS] context [SEP] statement [SEP] and
the [CLS] output token is used for the classification.
For evaluation, we measure the model’s accuracy.
We use full fine-tuning for these experiments. The
random baseline is 50% (binary classification).

Languages. Both RuleTaker and LoT datasets
are only available in English. We translated
these two datasets into eight languages using the
Google Translate API. We have chosen typologi-
cally diverse languages covering different language
families: Germanic, Romance, Indo-Aryan, and
Semitic, and including both high- and medium-
resource languages from the NLP perspective.
These languages include French (fr), German (de),
Chinese (zh), Russian (ru), Spanish (es), Farsi (fa),
Italian (it), and Arabic (ar).

3.2 Reasoning Over Monolingual Data

The average in-language and cross-lingual zero-
shot performance of mBERT for each source lan-
guage are depicted in Table 1. For the cross-lingual
zero-shot performance, we first fine-tune models on
a single source language, test it on other languages,
and then take an average of these results.

On the RuleTaker dataset, the model is able
to learn the task for the Depth-0 subset nearly
perfectly for almost all the languages, exhibit-
ing relatively high cross-lingual transfer perfor-
mance (∼87%). However, for models trained
on higher depths (i.e., requiring more reasoning

hops), the model’s performance drops for both in-
language and cross-lingual evaluation settings, and
the performance gap between different source lan-
guages increases. Moreover, when increasing the
depth, zero-shot cross-lingual performance suffers
more compared to in-language performance, show-
ing that as the complexity of the task increases, the
harder it becomes to generalize to other languages.

For the LoT dataset, the model must learn to
reason by combining its implicit knowledge of hy-
pernyms with the given explicit knowledge. How-
ever, the model’s performance differs for different
languages, suggesting that the model’s ability to
access and use the implicit knowledge is not the
same for all languages. We also observe that a lan-
guage with high in-language performance does not
necessarily have a high zero-shot cross-lingual per-
formance. We hypothesize that for some languages,
the model starts learning in-language noises that
are not generalizable to other languages.

We generally observe the same patterns for the
XLM-R model (see Appendix B) when fine-tuned
on the monolingual RuleTaker and LoT datasets.

3.3 Reasoning Over Code-Switch Data

When we fine-tune the model using a code-
switched data format, the context is in one language
and the statement is in another. In our experiments,
we use English as an anchor language for the con-
text (i.e., en-X) or for the statement (i.e., X-en).
In the fine-tuning phase, we learn the task using
the en-X data format, and evaluate it on both en-X
and X-en data formats. The models’ average in-
language and zero-shot cross-lingual performance
are shown in Table 2.

For Depth-0 of the RuleTaker dataset, mBERT
is able to learn the reasoning task almost perfectly
for most languages. As the depth of the task in-
creases, the performance of the code-switched rea-
soning declines. This decline is more pronounced
at higher depths compared to the monolingual sce-
nario. While the model is capable of learning rea-
soning within this framework, its zero-shot gener-
alization to other code-switched data, such as en-X
(where the context language remains English but
the statement language changes), is poor. Reason-
ing over two languages poses a greater challenge
than reasoning within monolingual data due to the
need for information alignment across languages.
Consequently, the transferability of such tasks to
other language pairs becomes more challenging.



RuleTaker LeapOfThought
Depth-0 Depth-1 Depth-2 Depth-3

in-lang. cross-ling. in-lang. cross-ling. in-lang. cross-ling. in-lang. cross-ling. in-lang. cross-ling.

en 100.00 87.96 93.37 73.60 88.00 67.91 88.46 67.13 81.15 62.11
fr 99.40 87.06 90.50 74.82 86.64 65.45 83.70 67.55 80.78 65.12
fa 99.99 87.39 90.04 67.81 86.96 63.71 84.64 63.53 66.39 64.37
de 99.41 89.57 90.77 76.67 85.41 71.57 83.10 70.74 77.11 67.03
ar 99.48 80.20 90.35 72.32 84.81 67.79 82.62 62.21 69.62 67.71
es 99.99 89.68 91.84 76.20 88.16 72.29 85.79 68.75 75.25 64.22
zh 100.00 87.48 92.43 72.46 89.04 68.13 85.94 66.25 84.12 62.32
ru 99.97 89.61 90.54 78.05 86.43 70.88 84.01 67.08 70.60 68.02
it 99.81 90.09 93.14 78.28 86.95 74.01 84.64 70.43 74.99 64.68

Average 99.78 87.67 91.44 74.47 86.93 69.08 84.77 67.07 75.56 65.06

Table 1: Monolingual Setting: In-language and cross-lingual zero-shot performance (accuracy) of the mBERT
model for the RuleTaker and LeapOfThought datasets. Cross-lingual performance is the average performance of the
model being fine-tuned on a single source language and then zero-shot transferred to other languages.

RuleTaker LeapOfThought
Depth-0 Depth-1 Depth-2 Depth-3

in-lang. en-X X-en in-lang. en-X X-en in-lang. en-X X-en in-lang. en-X X-en in-lang. en-X X-en

en-fr 99.29 54.82 53.47 93.34 55.28 51.85 87.78 54.78 51.83 83.26 54.14 50.28 79.57 73.47 71.48
en-fa 97.46 54.04 52.05 87.72 62.17 51.56 70.95 53.64 51.29 62.26 50.95 50.52 74.99 73.82 65.93
en-de 99.63 54.26 52.69 88.85 52.67 51.87 83.97 55.32 52.73 79.08 53.48 51.61 77.60 71.16 65.09
en-ar 85.93 53.73 52.36 67.05 57.83 51.92 68.54 55.33 51.74 61.29 52.78 50.76 77.09 75.35 64.57
en-es 99.99 57.25 56.29 90.18 54.34 50.91 86.54 58.20 53.15 78.09 55.53 51.72 79.29 75.62 72.55
en-zh 100.00 52.68 51.81 92.34 54.70 51.31 81.41 54.92 51.24 68.74 52.83 50.00 84.85 68.92 61.09
en-ru 98.03 58.40 52.06 94.02 59.70 50.64 80.28 57.69 51.96 73.89 56.26 50.87 76.57 74.64 65.11
en-it 99.91 56.26 54.68 92.25 52.88 50.94 85.59 54.58 51.20 79.50 53.29 51.11 75.38 70.53 66.90

Average 97.53 55.18 53.18 88.22 56.20 51.38 80.63 55.56 51.89 73.26 53.66 50.86 78.17 72.94 66.59

Table 2: Code-Switched Setting: In-language and cross-lingual zero-shot performance (accuracy) of the mBERT
model for the RuleTaker and LeapOfThought datasets. In-language performance corresponds to evaluating the
model in the same language as the training data.

On the LoT dataset, the model performs quite
well on the code-switched data, outperforming the
monolingual scenario for nearly all languages. The
relatively high code-switched performance shows
that the language of the context plays an important
role in accessing the implicit knowledge encoded
in the model’s parameters, as the model must rely
on this knowledge to solve the task. Providing
the context in English facilitates access to implicit
knowledge compared to other languages. This is
also inline with the empirical observation that gen-
eralization to X-en is considerably worse than en-
X. We generally observe the same pattern for the
XLM-R (see Appendix B) when fine-tuned on the
monolingual RuleTaker and LoT datasets.

Following the empirical observations showing
MultiLMs struggle to transfer reasoning abilities
in a code-switched setting, we propose a novel
attention mechanism to mitigate the lack of code-
switched transfer in these models.

4 Cross-lingual-aware Self-Attention

Although MultiLMs have been pre-trained on mul-
tilingual corpora, individual inputs to the model

stay mostly monolingual (Devlin et al., 2019; Con-
neau et al., 2020). When these models are fine-
tuned on a code-switched downstream task, unlike
the pre-training phase, tokens from different lan-
guages can attend to each other, which, as demon-
strated in Tables 2 and 8, results in poor gener-
alization to other code-switched language pairs.
We also observe that self-attention patterns consid-
erably change when we compare code-switched
in-language and cross-lingual samples’ attention
patterns3 (see Figure 4).

4.1 Approach
In order to make the fine-tuning phase more consis-
tent with the pre-training, we propose two sets of
methods to better handle the cross-lingual interac-
tions of tokens.

Cross-lingual Query To better model the cross-
lingual attention for code-switched tasks, we pre-
train a cross-lingual query matrix Qcross (while
keeping all other parameters frozen) on code-
switched unsupervised data (more experimental

3The two samples are semantically the same, only having
different statement languages.



Figure 2: Illustration of the drop attention scheme. Due
to the input’s code-switched structure, we want to limit
the attention between context and question tokens. It
can be seen that tokens from the same language can
fully attend to each other, but there is a dropout (white
cells) when cross-lingual attention is being applied. In
order to ensure a reliable bridge between context and
question, the first token (e.g., [CLS] in mBERT) attends
to all tokens, and also all tokens attend to the first token.

details in section 4.2). More specifically, we use
two sets of attention masks, M1 and M2, where
M1 enforces the query matrix Q to focus only
on monolingual attentions, and M2 constrains the
cross-lingual query Qcross to cross-lingual atten-
tions (see Figure 3.a). Formally, the self-attention
probabilities for a given attention head, up to a
(row-wise) normalization term, are computed as
below:

M1 ⊙ exp(
QKT

√
d

) +M2 ⊙ exp(
QcrossK

T

√
d

)

where Q and K are the query and key matrices, d
is the model’s hidden dimension, and ⊙ represents
the Hadamard product. It is worth noting that this
scheme still allows attention between all tokens;
however, monolingual and cross-lingual attentions
are handled by different query matrices.

The proposed Qcross can either be pre-trained
for a single language pair (e.g., en-fr pair where
context is in English and question/statement is in
French), or it can be shared across many language
pairs. We show in Section 4.3 that having language-
pair specific Qcross enables modularity, meaning
a model that is trained on a given source language
pair can perform considerably better on another
language pair by just swapping the source Qcross

matrices with the target ones.

Structured Attention Dropout As mentioned
earlier, poor generalization of MultiLMs in code-
switched settings can be attributed to inconsistency
between the pre-training and fine-tuning phases,
where the former mostly deals with monolingual
attention while the latter needs to handle cross-
lingual attention as well. We propose that the con-
sistency can be improved by limiting the cross-
lingual attention in the fine-tuning phase (i.e., reg-
ularizing computational interactions between lan-
guages). As demonstrated in Figure 2, this can be
achieved by randomly masking attention scores
(i.e., attention dropout), with probability Pmask,
when tokens from different languages attend to
each other. Moreover, to ensure a reliable bridge
between context and question, we never mask the
attention scores of the first token (e.g., [CLS] in
mBERT) to help the model better flow informa-
tion between two sections. Table 11 demonstrates
the importance of structured attention dropout for
better generalization in code-switched settings.

Interfering Cross-lingual Query Given the
promising performance of the attention dropout
for code-switched tasks, we experiment with a
variation of cross-lingual query, where queries
Q and Qcross also partially handle cross-lingual
and monolingual attentions, respectively (see Fig-
ure 3b). We empirically observe that having atten-
tion masks that could randomly interfere with each
other generally results in better performance (see
Table 12) compared to the attention masks pro-
posed in Figure 3a. In this scheme, M1 and M2

are generated randomly and online,4 but once
sampled, the same masks will be used for all the
attention heads in all layers (more details in Ap-
pendix D). Due to better empirical performance,
this variation of the cross-lingual query will be used
for all the following experiments.

4.2 Experimental Setup

All models are trained with the AdamW opti-
mizer (Loshchilov and Hutter, 2017) using the Hug-
gingFace Transformers (Wolf et al., 2020) imple-
mentation for Transformer-based (Vaswani et al.,
2017) models. The hyperparameters used for per-
forming different experiments can be found in Ap-
pendix C. All the reported scores are averaged over
three different seeds.

4A given sample can have different attention masks in
different epochs.



Fine-tuning Setup. As Bitfit fine-tuning outper-
forms full fine-tuning for all our experiments, we
only report the Bitfit results here (Zaken et al.,
2021). In Bitfit tuning, only biases are tuned in
the MultiLM encoder, together with classifier and
pooler parameters.

Language Pairs. To show the effectiveness of
the proposed method, we fine-tune the models on
four typologically diverse languages (language of
the statement), namely fr, de, zh, and ru. Our anal-
ysis shows that combining monolingual and code-
switched data in the fine-tuning step improves the
reasoning performance. Moreover, a multilingual
reasoner should be able to reason over both mono-
lingual and code-switched data. So, for this set of
evaluations, we use a combination of English and
en-X (half of each) as the training dataset, which
we denote mix(en, en-X).

Pre-training Cross-lingual Query. We train a
shared (Shared Qcross) or language-pair specific
(Pair Qcross) cross-lingual query matrix. For
Shared Qcross, a shared cross-lingual query is
trained on a parallel code-switched variant of
XNLI (Conneau et al., 2018a), where an English
premise is followed by the same premise but in
another language. For Pair Qcross, we train a cross-
lingual query for each en-X language pair again
using the XNLI dataset. In both cases, only the
cross-lingual query matrix is trained and the rest
of the parameters are frozen. The training happens
for 500K iterations.

Baselines. We compare the performance of the
proposed method against two baselines: (1) The
pre-trained model (original) (2) a model pre-
trained on code-switched data (CS-baseline). For
the CS-baseline, we pre-train the model on the par-
allel code-switched variant of XNLI (similar to the
data we use to learn the shared cross-lingual query
matrix) for 500K iterations to adapt the model to
the code-switched setting.

Cross-lingual Evaluation. For all the experi-
ments, we evaluate the zero-shot performance of
the model on (1) a monolingual setting (where both
context and question are in one language), (2) an
en-X code-switched setting (where the context is
in English and the question is in other languages),
and (3) a X-en code-switched setting (where the
question is in English and the context is in other lan-
guages). For the case when we Bitfit fine-tune the

model using a language-specific query matrix (Pair
Qcross), we use the query matrix of the target lan-
guage during the inference (only the weights). For
example, while doing the zero-shot evaluation on
en-zh, we use the en-zh cross-lingual query matrix
instead of the one from the fine-tuned model.

4.3 Experimental Results
Table 3 shows the average zero-shot transfer per-
formance (accuracy) for the RuleTaker dataset. For
both mBERT and XLM-R, introducing a shared
cross-lingual query matrix (Shared Qcross) im-
proves the reasoning accuracy. These results under-
score the significance of maintaining consistency
between the pre-training and fine-tuning phases in
code-switched downstream tasks to facilitate effec-
tive transfer learning.

Using a specific query matrix for each lan-
guage pair (Pair Qcross) further boosts the cross-
lingual transfer performance across most tested
settings (up to 18%). In this scenario, there is a
dedicated set of parameters to learn the attention
patterns for a language pair rather than having them
share the same number of parameters among many
different language pairs. In other words, dedicated
parameters help the model learn attention patterns
for specific language pairs.5

Interestingly, in many cases, our approach also
improves the transfer performance for monolingual
data (mono). We hypothesize that, by having a
separate cross-lingual query matrix, the model does
not need to learn the cross-lingual attention pattern
using the same parameters, reducing the chance of
overfitting to the code-switched format.

We also conducted a comparison with a code-
switched baseline in which the MultiLM is pre-
trained on a code-switched version of XNLI. The
code-switched baseline (CS-baseline) showed im-
proved transfer results for en-X format and, in
some cases, performed competitively with the
Pair Qcross approach. However, it negatively af-
fected performance in monolingual and X-en sce-
narios, particularly for the mBERT model. In
essence, the model exhibited overfitting to the lan-
guage pairs in en-X format it was trained on, mak-
ing it unable to generalize effectively to monolin-
gual and other code-switched formats. On the other
hand, both Shared Qcross and Pair Qcross demon-
strated the ability to generalize their reasoning to

5There is no Pair Qcross for en-fa and en-it (as they are
not part of the XNLI dataset), and all the transfer results for
these two languages are fully zero-shot.



Train Data Method
mBERT

Depth-0 Depth-1 Depth-2 Depth-3
mono en-X X-en mono en-X X-en mono en-X X-en mono en-X X-en

mix(en, en-fr)

Original 89.14 65.38 60.81 70.76 60.48 58.16 67.43 62.14 55.55 62.48 57.94 51.04
CS-baseline 78.93 74.72 54.98 67.59 68.25 53.90 63.16 67.50 52.60 62.57 66.89 50.95

Shared Qcross 92.52 70.07 65.16 77.72 67.26 63.93 74.81 64.23 58.97 70.46 63.86 55.75
Pair Qcross 93.65 77.79 68.27 77.44 68.55 63.76 73.78 68.23 61.27 71.39 67.70 60.12

mix(en, en-de)

Original 88.71 66.75 59.10 68.98 58.64 56.69 73.39 62.88 55.66 63.45 57.36 50.84
CS-baseline 84.77 74.73 57.06 68.08 67.88 53.99 63.58 67.47 52.42 62.23 66.18 50.73

Shared Qcross 91.39 70.10 64.78 76.74 65.88 61.64 71.82 64.38 59.92 71.98 62.21 57.26
Pair Qcross 94.11 76.32 69.85 77.38 68.31 63.22 73.79 68.42 62.16 70.56 67.23 61.86

mix(en, en-ru)

Original 91.69 69.25 60.23 76.49 60.40 57.09 68.99 57.62 52.93 65.60 57.70 50.05
CS-baseline 83.65 75.92 54.68 71.06 69.96 55.49 64.80 66.84 52.47 60.06 58.93 48.71

Shared Qcross 93.22 76.22 70.35 79.80 68.77 65.44 74.06 65.68 59.14 71.89 63.50 57.19
Pair Qcross 92.23 77.22 71.87 78.31 74.00 64.50 74.67 67.97 63.47 70.98 66.73 60.10

mix(en, en-zh)

Original 91.20 65.58 59.80 76.43 63.02 57.20 68.23 55.40 52.47 65.03 56.55 50.85
CS-baseline 83.16 70.22 57.46 67.34 66.87 54.29 66.29 65.73 53.01 60.72 63.64 52.21

Shared Qcross 93.70 68.49 64.59 75.11 65.11 62.00 73.42 62.66 58.03 69.98 62.01 57.62
Pair Qcross 93.21 72.09 69.83 78.93 67.12 64.22 75.82 66.65 60.52 71.34 66.35 60.05

XLM-R

mix(en, en-fr)

Original 95.39 69.43 64.09 79.85 65.35 59.55 76.34 62.94 58.89 74.71 62.68 55.84
CS-baseline 94.89 71.03 61.41 81.11 67.08 57.16 75.78 65.32 52.33 72.28 63.77 51.16

Shared Qcross 95.92 74.78 70.87 79.82 68.46 63.84 79.99 70.64 62.14 77.26 68.55 60.81
Pair Qcross 95.94 78.36 75.80 83.64 70.17 63.94 81.39 71.59 64.37 76.03 69.04 60.12

mix(en, en-de)

Original 94.95 65.72 64.94 82.58 64.99 62.03 78.74 63.88 57.02 75.06 64.87 58.02
CS-baseline 91.92 72.53 57.14 76.70 66.64 54.29 73.25 65.58 52.20 74.78 62.87 51.87

Shared Qcross 96.23 71.29 70.95 81.95 67.25 64.27 82.14 70.48 63.28 75.26 67.16 57.01
Pair Qcross 96.19 73.61 70.89 84.33 68.40 65.23 80.11 71.72 64.55 76.73 69.89 59.78

mix(en, en-ru)

Original 94.46 72.86 63.94 80.80 66.55 59.53 78.23 65.90 55.78 74.33 63.05 53.32
CS-baseline 95.02 74.63 60.42 80.96 71.53 54.85 78.30 67.56 52.84 68.59 64.93 49.43

Shared Qcross 95.43 80.20 77.23 83.73 72.16 68.02 81.39 71.31 63.25 75.60 69.17 56.23
Pair Qcross 95.14 81.77 78.49 86.64 74.04 64.15 80.53 71.42 60.72 77.03 68.96 58.29

mix(en, en-zh)

Original 95.61 71.13 65.80 82.29 65.44 60.53 76.93 62.36 53.87 75.93 61.67 53.35
CS-baseline 94.67 73.76 57.92 81.86 67.79 55.41 78.40 65.58 52.74 74.39 62.67 49.57

Shared Qcross 96.56 77.10 74.84 84.52 71.96 61.35 81.39 71.31 63.25 75.61 67.42 55.40
Pair Qcross 96.71 75.00 72.39 87.55 71.83 62.88 80.09 71.08 60.04 76.03 68.70 61.42

Table 3: Average cross-lingual transfer of mBERT and XLM-R models on RuleTaker datasets to monolingual
samples (mono) and code-switched language pairs (en-X and X-en). The original is the pre-trained model and the
CS-baseline is the model that pre-trained on code-switched data. Shared Qcross and Pair Qcross, refer to cases
where the cross-lingual query matrix Qcross is either shared across many language pairs or is specific to each
language pair, respectively.

the X-en format. We also perform a qualitative
analysis of self-attention patterns for our proposed
method in Figure 5, showing that the attention pat-
terns remain more similar between in-language and
cross-lingual code-switched samples (unlike Fig-
ure 4). We hypothesize that the attention pattern sta-
bility makes the MultiLM more language-neutral.

Regarding the cross-lingual transfer across lan-
guages, we observe that the reasoning ability of
the model is not transferred across languages
equally (Appendix F). The more similar the lan-
guages, the higher the transfer performance is. For
example, the model trained on en-fr has its highest
transfer performance in Latin languages (e.g., es, it,
en-es, and en-it). For almost all cases, and regard-
less of the training data language, en-fa and en-ar
are the hardest languages to transfer to.

To study the effect of the cross-lingual query ma-
trix on an implicit reasoning task, we expand our ex-
perimentation to include the LeapOfThought (LoT)

dataset. Table 4 illustrates the average zero-shot
transfer performance for this dataset. For this
dataset, our proposed method also enhances the
reasoning ability of the models for all examined
language pairs. However, the degree of improve-
ment observed is smaller compared to the Rule-
Taker dataset. In the case of the implicit reasoning
task within the LoT dataset, the model must rely
on both contextual cues and implicit knowledge
to successfully solve the task. Conversely, for the
RuleTaker dataset, the model is required to fully
reason over the context. Consequently, for implicit
reasoning, the model only partially uses contextual
information, resulting in a lesser impact on per-
formance when improving cross-lingual context-
question attentions.

4.4 Generalization to other Reasoning Tasks

So far, our experiments have focused on the logical
reasoning ability of MultiLMs, either in monolin-



Source Data Method
mBERT XLM-R

mono en-X X-en mono en-X X-en

mix(en, en-fr)

Original 65.71 71.89 67.69 69.81 73.39 71.70
CS-baseline 62.18 66.92 62.79 70.00 70.92 69.48

Shared Qcross 69.61 73.27 71.45 69.87 74.51 72.22
Pair Qcross 67.95 75.79 71.13 71.12 74.20 73.09

mix(en, en-de)

Original 68.05 74.51 70.53 69.97 71.77 71.48
CS-baseline 63.07 67.78 64.25 69.58 72.57 70.19

Shared Qcross 67.48 75.52 71.52 70.00 73.22 72.07
Pair Qcross 69.09 76.17 72.62 70.03 73.55 72.75

mix(en, en-ru)

Original 67.46 73.87 67.88 70.28 71.60 70.82
CS-baseline 62.37 68.03 62.48 70.11 73.85 70.18

Shared Qcross 67.84 74.59 69.85 70.10 73.20 71.91
Pair Qcross 68.57 76.07 71.99 70.34 74.63 72.42

mix(en, en-zh)

Original 67.99 73.62 70.52 70.05 72.27 72.80
CS-baseline 64.25 67.84 64.61 69.96 72.42 70.23

Shared Qcross 69.19 74.88 71.45 70.20 73.00 72.15
Pair Qcross 69.08 76.38 72.96 70.24 73.28 72.51

Table 4: Average cross-lingual transfer of mBERT and
XLM-R on LoT dataset to monolingual samples (mono)
and code-switched language pairs (en-X and X-en). The
original is the pre-trained model and CS-baseline refers
to the model pre-trained on code-switched data. Shared
Qcross and Pair Qcross, refer to cases where cross-
lingual query is either shared across many language
pairs or is specific to each language pair, respectively.

Source Data Model mono en-X X-en
en Original 69.42 63.16 68.79

Original 68.35 67.43 65.18
CS-baseline 68.26 70.58 65.89

Shared Qcross 68.30 69.22 70.16mix(en, en-fr)

Pair Qcross 69.31 71.53 72.40

Table 5: Performance (accuracy) of mBERT model
for the XNLI dataset in both monolingual and code-
switched evaluation settings.

gual or code-switched settings. However, to demon-
strate the proposed method’s generalization to other
reasoning tasks, we extend our experiments to the
XNLI dataset. To create structured code-switched
inputs for this task, we change the language of the
premise and the hypothesis for a given input. More
specifically, in a code-switched setting (e.g., en-
fr), the premise is in English, and the hypothesis
is in French. We fine-tune the mBERT model on
a combination of EN and code-switched EN and
FR data (mix(en, en-fr)), then zero-shot transfer
it to other languages for monolingual evaluations
(excluding en and fr) and other language pairs for
code-switched evaluation (excluding en-fr and fr-
en pairs). Table 5 presents the performance of the
mBERT model with the cross-lingual query com-
pared to the baselines in both monolingual and
code-switched settings. We observe ∼4% improve-
ment on en-X, ∼7% on X-en, and competitive per-
formance on monolingual evaluation setups, indi-
cating the effectiveness of our proposed method on
downstream tasks other than logical reasoning.

5 Related Work

Reasoning in NLP. Language models (LMs)
have demonstrated their ability to perform logical
reasoning over natural language statements (Clark
et al., 2020b; Chen et al., 2023). They can also
leverage their implicit knowledge for reasoning pur-
poses (Talmor et al., 2020) and exhibit multi-step
reasoning capabilities by utilizing chain-of-thought
prompting, even with minimal demonstrations or
instructions, when the model size is sufficiently
large (Wei et al., 2022b; Kojima et al., 2022; Wei
et al., 2022a; Tang et al., 2023). In parallel to
English-centric efforts on reasoning tasks, there
have been attempts to create multilingual reasoning
datasets to evaluate the cross-lingual abilities of pre-
trained MultiLMs (Conneau et al., 2018b; Artetxe
et al., 2020; Clark et al., 2020a; Hu et al., 2020; Shi
et al., 2022). Recent pre-trained large MultiLMs
like BLOOM (Scao et al., 2022), BLOOMZ (Muen-
nighoff et al., 2022), and XGLM (Lin et al., 2021),
exhibited promising few-shot performance on a
variety of cross-lingual reasoning datasets using in-
context learning (Brown et al., 2020). Prior works
studied the reasoning ability of MultiLMs in the
context of open-retrieval answer generation (Asai
et al., 2021), and mathematical problem-solving in
a multilingual setting via chain-of-thought reason-
ing (Shi et al., 2022). This work conducts the first
investigation of the logical reasoning capability of
MultiLMs and proposes a cross-lingual-aware at-
tention mechanism to improve their performance.

Cross-lingual Transfer. MultiLMs such as
mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020), mT5 (Xue et al., 2021), and
XGLM (Lin et al., 2021) have achieved state of the
art results in cross-lingual understanding tasks by
jointly pre-training Transformer models (Vaswani
et al., 2017) on many languages. These mod-
els have shown effective cross-lingual transfer
for many tasks, including named entity recogni-
tion (Pires et al., 2019b; Wu and Dredze, 2019;
Foroutan et al., 2022), cross-lingual natural lan-
guage inference (Conneau et al., 2018a; Hu et al.,
2020), question answering (Lewis et al., 2019), and
commonsense reasoning (Tikhonov and Ryabinin,
2021). This study focuses on the cross-lingual
transfer performance of MultiLMs in the context
of logical reasoning.

Code-switched NLP. Code-switching is a lin-
guistic phenomenon of alternating between two



or more languages within a single conversation
or text. In recent years, code-switching-related
research has been growing in the NLP commu-
nity. The growth is motivated by the increasing
need for NLP systems to handle code-switched
data and call to pay more attention to multilingual-
ism and low-resource languages (Doğruöz et al.,
2021; Winata et al., 2022; Jose et al., 2020; Sitaram
et al., 2019). Previous research has been done for a
diverse range of tasks such as Language Identifica-
tion, Part of Speech Tagging, Sentiment Analysis,
and Automatic Speech Recognition (Winata et al.,
2021; Khanuja et al., 2020; Ostapenko et al., 2022;
Tarunesh et al., 2021). To the best of our knowl-
edge, this work is the first to study logical reasoning
in the context of code-switched NLP. Furthermore,
a majority of prior studies have focused on word-
level code-switching, where the language of certain
words in a text randomly changes. However, our
investigation delves into the realm of “structured
code-switching”, wherein language transitions oc-
cur at a section level.

6 Discussion

In this study, we explored the effectiveness of
MultiLMs in a code-switched setting and found
that while these models exhibit strong reasoning
capabilities in monolingual settings, they strug-
gle when it comes to code-switching. To ad-
dress this, we first proposed the structured at-
tention dropout, which encourages the model to
rely less on cross-lingual attention when dealing
with code-switched data. This simple method con-
siderably improved cross-lingual transfer to other
code-switched languages, demonstrating the impor-
tance of structured attention for this setting. We
then proposed a novel structured attention mech-
anism, incorporating the cross-lingual query, that
helps the model to better handle cross-lingual at-
tention in the code-switched setting. The pro-
posed cross-lingual query matrix, pre-trained on
unsupervised code-switched data, significantly im-
proved the cross-lingual transfer to other code-
switched language pairs in all studies settings,
demonstrating the importance of code-switched
alignment for MultiLMs. We also observed bet-
ter cross-lingual code-switched performance for
the LeapOfThought dataset (real-world knowledge
contexts) compared to RuleTaker (utilizing artifi-
cial facts and rules). We attribute LeapOfThought’s
better code-switched performance to the usage

of real-world knowledge in the reasoning context
(compared to artificial facts and rules in RuleTaker),
in line with Tang et al. (2023) observation that lan-
guage models perform better when provided with
commonsense-consistent context, and struggle with
artificial ones.

7 Limitations

In this work, we evaluate our proposed method on
encoder-only language models, and the impact of
this method on autoregressive models and encode-
decoder-only models has not been explored, leav-
ing room for further investigation and evaluation.
Moreover, our experiments are limited to relatively
small language models (less than one billion param-
eters), and the results and our findings do not nec-
essarily extend to large language models. Further-
more, we should highlight that the scope of our ex-
periments is constrained by the availability of mul-
tilingual data and computational resources. Con-
sequently, our evaluation is limited to two specific
datasets and covers only nine languages. While
we strive for diversity in our selection, it is impor-
tant to recognize that broader and more extensive
datasets encompassing a wider range of languages
could offer additional perspectives and potentially
reveal new insights.
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Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2019. Mlqa: Eval-
uating cross-lingual extractive question answering.
arXiv preprint arXiv:1910.07475.

https://doi.org/10.48550/arXiv.2305.06349
https://doi.org/10.48550/arXiv.2305.06349
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://aclanthology.org/2022.emnlp-main.513
https://aclanthology.org/2022.emnlp-main.513
https://aclanthology.org/2022.emnlp-main.513
https://doi.org/10.18653/v1/2020.acl-main.329
https://doi.org/10.18653/v1/2020.acl-main.329


Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, et al. 2021.
Few-shot learning with multilingual language models.
arXiv preprint arXiv:2112.10668.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey
Schoelkopf, et al. 2022. Crosslingual generaliza-
tion through multitask finetuning. arXiv preprint
arXiv:2211.01786.

Alissa Ostapenko, Shuly Wintner, Melinda Fricke, and
Yulia Tsvetkov. 2022. Speaker information can guide
models to better inductive biases: A case study on
predicting code-switching. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3853–3867, Dublin, Ireland. Association for Compu-
tational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019a.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019b.
How multilingual is multilingual bert? arXiv
preprint arXiv:1906.01502.

Soumya Sanyal, Zeyi Liao, and Xiang Ren. 2022. Ro-
bustlr: A diagnostic benchmark for evaluating logical
robustness of deductive reasoners. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 9614–9631.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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A Dataset Details

This section further elaborates on the datasets that
are used in our experiments. Both datasets in this
study are translated using Google Translate API
to investigate our proposed method’s cross-lingual
transfer. Starting from the English dataset, the
samples are translated into eight other languages,
namely, French (Fr), Farsi (Fa), German (De), Ara-
bic (Ar), Spanish (Es), Chinese (Zh), Russian (Ru),
and Italian (It). Below we discuss in more detail
each studied dataset.

A.1 RuleTaker Dataset

RuleTaker dataset (Clark et al., 2020b) is a set of
five datasets, requiring various depths of inference
to answer the questions. Each dataset consists of
examples in the form of a triple: (context, state-
ment, answer). The context is composed of a series
of facts and rules, while the statement represents
the question that needs to be proven and the answer
is either “T” (true) if the statement logically follows
from the context, or “F” (false) if it does not (false
under a closed-world assumption, CWA). All the
facts, rules, and question statements are expressed
in synthetic English. Essentially, each example
represents a self-contained logical theory in lin-
guistic form, with a question asking, “Is it true?”
The dataset generation procedure ensures that ev-
ery question can be answered by a formal reasoner,
given the closed-world assumption (CWA).

Each dataset limited by the maximum level of
inference needed to validate the facts employed
in its corresponding questions. These datasets are
categorized based on their depth restrictions (up
to depths D = 0, D ≤ 1, D ≤ 2, D ≤ 3 and
D ≤ 5 respectively). A depth of D = 0 implies
that the accurate facts can be readily “proven” by
directly looking them up within the given context,
without requiring any inference. The fifth dataset,
encompasses questions that span up to a depth of 5.
This dataset serves as a test to assess the ability to
generalize to depths not encountered during train-
ing on the other four datasets. In our experiments,
we use datasets with depths 0 to 4. Each dataset
contains 100k examples randomly split 70/10/20
into train/dev/test partitions.

A.2 LeapOfThought (LoT) Dataset

The primary focus of the LoT dataset (Talmor et al.,
2020) revolves around a specific form of inference
that integrates implicit taxonomic knowledge (such
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Experiment EXPLICIT REASONING IMPLICIT REASONING

Context-only 94.56 68.98
Subject swap 83.08 51.46
Object swap 91.85 53.6

Subject & Object swap 87.5 52.36

Table 6: This table investigates the artifacts present in
the LeapOfThought dataset. We evaluate the model’s
performance when either different parts of a given sam-
ple are removed (e.g., context-only model) or different
noises are injected into the statement (e.g., swapping
the subject in the statement with a randomly selected
entity). The experiments that involve swapping entities
in the statement are performed on the modified version
of LoT, as discussed in section A.2.1.

as hypernymy and meronymy) with explicit rules
derived from natural language. The hypernymy
relations and properties are derived from WORD-
NET (Fellbaum, 1998) and CONCEPTNET (Speer
et al., 2017). Each example consists of two com-
ponents: (1) a hypothesis, which is a textual state-
ment that can be either true or false, and (2) ex-
plicit knowledge, represented as a list of textual
statements. These statements can be classified as
either facts, which describe properties of specific
entities, or rules, which describe properties of a par-
ticular class. The explicit knowledge is carefully
constructed to ensure that the truth value of the
hypothesis cannot be determined solely based on
the provided information. It necessitates the inclu-
sion of additional knowledge encoded within the
language model. This dataset contains two main
test sets; EXPLICIT REASONING which performs
inference over explicit natural language statements,
and IMPLICIT REASONING where the model must
reason by combining the context with missing in-
formation that should be implicitly encoded by the
model. The dataset consists of 30,906 training ex-
amples, 1,289 development examples, and 1,289
test examples.

A.2.1 Discussion on LoT Dataset Artifacts

LoT dataset was designed to test how well NLP
models can (possibly) reason using real-world
knowledge. However, as we show in this section,
the dataset has some artifacts that causes the NLP
models to take shortcuts instead of actually per-
forming the reasoning. In the following analysis,
we only focus on the original English LoT dataset
(and not on the translated samples).

In our preliminary experiments on this dataset,
we observed that MultiLMs perform surprisingly
high in cross-lingual code-switched settings (on

EXPLICIT dev set), even if the statement is in
a medium-resource language like Farsi or Ara-
bic (context being in English). We hypothesized
that the model is mostly relying on the context
for reasoning; therefore, the statement being in a
medium/low-resource language does not necessar-
ily impact the model’s performance. We validate
this hypothesis by training a context-only model
(without having access to respective statements),
and surprisingly this model performs ∼94% on the
EXPLICIT dev set (see Table 6). In order to ensure
that the model can not get non-random accuracy by
relying only on the context, we randomly negate
50% of statements (also negating the respective la-
bels), so that a context-only model would perform
randomly. The resulting dataset is the modified
LoT that is used in all experiments in the paper.

In order to further investigate artifacts present
in the modified LoT dataset, we inject noise into
the statement (without changing the context) as
following:

• Swapping statement’s subject with a randomly
selected entity from the whole dataset

• Swapping statement’s object with a randomly
selected entity from the whole dataset

• Swapping statement’s subject and object with
a randomly selected entity from the whole
dataset

As demonstrated in Table 6, given the EXPLICIT

evaluation results, the model can still get high rea-
soning performance even when the entities in the
context and statement are not consistent. However,
as reasoning performance on IMPLICIT evaluation
set drops to (almost) random when noise are in-
jected into the statement entities, we believe that
LoT artifacts have less effect on this evaluation set-
ting. Therefore, to evaluate the MultiLM’s reason-
ing performance, we use the IMPLICIT evaluation
set throughout the paper.

B Multilingual Reasoning: XLM-R
results

Sections 3.2 and 3.3 discussed the in-language and
cross-lingual performance of the mBERT model on
monolingual and code-switched data. This section
evaluates the XLM-R model on the same evaluation
settings as mBERT.

Table 7 demonstrates the average in-language
and cross-lingual zero-shot performance of XLM-R



RuleTaker LeapOfThought
Depth-0 Depth-1 Depth-2 Depth-3

in-lang. cross-ling. in-lang. cross-ling. in-lang. cross-ling. in-lang. cross-ling. in-lang. cross-ling.

en 100.00 94.95 87.23 77.75 87.24 76.26 82.78 71.21 76.70 70.36
fr 99.40 95.83 87.10 81.53 83.92 77.78 81.33 73.78 74.64 66.68
fa 100.00 90.05 87.65 80.49 85.46 72.97 80.70 67.41 72.11 69.07
de 99.33 94.73 85.48 80.10 84.92 79.08 81.15 73.60 78.32 69.09
ar 99.13 85.95 84.65 76.29 84.43 71.13 81.13 66.68 69.70 71.71
es 99.96 94.46 90.53 82.00 84.34 75.61 83.20 71.83 80.60 71.25
zh 99.96 86.03 85.99 77.63 82.56 69.10 81.95 67.69 82.62 66.35
ru 99.81 93.36 87.20 77.37 82.34 70.16 81.35 73.40 73.47 71.36
it 99.75 92.18 87.21 78.38 84.72 78.41 82.85 74.34 73.89 72.29

Average 99.70 91.95 87.00 79.06 84.44 74.50 81.83 71.10 75.78 69.80

Table 7: Monolingual Setting: In-language and cross-lingual zero-shot performance (accuracy) of the XLM-R
model for the RuleTaker and LeapOfThought datasets.

RuleTaker LeapOfThought
Depth-0 Depth-1 Depth-2 Depth-3

in-lang. en-X X-en in-lang. en-X X-en in-lang. en-X X-en in-lang. en-X X-en in-lang. en-X X-en

en-fr 98.47 54.18 52.38 88.18 61.10 57.61 85.54 54.54 50.45 83.14 52.50 50.66 84.02 78.41 75.40
en-fa 98.61 63.70 55.51 88.99 60.63 56.39 85.90 60.59 56.32 74.38 54.92 52.78 85.96 82.57 72.06
en-de 99.62 59.59 52.98 92.68 58.41 53.06 85.17 57.25 55.14 86.09 54.75 50.45 87.20 80.55 74.45
en-ar 98.99 60.36 57.55 76.16 57.40 50.58 83.65 62.21 55.45 70.12 56.21 51.20 80.84 77.06 70.16
en-es 100.00 60.01 52.32 92.59 63.06 56.99 87.97 59.17 53.61 77.48 55.70 51.33 86.89 81.30 77.60
en-zh 99.98 62.36 54.45 87.00 63.01 58.23 85.55 58.78 56.99 82.96 57.59 53.71 88.75 82.13 79.24
en-ru 99.93 64.07 55.85 80.11 64.59 51.57 86.85 57.40 51.32 85.35 56.95 48.85 81.85 78.55 74.13
en-it 99.89 64.16 56.25 89.11 61.03 54.45 85.94 60.31 53.39 85.08 56.80 50.73 80.44 74.96 70.41

Average 99.44 61.05 54.66 86.85 61.15 54.86 85.82 58.78 54.08 80.58 55.68 51.21 84.49 79.44 74.18

Table 8: Code-Switched Setting: In-language and cross-lingual performance (accuracy) of the XLM-R model for
the RuleTaker and LeapOfThought datasets.

Training Language Training Method
RuleTaker

Depth-0 Depth-1
mono en-X X-en mono en-X X-en

mix(en, en-fr)
Full FT 87.57 63.05 59.40 68.95 59.72 58.03
Bitfit 89.14 65.38 60.81 70.76 60.48 58.16

mix(en, en-zh)
Full FT 91.00 62.85 56.56 75.30 62.94 57.02
Bitfit 91.20 65.58 59.80 76.43 63.02 57.20

mix(en, en-de)
Full FT 89.72 62.00 58.42 79.13 58.34 56.67
Bitfit 88.71 66.75 59.10 68.98 58.64 56.69

mix(en, en-ru)
Full FT 90.22 63.17 56.73 73.33 59.94 55.65
Bitfit 91.69 69.25 60.23 76.49 60.40 57.09

Table 9: Performance of fully fine-tuned versus Bitfit-
tuned mBERT models on the RuleTaker dataset. Bitfit-
tuned models perform better or competitively to the
fully fine-tuned setting, especially on the code-switched
evaluation setups.

for each source language in a monolingual setting.
Code-switched evaluation results are depicted in
Table 8.

C Experimental Setup Details

C.1 Full Fine-tuning Versus Bitfit

As discussed in section 4.2, our proposed model
and the baselines’ performances in Tables 4 and 3
are achieved by Bitfit tuning (Zaken et al., 2021).
It has been previously observed by Tu et al. (2022)
that parameter-efficient fine-tuning (PEFT) has

better cross-lingual generalization than full fine-
tuning. In our experiments, we also found out that
using a PEFT method like Bitfit considerably im-
proves our cross-lingual transfer across different
languages.

Table 9 demonstrates the generalization improve-
ment brought by Bitfit over full fine-tune base-
line for the RuleTaker dataset, especially in code-
switched settings. We observed similar pattern for
other RuleTaker depths and the LoT dataset. It is
worth noting that using a PEFT method especially
helps with transfer to code-switched tasks, which
is our main focus in this paper.

C.2 Curriculum Learning

For depths 2 and 3 of RuleTaker dataset, which
involves more reasoning hops, we observed that
curriculum learning (Bengio et al., 2009) makes
the XLM-R training more robust. The curriculum
learning is performed by first training the MultiLM
for 3 epochs on a subset of dataset that has depth 0
(i.e., no hop is needed for reasoning), and then the
training is continued on the full dataset. This tech-
nique not only makes the XLM-R training more
robust, but also improves the final reasoning per-



formance.

C.3 Hyperparameters

The hyperparameters for all the experiments is pro-
vided in Table 10 for both mBERT and XLM-R
models. We use the AdamW optimizer with a
warmup ratio of 0.1 for all experiments.

D Cross-lingual Query

This section further discusses the methods pro-
posed in section 4.1.

D.1 Structured Attention Dropout

As previously discussed in section 4.1, limiting the
cross-lingual attention in the fine-tuning makes this
phase more consistent with the pre-training, where
the MultiLM mostly deals with monolingual atten-
tions. Table 11 demonstrates that applying dropout
on cross-lingual attenions (see Figure 2) consider-
ably improves cross-lingual generalization in code-
switched settings. Table 11 results are achieved
by a 40% dropout on cross-lingual attentions (i.e.,
Pmask = 0.4)

D.2 Interfering Cross-lingual Query

Inspired by the promising performance of the struc-
tured attention dropout, we propose a setting where
the query matrix Q also partially handles the cross-
lingual attentions, and cross-lingual query Qcross

partially handles monolingual attentions. The only
difference between the interfering cross-lingual
query and the non-interfering scheme is their re-
spective attention masks, M1 and M2, as illustrated
in Figure 3. We also empirically demonstrate in Ta-
ble 12 that the interfering scheme consistently per-
forms better generalization than the non-interfering
one, especially in the code-switched settings. For
all the fine-tuning experiments with the interfering
cross-lingual query, we use a 70% attention dropout
(i.e., Pmask = 0.7), meaning that 70% of cross-
lingual attentions for query Q, and 70% of mono-
lingual attentions for query Qcross are masked.

E Attention Visualization

As discussed earlier, MultiLMs perform well on in-
language, but when they are transferred to other lan-
guages (especially code-switched languages) their
performance hinders considerably (see Table 2).
This section first analyzes the attention pattern of
baseline models, both on in-language and cross-
lingual evaluation settings. Then, we analyze the

attention pattern of our proposed model which in-
corporates cross-lingual query.

We hypothesize that in order to have a reason-
able cross-lingual performance, the cross-lingual
samples’ attention pattern should not change sig-
nificantly compared to the in-language samples.
Figure 4 visualizes the attention pattern between
tokens in the last (baseline) mBERT layer across all
attention heads. The mBERT model is fine-tuned
on the mix(en, en-fr) depth-0 of RuleTaker dataset,
so the en-fr sample is considered in-language and
the en-ar sample is considered a zero-shot transfer.
It is worth noting the two samples are semantically
the same and only the questions are in different
languages. Comparing the two samples’ attention
patterns, we can see that the attention pattern con-
siderably changes (especially the strong attention
signals getting much weaker when en-ar sample is
given as input), which to some extent explains the
poor generalization of the baseline models to other
code-switched tasks.

In contrast, as demonstrated by Figure 5, the
attention pattern of our proposed method, which in-
corporates cross-lingual query, is much more stable
between in-language (i.e., en-fr sample), and the
zero-shot transfer (i.e., en-ar sample). We believe
that the observed stability in the attention patterns
makes our models more language-neutral com-
pared to the baseline, which is also demonstrated
by the significant cross-lingual improvements over
the baselines in Tables 3 and 4.

F Detailed Cross-lingual Query Results

Tables 3 and 4 demonstrated the average cross-
lingual transfer to either monolingual or code-
switched settings. This section demonstrates the
detailed cross-lingual performance of models with
cross-lingual query and the Original and CS-
baseline. Tables 13 and 14 present the detailed
cross-lingual transfer of mBERT trained on the
RuleTaker and LeapOfThought datasets, respec-
tively. Tables 15 and 16 present similar detailed
cross-lingual performance of XLM-R model on
the RuleTaker and LeapofThought datasets, respec-
tively.



mBERT
Train Method Dataset Epoch / Iteration Batch Size Learning Rate Evaluation Metric Attention Dropout Probability

Full FT
RuleTaker 5 32 1e-5 Accuracy N/A

LeapOfThought 10 32 1e-5 Accuracy N/A

BitFit
RuleTaker 35 32 4e-4 Accuracy 0.7

LeapOfThought 30 32 4e-4 Accuracy 0.7
Pre-training Q XNLI dataset 500,000 16 2e-5 Perplexity 1.0

XLM-R
Train Method Dataset Epoch / Iteration Batch Size Learning Rate Evaluation Metric Attention Dropout Probability

Full FT
RuleTaker 5 32 5e-6 Accuracy N/A

LeapOfThought 10 32 5e-6 Accuracy N/A

BitFit
RuleTaker 35 32 3e-4 Accuracy 0.7

LeapOfThought 30 32 4e-4 Accuracy 0.7
Pre-training Q XNLI dataset 500,000 8 2e-6 Perplexity 1.0

Table 10: Hyperparameters of the pre-training and fine-tuning experiments for mBERT and XLM-RoBERTa models.
Learning rate decays linearly from the initial value to zero.

Training Method Drop attention
Transfer Setting

Monolingual en-X X-en

Full Fine-tune
Yes 90.00 65.57 62.74
No 89.48 62.68 59.53

Bitfit
Yes 82.98 73.20 68.24
No 89.14 65.38 60.81

Table 11: Average cross-lingual transfer of mBERT
model when tuned on a mixture of English and English-
French (mix(en, en-fr)) RuleTaker dataset (depth-0).
The (zero-shot) cross-lingual transfer to code-switched
tasks gets considerably better with structured attention
dropout (see section 4.1), either in full fine-tune or Bit-
fit (Zaken et al., 2021) tuning.

Training Method Interfering
Transfer Setting

Monolingual en-X X-en

Bitfit
Yes 93.65 77.79 68.27
No 91.96 73.08 66.28

Table 12: Average cross-lingual transfer of mBERT
model when fine-tuned on a mixture of English and
English-French (mix(en, en-fr)) RuleTaker dataset
(depth-0). Both models incorporate language-pair-
specific cross-lingual query (i.e., Pair Qcross) and are
trained with Bitfit tuning. The only difference between
the two runs is whether an interfered version of the
cross-lingual query is used or not. We can observe that
the interfered variant consistently outperforms the other
variant, in monolingual and code-switched settings.



Train Data Method
RuleTaker Depth-0

en fr fa de ar es zh ru it en-fr en-it en-es en-zh en-ru en-de en-fa en-ar fr-en de-en fa-en es-en it-en ru-en zh-en ar-en

mix(en, en-fr)

Original 99.97 94.76 70.59 93.28 87.21 93.84 80.48 89.21 92.89 97.23 77.52 72.93 50.31 55.36 69.25 49.27 51.13 80.07 65.03 53.01 63.72 65.52 53.48 53.14 52.47
CS-baseline 99.95 83.24 55.16 78.65 74.05 84.97 69.79 81.29 83.30 99.25 72.75 84.19 79.79 72.36 76.49 48.41 64.51 59.69 55.53 51.90 58.16 57.86 53 51.53 52.15

Shared Qcross 100 96.29 77.19 94.48 95.09 95.96 85.81 92.71 95.18 98.73 83.33 76.01 62.39 60.62 74.96 50.33 54.16 93.32 70.52 52.71 69.38 73.89 55.04 53.94 52.50
Pair Qcross 99.99 97.04 81.05 94.97 94.92 96.69 89.05 92.87 96.23 99.07 83.44 86.13 81.04 72.65 80.61 52.19 67.15 92.84 72.04 55.78 71.74 75.86 61.97 59.58 56.36

mix(en, en-de)

Original 99.94 94.41 73.12 93.18 85.04 92.51 79.71 86.44 94.01 76.31 67.79 71.61 56.14 61.78 95.92 51.22 53.26 68.52 73.02 52.25 58.65 61.83 52.97 53.82 51.75
CS-baseline 99.97 87.99 67.21 86.12 81.59 88.73 80.73 82.72 87.84 84.58 69.56 80.47 78.06 72.66 99.35 50.54 62.59 65.21 64.23 52.63 59.64 57.61 52.71 51.95 52.49

Shared Qcross 99.98 94.42 82.77 94.34 89.09 94.26 82.84 91.24 93.59 80.38 73.48 75.31 63.82 64.35 99.33 51.13 52.97 74.99 90.72 54.95 65.14 70.36 54.86 54.40 52.83
Pair Qcross 99.99 94.77 91.58 95.51 94.09 95.58 86.69 93.21 95.60 85 72.30 82.55 82.16 71.11 99.18 53.97 64.31 79.12 93.83 56.70 72.52 71.60 61.77 65.96 57.32

mix(en, en-ru)

Original 99.81 94.96 83.31 92.29 86.06 94.88 90.80 89.38 93.70 71.81 70.46 68.73 70.54 92.55 65.02 60.04 54.86 68.33 64.27 54.58 62.68 65.98 58.70 54.89 52.44
CS-baseline 99.97 88.43 64.30 81.49 75.32 89.72 82.50 78.64 92.52 81.63 65.88 79.35 80.30 99.82 80.49 54.16 65.71 62.71 56.56 50.59 59.87 57.14 51.01 49.74 49.79

Shared Q 99.98 95.02 84.43 93.75 91.28 95.63 90.07 93.94 94.92 77.52 77.11 76.42 79.19 98.22 77.40 63.67 60.24 75 70.23 63.74 73.14 75.09 79.92 66.65 59
Pair Qcross 99.93 94.49 81.83 92.80 89.75 95.04 89.20 92.52 94.50 82.52 74.97 79.26 81 96.20 79.86 60.45 63.52 77.11 75.92 62.76 75 74.86 77.89 71.64 59.81

mix(en, en-zh)

Original 99.84 93.78 82.44 93.07 88.84 93.24 85.55 90 94.05 65.30 65.75 65.66 91.94 60.49 64.69 56.49 54.32 69.67 62.03 54.55 60.94 63.94 53.79 61.25 52.19
CS-baseline 99.96 86.26 67.56 79.58 76.14 87.50 74.97 84.45 92.02 77.62 64.96 75.41 99.87 68.72 68.46 49.77 56.92 65 59.97 52.62 60.40 57.86 53.52 57.89 52.43

Shared Qcross 99.99 94.50 88.33 92.97 94 95.45 91.37 91.62 95.08 74.57 68.44 67.16 98.50 63.80 66.63 54.49 54.34 74.88 65.03 57.79 67.57 67.85 57.84 72.83 52.96
Pair Qcross 100 96.20 69.73 94.47 95.04 96.76 96.54 93.85 96.26 78.80 71.38 73.73 99.46 63.36 72.05 61.37 56.55 76.77 72.03 58.88 72.69 75.81 60.18 88.73 53.57

RuleTaker Depth-1

mix(en, en-fr)

Original 83.29 73.71 59.34 75.21 65.18 72.93 67.43 67.66 72.08 74.75 67.69 64.52 53.36 56.65 61.49 52.26 53.09 67.48 60.50 53.80 60.47 60.70 54.65 53.72 53.90
CS-baseline 83.65 66.62 55.62 66.96 66.70 68.61 66.96 69.22 64 82.24 70.33 72.68 70.97 67.47 70.55 51 60.76 54.49 53.34 53.84 54.42 54.79 53.32 53.32 53.67

Shared Qcross 87.18 81.53 70.64 82.66 69.82 78.72 73.42 76.41 79.10 81.93 75.49 72.80 64.30 61.12 71.04 55.97 55.46 78.42 67.77 56.12 67.13 70.16 58.19 58.65 54.99
Pair Qcross 86.40 79.87 67.05 80.94 74.96 79.22 74.49 75.66 78.40 82.55 74 71.50 67.87 65.60 72.01 54.81 60.05 77.49 67.07 54.47 68.82 64.99 58.43 59.51 59.32

mix(en, en-de)

Original 77.91 71.26 61.15 65.61 67.52 69.42 68.95 68.58 70.42 62.88 62.07 60.85 52.77 57 66.66 53.17 53.71 61.22 61.10 53.71 58.83 57.40 53.98 53.58 53.67
CS-baseline 82.98 68.85 59.59 64.13 66.65 68.75 64.24 68.58 68.97 74.74 64.09 71.19 72.36 68.07 80.06 51.73 60.76 56.01 55.92 52.59 54.64 53.88 53.04 53.29 52.57

Shared Qcross 86.89 79.15 70.21 80.56 72.57 76.37 71.50 75.53 77.88 73.07 68.57 68.15 62.47 62.19 81.17 54.50 56.95 69.22 75.70 54.61 63.17 65.29 55.32 55.07 54.72
Pair Qcross 87.91 80.22 71.21 81.78 64.43 80.57 74.70 75.59 80.04 70.59 67.53 70.22 69.72 66.45 83.90 54.81 65.57 70.17 74.52 55.41 65.67 65.76 58.81 59.66 55.77

mix(en, en-ru)

Original 85.87 79.91 67.78 78.80 71.32 78.69 74.22 73.22 78.63 63.94 62.49 60.76 56.85 68.16 61.17 55.21 54.60 62.68 60.03 53.87 58.57 59.33 54.82 53.69 53.72
CS-baseline 84.22 74.01 54.92 70.21 69.50 73.90 68.54 70.34 73.86 76.23 66.88 75.69 71.53 81.13 71.96 51.02 65.26 57.70 57.21 53.55 57.50 56.07 54.72 53.54 53.60

Shared Qcross 88.04 80.84 74.44 81.84 76.01 80.86 76.94 79.29 79.91 72.86 69.48 67.57 70.51 78.24 71.33 61.66 58.54 70.17 67.94 60.32 66.67 69.08 67.59 64.25 57.50
Pair Qcross 87.16 80.48 71.71 81.04 71.75 79.72 76.69 76.04 80.24 75.32 73.22 73.45 75.39 98.27 78.42 58.68 59.25 72.08 66.35 55.68 63.99 67.77 71.51 62.33 56.32

mix(en, en-zh)

Original 85.68 79.22 70.71 78.48 72.63 78.59 72.31 73.57 76.69 66.85 64.10 62.59 78.90 58.96 61.85 55.75 55.19 62.84 59.08 54.09 58.41 58.98 54 56.51 53.67
CS-baseline 83.97 68 58.29 63.72 62.29 67.97 62.67 68.22 70.89 71.97 61.76 70.82 82.94 66.10 69.17 51.61 60.58 57 54.91 53.47 55.78 55.54 53.17 52.53 51.89

Shared Qcross 86.21 79.80 59.52 77.54 63.58 79.94 75.66 75.62 78.09 69.18 67.32 65.25 78.71 63.18 65.31 56.47 55.43 69.61 63.24 56.59 63.76 63.98 58.52 64.84 55.42
Pair Qcross 88.28 80.15 66.84 81.34 74.99 80.83 79.34 77.24 81.40 70.56 61.40 68.84 80.82 69.33 70.10 55.42 60.51 67.52 68.17 54.20 70.38 60.43 60.98 73.86 58.25

RuleTaker Depth-2

mix(en, en-fr)

Original 84.82 71.80 54.28 73.04 56.09 70.97 62.55 62.30 71.06 79.10 66.76 64.55 56.26 58.84 60.94 54.90 55.74 67.77 57.66 50.75 57.30 57.77 51.33 50.89 50.94
CS-baseline 83.53 62.26 57.33 58.71 60.59 62.25 60.03 61.07 62.67 81.92 68.33 74.34 66.16 65.90 70.33 51.48 61.52 54.76 52.97 50.81 54.43 54.82 50.86 51.98 50.14

Shared Qcross 85.98 77.34 61.59 80.03 67.17 77.35 73.56 73.06 77.18 83.92 70.92 69.23 59.31 57.80 67.84 51.51 53.27 75.97 60.77 51.63 62.06 63.53 53.29 52.87 51.62
Pair Qcross 84.04 75.41 65.94 76.57 69.78 76.40 69.11 71.69 75.07 83.47 70.16 72.78 67.17 68.11 71.85 53.27 59.05 73.27 65.73 51.52 66.35 62.25 57.43 56.60 57.04

mix(en, en-de)

Original 84.26 75.64 65.94 76.86 68.72 74.06 72.14 70 72.89 68.23 64 65.52 56.05 62.60 78.85 54.34 53.43 62.07 62.35 51.37 57.40 58.09 51.50 51.64 50.84
CS-baseline 83.87 63.27 57.76 59.33 59.59 62.55 60.24 59.44 66.15 74.53 63.31 73.54 69.79 66.76 81.65 50.69 59.47 55.76 55.45 50.13 54.17 52.53 50.35 50.73 50.26

Shared Q 84.93 76.55 63.23 76.68 65.74 71.69 64.09 70.28 73.18 69.75 66.44 66.28 62.16 61.70 78.41 54.27 55.99 66.22 75.96 51.66 61.95 63.04 54.24 53.83 52.43
Pair Qcross 85.28 76.46 65.63 77.02 65.65 74.10 75.35 71.04 73.56 73.23 67.34 70.09 69.34 68.51 82.13 56.34 60.39 67.45 75.18 53.65 62.06 63.92 59.92 58.64 56.48

mix(en, en-ru)

Original 80.34 71.59 60.20 72.79 63.99 69.44 66.38 66.99 69.24 59.31 58.22 56.72 56.25 66.23 55.90 54.33 54.03 56.42 54.91 50.81 53.16 54.20 52.36 50.79 50.84
CS-baseline 83.24 64.90 54.77 61.17 58.79 65.91 64.89 61.49 68.07 70.77 62.33 69.12 70.37 77.97 68.70 52.37 63.07 54.96 52.90 51.20 54.22 53.11 51.43 51.79 50.18

Shared Qcross 85.08 76.80 64.73 78.00 69.59 74.68 70.15 72.69 74.84 67.62 65.57 65.42 65.92 80.81 67.91 56.66 55.56 64.96 59.97 52.29 60.00 61.53 66.69 55.06 52.63
Pair Qcross 84.84 77.38 65.67 78.04 68.24 76.45 72.22 72.99 76.16 71.22 64.66 68.54 71.06 77.86 69.48 58.05 62.87 69.78 65.71 53.63 65.30 63.26 69.03 62.44 58.61

mix(en, en-zh)

Original 79.05 71.29 57.96 71.68 64.44 69.45 63.51 67.39 69.35 57.14 55.70 54.79 64.75 53.20 54.66 51.30 51.70 55.16 53.47 50.98 52.86 53.02 51.09 52.32 50.84
CS-baseline 83.70 67.30 58.05 62.12 61.68 67.60 62.55 66.57 67.08 68.60 60.72 70.85 83.02 63.75 67.37 50.97 60.54 56.72 54.67 51.10 54.37 52.12 51.26 53.20 50.61

Shared Qcross 85.13 75.37 58.97 76.31 68.68 75.67 73.88 71.55 75.24 66.40 63.10 62.84 80.97 60.59 61.50 52.65 53.26 65.19 59.63 52.54 59.50 58.21 53.74 63.31 52.14
Pair Qcross 85.84 77.68 65.88 79.35 69.83 77.51 74.44 74.03 77.83 69.78 61.06 70.41 84.41 64.64 66.73 55.98 60.18 65.50 62.16 54.81 63.94 60.29 59.37 63.00 55.12

RuleTaker Depth-3

mix(en, en-fr)

Original 73.14 64.53 56.27 65.43 58.20 63.39 57.79 60.27 63.35 69.37 63.37 62.14 53.30 54.21 58.22 50.12 52.77 57.35 52.44 48.23 52.08 52.77 48.92 48.30 48.22
CS-baseline 81.14 61.44 57.71 59.62 59.98 61.67 57.72 60.66 63.21 79.67 65.99 72.52 69.99 66.44 70.13 50.20 60.14 53.56 52.25 48.58 52.37 51.54 49.79 50.28 49.19

Shared Qcross 81.82 71.77 62.97 74.84 64.51 72.70 65.47 68.72 71.36 75.36 69.71 68.63 59.77 60.17 67.60 53.93 55.74 70.50 59.66 48.72 57.89 60.60 50.08 50.05 48.47
Pair Qcross 81.22 75.74 62.89 76 65.53 73.87 67.54 68.94 70.79 78.80 69.84 73.45 65.39 64.50 70.71 57.59 61.32 70.14 63.32 53.47 62.56 62.86 57.29 56.10 55.23

mix(en, en-de)

Original 75.47 67.03 57.36 64.77 59.18 64.51 58.97 59.01 64.73 61.33 59.46 58.37 51.54 55.37 69.15 51.58 52.04 54.34 56.81 48.16 51.11 51.19 48.69 48.18 48.22
CS-baseline 81.01 62.66 56.65 59.06 56.94 62.67 57.49 59.36 64.22 71.86 60.81 71.01 71.03 67.64 77.44 48.99 60.67 53.75 54.36 48.05 51.36 49.91 49.94 49.75 48.72

Shared Qcross 83.58 73.82 60.32 77.01 65.60 74.22 68.51 70.46 74.33 66.71 63.36 63.99 57.51 59.48 82.28 51.31 53.02 63.41 73.41 49.52 58.60 60.23 51 52.10 49.85
Pair Qcross 81.95 72.47 63.94 75.20 64.51 71.37 65.95 67.73 71.95 72.12 63.61 70.71 67.12 68.52 78.61 55.66 61.49 69.38 71.57 52.27 63.10 63.22 62.47 60.04 52.85

mix(en, en-ru)

Original 74.49 67.45 61.34 68.13 62.40 65.30 62.21 62.93 66.17 57.80 58.01 56.46 58.81 65.58 54.40 55.42 55.12 52.98 51.46 48.32 51.05 50.56 49.37 48.40 48.24
CS-baseline 65.79 61.80 52.81 60.92 57.93 61.38 58.66 60.99 60.26 61.52 55.15 61.01 61.12 64.49 61.54 48.30 58.33 49.81 49.75 47.89 49.01 48.48 48.11 48.57 48.03

Shared Qcross 83.35 72.44 63.46 76.06 65.55 74.41 68.12 70 73.58 65.23 62.01 62.01 63.69 82.03 64.05 55.19 53.81 61.10 55.85 52.83 57.10 58.32 63 54.35 54.94
Pair Qcross 83.64 72.77 58.50 75.21 67.41 71.66 68.61 68.20 72.81 70.80 62 68.23 65.96 82.53 64.64 55.02 64.62 62.01 60.30 52.96 60.45 58.94 67.72 62.29 56.13

mix(en, en-zh)

Original 74.49 66.84 57.26 66.20 61.11 66.34 62.06 64.79 66.19 57.62 57.40 55.65 70.57 53.47 54.10 52.10 51.45 54.54 51.40 48.49 51.34 51.60 49.16 52 48.31
CS-baseline 81.62 59.50 53.35 55.86 57.82 60.25 56.39 57.14 64.58 68.44 55.83 67.68 80.20 63.26 65.54 49.85 58.33 56.64 53.95 48.85 55.86 51 50.51 50.77 50.12

Shared Qcross 81.70 73.12 54.83 72.41 64.97 72.18 70.32 67.85 72.41 64.13 62.78 62.99 75.97 59.92 61.60 55.86 52.84 63.07 59.02 50.92 58.50 59.55 53.44 65.15 51.29
Pair Qcross 81.97 73.41 56.51 73.12 66.06 73.97 73.47 70.10 73.43 67.25 60.47 70.28 81.64 65.12 68.34 53.91 63.81 64.99 61.65 50.22 59.70 57.81 60.30 67.36 58.34

Table 13: Cross-lingual transfer of mBERT model on the RuleTaker datasets to either monolingual samples or
code-switched language pairs (en-X and X-en). The original is the pre-trained model, and the CS-baseline is the
model that continues pre-training on code-switched data. Shared Qcross and Pair Qcross refer to cases where the
cross-lingual query is either shared across many language pairs or is specific to each language pair, respectively.
Scores are averaged across three different seeds.



Train Data Method
LeapOfThought (Implicit Evaluation Set)

en fr fa de ar es zh ru it en-fr en-it en-es en-zh en-ru en-de en-fa en-ar fr-en de-en fa-en es-en it-en ru-en zh-en ar-en

mix(en, en-fr)

Original 76.07 69.275 53.645 63.305 57.76 69.51 74.36 60.355 67.105 75.06 73.51 73.155 77.81 69.315 72.845 66.175 67.265 72.575 65.36 59.815 72.81 70.48 65.635 71.565 63.305
CS-baseline 71.99 67.03 50.27 64.16 57.33 65.63 67.42 56.25 59.58 70.75 66.87 69.67 74.55 64.86 68.97 56.48 63.23 68.43 66.49 51.98 68.27 58.88 59.35 66.25 62.68

Shared Qcross 75.80 70.29 66.25 72.30 60.28 73.55 76.49 64.55 66.95 75.33 73.62 73.70 77.58 71.45 76.11 70.91 67.42 71.92 73.39 70.52 74.24 68.97 70.99 75.17 66.41
Pair Qcross 79.29 72.07 53.45 66.41 60.20 72.30 77.58 62.14 68.11 78.35 76.88 77.57 80.37 73.67 78.51 68.89 72.07 74.40 74.76 61.75 74.54 72.38 68.96 75.79 66.48

mix(en, en-de)

Original 77.425 71.18 55.04 71.14 59 70.05 77.54 63.925 67.145 74.83 75.525 75.68 81.23 73 77.27 68.94 69.63 74.63 72.15 63.66 72.975 70.645 68.82 73.355 68
CS-baseline 74.24 66.41 50.97 66.80 58.57 66.87 68.04 57.41 58.34 69.43 67.18 68.74 76.49 67.88 71.99 56.87 63.69 68.43 68.43 52.99 68.97 59.19 62.53 70.36 63.07

Shared Qcross 77.73 69.98 57.33 71.45 58.26 70.36 73.55 62.68 66.02 75.72 75.86 75.48 80.61 74.94 77.66 71.37 72.54 72.61 72.61 67.88 74.94 71.14 69.43 75.25 68.27
Pair Qcross 79.83 70.67 57.84 71.84 60.20 71.45 76.26 65.08 68.65 78.03 75.41 77.64 81.06 75.38 80.21 69.59 72.07 75.78 74.94 64.08 76.71 71.76 71.44 77.18 69.10

mix(en, en-ru)

Original 78.17 69.98 54.66 66.91 60.01 70.09 75.84 64.43 67.03 73.29 74.72 74.03 78.99 73.40 76.03 69.72 70.83 71.73 67.30 59 73.74 69.17 66.06 70.60 65.48
CS-baseline 72.54 66.95 50.66 64.62 57.64 65.79 64.47 57.49 61.21 70.52 67.73 69.51 75.64 67.11 69.05 60.20 64.47 66.10 65.17 52.37 66.64 63.15 59.58 64.55 62.30

Shared Qcross 79.44 68.81 56.63 68.11 60.12 70.75 73.93 64.62 68.19 74.86 75.41 75.02 78.67 74.17 76.03 71.61 70.91 72.46 70.91 63.23 73.47 70.13 68.66 72.38 67.57
Pair Qcross 79.98 69.51 57.64 68.96 61.20 69.82 75.71 66.18 68.11 76.64 76.80 76.33 82.29 76.33 78.34 71.45 73.14 73.31 72.45 62.53 74.70 69.59 70.26 74.01 79.03

mix(en, en-zh)

Original 76.11 69.94 56.75 69.63 58.23 70.41 79.40 63.62 67.89 73.54 74.71 74.25 81.81 71.92 74.79 69.71 68.24 72.85 71.37 65.91 74.09 71.07 68.78 73.36 66.72
CS-baseline 74.17 66.80 50.66 67.03 60.28 66.95 74.40 58.03 59.97 70.83 67.42 68.97 80.76 66.72 69.90 55.78 62.37 67.96 67.88 52.91 69.74 62.30 63.23 69.82 63.07

Shared Qcross 79.05 71.13 57.01 69.81 58.96 71.14 81.85 64.53 69.20 74.48 73.55 74.48 84.10 75.17 76.88 69.90 70.44 74.09 72.92 64.86 75.64 72.30 69.28 76.65 65.87
Pair Qcross 79.29 71.68 57.18 69.67 58.81 71.14 80.76 64.16 69.05 76.95 75.72 76.26 83.86 76.63 77.19 71.92 72.52 74.16 74.63 68.27 75.25 73.47 70.67 79.13 68.10

Table 14: Cross-lingual transfer of mBERT model on the LeapOfThought dataset to either monolingual samples or
code-switched language pairs (en-X and X-en). The original is the pre-trained model, and the CS-baseline is the
model that continues pre-training on code-switched data. Shared Qcross and Pair Qcross refer to cases where the
cross-lingual query is either shared across many language pairs or is specific to each language pair, respectively.
Scores are averaged across three different seeds.

Train Data Method
RuleTaker Depth-0

en fr fa de ar es zh ru it en-fr en-it en-es en-zh en-ru en-de en-fa en-ar fr-en de-en fa-en es-en it-en ru-en zh-en ar-en

mix(en, en-fr)

Original 100.00 96.57 93.87 95.98 93.80 96.57 91.77 94.48 95.51 99.29 77.05 73.86 57.99 65.50 71.36 55.33 55.08 85.27 65.58 54.63 64.27 69.36 57.92 62.21 53.50
CS-baseline 100.00 93.32 90.70 94.61 93.04 96.86 94.61 94.05 96.79 99.33 76.35 75.14 61.84 66.95 71.53 58.94 58.14 79.78 64.70 52.09 66.04 68 56.33 52.48 51.89

Shared Qcross 100.00 96.42 95.37 96.53 93.64 96.68 93.89 94.71 96.05 99.29 80.06 79.25 69.19 70.74 76.12 62.24 61.33 92.68 73.47 59.20 72.29 77 64.03 69.99 58.30
Pair Qcross 99.96 96.81 95.57 95.66 94.75 96.91 92.51 94.46 96.81 98.13 86.75 80.18 74.23 76.96 84.63 60.90 65.09 90.94 82.36 64.07 76.64 83.23 74.23 73.95 60.98

mix(en, en-de)

Original 100.00 95.675 91.81 97.23 94.09 97.81 87.71 94.12 96.125 69.46 68.65 67.925 52.81 59.435 99.315 56.05 52.075 69.485 87.595 56.475 65.41 67.935 58.775 60.605 53.255
CS-baseline 100.00 93.14 87.09 90.83 90.43 95.18 87.75 89.96 92.89 75.84 78.59 75.58 61.01 70.85 99.67 60.26 58.45 63.38 69.38 50.35 59.67 61.26 51.58 51.43 50.03

Shared Qcross 100.00 95.62 95.59 97.20 94.21 98.55 93.37 95.06 96.49 78.03 77.11 74.07 59.70 66.23 99.18 59.07 56.89 76.12 95.30 60.03 70.86 74.06 64.06 71.19 55.96
Pair Qcross 100.00 95.75 96.23 96.98 94.50 97.61 94.53 94.69 95.41 80.37 76.38 74.51 65.46 71.15 99.11 56.76 65.12 75.09 95.39 59.91 67.89 71.82 66.59 71.07 59.34

mix(en, en-ru)

Original 99.99 96.10 91.67 94.75 91.52 97.07 89.85 93.54 95.66 71.25 72 70.97 65.49 99.42 72.23 65.25 62.03 72.23 69.88 58.06 65.05 69.05 79.66 56.81 54.33
CS-baseline 100.00 96.59 91.51 94.87 92.69 96.73 90.02 96.70 96.09 73.85 73.63 73.35 69.38 99.95 76.99 65.76 64.11 67.64 64.42 51.93 65.58 63.35 64.14 54.36 51.96

Shared Qcross 99.78 96.53 94.52 94.64 93.07 96.58 94.53 94.40 94.86 84.03 82.06 76.87 76.90 95.56 82.07 75.43 68.67 82.55 80.08 73.04 75.93 82.69 89.68 72.86 61.02
Pair Qcross 99.59 96.38 92.82 94.82 93.44 95.52 94.35 94.66 94.67 85.65 83.11 79.75 81.36 93.16 84.30 74.10 72.70 82.62 80.39 74.57 80.56 79.81 84.57 76.86 68.57

mix(en, en-zh)

Original 100.00 95.46 94.14 95.47 94.40 97.97 94.21 92.44 96.41 70.67 70.52 71.59 99.93 65.98 67.12 63.14 60.10 72.98 70.16 57.39 65.92 69.84 64.22 71.69 54.17
CS-baseline 100.00 95.49 91.12 95.19 91.27 97.76 92.35 92.86 96.02 72.14 73.87 75.24 100.00 74.34 70.51 63.83 60.11 67.54 61.89 51.83 64.17 61.02 51.90 53.25 51.77

Shared Qcross 99.99 96.05 96.09 96.40 94.59 98.12 97.66 93.85 96.28 76.61 79.70 76.44 99.93 73.81 78.80 68.51 63.02 76.94 79.94 65.31 74.33 74.85 73.67 93.51 60.14
Pair Qcross 100.00 96.30 94.85 96.15 93.65 98.94 98.77 95.13 96.57 76.70 73.44 74.26 100.00 75.55 75.04 61.35 63.63 71.95 71.12 62.94 70.10 71 73.38 98.27 60.37

RuleTaker Depth-1

mix(en, en-fr)

Original 86.26 81.37 74.45 83.07 75.39 80.86 75.84 79.84 81.59 85.79 70.28 67.60 58.43 61.52 65.83 56.53 56.82 68.40 63.25 56.38 61.91 62.31 56.01 54.58 53.59
CS-baseline 89.75 81.53 74.41 84.06 77.33 83.76 75.61 80.78 82.77 88.94 70.28 72.47 59.18 61.85 68.60 56.74 58.60 65.95 57.15 53.60 59.95 59.24 54.17 53.60 53.60

Shared Qcross 85.65 80.88 72.46 82.58 78.34 81.32 74.38 80.12 82.68 83.55 74.88 70.59 62.14 66.91 69.58 60.06 59.96 76.52 67.48 57.93 65.99 67.02 60.25 60.16 55.40
Pair Qcross 88.77 84.19 79.43 84.65 80.64 86.08 81.27 82.82 84.89 89.50 74.36 73.31 68.27 66.81 70.92 57.69 60.49 79.63 67.12 52.49 66.36 60.76 63.94 65.09 56.09

mix(en, en-de)

Original 87.10 84.97 80.21 83.85 80.68 83.95 78.26 81.56 82.64 67.44 68.75 65.59 54.81 59.95 90.36 57.98 55.06 65.46 77.69 55.35 62.39 65.24 57.31 58.08 54.72
CS-baseline 86.96 77.69 71.475 77.245 73.25 81.36 68.47 74.13 79.685 69.885 68.79 68.89 57.49 63.52 85.735 59.875 58.945 58.525 56.295 51.905 55.875 55.88 51.855 52.095 51.86

Shared Qcross 85.66 84.10 80.64 83.35 78.74 83.43 78.91 79.95 82.73 70.99 70.36 68.67 60.30 65.37 81.43 61.58 59.29 67.50 73.86 59.50 65.70 67.26 60.73 62 57.58
Pair Qcross 91.57 84.58 80.47 87.13 80.73 86.64 80.11 82.21 85.56 71.08 69.78 68.01 62.23 65.34 90.81 59.85 60.12 68.42 83.53 58.81 65.34 65.13 60.10 64.09 56.38

mix(en, en-ru)

Original 86.80 80.81 77.13 82.52 77.83 82.21 77.41 81.18 81.35 66.51 67.85 65.37 62.42 84.05 65.28 61.62 59.31 64.60 61.68 55.40 61.71 62.36 59.84 56.43 54.27
CS-baseline 88.70 80.39 79.94 80.89 78.92 79.27 79.82 80.18 80.50 70.08 70.51 69.10 68.21 93.39 70.53 67.03 63.37 58.51 54.40 53.44 57.05 55.20 53.39 53.50 53.32

Shared Qcross 91.75 83.46 79.78 84.685 78.805 85.73 80.50 84.49 84.345 74.095 73.435 70.97 68.485 89.42 71.785 65.37 63.685 71.495 68.715 61.835 68.905 69.675 80.58 65.45 57.535
Pair Qcross 96.86 85.69 81.96 88.74 80.36 88.90 83.12 87.52 86.60 73.23 70.34 72.47 72.25 95.88 77.72 67.04 63.40 66.39 65.49 56.66 65.43 62.65 78.24 62.72 55.61

mix(en, en-zh)

Original 86.82 82.69 78.80 83.48 80.50 84.13 79.70 81.40 83.12 64.87 66.98 62.69 84.78 62.21 64.23 59.35 58.40 65.55 63.18 56.02 64.12 64.91 60.13 56.17 54.17
CS-baseline 87.61 81.06 78.53 82.79 79.06 84.08 79.46 81.62 82.53 68.43 67.75 66.80 86.91 65.51 66.52 61.45 58.92 61.02 54.85 53.59 57.21 55.76 53.70 53.58 53.58

Shared Qcross 95.93 85.09 81.10 86.16 80.62 87.49 76.19 83.15 84.97 70.38 74.47 71.31 95.41 72 67.84 64.06 60.21 66.71 64.82 56.98 63.98 64.70 62.14 57.26 54.23
Pair Qcross 97.25 87.50 82.49 88.02 81.33 90.99 86.15 85.81 88.41 70.42 71.53 70.30 96.41 70.59 70.54 63.84 60.97 67.66 66.18 57.65 64.13 63.09 64.57 64.73 55.02

RuleTaker Depth-2

mix(en, en-fr)

Original 84.74 78.41 65.01 80.98 74.34 80.06 69.05 75.33 79.15 82.67 69.82 68 53.20 61.02 64.13 51.99 52.68 67.62 61.12 54.68 61.73 62.64 56.33 54.85 52.15
CS-baseline 86.67 78.76 69.39 78.70 71.20 77.10 70.10 73.95 76.14 85.48 70.14 72.59 55.91 61.47 64.51 56.31 56.11 57.07 51.77 50.74 53.32 53.52 50.74 50.74 50.74

Shared Qcross 93.85 81.66 73.36 82.76 72.98 82.65 74.77 77.05 80.82 92.61 74.11 75.14 63.22 67.84 71.10 60.94 60.21 75.81 64.34 55.47 64.83 65.22 59.68 58.57 53.23
Pair Qcross 93.55 83.73 74.63 83.66 74.13 83.80 78.22 78.88 81.92 92.24 75.10 74.50 67.21 71.63 74.04 56.40 61.57 78.75 66.43 54.88 66.35 65.41 64 63.36 55.77

mix(en, en-de)

Original 86.29 78.51 75.38 82.49 74.68 79.87 75.38 76.33 79.76 65.86 65.44 64.88 56.82 59.73 85.26 57.21 55.85 58.90 69.17 53.40 57.31 58.02 54.47 53.49 51.41
CS-baseline 86.38 75.30 66.56 73.28 68.82 79.06 63.62 69.31 76.90 69.64 67.92 68.11 55.41 62.99 85.15 57.97 57.42 55.85 52.80 50.23 54.16 53.80 50.06 50.59 50.10

Shared Qcross 93.45 81.25 76.28 87.04 74.32 84.69 78.49 81.51 82.25 72.40 71.75 71.85 63.40 69.83 92.21 63.15 59.27 66.73 79.20 55.94 64.07 64.56 62.72 60.43 52.61
Pair Qcross 94.57 81.94 73.59 85.07 72.93 83.24 72.96 76.06 80.67 73.78 71.25 74.09 70.31 71.89 93.01 58.95 60.50 68.57 81.38 54.71 64.64 63.04 64.03 63.25 56.74

mix(en, en-ru)

Original 86.47 77.31 74.55 81.67 74.53 78.16 76.08 77.24 78.05 66.34 65.15 63.11 61.05 84.12 65.64 61.29 60.50 60.09 59.26 52.03 57.50 58.69 56.29 51.46 50.91
CS-baseline 85.98 77.70 74.49 80.67 73.08 80.56 74.14 77.82 80.29 66.65 67.38 66.31 64.01 85.26 66.56 62.96 61.31 57.43 54.52 50.67 55.56 52.25 50.83 50.75 50.68

Shared Qcross 94.09 81.92 77.10 84.43 74.51 83.24 76.92 80.62 81.45 71.36 71.66 69.47 66.52 92.24 71.05 66.17 61.58 65.93 65.70 54.34 62.08 61.89 72.73 56.71 52.77
Pair Qcross 92.77 79.62 74.66 82.47 75.53 81.12 77.84 80.71 80.04 71.32 67.89 70.44 69.82 91.30 75.28 63.83 61.50 63.70 63.31 54.90 60.35 58.62 68.35 60.92 55.58

mix(en, en-zh)

Original 85.95 77.28 72.97 79.58 72.72 78.46 72.14 75.63 77.63 60.64 62.37 60.84 73.90 62.58 60.92 59.94 57.72 56.87 56.14 51.43 54.95 55.68 54.31 50.81 50.79
CS-baseline 85.91 77.01 72.91 81.05 73.63 81.35 78.01 76.34 79.40 65.41 64.35 64.21 85.16 63.82 63.99 60.38 57.28 57.91 52.67 50.74 55.21 53.06 50.76 50.80 50.74

Shared Qcross 92.94 81.30 76.44 83.16 73.80 83.68 81.67 78.46 81.02 70.92 72.72 70.42 92.17 70.80 68.22 64.68 60.56 66.66 65.96 55.45 66.38 65.46 64.45 67.74 53.89
Pair Qcross 95.05 82.10 73.61 80.67 73.34 81.42 77.73 76.63 80.25 70.59 72.10 70.54 93.42 70.40 65.96 64.34 61.29 63.49 61.57 55.09 60.27 58.66 62.58 63.44 55.25

RuleTaker Depth-3

mix(en, en-fr)

Original 83.48 75.78 71.145 78.13 69.65 75.43 70.35 73.62 74.81 80.53 67.36 65.87 56.43 59 63.48 55.36 53.37 62.53 59.73 52.68 59.16 57.35 53.38 52.86 48.96
CS-baseline 82.92 74.19 65.55 74.59 68 74.34 65.76 72.22 72.95 81.81 67.25 68.66 56.96 62.22 64.24 53.86 55.12 58.93 50.41 48.15 53.45 53.27 48.80 48.15 48.15

Shared Qcross 91.32 79.12 71.26 80.01 68.78 79.74 71.69 76.12 77.31 89.03 73.41 71.22 62.21 65.53 70.77 59.46 56.78 73.69 62.17 55.54 61.73 61.25 60.46 60.55 51.09
Pair Qcross 90.38 75.47 70.37 79.74 68.80 77.06 71.76 74.72 75.93 88.36 73.07 70.03 64.83 65.07 70.40 58.58 61.97 69.32 61.57 55.19 60.70 60.32 59.19 59.56 55.10

mix(en, en-de)

Original 89.19 76.20 70.35 79.87 67.43 75.22 69.63 73.13 74.50 68.25 68.12 66.14 55.42 61.80 86.85 57.47 54.90 60.92 69.10 52.52 58.16 60.38 57.34 55.91 49.85
CS-baseline 83.44 76 68.81 76.60 68.38 78.44 69.83 74.19 77.37 64.34 64.29 64.77 57.09 59.43 82.63 56.29 54.15 56.12 56.03 48.15 54.25 54.57 49.56 48.15 48.15

Shared Qcross 93.34 76.07 68.72 78.14 66.93 76.82 68.86 73.46 74.96 69.98 69.09 67.39 56.92 66.89 91.94 59.32 55.75 59.85 67.57 52.91 58.58 59.26 56.20 50.82 50.86
Pair Qcross 92.29 78.34 70.37 81.37 69.60 77.98 71.29 74.22 75.14 71.52 70.62 70.47 66.69 71.60 90.52 57.72 59.98 62.75 67.63 53.41 59.91 61.63 59.62 58.61 54.71

mix(en, en-ru)

Original 83.465 74.595 69.79 77.24 70.075 75.24 70.745 73.785 74.065 63.59 63.38 61.455 61.57 74.72 61.85 59.02 58.775 57.78 56.145 50.525 54.69 54.97 53.08 50.795 48.56
CS-baseline 75.93 69.25 68.94 67.24 65.17 69.92 62.51 69.75 68.59 64.98 65.34 65.03 65.01 73.20 62.24 61.50 62.14 51.51 49.55 48.16 51.71 49.63 48.37 48.33 48.15

Shared Qcross 90.46 75.68 67.05 79.83 67.25 77.19 71.49 75.66 75.78 69.14 69.02 66.25 66.28 88.83 70.13 63.51 60.17 59.99 58.93 52.08 56.63 55.82 59.14 54.36 52.85
Pair Qcross 90.91 76.82 69.41 80.25 68.89 78.74 74.85 77.25 76.19 68.92 66.18 66.58 67.16 90.01 68.42 63.31 61.12 61.13 59.69 52.52 58.51 56.86 66.09 58.72 52.77

mix(en, en-zh)

Original 83.42 76.90 72.06 77.98 71.74 77.91 73.43 73.89 76.01 61.93 61.21 59.50 78.85 60.75 57.14 58.87 55.09 59.93 56.88 49.49 54.91 56.42 52.48 48.34 48.32
CS-baseline 83.30 75.63 68.52 76.45 68.45 77.21 71.97 73.63 74.33 62.42 61.87 59.65 82.60 62.17 59.96 57.90 54.81 52.51 52 48.15 50.63 48.76 48.18 48.14 48.15

Shared Qcross 92.33 76 68.30 78.48 68.07 78.93 70.89 71.89 75.58 67.30 68.67 66.47 91.54 65.65 64.65 60.57 54.49 58.86 58.81 51.43 56.62 55.87 55.55 57.55 48.48
Pair Qcross 83.67 75.54 73.49 77.53 72.83 76.23 74.28 74.04 76.70 68.02 69.51 68.89 82.08 69.01 67.47 64.31 60.33 65.94 62.18 56.12 64.39 60.36 62.83 64.31 55.26

Table 15: Cross-lingual transfer of the XLM-R model on the RuleTaker datasets to either monolingual samples or
code-switched language pairs (en-X and X-en). The original is the pre-trained model, and the CS-baseline is the
model that continues pre-training on code-switched data. Shared Qcross and Pair Qcross refer to cases where the
cross-lingual query is either shared across many language pairs or is specific to each language pair, respectively.
Scores are averaged across three different seeds.



(a) Non-interfering Attention Masks (b) Interfering Attention Masks

Figure 3: Illustration of the attention masks in Section 4.1. In the proposed scheme, two sets of independent query
matrices (Q and Qcross) collaborate to compute the attention scores. Matrix M1 enforces the Q matrix to mostly
focus on monolingual attentions, and matrix M2 constrains the Qcross to mostly handle cross-lingual attentions.
The difference between masks in the two figures are the structured attention dropout probability being either one
(left) or less than one (right). It is worth noting that the first token (e.g., [CLS] in mBERT) is used as a bridge in
both M1 and M2, meaning its respective attentions are not masked.

Train Data Method
LeapOfThought (Implicit Evaluation Set)

en fr fa de ar es zh ru it en-fr en-it en-es en-zh en-ru en-de en-fa en-ar fr-en de-en fa-en es-en it-en ru-en zh-en ar-en

mix(en, en-fr)

Original 76.50 69.94 66.22 72.87 60.92 72.85 76.73 66.22 67.15 75.57 73.40 74.14 75.81 71.77 76.31 69.67 70.48 72.07 72.54 70.76 73.86 71.34 70.33 74.09 68.62
CS-baseline 76.34 69.28 65.40 72.07 60.82 73.93 78.04 68.11 66.02 73.86 70.16 72.16 70.97 70.38 73.65 69.46 66.74 73.31 68.62 69.83 70.78 67.20 69.06 70.85 66.18

Shared Qcross 77.11 72.23 65.63 72.15 60.90 70.67 76.96 66.72 66.49 76.80 73.86 74.09 77.81 74.24 76.73 72.77 69.82 73.31 72.07 70.83 74.17 70.21 71.76 75.33 70.05
Pair Qcross 77.35 72.30 67.18 74.24 63.07 74.63 78.12 66.80 66.41 74.40 74.48 73.93 78.12 73.31 76.11 72.69 70.52 74.17 74.86 72.23 75.87 72.54 69.90 75.41 69.74

mix(en, en-de)

Original 76.34 67.88 67.80 71.92 61.91 73.31 78.28 66.87 65.48 72.61 72.46 72.47 76.11 69.12 75.95 70.13 65.33 66.80 72.54 71.92 74.48 70.13 70.67 75.17 70.13
CS-baseline 76.42 66.02 67.42 72.61 62.53 72.69 77.27 66.56 64.70 73.32 71.54 74.17 74.05 72.46 74.26 70.92 69.90 67.73 72.46 73.31 72.69 66.80 69.12 72.54 66.87

Shared Qcross 76.88 66.87 66.49 73.70 61.13 72.38 77.89 67.42 67.26 73.55 72.85 74.01 77.11 71.53 76.88 71.99 67.88 68.27 74.71 71.22 74.63 69.51 72.54 77.50 68.19
Pair Qcross 76.65 69.36 66.33 74.55 58.88 73.47 77.04 66.02 68.04 72.92 74.09 73.93 78.20 72.14 76.80 70.36 70.03 71.02 75.80 73.62 74.16 70.21 71.67 76.15 69.41

mix(en, en-ru)

Original 76.26 69.51 69.05 72.85 60.59 73.62 76.11 67.11 67.49 71.14 71.85 72.08 74.86 71.76 74.48 70.13 66.51 66.45 71.30 70.63 74.48 70.38 70.75 76.34 66.30
CS-baseline 75.04 67.18 67.34 71.69 60.68 74.86 78.98 69.05 66.18 73.70 73.31 76.11 77.97 71.32 74.66 73.55 70.21 65.89 72.17 71.99 72.17 68.66 71.76 73.34 65.49

Shared Qcross 76.25 68.87 69.11 71.14 59.19 75.17 77.66 67.25 66.33 73.31 72.54 74.17 76.57 73.08 75.72 71.53 68.74 68.43 72.15 71.76 76.26 70.36 71.14 77.04 68.19
Pair Qcross 77.27 67.11 69.67 73.08 59.12 74.71 78.04 67.42 66.64 74.47 74.01 74.79 78.66 74.32 76.64 73.39 70.83 70.59 74.86 72.54 75.95 68.35 72.14 77.19 67.80

mix(en, en-zh)

Original 75.88 68.20 66.73 72 62.45 73.93 79.99 66.33 65.02 70.24 71.93 72.78 79.60 69.80 74.71 70.61 68.52 69.74 74.65 72.23 74.94 70.67 73.31 78.43 68.50
CS-baseline 77.35 67.80 66.74 72.38 60.74 72.71 80.92 66.02 65.01 70.79 73.39 72.48 80.92 68.38 74.65 70.01 68.74 69.90 73.31 71.92 73.70 67.73 69.36 73.08 62.84

Shared Qcross 77.66 66.25 66.18 73.31 60.05 74.63 80.45 66.80 66.49 71.37 71.84 73.16 80.61 71.37 75.48 71.99 68.19 68.19 74.24 71.53 75.95 69.90 72.61 76.65 68.19
Pair Qcross 77.33 67.56 66.80 73.22 60.82 73.55 79.60 66.10 67.18 71.45 72.07 73.30 80.45 71.14 76.93 72.22 68.73 70.13 74.08 71.99 74.94 70.21 72.84 76.18 69.74

Table 16: Cross-lingual transfer of XLM-R model on the LeapOfThought dataset to either monolingual samples or
code-switched language pairs (en-X and X-en). The original is the pre-trained model, and the CS-baseline is the
model that continues pre-training on code-switched data. Shared Qcross and Pair Qcross refer to cases where the
cross-lingual query is either shared across many language pairs or is specific to each language pair, respectively.
Scores are averaged across three different seeds.



(a) en-fr sample (in-language)

(b) en-ar sample (zero-shot transfer)

Figure 4: Attention visualization of the baseline mBERT model for in-language (en-fr) and zero-shot transfer (en-ar),
both from depth-0 of the RuleTaker dataset. The underlying mBERT model is fine-tuned on the mix(en, en-fr)
of the RuleTaker depth-0 dataset. We hypothesize that the poor cross-lingual transfer of baseline models to other
code-switched languages partially originates from instability of attention patterns across different languages as
depicted in above figures.



(a) en-fr sample (in-language)

(b) en-ar sample (zero-shot transfer)

Figure 5: Attention visualization of the mBERT model with cross-lingual query for in-language (en-fr) and zero-shot
transfer (en-ar), both from depth-0 of the RuleTaker dataset. The underlying mBERT model is fine-tuned on the
mix(en, en-fr) of the RuleTaker depth-0 dataset. We can see that attention patterns for our proposed model is more
stable between in-language and cross-lingual samples, compared to baseline model in Figure 4.


