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The metacognitive sense of confidence can play a critical role in regulating decision making. In particular, a
lack of confidence can justify the explicit, potentially costly, instrumental acquisition of extra information
that might resolve uncertainty. Human confidence is highly complex, and recent computational work has
suggested a statistically sophisticated tapestry behind the information that governs both the making and
monitoring of choices. However, the consequences of the form of such confidence computations for search
have yet to be understood. Here, we reveal extra richness in the use of confidence for information seeking by
formulating joint models of action, confidence, and information search within a Bayesian and reinforcement
learning framework. Through detailed theoretical analysis of these models, we show the intricate normative
downstream consequences for search arising from more complex forms of metacognition. For example, our
results highlight how the ability to monitor errors or general metacognitive sensitivity impact seeking
decisions and can generate diverse relationships between action, confidence, and the optimal search for
information. We also explore whether empirical search behavior enjoys any of the characteristics of
normatively derived prescriptions. More broadly, our work demonstrates that it is crucial to treat

metacognitive monitoring and control as closely linked processes.
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After carefully deliberating between Scotland and the Cote d’ Azur,
you have decided to spend your next summer holiday in the north of
Britain. You are rather confident about this choice. Before it comes to
booking your train tickets, an article pops up in your feed: “Skye or
Saint-Tropez—the ultimate comparison.” Do you spend money and
time on reading this article? Or do you purchase the tickets right
away? Conflicts like this are sadly commonplace: Do you read
another news story before heading to the polls? Do you consult a
doctor before heading to the pharmacy? Each time, we have to
balance accuracy with (monetary or temporal) cost (Cohen et al.,
2007; Dayan & Daw, 2008; Wald, 1949). The decision to gather

further information rather than making the choice based on our
current knowledge thus depends critically on the initial choice’s
expected rectitude, given current information—which is a form of
subjective confidence (Pouget et al., 2016). In this article, we examine
formal relationships between confidence and information search.
Humans enjoy a sophisticated and explicit sense of their expected
accuracy, in forms of metacognition (Fleming & Daw, 2017;
Shekhar & Rahnev, 2020; Yeung & Summerfield, 2012). Explicit
metacognition refers to conscious representations of performance
that are available for flexible usage in behavioral control or com-
munication to others (Shea et al., 2014). Metacognitive evaluations
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duly accompany a wide range of decisions, from basic judgments of
perception and memory to reflective evaluations of our knowledge
or the “goodness” of subjective choices (De Martino et al., 2013;
Fischer et al., 2019; Nelson & Narens, 1990; Rahnev et al., 2020).

Recent research has begun to reveal complexities in how these
metacognitive judgments arise—both in terms of within-subject
decision processes and between-subject factors (Fleming & Daw,
2017; Shekhar & Rahnev, 2020; Yeung & Summerfield, 2012). Of
particular interest are the processes that contribute to drops in
confidence following errors. Such error monitoring can occur
even in the absence of external feedback and can rely on a purely
internal evaluation mechanism (Atiya et al., 2020; Boldt & Yeung,
2015; Rabbitt, 1966; Yeung et al., 2004). Moreover, the quality of
confidence judgments differs substantially between individuals even
when their objective decision performance is equivalent (Fleming &
Lau, 2014; Shekhar & Rahnev, 2020). This indicates personal-level
influences on metacognition—a finding with implications for phe-
nomena ranging from psychiatric disorders to political radicalization
(David et al., 2012; Hoven et al., 2019; Rollwage et al., 2018).

Models of confidence have attempted to address the diversity of
human confidence, often treating confidence as an (approximately)
Bayesian readout of decision correctness. However, while Bayesian
models in which the same information underlies both decision and
confidence can account for some confidence phenomena
(Cartwright & Festinger, 1943; Kepecs et al., 2008; Sanders et
al., 2016), they struggle to capture error monitoring or differences in
the quality of people’s metacognition. A particular focus of model-
ing has thus been placed on dissociating action and confidence: In
essence, these accounts allow the specific information underlying
choice and confidence to differ. For example, some propose that
extra inputs are available for the confidence rating that accrue after,
or in parallel, to the decision itself (Moran et al., 2015; Navajas et al.,
2016; Pleskac & Busemeyer, 2010). Others have suggested a range
of covariance structures governing the underlying information
sources (Fleming & Daw, 2017; Jang et al., 2012).

In turn, the choice to collect more information has been shown to
be causally controlled by metacognitive estimates. For instance, in a
study of perceptual decision-making, Desender et al. (2018) used a
perceptual manipulation to induce higher and lower levels of
confidence in different conditions, while keeping subjects’ objective
performance equal. In the condition with lower confidence, subjects
were more likely to seek additional information, providing key
causal evidence for the role of confidence in the collection of
information. In the memory domain, artificially boosting people’s
confidence when learning word pairs makes them less likely to
choose to study those pairs again, even though performance remains
unchanged (Metcalfe & Finn, 2008). Other studies also support this
close relationship between confidence and information search. For
example, neural markers of confidence have been linked to vari-
ability in information search (Desender, Murphy, et al., 2019), and
different forms of confidence are proposed to influence the trade-off
between exploring new options and exploiting old ones (Boldtet al.,
2019; Wilson et al., 2014; Wu et al., 2018).

However, like metacognition, information-seeking behavior is
highly complex and differs substantially between individuals. This
has important implications, for example, for psychiatric symptoms
such as paranoia (Ermakova et al., 2018; Garety & Freeman, 2013;
So et al., 2016) or for patients suffering from obsessive compulsive
disorder (Baranski & Petrusic, 2001; Hauser et al., 2017; Navajas
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et al., 2016; Tolin et al., 2003). Interindividual differences in
information search are also linked to real-world attitudes, as is
evident in a relationship between lowered search and dogmatism
(Schulz et al., 2020).

The close coupling between metacognitive monitoring and con-
trol (Nelson & Narens, 1990) makes it compelling to study how the
complexities of the former and the latter relate to each other.
However, they have yet to be studied within a unified framework.
To do this, we probe the consequences for information search of a
recent, rather general, account of metacognitive monitoring
described by Fleming and Daw (2017). Fleming and Daw’s main
proposal, a second-order model of self-evaluation, posits that
confidence formation depends on a “rater” equipped with an infer-
ential mechanism that evaluates the (covarying) evidence support-
ing an “actor’s” choice. Through this mechanism, the second-order
model can account for diverse aspects of confidence, from error
monitoring to variations in both metacognitive sensitivity and
overconfidence. Following Fleming and Daw (2017), we present
the second-order model prefaced with two architecturally simpler
treatments, the first-order and postdecisional models, which help
introduce and illuminate the extra richness of the second-order
model.

In general, the purpose of this article is not to make specific
judgments about the merits of one particular model of metacognitive
monitoring over another. Such arguments have been the focus of
much debate in the metacognitive literature, and we point the
interested reader to these works (Fleming & Daw, 2017;
Khalvati et al., 2021; Rahnev et al., 2020; Shekhar & Rahnev,
2022; Webb et al., 2021; Yeung & Summerfield, 2012). Rather, the
intention of this article is to probe the consequences of what it means
to posses more complex forms of confidence, however they might
arise, for metacognitive information search and control more gen-
erally. In this endeavor, the three models we investigate are intended
to be broadly representative of larger groups of models.

This article adopts a theoretical and computational perspective
that aims to elucidate what more complex forms of metacognition
should normatively mean for search. To do so, we start by intro-
ducing the core components of confidence and information seeking
at an abstract level, outlining the intuitions behind the relationships
between action, confidence, and information search. We then zoom
in on these computations in more detail, first discussing different
theories of monitoring as delineated by Fleming and Daw (2017),
and then considering the downstream consequences that arise in
optimal control computations for information seeking. In our main
Results section, we investigate how normative metacognitive search
should optimally proceed under a diversity of situations implied by
these accounts. Finally, we seek to build a bridge from our theoreti-
cal accounts of optimal metacognitive information search to empir-
ical data by analyzing suitable elements of a large existing data set of
human confidence and information search behavior.

The Information-Seeking Problem
General Overview

Action, confidence, and information seeking can be investigated
in minimal settings such as the bare-bones perceptual task presented
in Figure 1A. There, participants are presented with a noisy stimulus
(e.g., two boxes each with a different number of flickering dots),
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Figure 1
Example Task and Schematic of Information Available for Different Actions
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Note. (A) A task encapsulating the information-seeking problem presents a subject with a binary discrimination stimulus (more dots on the left,
d=—1, orright, d = 1) about which it has to make and report a decision a; and express its confidence in this decision ¢;. It can then decide whether
or not (s;) it wants to see another additional stimulus, which it could then use to make its final decision ar. We can conceptualize these subtasks as
being made by three different agents with differing information. The actor makes a; and ar, the rater expresses ¢y, and the seeker decides s;. (B, C)
The information available for these different actions varies between the models: (B) In the postdecisional model, the actor takes a; based on X}, and
the rater and seeker have access to this X; and an additional cue Y; to rate confidence and make the seeking decision. If the seeker decides to seek,
the actor additionally receives X for the final decision. (C) In the second-order model, the rater and seeker merely have access to Y; (which can be
correlated with X;) and g, for ¢; and s;. Across models, the final decision is made based on X}, ¥;and, depending on the seeking, X. (D-E) Example
stimulus distributions for d = 1 with example values for X; and Y; (and their sufficient statistic for d, namely Z;) highlighted. Within the
distributions, we highlight zones in which the seeker would decide to seek out further information in gray. In the postdecisional model, this is a
function of X; and Y}, and, in the second-order model, a function of Y, and a;. (F-G) Example postdecisional (F) and second-order confidences as a
function of the relevant cue. Both support error monitoring by allowing confidence to be lower than 50%. Note how in the second-order model the
action has a boosting influence, for example, increasing confidence above 0.5 for entirely ambiguous values of Y;. See the online article for the

color version of this figure.

about which they have to first make an initial binary decision (more
dots in the left or right box). They then express their confidence in
this decision. Following this, they can decide whether to (a) see
another helpful stimulus before making a final decision or whether
they want to (b) make this final decision without any additional
evidence. Seeing the second sample is associated with a cost, and the
final (and possibly the initial) decision is rewarded.

Such a setup is similar to the controlled environments previously
used to study confidence and information seeking (Desender et al.,
2018; Desender, Murphy, et al., 2019; Schulz et al., 2020). In these
tasks, human subjects have been shown to modulate their seeking
decisions based on their confidence and also be sensitive to the cost
of the additional information.

To illuminate this task from a computational perspective, we assign
the paradigm’s different subtasks to three notional agents. These agents
have, depending on the underlying confidence model, access to
different information. The actor makes the two “objective” decisions
(left or right). The rater expresses its confidence in these decisions (for
brevity we only consider a first confidence rating here). A final agent,
the seeker, is responsible for deciding whether additional information
should be sought out (to improve the final decision of the actor). This
terminology adds the seeker to the description of Fleming and Daw
(2017) and makes it straightforward to specify the information that is
available at each point in time and for each computation throughout
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the task. As we shall see, working with a concrete task forces a set
of choices, for example, that the second choice of the actor can be
informed by the confidence report of the rater. These will turn out
to have a substantial impact on the results (for instance, that the
more accurate the rater, the less information seeking is required).

In these terms: First, the rater perceives some evidence X;, and
then makes a decision, a; € {—1, +1}, where a; = —1 represents
choosing left and a; = 1 right. The rater then publicly expresses its
confidence, ¢; € [0, 1] in this decision, based on the information to
which it has access. This information may or may not include X;
and/or some unique information of its own Y;. Third, the seeker
decides whether more information should be sought (s; € {0, 1},
with s; = 0 representing no search, and s; = 1 representing search).
The actor then makes a final decision, ar € {—1, +1}. In our simple
formulation, ay can be based on X; along with ¢; (since the rater’s
confidence judgment is veridical and public) and, if extra informa-
tion was sought, a further sample, X. We refer the reader to Table 1
for an overview of the notation used throughout.

We now unpack the computations behind these steps further, first
discussing models of the initial decision and confidence, as outlined
by Fleming and Daw (2017), before elucidating their consequences
for how the seeker should optimally decide to search for informa-
tion. While we use a visual decision-making task for illustration, the
underlying computational problem is more wide-reaching, and our
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4 SCHULZ, FLEMING, AND DAYAN

Table 1
Notation

Notation Explanation

A. Experiment

States
I;e {I_, 1;} Initial actual state of the problem
F, e {F_y, F} Final state of the problem
de {-1,1} Underlying state of the stimulus
Rewards and costs
ry, e Reward for the initial and final decisions
2 Cost for obtaining the additional stimulus Xx

B. Rahdom variables and their attributes
Random variables

X5, Xp Actor’s stimuli at /; and F,

Y; Rater’s stimulus at 7, (in postdecisional and
second-order model)

Z; Combination of X; and Y;

Zr Combination of Xj, ¥, and Xr

Noise terms associated with random variables

Gy, O Standard deviation of X; and X
T Standard deviation of Y;
Cn Cr Standard deviation of Z; and Z
pr Correlation between X; and Y;
pY Covariance matrix for X; and Y; with o, T,
and p;
C. Agent

Actions and expressions
ay, ar € {—1, 1} The actor’s initial and final decisions

cr€ [0, 1] The rater’s confidence in the actor’s initial
decision

s; € {0, 1} The seeker’s decision whether (1) or not (0) to
seek

apy, The actor’s final decision conditioned on the

seeking decision
Values and action values

Qs(sy) Action values for seeking Q((1) or not seeking
0,0)

V;,z,.- Value of having a specific cue Z at final state F

V;ZM’ Value of having a specific cue Z; at final state F,
conditioned on whether agent will seek or not

V;yhsl Value of having a specific cue Y; at final state F,

conditioned on whether agent will seek or not

Note. We distinguish between (A) aspects of the task, (B) random
variables, and (C) quantities/actions that the agent computes.

computational-level analysis is itself agnostic to the setting in which
actor, rater, and seeker are placed. For example, the stimuli could
equally address other sensory modalities. More abstractly, the
available actions could also represent two objects of noisy value
between which the actor decides (De Martino et al., 2013; Lee &
Daunizeau, 2021) or a judgment of learning (Metcalfe & Finn,
2008). The information-seeking act might then be asking a friend for
advice, or deciding to study further.

Formalizing Action and Metacognitive Monitoring

We can frame the decision-making problem as a partially observ-
able Markov decision problem (POMDP; Monahan, 1982; Sutton &
Barto, 2018). In this, the actor’s first task is to use its cue X; to infer
which of two states of the world I (with d € {—1, 1}) it inhabits.
These two states can represent a multitude of stimuli and task
configurations, including more dots in the left (/_;) or right (/;)
box in the task of Figure 1A, but equally any other binary judgment.
The actor’s cue X; only affords partial information about d and is
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conventionally thought to be drawn from a normal distribution with
mean d and standard deviation o;.

X[NN(d,GI). (1)

In a task only capturing the first decision, we might incentivize the
initial decision a; with a payoff of r; points for correct choices and 0
points for incorrect choices. In this case, a reward-maximizing actor
should optimally compare its sensory sample against a threshold.
Under our stimulus and payoff regime with equal noises and payoffs
and equally prevalent underlying states, this optimal threshold is set
to 0, implying that:

a; = sgn(X;). )

More complex schemes for payoffs (e.g., more reward for
correctly identifying d = 1) or asymmetric sources will impact
this decision rule (Dayan & Daw, 2008), but we will focus on this
simple setup for clarity. Our reward criterion also disregards any
further notions of timing. In general, the expected performance of
the actor is determined by o;, with higher values associated with
more mistakes, on average (see below for more details).

The rater’s task is now to compute a confidence, ¢;, in a;. We
assume that the rater follows Bayesian precepts and reports its belief
that a; was the correct choice, given its information (which we here
denote by C) and the task parameters 0:

¢y =P(d = a/|C;0). 3)

We note that here we use the term “confidence” to refer only to
this specific posterior probability that an action was correct given the
rater’s information. This delineates it from the broader notion of
“certainty” that refers to estimates of precision about noisy sensory
or cognitive variables (Fleming & Daw, 2017; Pouget et al., 2016).
As previewed, Fleming and Daw (2017) discuss three different
models for the nature of C, the first-order, the postdecisional, and the
second-order models. We now recapitulate these models before
adapting them to the information-seeking problem. Since the first-
order model is a special case of the postdecisional model, we discuss
them jointly.

Postdecisional and First-Order Models

In the postdecisional model, the rater knows the actor’s informa-
tion X; and action a;. It also receives independent postdecisional
information, Y; (see also Figure 1B). This postdecisional cue Y; is
sampled from a distribution with the same mean d but with its own
standard deviation t;:

Y[NN(d,TI). (4)

The first-order model is an instance of the postdecisional model in
which t; = co. In other words, in its case, the rater has no extra
postdecisional information over and above the actor.

The rater first combines its sample with the actor’s sample in a
precision weighted fashion, leading to a sufficient statistic Z;, which
has a standard deviation of {;:

X Y
Z[ = mNN(d,CI) where C[ = T n T (5)
o2 ' T o2 T 1
I 1 i T

REV-2021-0061_format_final m 14 November 2022 m 11:55 am IST



CONFIDENCE IN CONTROL 5

The rater’s confidence in the actor’s choice then comes from the
posterior distribution obtained through Bayes’ rule. Here, the
distance between the threshold and Z; becomes a proxy for the
rater’s confidence:

p(Z)ld = a;§;) 1
¢ =Pd=a|Z;) = = : (6
! ( 121:61) > P(Zildig) 1+ e ©
d

An important facet of the postdecisional model is that Z; and a; can
“contradict” each other. In other words, the rater might have infor-
mation that favors one judgment (e.g., Z; = 0.7), while the actor might
have had information that favored the other (e.g., X; = 0.2). Such a
disagreement will lead confidence to be lower than 0.5, triggering
what is known as error monitoring (Boldt & Yeung, 2015; Fleming &
Daw, 2017; Yeung & Summerfield, 2012) as we see in Figure 1F.

In the first-order model, with t; = co, the actor and rater have the
same information (Z; = X)), but the confidence computations out-
lined in Equation 6 still hold. As a consequence, the rater will always
endorse the actor’s choice in the first-order model. This, in turn,
prevents it from exhibiting error monitoring. Furthermore, and
inconsistent with empirical observations of dissociations between
performance and metacognition (Rahnev et al., 2020; Shekhar &
Rahnev, 2020), it ensures the actor and the rater’s accuracy remain
coupled, as we will discuss in more detail below.!

Second-Order Model

Fleming and Daw’s postdecisional rater is particularly well
endowed with information: It knows exactly what the actor used
to make its decision, plus some additional information (if 6; < o).
This assumption might not hold under several scenarios, for exam-
ple, different neural pathways for action and confidence formation.
It also does not allow the rater to know less than the actor, a fact that
will be important when capturing empirical metacognitive hypo-
sensitvity, as we will see later.

The second-order model solves this problem by denying the rater
direct access to the actor’s variable X;, and rather only allowing
correlational access to it. That is, rather like two humans interacting,
the second-order rater only observes the actor’s binary decision a,
and has to use this in concert with its own personal information Y; to
form a confidence estimate in this decision. This is facilitated by the
fact that, in contrast to the postdecisional model, the actor’s (X;) and
rater’s (Y;) information can be correlated, as is visible in Figure 1E:

HRCH

c? pio;T
S = T 01T | 8
! {Pl"ﬂ/ T? ®

Knowledge about this informational setup and the actor’s deci-
sion rule allows the rater to make partial inferences about the value
of X; through its observation of the actor’s action. Specifically,
because the actor makes its decision based on its cue’s sign (as per
Equation 2), the rater can immediately exclude one half of the
stimulus space (either positive or negative) after observing the
action alone. Depending on the correlational structure linking X;
and Y7, the rater can further pinpoint the location of X; by leveraging
knowledge about the pattern of correlations between the samples. In
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short, the rater’s confidence combines two actual, and one inferen-
tial, source of information about d: the action ay, its own Y;, and the
information provided by these variables about X; via the covariance
between X; and Y

g =Pd=alYa;%). )

We recapitulate the details of this computation, including the
inference of X; in the Appendix (Appendix A). As with the post-
decisional model, the second-order model also supports error moni-
toring and can give rise to different levels of metacognitive insight.
However, in contrast to the postdecisional model, the rater can have
worse information than the actor, which, as we will see, is critical to
produce more complex forms of confidence.’

A crucial aspect of the second-order model is that an agent (here,
the rater) has to “[infer] the causes of its own action” (Fleming &
Daw, 2017). This (partial) decoupling of action and confidence
information gives it more flexibility than the postdecisional model
and makes the action a crucial input to the computation, in turn
boosting confidence for ambiguous Y;‘s. This is visible in Figure 1G
and discussed at length in Fleming and Daw (2017).?

Interim Discussion of Confidence Computations

The previous section has recapitulated the accounts of metacog-
nitive monitoring investigated by (Fleming & Daw, 2017). Their
main idea is a (partial) dissociation between action and confidence.
Many nonexclusive accounts exist about the source of these dis-
sociations. For example, in perceptual decision-making, evidence
might further accumulate or degrade after a motor action is initiated.
In memory- or value-based decision-making more information
might arise through additional pondering. Furthermore, rating
and acting might rely on partially different neural pathways (see
Rahnev et al., 2020, for a recent overview of dissociations between
confidence and action). We note that, in keeping with Fleming and
Daw (2017), we here largely stick to Marr’s computational level
(Marr, 1982). This more abstract perspective also means that we are
a priori agnostic toward implementational and algorithmic-level
questions and the specific source of information or error.

! Our postdecisional model somewhat extends Fleming and Daw (2017)
but uses a formally equivalent architecture. Specifically, whereas Fleming
and Daw (2017) only discuss cases where t; = o, (and thus {; = °—'2), we allow
the actor and noise to vary independently and describe how the two can be
optimally combined. This additional flexibility enables us to subsume the first-
order model within the postdecisional model and will become key in our results
when we describe different levels of metacognitive insight.

2 We note that theoretically nothing prevents correlations between the
samples X; and Y; of the postdecisional model. However, as we will see, the
key distinction between the second-order and postdecisional model is at
the level of the general access that the rater has to the actor’s information. In
the second-order model, knowledge of such correlations between rater and
actor becomes crucial to allow for more precise confidence computations. In
the postdecisional model, in contrast, introducing such a correlation simply
degrades the additional information carried by Y;. As a result, a hypothetical
postdecisional p; parameter and the already existing t; would only trade off in
the computations of the rater and seeker and not add any additional subtleties.
In keeping with Fleming and Daw, we therefore do not further discuss the
role of correlation in the postdecisional model.

3 We note that the specific distributions used for this simple form of
second-order model have some previously unexplored peculiarities at vari-
ous limiting values. Because these are not essential for our investigations, we
discuss them in the Appendix C.
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6 SCHULZ, FLEMING, AND DAYAN

Modeling complex confidence phenomena through a dissociation
between evidence sources underlying acting and rating is of course
not unique to Fleming and Daw (2017). However, locating other
accounts relative to the postdecisional and second-order models
requires a careful look at their respective informational architec-
tures. Perhaps the most significant family which is at least subtly
different includes those models that assume that evidence accumu-
lates continually (Moran et al., 2015; Pleskac & Busemeyer, 2010;
Resulaj et al., 2009; van den Berg et al., 2016). These relate to our
models in two structurally different ways.

For an example of the first, consider what Pleskac and Busemeyer
(2010) call a two-stage model. Superficially, this looks like our
postdecisional model: The actor makes its decision based on one
source of information X;, and the rater bases its confidence on a Z;
which is X; plus some additional, independent, information Y;
(whose precision is usually governed by the time that passes
between the action and confidence). However, in Pleskac and
Busemeyer (2010), the actor uses an algorithm based on diffu-
sion-to-bound, and so X; is perfectly predicted by a;. Consequently,
whereas our X; can be accompanied by different degrees of (first
order) certainty, the accumulation bound fixes this certainty. As a
result, the rater can use the actor’s decision as a sufficient statistic for
the rater’s random variable, and will know (as a function of the
bounds) how accurate this decision is on average. In turn, this
informational setup for the rater is an instance of what we would call
a second-order model with p; = 0. There, the rater also only knows
the average accuracy of the actor and receives uncorrelated evi-
dence, which it combines with g; to form its confidence.

The second structural relationship is to note that the action
threshold in dynamical diffusion-style models already implements
an implicit case of the optional information seeking computation
that we study explicitly—allowing more information to be collected
(typically at the expense of time) given insufficient confidence.

While confidence models with dynamically accumulating evi-
dence can provide some additional insights (e.g., into reaction
times), we here focus on the second-order model and its postdeci-
sional sibling. This is because its flexible computational-level
framework provides a broader view of metacognitive monitoring
through the lens of partially shared information between rating and
acting and therefore subsumes many other accounts.

Formalizing the Information-Seeking Problem

Regardless of the model of metacognitive monitoring, after a
confidence estimate is formed, the seeker needs to decide whether
the actor should see additional information before making its final
decision ay about d. To conceptualize this more formally, we extend
our POMDP (Dayan & Daw, 2008; Gottlieb et al., 2013) by adding a
second pair of states F; that deterministically follow I, (I_; — F_4,
I, — F,). If the seeker decides to seek, the actor receives a second
stimulus X at Fy, which it can use to make its final decision. We
again assume this second cue to be sampled from a normal distri-
bution with mean d and an associated standard deviation G-

Xp~N(d,oF). 10)

A final correct decision again comes with a remuneration rp,

whereas an incorrect choice leads to 0 points. Finally, and crucially,
. . 4
seeking incurs a cost, r;.
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Regardless of the metacognitive information configurations
outlined above, the seeker’s choice involves the same basic
question: Is seeking worth the cost? To decide, it computes two
action values, Q,(s,): one for seeking Q((1) and one for not seeking
0,(0). In short, these involve predicting how accurate the actor will
be on the final decision, with or without Xz. We will next outline
these computations, first explaining the details in the simpler case
of the postdecisional model, and then highlighting differences in
second-order computations. Across these models, we assume that
the seeker has the same information as the rater, that is, that there is
a computational symmetry between metacognitive monitoring and
control. This will allow us to capture key unique contributions of
confidence to information search over and above the actor’s
objective performance.

To illustrate the computations involved, we follow recent studies
(Desender et al., 2018; Schulz et al., 2020) who provide no reward
for the initial decision (r; = 0). We fix the reward for the final
decision at rr = 1 and will show different costs for the additional
stimulus 7,. Furthermore, we assume a noisier first (6; = 1.5) than
second (o; = 1) stimulus.

Seeking in the Postdecisional/First-Order Case

To compute the two Q values, we first need to consider how the
final decision ar might be made at F,, with and without Xp.

If the seeker decides to collect no further information, the actor’s
final decision will be based on the same information as the rater’s
initial confidence. As a result, the final decision will just repeat its
initial decision aro = a; if Z; and X; agree. If they contradict each
other, the actor will correct what it assumes to be an initial mistake
and change its mind. In confidence space, this transition occurs at
c;=0.5.

To compute the associated action value for not seeking, Q,(0),
the seeker first computes the optimal expected value V;,Z,,s, —oof
having a specific Z; at F, conditioned on its nonseeking behavior.
This involves multiplying the reward obtained through a correct
final decision with the probability of making a final correct
decision based on Z; (assuming that incorrect decisions incur
no cost). In the postdecisional model, this probability is simply
max{c;, 1 — ¢;}. Figure 2 shows the subcomponents of the
postdecisional seeker. For clarity, we there assume that t; = oo,
reducing the problem to the first-order model. Figure 2A depicts
the posteriors and the associated values. Importantly, this is the
equivalent of the curves for the first-order confidence. Since not
seeking costs nothing, the optimal action-value for not seeking is
just this value:

0,(0) = V;,z,‘o =max{P(d = -1|Z;),P(d = 1|Z;) }rp

=max{c;, 1 — ¢;}rp. 11

In contrast, if the seeker decides to seek, the actor can use the
additional stimulus X to disambiguate d further for its final decision

4 We use this payoff scheme for simplicity, but note the possibility of
others (including temporal discounting). Furthermore, we assume that the
agent has a linear utility function, which precludes forms of risk-aversion.
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Figure 2
Subcomponents of the Information-Seeking Computation in a First-Order/Postdecisional Model
A Posterior/Values from Z, B Posterior Zy: P(d=11Z) c Value of Z¢
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Note.

(A) To compute the Q value of not seeking, Q,(0) (bold line), the agent computes the max of the two posteriors over d from Z;, P(d = —11Z;) and

P(d = 11Z)). (B) If the seeker decides to search, it receives X, which it combines in a precision-weighted fashion with Z; to form a Z. Here, we plot the
posterior P(d = —11Zf). Because Z; is noisier than X ({; > o), the apparent slope of this posterior is not —1. Rather, X is weighted more than Z;. The
converse posterior P(d = —11Z;) = 1 — P(d = 11Z;) is the remaining probability. (C) The seeker computes the value associated with a given Zy from the
maximum of these two possible posteriors. (D) Because it needs to decide whether to seek or not before receiving Xr, the agent needs to predict Xr. It does
this by summing the two possible source distributions N(d, o) weighted by their individual confidence values. (E) To compute the value for seeking
0,(0), the agent averages over the two quantities in C and D, based on its Z;. We here display the Q value for not seeking and for seeking overlayed, with
the latter shown as a function of the seeking cost r,. Note how the maximum of the Q value for seeking Q(0) is defined by this cost. (F) The agent seeks
when seeking is more valuable than not seeking. We here display the difference between the two values, transformed into confidence space. As
confidence increases, the benefit of seeking decreases. Partially adapted from Dayan and Daw (2008). Parameters set at {; = 6; = 1.5, 6 = 1. See the

online article for the color version of this figure.

ar,. It does this by first forming a final combined variable Zr in a
precision weighted fashion equivalent to Equation 5:

Z L X

2 2 1
Zp=7 +I~N(d,cF) where  (p = T 12)
G o G o

Similarly to the first decision, the actor can then compare Zr
against a threshold (again, optimally Zr = 0 given our payoff
regime) to make the final decision. We plot the posterior associated
with this value for d = —1 in Figure 2B. There, the threshold for aris
where P(d = 11Zr) = 0.5.

In our example, recall that we set the initial stimulus Z; to be
noisier than the final stimulus Xz (t; = 1.5 and t7 = 1). As a result,
Xr is given more weight than Z; in the posterior. For example, an
Xr = 1 will increase the P(d = 1lZy) posterior more than an
equivalent Z; = 1. Similarly, a less extreme X will be necessary
to overturn a Z; of a different sign. This is evident in the tilt of the
posterior, which is not fully diagonal but rather slants toward Xp.
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As for Z; in the no-seeking calculations, we compute the expected
value of a given combination of Z; and X from the maximum of the
two possible posteriors, where P(d = —11Zz) = 1 — P(d = 11Zp):

V;ZF =max{P(d = -1|Z;),P(d = 1|Z¢) } . (13)

We plot this value V;ZF in Figure 2C as a function of Z; and Xp.
Again, the slope of the relationship is determined by the greater
contribution to Z; of Xy than that of Z,.

Crucially, however, the seeker has to decide whether it wants to
seek before the actor has seen Xp. It therefore needs to predict this
second cue. The resulting distribution P(X/Z)) is a function of how
likely the seeker believes that the actor is to receive a stimulus from
one of the two means, or a sum of the two possible source
distributions weighted by the rater’s initial confidence c¢; (see
Appendix A). Figure 2D shows this distribution as function of
Z;, a mixture of two Gaussians.

To compute the expected value, V;.Z,,l’ without having seen X,
the seeker then integrates over this distribution and the previously
defined value function for its value of Z; given the prospect of
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seeking. Based on this mean value the seeker can now work out the
action-value for seeking by considering the cost of the search:

Q;(l) =rs+ V;.Z,,l

=Ty + J p(XF|Z1)V;,ZFdXF' (14)
XF

This value is shown in Figure 2E as a function of Z; and for different
seeking costs 7y. It is highest when the seeker expects the final choice to
be likely correct, that is when it is relatively sure about the identity Xj.
With more ambiguous values of Z;, this prediction can only be made
with less certainty. The ceiling of the seeking value is defined by the
cost r;. We plot the value for not seeking in Figure 2E. It approaches
0.5 as Z; becomes less distinctive, and ¢; therefore becomes lower. The
larger of the two Q values then determines the seeking choice:

_J 1 ifQs(1) > 0s(0)
1= {0 otherwise. as)

For ambiguous values of Z;, seeking is useful and will likely
produce a better final outcome, even when taking into account the
additional cost. When we transform the difference between the two
values into confidence space (Figure 2F), we notice that seeking is
more valuable than not seeking in lower confidence ranges, highlight-
ing a crucial role of confidence in guiding the decision to seek.

Seeking in the Second-Order Case

The second-order model entails some additional subtleties stem-
ming from the different sources of information of actor, rater, and
seeker. Recall that, in the second-order model, the rater only observes
ay and Y; but does not have full access to the actor’s random variable
X; (compare Figure 1C). Similarly, one might assume that the actor
does not directly know Y; but only observes the rater’s utterance, c;.
However, because the actor knows its own first action, q;, it can
leverage the knowledge about the rater’s confidence algorithm to infer
the initial confidence variable, Y;, underlying c;. It can then combine
this random variable with X to form Z,, taking into account the cues’
relative precisions and their covariance (see Appendix A). The reason
the actor can extract Y; from c; but the rater cannot infer X; from q; is
that confidence c; is continuous, whereas the action a; is discrete.

In the case of no seeking, the actor makes its decision based on Z; in
a similar vein to the postdecisional model. In contrast to the post-
decisional model, such a change of mind is not necessarily coupled to
¢; < 0.5 given specific stimulus configurations, because of the
additional information possessed by the actor at the second stage.
Regardless, the value computations for holding a given Z; are
equivalent to the postdecisional model (we detail this V;Z, in the
Appendix A). However, the seeker does not know Z;, because it does
not have access to X;. It therefore has to marginalize out this quantity in
a similar manner to the postdecisional model’s seeking computations:

05(0) = Viy,0 = L p(Zi|Y1.a) Vi 4,dZ;, (16)

1
= L p(X(|Y;.a;) Vi 5 dX;. a7
JX;

When the seeker decides to seek, the actor receives X (again as
per Equation 10) which it combines with Z; to form a joint variable
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Zr (because there is no correlation between Xy and Zy this is
optimally done in a manner analogous to the postdecisional model,
Equation 12). This final variable Z can then again be compared
against a threshold for ar; and is used to compute a value. Similarly
to the first-order and postdecisional models, the seeker does not
know all the parts of Zr and has to marginalize over the unknowns.
As before these mean values are then used to compute the Q values
associated with seeking and not seeking:

Qs(1) =rs+ Viy 1 (18)

=rg+ JZ P(Zp|Y1.a))Viyy dZp, (19)
F

=rg+ L L p(Xp. Xp|Y 1 a))Vi 5 dXpdX;.  (20)
1 F

Commonalities and Differences Between the Models’
Seeking Computations

While their details diverge, the different models still share some
key commonalities. Crucially, they all employ their current confi-
dence, ¢, to predict the future location of the second stimulus, Xg,
which is then combined with the final value of a stimulus combina-
tion to form the Q value for seeking. For the postdecisional (and
first-order) model confidence is also a determinant of the value of
not seeking. The second-order model additionally uses the confi-
dence to compute the nonseeking value, albeit by harnessing it to
predict the location of Xj, similarly to the postdecisional seeking
value. All this highlights the crucial role metacognition and confi-
dence play in optimal seeking decision.

Theoretical Results

In the following, we discuss how these models behave in our
information-seeking task thereby showing intricate facets of optimal
metacognitive information search. The task allows us to investigate
several markers of action, confidence, and information search. With
regard to the initial decision, we can observe (a) the average initial
decision performance, (b) the initial confidence, and (c) an agent’s
metacognitive accuracy (their ability to tell apart correct from
incorrect choices through their confidence). With regards to the
information-seeking decision, we can investigate an agent’s (a)
average level of information search, (b) its seeking criterion, as
well as (c) how calibrated search is to their initial decision accuracy.
Finally, we can observe how accurate an agent is in its final
decisions. Our models produce specific patterns of interactions
between these behavioral markers.

We note that the optimal model behavior we discuss provides an
upper bound as to how an agent could optimally harness its
metacognition to seek information. These theoretical results thereby
should not be taken as strong predictions for human choices, which
need not be optimal. Rather, they reveal limits and possibilities of
what metacognitive monitoring might mean for metacognitive
control in the context of information search. We investigate more
general patterns of metacognitive search and their link to human
behavior in the second, more empirically focused, Results section.
We also discuss broader deviations from this normative behavior in
our closing Discussion section.
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Initial Accuracy, Average Confidence, and
Information Seeking

If an agent has perfect insight into its average levels of correct-
ness, it should use this insight to guide its search decisions: In
essence, the more likely it is to make a mistake, the more additional
information should benefit it.

To investigate this in the context of our models, we now first fix
the quality of the second stimulus as well as the cost for seeking and
investigate an agent’s average confidence and information search.
We show these markers as a function of the initial accuracy which,
across all models, is a function of o

P(correct) = ¢(o;) = J:p(X,|d = 1;0;)dX;. (©2))

A plot showing this function is displayed in Figure 3A: The lower
the actor’s noise ¢ becomes, the more accurate the objective
decision.” Of note is that in the current model setup, average
confidence is correctly calibrated and so tracks the objective accu-
racy (Figure 3B). For example, when the actor correctly responds in
71% of cases, the rater’s average confidence will also be 71%. Thus,
it is worth noting that the relationships between average initial
accuracy and average search will be the same as between average
confidence and average search. We discuss aberrations to this
perfect calibration in a later section.

Postdecisional and First-Order Models

Figure 3C shows how the first-order (t; = co0) and more general
postdecisional models prescribe a relationship between accuracy
and information seeking: The lower the initial accuracy, the more
likely it is to seek out information. In fact, average search ap-
proaches an asymptote of one below a certain accuracy for the first-
order model given the final stimulus precision and information cost
used here. In other words, when objective accuracy is low it will
almost always be worthwhile for a first-order agent to seek despite
the cost.

The extra information provided by the postdecisional stimulus Y;
impacts this average seeking over and above the average objective
accuracy. Specifically, we see a marked reduction in seeking with
lower T, in comparison to the first-order model. This arises because
the joint noise {; associated with Z; decreases as Y; becomes more
precise, and since, in our model, ar can be informed by Z; even
without extra seeking. In fact, the cue combination in Equation 5
ensures that the joint noise {; will never be larger than the smallest of
each of the two underlying variances; instead, it will be smaller than
the smaller of the two when the postdecisional noise is less than
infinite. Consequently, a postdecisional seeker with T; < oo always
possesses information that is at least as accurate as a first-order
seeker with an equivalent o, It will thus always seek out less
information than its first-order sibling. The postdecisional noise t,
governs the difference between the pair with more precise post-
decisional cues leading to larger differences.

This joint standard deviation {; also impacts the asymptote:
Specifically, the average search propensity of an optimal postdeci-
sional agent will never exceed a specific proportion (for t; < o0),
even when its objective decision quality remains poor. This, and the
generally lower search even before the asymptote, is partially due to
the inherent capability for error monitoring in the postdecisional
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model: If the agent receives a postdecisional cue with sufficiently
low noise that contradicts its initial cue, then it can infer that its
initial choice was erroneous. When this postdecisional signal is
strong enough to trigger a high error probability, then the agent can
simply change its mind at ar without requiring the additional
information. In contrast, when the actor has made an initially correct
choice, a precise postdecisional stimulus will likely increase the
rater’s confidence. The heightened confidence in turn will also
decrease the need to seek additional information. Since the deter-
minant of the average search is optimally {;, and this quantity is
close to t; when o; is large, a postdecisional agent’s average
information seeking normatively equals the average information
seeking of a first-order agent whose actor noise o;is equivalent to the
postdecisional model’s rater noise ;. In other words, when the actor
knows almost nothing, the average seeking behavior of a postdeci-
sional agent will still resemble a first-order model whose decision
accuracy would be governed by 7.

Second-Order Model

The optimal seeking behavior of the second-order model differs
in key aspects from the postdecisional model (see Figure 3D and E).
While normative second-order agents should, broadly speaking,
reduce their search with increasing initial accuracy, their optimal
behavior exhibits a marked interaction between actor and rater
noise. Specifically, the average seeking curves appear similar to
those of the postdecisonal model when the initial accuracy of the
second-order actor is relatively low. There, rater/seekers with higher
7, cues will seek more than those with lower t,. Strikingly however,
when the actor is more reliable (the initial accuracy is higher),
second-order agents with higher t; will seek less than those with
more precise rater information.

The peculiar interaction between objective accuracy and
confidence-noise arises from the second-order model’s informa-
tional setup: Whereas the postdecisional model makes use of both X;
and Y;, the second-order architecture only affords the rater access to
a single cue, Y}, and the actor’s initial decision a;. This leaves it to
make inevitably imperfect inferences about X;.

When the actor is relatively accurate (e.g., 6; = 1) and the rater’s
information relatively inaccurate (e.g., T; = 3), the rater has little
information about the actor, but knows that the decision is likely
correct, because ¢p(c; = 1) = .84, which will even be the case if the
rater has an entirely ambiguous or even somewhat contradictory Y.
As a result, its confidence will remain high, even when Y; and a,
contradict each other (see also Appendix C and later section on
“Metacognitive Accuracy and Information Search”). In other words,
the rater will essentially resort to “trusting” the actor’s action across
a wide range of its own information Y;. Because the seeker is
equipped with the same information as the rater, it will likewise have
too little information to justify the cost of seeking. Consequently, it
will either fully trust or distrust the actor’s initial decision. In
extreme cases, when T; approaches oo, the relation between initial
accuracy and average seeking will in fact resemble a step function.

> In terms of signal detection theory, the sensitivity d’ is proportional to the
ratio of the difference between the mean signal for the two states and the
standard deviation 6;. We followed Fleming and Daw (2017) in adjusting d’
(and hence the accuracy) by adjusting o; we could equivalently have
adjusted the difference between the means (Fleming et al., 2018).
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Figure 3
Initial Accuracy, Average Confidence, and Information Search
All models
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(A) Across models, the accuracy of the agent’s initial decision is governed by o; through the function ¢(c;) (B) In all

models, the average initial confidence matches the average initial accuracy (C, D, E) Average seeking decreases with increasing
initial accuracy for all models. However, the precision of the rater’s stimulus, t;, moderates this relationship differently
depending on the model. (C) In the postdecisional model, lower rater noise leads to less seeking across the accuracy spectrum
because the rater and seeker have more additional information. (D, E) In the second-order model, high rater noise is associated
with reduced seeking at higher levels of initial accuracy. This is because the seeker lacks direct access to the actor’s actual cue X;
and thus has to trust its decision. The correlation between the two (p;) modulates this effect (D: p; = 0.2; E: p; = 0.5). In the
seeking plots, final stimulus noise and cost are fixed at 6= 1 ({p(cr) = 0.84) and ry, = —0.1, respectively. The effect of p; is shown

further in Appendix C. See the online article for the color version of this figure.

Relatedly, there is a marked lack of seeking for high accuracies in
the second-order model when keeping t; constant. Notice how under
the conditions of the cost of sampling and the accuracy of the second
sample in Figure 3C, the first-order model will still search on up to a
quarter of trials at 90% initial accuracy. In comparison, our norma-
tive second-order agent does not seek at all beyond that point with
any but the most insightful values of t; (Figure 3D and E). This again
comes down to the fact that the rater and seeker have no alternative
but to trust the actor’s decision when t,>>c;. When the objective
accuracy is very high, for example, d(c; = .8) = 90%, such an
imbalance arises even when the rater noise t; is objectively low.

While these general trends hold across different values of the
correlation p; (see Panels D and E of Figure 3) we still note this
parameter’s importance. In general, p; shapes both the additional
information afforded by combining X; and Y; as well as the confidence
rating process itself. Briefly, one way p; impacts normative informa-
tion seeking is by increasing the step-like nature of the high 7, curves,
which is visible in the difference between the p; = 0.2 and p; = 0.5
settings we depict. Also somewhat visible in our figures is the fact that
with lower rater noise t; and with low accuracy, information seeking
will in fact slightly decrease. Both these aspects arise from intricacies
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in the way signal and noise trade-off in bivariate normal distributions.
Because we focus on the cognitive rather than specifically mathemat-
ical implications of our models here, we save the discussion of these
aspects for the Appendix (Appendix C).

Cue Reliability and Information Seeking

The decision to seek out additional information should naturally
not only be influenced by the quality of the stimuli we have
encountered, but also by the quality of the stimuli that we will
encounter in the future. With regard to the latter, there is room
between two extremes: The second piece of information might
always perfectly disambiguate the judgment (small 6), or it might
carry almost no information whatsoever (large or). While an
optimal agent should want to almost always consult the former,
it won’t profit much from the latter.

Postdecisional and First-Order Models

The first-order and postdecisional models capture this intuition in
their normative behavior, as evident in the first-order model depicted
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Figure 4
Information Search as a Function of Cue Reliability
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Across models, average information seeking increases with less accurate initial decisions, ¢(c;), and more precise final stimuli. To visualize

the latter, we plot the average accuracy ¢(c) that would be expected when encountering X in isolation. (A) This relationship is most clearly evident
in the first-order model and persists in the postdecisional model (B). However, in the latter, more precise postdecisional stimuli (lower t;)
significantly decrease the (maximum) propensity to seek. (C) A similar pattern to the postdecisional model is visible in the second-order model,
where lower values of rater noise t; also constrain the maximum average search. The transition from high to low seeking is more abrupt in the
second-order model for high values of rater noise as a result of the rater’s general trust in the actor’s choice (compare especially the plots with 7, =3
in B and C). Note that the plots in Figure 3 are one-dimensional slices through the two-dimensional figures presented here. The abrupt declines in the

panels in C are equivalent to that shown in Panel E of Figure 3. Plots show a constant cost level of r; =

color version of this figure.

in Figure 4A. There, we show the average seeking for different
levels of accuracy afforded by the actor’s initial and final stimulus
¢(oy) and P(cr) while again keeping cost constant at ry = —.1. As
before the agent will seek more as the initial cue becomes noisier
(right to left). In turn, decreasing final cue noise, higher values of
¢(op); top to bottom, increases the usefulness of the additional cue
and with it the average information seeking for a given level of
initial actor noise o;.

Figure 4B shows different levels of postdecisional noise. This
produces similar patterns to the first-order model, albeit with some
added complexity. The imprecision t; of the postdecisional cue
again has considerable influence on the maximum possible optimal
average seeking behavior of the postdecisional agent. When the
rater’s cue contains little noise (low t;), almost no search is
necessary. This is regardless of initial and final stimulus reliability.
In turn, the normative information-seeking profile begins to again
resemble that of a first-order agent as t; becomes larger.

Second-Order Model

While optimal second-order search broadly traces the postdeci-
sional pattern arising from the interplay of the three noise parameters
o, Tp, and 65, we can observe some further intricacies. Specifically,
the second-order model’s seeking does not progress as smoothly
from high to low information seeking with lower o; and higher o,
especially with high levels of rater noise, t; (as we have previously
observed when only varying accuracy). Rather, it begins to resemble
more of a step function as the rater knows less and less. For example,
compare the highest levels of 7, = 3 in Panels B and C of Figure 4.
Whereas the postdecisional model smoothly transitions from high to
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0.1, and p; = 0.5. See the online article for the

low search, the second-order model remains with a high propensity
to search relatively long before terminating search more abruptly.
The reason for this can again be found in the limited information of
the rater: When the rater knows little and the actor surpasses a
specific relative uncertainty, the decision to sample becomes more
binary across the objective accuracy range.

Intermediate Summary: Accuracy and Search

In the two preceding sections, we demonstrated how metacog-
nitive search is normatively governed by the information available
to the seeker and the information expected to be gained through
search. Broadly, the less information the seeker has and the more it
can expect to gain from the final cue, the more it should seek. We
highlighted how this relationship is complicated in the second-order
architecture. There, the seeker does not have full access to what the
actor already knows. When the accuracies of the seeker/rater and the
actor are particularly imbalanced, this can give rise to what looks
close to step functions in the average search profiles. In other words,
the seeker either fully trusts or distrusts the actor, leading it to seek
information almost always or almost never.

Search Threshold in Confidence Space

Apart from the average seeking propensity, another important
feature of an agent’s behavior in our task is its internal confidence
threshold for search. Put differently, how confident should an agent
optimally be to decide it has seen enough information? Our models
allow us to investigate this phenomenon by finding the value of
the rater’s internal variable for which the Q values for seeking and
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not-seeking intersect and computing the confidence at this point. For
a better intuition, compare Figure 2F, where the difference between
the two values is plotted: The threshold is the point where this
difference is 0. Importantly, turning this threshold into a marginal-
ized prediction about how often an agent seeks information is not
completely straightforward, as will be apparent when we later
consider the underlying confidence distribution in more detail.

Postdecisional and First-Order Models

In the postdecisional model, this threshold is normatively largely
independent of the initial rater and actor statistics. Figure 5A
demonstrates this by showing the confidence at which an agent
would start seeking across a range of objective accuracies for the
postdecisional case, for a constant final stimulus noise or. This
confidence varies neither as a function of accuracy nor of postdeci-
sional noise (which we do not display here).

This counterintuitive result arises from the Markovian property of
the first-order and postdecisional models where the confidence c; is
equivalent to a belief state summarizing all the previous information.

Figure 5
Confidence-Seeking Thresholds
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Note. (A, B) The confidence at which an agent stops sampling (confidence

threshold) is largely independent of initial accuracy in the postdecisional and
second-order models. Rather, one governing factor is the cost of the additional
stimulus r,. By decreasing the Q value of seeking (compare Figure 2E and F),
higher costs reduce the space of confidence where it is worth probing. In the
second-order model, we can also see the effect of the transition from seeking
into no-seeking where the two confidence thresholds begin moving together.
We set 6= 1, p(6x) = 0.84, and for the second-order model t; = 6; as well as
p =.5.(C, D) The two main factors governing the confidence threshold are r;
and the noisiness of the final stimulus 6, as is visible when we plot the upper
confidence threshold as a function of the two (C: postdecisional; D: second
order). Specifically, the more expensive and the less reliable the information
becomes, the lower the threshold is set, and the less information is sought
given the same initial stimulus statistics. When the agent does not seek at all we
mark the threshold as 50%. Panels C and D use o; = 3 and t; = oo for the
postdecisional model and 6; = t; =3 and p; = 0.5 for the second-order model,
respectively. See the online article for the color version of this figure.
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In the Q-value computations, only this belief matters, and not how it
came about. Put differently, it is unimportant whether ¢; was based
on a large Z; and large {; or smaller Z; and smaller ;.

Rather than the initial stimulus statistics, the determining factors for
the optimal placement of the threshold are the cost of the additional
information and its precision. For intuition, consider the Q-value
functions in Figure 2E (and Figure 2F). There, the cost alters the
intersection between the two Q values, with higher cost reducing
the space of Z; in which seeking is worthwhile and thus lowering the
threshold. This influence is apparent in Panel A of Figure 5. In turn,
smaller o afford less noisy predictions of X in Figure 2D for a given
Z,, especially when this Z; is relatively unambiguous. Consequently,
the Q(s; = 1) curve becomes steeper which leads to the intersection
appearing for lower confidences. The joint influence of the final cue’s
noise and cost are plotted in Figure 5C. The less expensive and the
more precise the final stimulus is, the higher the boundary.

A subtle difference regarding the lower threshold appears
between the first-order instance of the postdecisional model and
regular postdecisional models with T; < co. In the first-order version,
the minimum confidence is bounded at 50% because the rater has
exactly the same information as the actor. The rater will thus always
endorse its decision. As a result, we only observe one set of
confidence-space thresholds for seeking in the first-order model,
namely the upper ones. In contrast, when the postdecisional cue
contains information, the lower bound is simply the opposite of the
upper bound. This is because the net uncertainty of an initial
decision made with 45% confidence is essentially the same as
one made with 55%. In turn, if the rater has high confidence that
the actor has made a mistake, then it can safely turn down the
opportunity to acquire additional information: The actor can change
its choice ay without any additional external information.

Second-Order Model

Similarly to the postdecisional model, the second-order model’s
optimal thresholds remain mostly unimpacted by the initial stimulus
statistics, as is visible in Figure 5B. There, we show the seeking
threshold for a model whose rater noise t; always equals its actor
noise o; across a range of initial accuracies. Rather, it is again the
cost and noise associated with the additional stimulus that deter-
mines where the threshold optimally falls (see Figure 5B and D). In
fact, given their differences in knowledge, it is striking that this
threshold is largely equivalent between the postdecisional and
second-order models, at least for low initial accuracy values.
Additionally, because the second-order model also produces confi-
dence levels below 50% just like the postdecisional model, it
possesses a lower threshold that mirrors the upper one.

As discussed above, the second-order model differentiates itself
from the postdecisional model by producing behavior where it does
not seek at all. This allows us to investigate what optimally happens
in the transition to this state of uniform nonseeking. In these cases, as
we can observe that with higher cost levels in Figure 5B, the two
confidence cutoffs begin moving closer together until they end up
meeting at 50%. At this point, seeking stops. While the baseline
threshold for low initial accuracy is thus unaffected by the initial
stimulus setup, different o,’s, can produce different initial accuracies
at which seeking becomes too costly. This thus affects when the two
thresholds begin moving toward each other.
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The influence of the final cue noise 6 and the seeking cost r; on
the confidence cutoff is equivalent between the postdecisional and
the second-order model despite their somewhat different O-value
computations (compare Figure 5C and D). This is because the
second-order’s additional task of predicting the X; value is required
to evaluate the Q values for and against seeking. The net effect is that
this extra step does not impact the threshold.

Metacognitive Accuracy and Information Search

Metacognitive accuracy broadly describes an agent’s ability to
discriminate its mistakes from its successes. In our task, this manifests
in distinct confidence distributions for correct and incorrect choices:
Agents with high metacognitive accuracy tend to have high confi-
dence ratings when they are correct and low confidence ratings when
they made a mistake.

We can delineate two measures of metacognitive accuracy: meta-
cognitive sensitivity and metacognitive efficiency (Fleming & Lau,
2014). Metacognitive sensitivity describes the aforementioned sepa-
ration of confidence distributions, with less overlap between the two
functions a hallmark of high metacognitive sensitivity. In our frame-
work, this sensitivity is largely governed by the quality of the rater’s
information ({; in the postdecisional case, t; in the second-order
case), with higher values of {; and 7, resulting in lower metacognitive
sensitivity.

While metacognitive sensitivity provides a useful marker of the
quality of an agent’s metacognition, it is often confounded with
objective accuracy. Easier tasks allow more insight into the quality
of our decisions—such that when objective (e.g., perceptual) sen-
sitivity is high, metacognitive sensitivity also tends to be high
(Fleming & Lau, 2014). Metacognitive efficiency controls for this
link between objective and metacognitive sensitivity by normalizing
the latter by the former. This statistic is expressed as a ratio, with
values less than 1 indicating metacognitive hyposensitivity, where
metacognitive sensitivity is worse than would be expected based on
objective performance, and values greater than 1 indicating meta-
cognitive hypersensitivtiy, in which case metacognitive sensitivity
is higher than expected based on objective performance (Fleming &
Daw, 2017; Fleming & Lau, 2014). We note that what we refer to as
metacognitive hyposensitivity has also been discussed under the
label of metacognitive inefficiency (Shekhar & Rahnev, 2020).

The fact that the rater has different, possibly additional, sources
of information from the actor is what licenses varying metacog-
nitive efficiencies in our framework. The different models oper-
ationalize this slightly differently. In the postdecisional model,
metacognitive efficiency can be expressed through the ratio ¢,/¢;.
The larger this ratio, the more additional information the post-
decisional rater has, and the higher its metacognitive efficiency.
Note that in the present postdecisional model, with its optimal
calculations, this ratio can never be below 1, precluding any forms
of metacognitive hyposensitvitiy. The metacognitive efficiency of
the second-order model is determined by o,/t; (for a constant p;),
again because of the restricted informational access of the second-
order model.®

First-Order and Postdecisional Models

To understand the relationship between seeking and metacognitive
accuracy, we first need to recapitulate in detail how metacognitive
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accuracy arises in our models. To illustrate this better, we plot
distributions of confidence ratings conditioned on accuracy in Figure
6B-E. These illustrate the overlap between the distributions of
confidence ratings for correct and incorrect answers.

In the first-order model (Panel B; t; = 0), objective accuracy and
metacognitive sensitivity are welded together. That is, higher objec-
tive performance (lower o;) results in more clearly distinguishable
confidence distributions and thus increasing metacognitive sensi-
tivity. By design, the ratio ¢,/(; is also always 1 in the first-order
model, pinning down metacognitive efficiency.

In Figure 6B, we demonstrate the relationship between metacog-
nitive accuracy and search in the first-order model. We plot the
optimal seeking thresholds we introduced above in black and the
zone of confidence values where the agent seeks in gray. Recall that
these are not influenced by the statistics of the first decision. Because
the confidence distributions shift together for decreasing accuracy,
this normatively results in more searches. In essence, this relationship
simply recapitulates what we have seen in the first section on objective
accuracy and average search. Notably, sensitivity will appear to be
related to decreased information search in the first-order model, but
this is fully explained by the coupling of metacognitive and objective
accuracy. Finally, there is no relation between search and metacog-
nitive efficiency, as the latter is invariant in the first-order model.

In contrast to the first-order model, the postdecisional model with
T; < oo can produce different levels of metacognitive efficiency.
Figure 6C demonstrates this by keeping the objective accuracy (c;)
constant, but increasing the quality of the rater’s information
through t,. In essence, these plots take the first-order model of a
given objective accuracy (t; = 2; middle of right top row of Panel B),
but give the rater additional information. The impact of this addi-
tional information is clearly visible: A well-endowed rater with a
low 7, and thus highly accurate postdecisional information is almost
perfectly able to distinguish its correct from incorrect decisions, as
expressed through its confidence. The confidence for correct deci-
sions will be very high on average, whereas the confidence
for incorrect decisions will almost always indicate an error, that
is be below 0.5. As 7, increases, the rater’s additional information
decreases, resulting in a confidence distribution very similar to the
first-order model when noise is very high (leftmost plot of Panel C
with t; = 10), albeit one which still allows for some confidence
values that are less than 0.5.

The distributions in Figure 6C also provide insight into the rela-
tionship between metacognitive accuracy and optimal seeking in the
postdecisional model. The highly separated distributions that result
from low t;’s mean confidence is pushed outside of the thresholds on
both ends of the confidence range. Mistakes will likely be accompa-
nied by a strong error signal (very low confidence) that enables a

® In the experimental literature, a plethora of measures assay metacogni-
tive sensitivity and/or efficiency (Fleming & Lau, 2014). Most prominently,
the meta-d’ statistic (Maniscalco & Lau, 2012) allows metacognitive sensi-
tivity to be estimated within a signal detection theoretic (SDT) framework.
Briefly, this approach estimates the d’ from a first-order SDT model that best
fits the observed confidence distributions. This metric, known as meta-d’ can
then be compared to the d' calculated from the participant’s choices to
produce a ratio meta-d'/d’, a typical measure of metacognitive efficiency
(Fleming & Lau, 2014). Both meta-d’ and meta-d'/d’ scale with our
parameters t; and, depending on the model, the ratio 6/¢; or o,/t;
(Fleming & Daw, 2017). However, for clarity, we will in this theoretical
section use our parameters T;, 6;, and their relationship to characterize
sensitivity and efficiency.
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Figure 6
Metacognitive Sensitivity, Efficiency, and Search
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Note. (A, D) Secking as a function of the metacognitive sensitivity. (A) As the metacognitive efficiency in the
postdecisional model (6,/(;) increases, the need to seek more information decreases. (Note that metacognitive hyposensi-
tivity is not possible within the discussed postdecisional model, in which either the same or additional information is
available for the confidence rating as for the decision). (B—E) Distributions of confidence ratings after correct and incorrect
decisions with areas in which an agent will seek displayed in gray. (B) In the first-order model (or a postdecisional model
with ;= 00), metacognitive sensitivity is tied to the objective accuracy (c;), and thus has no independent influence on search.
Confidence also has a lower bound at 50%. (C-E) When keeping the objective accuracy (c;) fixed, noise t; associated with
the rater’s additional stimulus can produce diverse confidence distributions in the postdecisional model (C) and second-order
model (E, F). Notice in particular how these models can correct their own mistakes without the need for additional search
when confidence is below 0.5. In contrast to the postdecisional model, the second-order model can produce metacognitive
hyposensitivity when 6,/t; < 1. (E) When initial accuracy is high and metacognition particularly inefficient in the second-
order model, the confidence distribution shifts almost entirely out of the seeking zone. (F) As a result, metacognitive
hyposensitivity can prescribe both increasing and decreasing information search in the second-order model. Metacognitive
hypersensitivity is still related to reduced search. For seeking averages and thresholds all plots use 6= 1 ($p(cr) = 0.84) and
rg = 0.1. In the second-order case, p; = 0.5. See the online article for the color version of this figure.

change of mind without the need for additional information seeking.
In turn, correct decisions will likely trigger confidences so high that no
information seeking is deemed necessary either.

We can further investigate the relationship between objective
accuracy, metacognitive efficiency and search by quantifying me-
tacognitive efficiency in the postdecisional model as the ratio 6,/C;.
Importantly, the ratio is always equal to or greater than 1, because
the postdecisional stimulus setup only allows for additional knowl-
edge (metacognitive hypersensitivity) but not for reduced knowl-
edge (metacognitive hyposensitivity). Figure 6A illustrates the
effect of this hypersensitivity on search. We again observe a
main effect of decision accuracy as governed by o; (differently
shaded lines), but can now see the additional effect of metacognitive
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efficiency: Higher levels of metacognitive efficiency give rise to
reduced search on average.

Second-Order Model

The rather diverse confidence distributions produced by the
second-order model are visible in Panels E-F of Figure 6. In E,
we again hold the objective accuracy at 6; = 2, but vary t;. The rater
noise importantly plays a different role in the second-order model,
because the rater does not have direct access to the actor’s cue X;.
We again see how low values of t; give rise to clearly distinct
confidence distributions and increase the chance of successful error
monitoring. However, in addition the second-order model also
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allows for metacognitive hyposensitivity, when t; > o;. In these
cases, the rater has less information than the actor. The conse-
quences of this are visible when comparing the first-order plot with
o, =2 plots in Panel B to the second-order plot with 6,=2 and 6, =3
in Panel D: The second-order model’s two distributions are less
distinguishable than the first-order model because of the hyposen-
sitivity produced by t; > o;.

In general, the relationship between metacognitive accuracy and
optimal average search holds in the second-order model. The
increased levels of metacognitive insight resulting from lower values
of t; push the confidence distributions out of the zone defined by the
aforementioned seeking threshold. This results in a lowered propen-
sity for search. Consequently, the effects of metacognitive hypersen-
sitivity on seeking in the second-order model are comparable to those
in the postdecisional model (see Figure 6F)—when keeping objective
accuracy constant, higher efficiency again results in less need for
additional information. The trend continues into metacognitive hy-
posensitivity. However, striking nonlinear effects appear. These are
again triggered by the specific knowledge states of the second-order
actor and rater: Recall that if the actor is very accurate, and the rater
has less knowledge, the agent’s confidence will begin to be relatively
constant. In essence, the rater will begin to always trust the actor. This
is visible in the leftmost plot in Panel F, where 6; = 1 and 6; = 2. Here,
the rater will know significantly less than the actor. The confidence
ratings will thus closely congregate around the actor’s average
accuracy, ¢(c;) = .84, which represents the rater’s best guess given
its limited knowledge. This in turn will lead to most of the confidence
ratings to be above the confidence threshold and reduce the average
information seeking in comparison to a rater with more information.
This effect of higher metacognitive efficiency is particularly visible in
the Panel E of Figure 6: With the higher metacognitive efficiency of
T, = 1.3 compared to t; = 2, there is more confidence mass within the
seeking interval.

In summary, this means that search can be reduced in the second-
order model through two distinct mechanisms. When a second-order
agent becomes more metacognitively hypersensitive, it will seek
less because it has more information. However, counterintuitively, a
second-order agent might also seek less when it is metacognitively
hyposensitive, but this time because it has less, or to be more precise
too little, information.

Metacognitive Accuracy in Search

Since search reflects metacognition, we can use the quality of
search as a measure of the quality of metacognition that is formally
distinct from the sort of metacognitive sensitivity measured by meta-
d’' or other measures that target an agent’s confidence. Here, the
quality of search is assessed by how likely the agent is to search on a
trial when it was initially incorrect in comparison to when it was
initially correct (see Figure 7A, for illustration). Searching when
already correct is, of course, a costly waste: Intuitively, an agent
would like only to seek information on trials when their initial
decision was incorrect, not paying the cost on occasions where
search would simply affirm an initially correct decision. While such
perfectly targeted seeking is of course utopian, we can nevertheless
ask how close an agent gets to it.

Here, we compute this sensitivity in search by subtracting the
conditional frequency of search when accurate from the conditional
frequency of search when inaccurate. To account for differences in
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baseline information search (caused, for instance, by differential
costs), we normalize this difference by the amount an agent gener-
ally seeks to form a measure of metacogntive search sensitivity:

lp(s; = lla; # d) — p(s; = 1]|a; = d)]

Search Sensitivity =
p(sr)

. (2)

Panels B and C of Figures 7 show search sensitivity as a function
of the determinants of both rater and actor accuracy for both the
postdecisional and second-order models. As expected, this is
entirely positive—so agents are less likely to seek information after
a correct decision than after a mistake. Because higher objective
accuracy generally helps the agent distinguish correct from incorrect
trials, the search sensitivity is impacted by the actor’s accuracy o;.

The two plots also show how sensitivity in metacognitive moni-
toring and control go hand in hand: The lower the rater’s insight (the
higher t,), the less search distinguishes between correct and incorrect
decisions. This is the case for both the postdecisional and second-
order models. This link arises as a consequence of the metacognitive
sensitivity: Because confidence is what the seeker uses to make its
seeking decisions, the better this confidence is calibrated to accuracy,
the better search will also be calibrated. From a more mechanistic
perspective, agents with high monitoring sensitivity will be highly
confident in their correct decisions, and will thus search less. While
higher sensitivity in monitoring also reduces the confidence for
incorrect decisions, these trials remain within the seeking zone
defined above for longer, pulling apart the two conditional seeking
averages. To put it another way, higher metacognitive accuracy
allows an agent to be more targeted in its search behavior.

Intermediate Summary: Confidence and Search

In the preceding two sections, we discussed the intricate relation-
ships between confidence and search. In both models, the threshold
of confidence at which search is triggered is largely independent of
the initial stimulus characteristics due to its (quasi-)Markovian
property. Rather, the zone in confidence space where seeking is
adequate is governed by the cost and precision of the additional
information that can be collected.

The confidence thresholds are however crucial when considering
the confidence distributions that fall within or outside of them. In both
the postdecisional and the second-order models, metacognitive hy-
persensivity shifts confidence outside of the seeking zone, reducing
search. In the second-order model, metacognitive hyposensitivity can
trigger both increased and decreased search by either shifting more of
the confidence distribution into or above the seeking zone.

Increased sensitivity in the confidence rating in turn enables an
agent to target its search better to those decisions that were initially
incorrect. This shows the key advantage that increased metacogni-
tive sensitivity has for an agent, essentially enabling it to not waste
its resources on ‘useless’ search. It also leads to a new measure of
metacognitive quality, namely search sensitivity.

Final Accuracy

The accuracy of its ultimate, overall judgment, af, constitutes a last
crucial aspect of an agent’s behavior in our task. This final accuracy of
course depends on the decision of the seeker—but in a potentially
complex manner, because the seeker’s decision-making in turn is
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Figure 7
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Note. (A) When an agent is initially incorrect, it should ideally seek more information than when it was initially correct.
We can use the difference between these two conditional search probabilities normalized with an agent’s average search as a
measure of an agent’s search sensitivity. (B, C) Both in the postdecisional and in the second-order model, this sensitivity in
metacognitive control is determined by the sensitivity in metacognitive monitoring, as indexed by t;, and the actor’s

accuracy o;. Plots use 6 = 1, ry = 0.1, and p; = .3. See the online article for the color version of this figure.

partially a function of its estimates of the benefits for this final
accuracy of further search. We show these relationships in Figure 8.

We distinguish between two kinds of final accuracy: The final
accuracy when the agent decided not to seek additional information
and the final accuracy when the agent decided to do so. For brevity,
we will in the following refer to these as the without-search accuracy
and the with-search accuracy.

Postdecisional and First-Order Model

To understand how the final accuracy comes about, we need to
consider what kind of cues are available to the actor at the final time
point (see Figure 8A). Recall that in the postdecisional model,
seeking is a function of Z;: Ambiguous values of Z; (e.g., Z; = 0) give
rise to seeking, whereas extreme values of Z; (e.g., Z; = 3) already
come with sufficient confidence to make information search unnec-
essary. Thus, as seen in Figure 8A, with-search final decisions
will be made with ambiguous, more intermediate, values of Z;. In
contrast, without-search final decisions will only be based on more
extreme values.

This division of the Z; clearly impacts the final accuracy: In the
without-search case, accuracy will be higher than would be expected
when making a decision on the entire Z; space, ¢(C;). This increase is
triggered because the error-prone, intermediate Z; values are excluded
(by the fact of seeking). In contrast, in the with-search case, the actor
will have relatively poor information before receiving Xy due to the
ambiguity associated with these intermediate values. The results of
this division are visible in Figure 8B where we show the two final
accuracies as a function of the initial accuracy and the rater noise t;.

Let us first inspect the with-search accuracy, pictured in red.
Strikingly, this is not influenced by either the initial accuracy or 1.
The reasons for this lie in the aforementioned stimulus setup and
relate to the confidence threshold: Because the agent only has
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relatively ambiguous values Z; before it receives X, it will not
have a strong preference for either option prior to search. This in turn
means that the accuracy of the final stimulus o is the crucial
determinant of the with-search accuracy. For example, in Figure 8B,
o would afford an accuracy of around 84%, ¢(cr) = 0.84, and the
without-search accuracy is only marginally higher. This slight boost
over the accuracy afforded by a solitary X is in fact governed by the
cost, which if lower, increases the range of Z;s passed onto to
seeking and therefore changes the quality of information prior to the
receipt of Xp.

In contrast, the relationship between initial accuracy and final
without-search accuracy (plotted in blue) is linear—at least in the
first-order model. That is the without-search accuracy is as accurate
as the initial accuracy plus an additional boost. This again results
from the Z;’s available which tend to be less ambiguous when the
agent does not seek. Introducing additional information through t; <
oo strongly modulates the without-search accuracy. This is again the
case because in these cases, the agent makes its decision not based
on a stimulus with 6; but on a combined stimulus with {;, which will
always be more precise than ;. Low noise in the postdecisional
information will thus considerably boost the final accuracy through
the aforementioned capability for error monitoring.

Curiously, the model sometimes produces a behavior where it
makes worse decisions with additional information than without it. At
first, this can appear implausible: Information should serve to increase
performance. However, the agent of course has to balance the gained
accuracy with its cost, triggering it to seek out information only when
it is not very confident that it has made a correct choice.

Second-Order Model

The limited informational access of the second-order model
becomes especially crucial when investigating its final accuracy.

REV-2021-0061_format_final m 14 November 2022 m 11:56 am IST



mzZ=rzo
JOroN

CONFIDENCE IN CONTROL

Figure 8
Final Accuracy Conditioned on Search
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Note. (A) Values of Z; that get passed on to the final accuracy with (red) and without seeking (blue) in the
postdecisional model. When seeking, the Z; values tend to be ambiguous whereas when the agent decides
against search, the values tend to be more extreme and therefore offer better accuracy. (B) As aresult, in the
postdecisional model, the final accuracy with seeking (red) is independent of the initial stimulus. The final
accuracy without seeking (blue to purple) is governed by both the accuracy afforded through the initial
decision as well as the extra information contained in the postdecisional cue Y;. (C, D) Because the seeking
decision is made without knowledge of the action variable X, the final accuracy differs in the second-order
model. The final accuracy after seeking receives a boost through unambiguous values of X; that slip
through. This fact also lets the final accuracy without seeking remain relatively stable until the agent
doesn’t seek any information at all, at which point it becomes a function of the initial accuracy. B—D fix
final stimulus noise and cost at, (6 = 1) = 0.84, and r, = 0.1. Note the different scaling in the x- and

17

y-axes for visibility. See the online article for the color version of this figure.

Recall that the postdecisional seeker has access to X}, and so already
fully knows the quality of the final decision if it were not to seek. In
contrast, the second-order seeker is less well informed. It only has
access to the rater variable Y; and can make noisy inferences about
the actor variable X; based on the actor’s decision. The seeker thus
lacks the perfect insight afforded by the postdecisional model. As a
result, seeking is only a function of ¥; in the second-order model
rather than the full Z; in the postdecisional model (compare Figure 1,
Panels D and E). As a result, the stimulus space is not, as in the
postdecisional model, divided along the crucial variable for the
without-search accuracy (Z;), but only along part of it, ¥;.

The key problem for the second-order seeker resulting from its
limited access to X; is that potentially unambiguous Z; values can
slip under its radar. As an example, picture the extreme case when
the rater obtains a relatively ambiguous cue (¥; = 0.3). Under most
parameter combinations, this will result in low confidence and
trigger the agent to seek. We can broadly think about two possible
cases based on this: In one case, the actor itself might have received
an ambiguous cue (e.g., X; = 0.1). In this case, in the counterfactual
scenario where the agent would not have searched, its final decision
would have been based on a rather ambiguous Z;. Here, seeking
would have been a good decision. In another case, the actor might in
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fact have observed a very distinct cue (X; = 3). In this case, the actor
would have already had a rather unambiguous cue Z; for a final
decision in the counterfactual nonseeking scenario. Here, seeking
wouldn’t be of much benefit. Whereas the postdecisional agent
would know this and not seek, the second-order rater has no access
to X; and will thus sometimes sample even though it might not have
been necessary.

This divergent knowledge results in a different pattern for the
with-search accuracy, with influences for both o; and t;. The less
relative insight the seeker has (higher t;) the more the X; “leakage,”
which is visible in Panel C of Figure 8. Recall there that a constant
level of t; results in decreasing metacognitive efficiency when
increasing the objective accuracy. As a result, more Z;’s, which
would lead to no seeking on the part of a postdecisional agent with
full insight, are assigned to seeking by the second-order model. This
“unnecessary” seeking increases the with-search accuracy until the
highly metacognitively inefficient agent stops seeking entirely, as
was visible in the average seeking figures (Figures 3D and E).

The X; leakage inherent in the second-order model’s seeking
computations also affects the without-search final accuracy, but to
its disadvantage. Specifically, the unnecessarily good values of X;
included through the myopic seeking are now no longer available to
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the actor when the final decision is made without search. The final
accuracy thus does not increase with increasing initial accuracy
while the agent still seeks (again, compare Figure 3). In fact, under
certain stimulus configurations, the without-search accuracy can
even slightly decrease as a result of the good X; being “stolen” by the
seeking. It also worth noting that the amount of additional decision
information afforded by X; also decreases with heightened correla-
tion p reducing the additional information available.’

The without-search final accuracy begins to fall into a linear
relationship with the initial accuracy once the agent entirely stops
seeking. It is then simply a function of {;, $((;); by contrast with the
postdecisional model where it is greater than ¢(C;). Before then, the
baseline without-search accuracy is governed by 1, again as a result
of the increasing capability for error monitoring that comes along
with increasing metacognitive sensitivity. The ignition point of this
increase is governed by the baseline rater noise t; which impacts
when the seeker will stop seeking entirely.

As before, the main patterns remain intact when altering p; in the
second-order model (compare Panels C and D). However, some
additional subtleties arise which we will show in the Appendix
(Appendix C). Briefly, it is worth noting that the X; leakage is higher
for the increased p; because in this case more information is sought
and the average seeking curve resembles more of a step function.

Interim Discussion: Normative Metacognitive Search

In the preceding theory sections, we approached metacognitive
information search through a normative lens. In doing so, we
examined the consequences of diverse aspects of confidence for
how metacognitive agents should optimally elect to collect more
information in a partially observable decision problem through the
lens of more complex models of human metacognition. This work
shows how computations that have thus far been solely conceptual-
ized in metacognitive monitoring can give rise to a number of
nontrivial downstream effects when extended to serve control
purposes—for example, when the seeker must trust or not trust
the actor. On the whole, our work raises questions about how
information is generally represented and used within metacognitive
systems. We will discuss these in more depth in our main discussion.

More broadly, these results also show advantages that metacog-
nition can have for agents over and above simple benefits arising
from nonmetacognitive objective accuracy. Specifically, we showed
that, if used appropriately, good metacognition can be harnessed to
allow agents to search less and target their search better to incorrect
trials. This is a very practical reason to have good metacognition, a
virtue that is more often extolled than exhibited in investigations of
confidence.

Empirical Results

Our theoretical considerations raise the question as to whether
general patterns of optimal metacognitive search hold in human
data. We stress that in this work it is not our intention to use search
behavior to arbitrate between specific models of confidence. Such
arbitration will require more targeted experiments, for example,
ones that independently vary aspects of confidence and action, or in
the case of more extreme parameter combinations, rely on specific
subpopulations. These are issues to which we will return in the
discussion.
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What we can do, however, is to investigate whether general
patterns of metacognitive search that straddle postdecisional and
second-order models are evident in human choices. To this end, we
next turn to a reanalysis of data from a study that employed a task
similar to the one we have discussed so far. Specifically Schulz et al.
(2020) investigated the confidence-based information seeking de-
cisions of 734 participants (see Appendix B, for a description of the
methods).

We compare patterns of participant choices with theoretical
proposals derived from the second-order model. Given the overlap
between the postdecisional and second-order models’ predictions,
we choose the latter as a convenient framework within which to
generate both hypo- and hyper-metacognitive sensitivity (Fleming
& Daw, 2017) as well as the sort of over- and under-confidence that
is often evident in human data (Fleming & Lau, 2014; Johnson &
Fowler, 2011; Kruger & Dunning, 1999; Rouault et al., 2018)

To introduce the latter point briefly: Over- and under-confidence
comes about when the average confidence that individuals report
having about their decisions deviates from their objective accuracy.
These dissociations from objective reality, also often termed meta-
cognitive bias, are conceptually distinct from changes in the me-
tacognitive sensitivity we discussed above. The separation between
actor and rater in the second-order model makes it straightforward to
create such biases, and thus easily lets us probe the consequences of
metacognitive bias for otherwise normative search Fleming and
Daw (2017). Specifically, miscalibration arises when the rater’s
belief (cF) about the actor’s accuracy is incorrect, so 6f # o;. For
intuition, imagine how one person might misestimate the skill of
another.”

To preview our findings, we not only find key overlap between
model predictions of patterns of metacognitive search and empirical
data on both a within-subject and trial-by-trial basis, but also
divergences. We begin by investigating trial-by-trial correlates of
metacognitive search before investigating between-subject variation
in participants’ markers of average behavior.

Metacognitive Search From the Trial by
Trial Perspective

Effects of Confidence and Cost

Our theoretical results showed that, when the accuracy of the
additional information available from search is held constant across
trials, as is the case in Schulz et al. (2020), two factors should drive
an agent’s likelihood to seek out information on a trial-by-trial basis:
The cost of the additional information and an agent’s momentary
initial confidence.

We already briefly discussed the within-trial effect of confidence
and cost on search when we introduced the computations underlying

" How ; stands in relationship with p;, 6, and 7 is in fact more complex
under certain more extreme parameter combinations, as we discuss in further
detail in the Appendix C.

® Disconnection between what a rater thinks about an actor is of course not
limited to the second-order model and might similarly be implemented in
other models, like the postdecisional model. Nevertheless, in keeping with
Fleming and Daw (2017), we will limit ourselves to the second-order model
here. We also note that this form of miscalibration theoretically introduces
additional noise in the rating and decision-making process because cues are
not optimally integrated any more. This can be expected to have a modest
negative impact on metacognitive sensitivity.
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the information seeking choice. These are visible in the action values
for or against search in Figure 2F. In slightly broader terms, these
values simply mean the following: When the Q value for seeking is
larger than the Q value for not seeking, an agent who seeks will, over
the long run, receive more overall reward than an agent who does not
seek. Because an optimal agent follows the policy that maximizes its
long-term reward, it will adhere to this difference.

In actual behavior, an agent is unlikely to follow a noise-free
greedy policy, where it purely decides as in Equation 15. Rather,
behavior is typically found to be more consistent with a softmax
policy where the underlying difference in Q values is passed through
a sigmoid function to determine the probability of seeking or not
seeking. This function then returns choice probabilities conditioned
on an agent’s cost and confidence. We plot such probabilities for an
example second-order model and the two costs in Schulz et al.
(2020) experiments in Figure 9A. This shows that an agent is more
likely to seek on trials when confidence is most uncertain (i.e.,
around 50% in the binary setting), and when the additional infor-
mation is cheaper. We note that these curves are insensitive to
participant-level parameters governing over- and under-confidence,
and instead fully rest on across-trial variation in subjective confi-
dence, rather than any environmental parameters or distributions.

The participant’s choice probabilities in Schulz et al. (2020)
reflect these choice probabilities, as is visible in Figure 9E. Parti-
cipants sought less information as they became more confident in
their choices and as information became more costly. This is
highlighted by the results of a trial-by-trial mixed-effects model
which shows negative effects of cost and confidence on search
(Beonfidence = =2.36, p < 107171 fegy = —1.60, p < 1077).”

Taken together, these results highlight qualitative features of how
humans solve the underlying decision problem, taking into account
both the cost and confidence. Similar trial-by-trial effects of confi-
dence are also visible in other data, for example, Desender et al.
(2018) and Pescetelli et al. (2021) although neither of these studies
varied the cost of seeking.

Metacognitive Search Sensitivity

As we have seen, the trial-by-trial modulation of search by
confidence enables an agent to adaptively search more when it
was initially mistaken than when it initially made a correct choice.
This is the case in our data. Participants generally sought less
information when they were initially incorrect (Figure 9F; f =
—0.85, p < 107"°). Indeed this was the case for the great majority of
participants as is visible in the distributions of search sensitivities
displayed in Figure 9G (89.3% of participants have a positive value).

Crucially, our theoretical results showed how higher sensitivity in
metacognitive monitoring should give rise to increased sensitivity in
participant’s search. To test this in our participants, we correlated
their search sensitivites with meta-d’ fit to their confidence ratings.
Participants who had more sensitive confidence ratings as indexed
by greater meta-d’ values also had greater search sensitivities (R =
0.40, p < 107'%). This result shows that participants with higher
metacognitive sensitivity also were more targeted in their search
behavior, spending fewer resources on unnecessary trials.

As we will discuss in more detail below, our participants showed
considerable variation in their degrees of over- and under-confi-
dence. Thus, we wanted to make sure that our theoretical models still
also produced similar patterns when we introduced agents that were
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more or less confident than their accuracy should have licensed. To
this end, we simulated second-order agents with randomly sampled
combinations of actor o; and rater/seeker’s assumed of, with the
latter being used for confidence and search computations (details of
the determination of these values from Schulz et al., 2020, in
Appendix B). To examine the effects of different degrees of
metacognitive sensitivity, we also randomly sampled t;. We held
p; fixed at 0.3. We note that, to isolate the effects of over- and under-
confidence, these agents sought information optimally except for
their confidence miscalibration. This also means that they made their
seeking decision deterministically based on their individual thresh-
olds in confidence space.

These simulations revealed that our metacognitive search results
are indeed robust to perturbations in confidence bias and so bridge
well to data from Schulz et al. (2020). On average, the simulated
agents sought more information when they had made a mistake than
when they acted correctly (Figure 9B). Computing each individual
agent’s search sensitivity and plotting their distribution, we also
found that this search sensitivity was strictly positive (Figure 9C). In
other words, no matter how miscalibrated their confidence was, each
agent sought more information following a mistake than following a
correct judgment.

Finally, we find that even among over- and under-confident agents,
the connection between metacognitive sensitivity in search and
metacognitive sensitivity in confidence held. This is highlighted in
Figure 9D where we plot the relationship between the agents’ search
sensitivity and their metacognitive sensitivity, as indexed through
meta-d’ fitted to agents’ confidence responses. We also show 7, in this
plot to indicate how meta-d’ scales with this parameter.

Intermediate Discussion: Trial-by-Trial Empirical Search

In summary, we find substantial overlap between theoretical
prescriptions of trial-by-trial metacognitive search and participant
data in Schulz et al. (2020). Higher confidence and cost led to
reduced search, and participants sought less information when they
made a correct rather than incorrect choice. Finally, we find that
sensitivity in metacognitive monitoring is related to search that is
better calibrated to objective accuracy. This shows that humans are
at least partially able to carry forward and adaptively employ their
metacognitive abilities in the control of future-oriented behavior.

Relationship of Task Averages

Following on from these trial-by-trial analyses, we next probed
how key task averages were related to each other. To do so, we first
investigated this in the context of our simulated optimally seeking,
but under- and over-confident agents before comparing these results
to behavior of the participants from Schulz et al. (2020).

Theoretical Effects of Over- and Under-Confidence

Figure 10A shows the distributions of objective decision accuracies
and mean confidence ratings produced by the over- and under-
confident second-order agents we simulated for our trial-by-trial

? To better analyze how search was modulated, we only included parti-
cipants who sought information on between 5% and 95% of trials (N = 568)
in our analysis of trial-by-trial results. For the analysis of the task averages
reported below, all participants are included.
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Figure 9
Second-Order Model Captures Across-Trial Effects of Metacognitive Search
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(A) Trial-by-trial probabilities of search as a function of confidence in an example second-order agent (6; =1, = 1.25, p;=.5, 6= 1, rr=100). (B-D)

Association of trial-by-trial accuracy and search. (B) Simulated agents seek more information when they are initially wrong, even when we introduce variability
in over- and under-confidence (see Appendix B, for details on parameters). The difference of the search averages conditioned on accuracy, normalized by the
overall average level of information seeking defines a measure of metacognitive search sensitivity. (C) In optimal agents, this measure is always positive and (D)
correlates with an agent’s metacognitive sensitivity, as indexed through meta-d’. (E-H) Participants in Schulz et al. (2020) show similar patterns. (E) On a trial-
by-trial basis, they seek less information the more confident they become and the more costly the information is. (F) They also seek less information when they
were initially incorrect and (G) mostly have positive search sensitivities. (H) Participants’ search sensitivity correlates with their meta-d’. See the online article

for the color version of this figure.

analysis above. In this figure, we see both overconfident agents,
meaning that the agent’s average confidence is higher than their
objective accuracy (in purple, stemming from 6¥ < o)), as well as
underconfident agents (in orange, Gf < o).

We observe two effects of this miscalibration on average search.
Whereas, thus far, objectively higher accuracy has gone hand in
hand with lower search in our normative and well-calibrated models,
this accuracy—search relationship becomes broken once accuracy
and confidence are uncorrelated (Figure 10B). This is because
overconfident agents (purple in the figure) sample less than their
well-calibrated or underconfident peers, believing that their initial
choice is already good enough. Underconfident agents (orange in the
figure) do the opposite. When confidence and accuracy are dissoci-
ated, these two biases balance each other out, breaking the relation-
ship between accuracy and search.
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In contrast to this broken search—accuracy relationship, our simu-
lations show that the agents’ subjective accuracies (their average
confidence) still remain a key determinant for search (Figure 10C).
Agents who are on average more confident display lower information
search than those agents who are on average less confident. This is
because in our model the rater’s subjective assessment of the actor’s
initial decision quality (rather than objective signal quality) feeds into
the seeker’s computations. Thus, if the rater/seeker believes an actor
to be a good decision maker, it will still search less, even when this
faith in the actor’s accuracy is misplaced.

Finally, our results show that simulated agents who had higher
meta-d’ also sought less information, just as they would have if their
confidence was not biased. In brief, this is because one rater by itself
can still have better information than another (smaller t;), even if
those two might be mistaken about the true accuracy of the actor. We

REV-2021-0061_format_final m 14 November 2022 m 11:56 am IST



mzZ=rzo
JOron

CONFIDENCE IN CONTROL 21

Figure 10
Over-/Under-Confidence and Relationships Between Task Averages in Model and Data
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accurate participants from Schulz et al. (2020) were also more likely to seek more information. However, following the model predictions, participants who
were more confident sought less information. There was no significant effect of metacognitive sensitivity, as indexed by meta-d’, on average search. See the

online article for the color version of this figure.

also note that the influence of over- and under-confidence is reduced
when agents have high meta-d’. This is because these agents
generally seek little additional information because of the high
quality information the rater already possesses.

Summarizing these results, we show the individual contributions
of average confidence, accuracy, and metacognitive sensitivity to
average search in a multiple regression whose results we plot in
Figure 10E (standardized betas). Over and above our previous
theoretical results, this highlights how confidence is a critical driver
of information search, an effect which is particularly apparent when
it begins to dissociate from accuracy. This is in contrast to the
optimal models we have investigated before where average confi-
dence and average accuracy perfectly correlate, and so average
accuracy will appear to predict average search.

Relationship Between Empirical Task Averages and
Model Simulations

As in our simulated population of agents, participants’ average
confidence ratings did not strongly correlate with their average
accuracy (R = 0.07, p = 0.06). Such a disconnect allowed us to ask
how each of these features of average behavior predicted search, and
whether such relationships were aligned with our normative models.
To test this, we first probed how participants’ average confidence,
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average accuracy, and metacognitive sensitivity predicted their
average propensity to seek out information through a correlational
analysis. In key agreement with the crucial role of confidence in
information seeking, participants who were more confident also
sought out less information (R = —.27, p < 10™'%). However, in a
curious disagreement with the model’s behavior, more accurate
participants sought out more, rather than less, information (R = .19,
p < 107%. We also found no significant correlation between
participants’ level of metacognitive accuracy, as indexed through
meta-d’, and their average search (R = 0.005, p = 0.89).

These results are also visible in a multiple regression analysis
where we predicted average search with these three predictors after
normalizing all variables (see Figure 10F). This revealed a positive
effect of average accuracy on average search (B = 0.19, p < 1075),
although the positive effect of accuracy was smaller than the
negative effect of average confidence (f = —.32, p < 10™'%). Finally,
the regressor for meta-d’ was not significant (§ = 0.08, p = 0.07).

Intermediate Discussion: Over- and Under-Confidence

Why might participants in Schulz et al. (2020) have searched as
they did? First, in regard to the effect of average accuracy, one
should note that Schulz et al. (2020) did not causally manipulate
participant’s accuracy and rather relied on one staircased
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performance level. This in contrast to, for example, Desender et al.
(2018) who, within each participant, varied the difficulty levels in a
similar information seeking task. In this within-participant case,
participant sought more information in conditions with lower
accuracy showing that individuals can generally be sensitive to
their decision accuracy in the direction predicted by the Model.
Indeed, this is related to our own within-participant finding that
participants seek more on incorrect in comparison to correct trials.

However it remains unclear how we can account for the small
positive effect of average accuracy on search. One possible expla-
nation rests in the way the second stimulus strength was determined
in Schulz et al. (2020). Specifically, the second stimulus strength
was yoked to the initial stimulus strength, which was itself deter-
mined by a staircase. As a result, participants who saw a relatively
easier initial stimulus were also more likely to see an easier second
stimulus. Consequently, participants with higher initial accuracy
were able to reach close to perfect average levels of final decision
accuracy when they sought information (see Figure B1, for visuali-
zation). This possible certainty might have been a “bright line” that
gave participants an extra incentive to seek out additional informa-
tion and might thus have biased the average effect of accuracy. This
would have been especially relevant if participants, as we will
consider in the main Discussion section, had nonlinear utility
functions. This can be examined in more detail in further work.

Additionally, the second-order model, even when miscalibrated,
cannot account for the lack of relationship between metacognitive
sensitivity and search exhibited by the participants in Schulz et al.
(2020). We consider various possibilities in the main discussion
session, including the case that the seeker’s belief (t}) about the key
source of the rater’s confidence is miscalibrated in the same way that
the rater’s belief about the actor’s accuracy can be. It would be
interesting to extend the sort of methods that Desender et al. (2018)
adopted in order to manipulate explicitly the factors that we suggest
should drive search.

Further work will also have to investigate why meta-d’ does not
correlate with average search but correlates with search sensitivity,
as we showed in an earlier section. Recall that the difference
between these measures is that average search represents a general
propensity to seek whereas search sensitivity is a trial-by-trial
measure of how well each trial’s search decision is in line with
each trial’s objective accuracy. This difference in correlation might
arise because the two measures capture different characteristics of
metacognition, similar to the separation between metacognitive bias
and sensitivity in confidence ratings (Fleming & Lau, 2014).
Average search, like metacognitive bias, is a general measure of
an agent’s tendency to seek information, similar to an agent’s
tendency to have a specific confidence level. The similarity between
these two forms of “bias” is apparent in the inverse correlation
between average confidence and average search. As in measures of
average confidence, average search can be both closer to and farther
away from optimality. However, we note while the average confi-
dence should, across models, be simply equivalent to the average
accuracy, optimal average search is additionally subject to forces
outside of the average accuracy as we have explored throughout this
article.

In contrast to these average measures, search sensitivity is more a
question of resolution—how well search distinguishes between
correct and incorrect trials. This fact is apparent in the correlation
between search sensitivity and meta-d’, a measure of the trial-by-
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trial accuracy of confidence ratings. Further work will have to
provide a more comprehensive treatment of how these concepts
can be optimally measured and how they interact.

Most importantly, however, we still find a prominent negative
effect of average confidence, highlighting the key role that the
subjective feeling of correctness play in our participants’ average
information search, and in line with the predictions of a miscali-
brated second-order model. More broadly these results underline the
primary role of confidence in search over and above accuracy.

Apart from Schulz et al. (2020), a further interesting link between
our theoretical analysis of over- and under-confidence in search and
empirical data can be drawn with the results of Desender et al.
(2018). As briefly outlined in the introduction, this study used the
perceptual positive evidence effect to investigate causal links
between confidence and information search in a similar perceptual
setting. The positive evidence effect refers to experimental manip-
ulations that can boost a participant’s average confidence while
leaving their objective accuracy untouched (Boldt et al., 2017;
Peters et al., 2017; Zylberberg et al., 2012). In essence, it creates
two levels of metacognitive bias within a single participant. In our
model, this positive evidence effect could be conceptualized as
biasing the rater’s/seeker’s appraisal of 6;, mistakenly increasing the
rater’s belief in the actor’s accuracy. As we have demonstrated, this
condition would lead an agent to decrease its information seeking.
Indeed, Desender et al. (2018) show that this is the case: In the
condition in which the positive evidence effect-induced higher
confidence, participants were less likely to seek information.

This intuition also applies beyond the perceptual domain. For
example, Metcalfe and Finn (2008) manipulated participant’s con-
fidence in their memory of words through an elegant order effect
which induced higher and lower levels of confidence. Similarly to
Desender et al. (2018), participants sought less information in the
condition with lower confidence. We could again conceptualize this
as a bias on the rater’s/seeker’s part.

Discussion

Computational models of metacognition have recently been
highly successful in explaining many intricate facets of human
confidence (Fleming & Daw, 2017; Rahnev et al., 2020; Yeung
& Summerfield, 2012). However, it has long been noted that
metacognitive monitoring exists to guide subsequent control of
behavior (Nelson & Narens, 1990), such as knowing when to invest
time and effort in studying new material or seeking new information
(Desender et al., 2018; Goupil et al., 2016; Metcalfe & Finn, 2008;
Pescetelli et al., 2021; Schulz et al., 2020). How these two processes
of monitoring and control interface has attracted less attention from
computational modelers. Here, we considered the rather diverse
consequences that different assumptions about the informational
structure underlying confidence have for optimal search and how
metacognitive search manifests in human behavior. We did so by
treating the process of remunerated inference and costly information
acquisition in the face of uncertainty as a simple instance of
a POMDP.

We extended model architectures suggested by Fleming and Daw
(2017), exploiting the simplified version of drift-diffusion-like
decision making discussed by Dayan and Daw (2008). In the
postdecisional models, the rating process that generates confidence
judgments has access to at least the information underlying the
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original decision whose confidence it judges, as well as in most
cases additional information (Moran et al., 2015; Navajas et al.,
2016; Pleskac & Busemeyer, 2010). By contrast, in the second-order
model, rater and actor share only part of each other’s information
(Fleming & Daw, 2017; Jang et al., 2012). In our extension, this
confidence is used to determine whether the agent should, depend-
ing on the expense of doing so, collect more information before
gaining reward for a final choice.

Our theoretical results highlight how seemingly small changes in
the informational architecture of acting, rating and seeking can lead
to diverse profiles of what constitutes optimal search under these
assumptions. The second-order model in particular contains a
number of nontrivial and often nonlinear relationships between
action, confidence, and optimal information search. For example,
the average normative willingness to search as a function of objec-
tive accuracy can resemble a step function for some parameter
values in this model. In addition, because of the specific distribu-
tions of confidence associated with the second-order models, me-
tacognitive hyposensitivity can give rise to both increased and
decreased information search under some more extreme parameter
combinations, depending on the underlying objective accuracy.'”

Our empirical results reinforce the importance of carefully con-
sidering metacognition in information search. While, as we will
discuss later, more targeted paradigms will be necessary to make
statements about confidence models from search behavior, we show
how the quality of metacognitive monitoring is intricately linked to
the quality of search.

Here, we did not focus on the potential neural realization of the
seeker, and its interaction with the likely regions involved in acting
and rating (Fleming et al., 2018; Shimamura & Squire, 1986;
Vaccaro & Fleming, 2018) as well as the neuromodulators involved
in information search and the representation of uncertainty (Hauser
et al., 2018; Vellani et al., 2020; Yu & Dayan, 2005). It would be
interesting to probe the most obvious substrates, such as those
regions involved in model-based and goal-directed control (Daw
et al., 2005; Dickinson & Balleine, 2002) or state inference (Behrens
et al., 2018; Schuck et al., 2016), using signatures derived from
behavior as potential correlates of neural activity.

Informational Flow and Access

Our extensions to the postdecisional and second-order models
make particular choices about how information flows after the
confidence rating. That is, how is the new information Xp, if
collected by the actor, integrated with the actor’s (X;) and rater’s
(Y)) original information to make the final choice (ag)?

In our formulation of the postdecisional model, the perfectly
accumulating sequential sampling renders unreasonable anything
short of the full integration of the three samples (X;, Y, Xr). The
optimal computations would naturally be altered if the accumulation
were lossy or affected by noise, or the rater had less knowledge
about the actor.

In contrast to the full access afforded by our postdecisional
account, in the second-order model, the initial actor and rater are
more separate. This in turn leaves various credible possibilities for
their subsequent integration. We endowed the final actor with the
substantial inferential ability of calculating the rater’s variable Y;
from the reported confidence. However, especially if the rater is not
required to report this information “publicly,” this may not be
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possible. If the information about Y; available to the final actor is
less than we assume here, then the computations for search would
differ, for instance limiting the benefit of low rater noise t;.

A related question is whether and how information is further
propagated in the second-order model. Here, we stopped at the final
action, but the rater could, of course, also compute its confidence in
this second decision. For brevity, we have not included this here, but
note how an optimal rater would now need to infer both the actor’s
first and second cue based on the dynamics of the first and second
decision. Even in the case of no search, the rater could, in some
cases, receive additional information about the actor’s first cue by
observing how the actor reacts to the rater’s initial confidence (e.g.,
whether the actor changes its mind after an error signal by the rater).
This raises broader issues about an internal recursive back-and-forth
inference between the actor and rater.

In contrast to humans, other animals’ metacognition cannot be
directly assayed with confidence ratings. Experimentalists have
attempted to remedy this through paradigms that indirectly probe
representations of subjective correctness, such as postdecision wager-
ing (Kepecs & Mainen, 2012), opt-out experiments (Hampton, 2001),
or neural markers (Kepecs et al., 2008; Kiani & Shadlen, 2009; Nieder
etal., 2020). Information-seeking tasks have also seen wide use (Call,
2010; Call & Carpenter, 2001). There, an animal is hypothesized to
possess a form of metacognition if it seeks information in situations of
uncertainty (which the experimenter controls), a behavior that already
develops in human infancy (Goupil et al., 2016).

However, there is ambiguity about whether confidence-related
behaviors and information search in animals reflect a capacity for
explicit metacognition—the ability to form a distinct representation
of confidence about one’s knowledge or performance (Birch et al.,
2020; Carruthers, 2008; Kornell, 2014). To the extent that second-
order architectures map onto a richer capacity for creating and using
explicit confidence representations, our computational models could
allow inferences about the varieties of animal metacognition when
applied to the kinds of tasks used in this domain.

Ambiguity, Computational Noise, Uncertainty, and
Normativity

The focus of our theoretical investigations was to highlight the
role different assumed metacognitive architectures have on optimal
information search. This shows how strongly even optimal meta-
cognitive computations can affect seeking behavior. However,
various other factors can influence search and might be crucial in
explaining some of the more idiosyncratic average results.

Following Fleming and Daw (2017), the agents in our POMDP
have first-order uncertainty about the stimulus on a trial, but suffer
no ambiguity (or second-order uncertainty) about the inaccuracy or

'0n fact, even the basic confidence judgments produced by the second-
order model can have counterintuitive characteristics in certain regimes—
such as that the more the rater’s private information contradicts the actor’s
choice, the more confident the rater can be that the actor’s decision was in fact
correct. We mainly focused on regimes in which predictions are less unusual,
in keeping with the likely psychological unreality of these extremes.
However, we point the interested reader to the fuller picture in Appendix
(Appendix C). It would furthermore be interesting to consider what kinds of
consequences arise from the modest noise added to the system through the
over- and under-confidence miscalibration in the second-order framework,
and how this would manifest in search.
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correlation of their sources of information. The case in which
subjects receive information whose accuracy they are uncertain
about is common in dynamic decision-making problems where, for
instance, the contrast of input stimuli may change in an unsignaled
manner between trials (Fleming et al., 2018; Gold & Shadlen, 2001,
2007; Kiani & Shadlen, 2009). There has been work on this in the
equivalent of the first-order case. For instance, the conventional
reward-rate maximizing strategy for the drift diffusion decision-
making model in which evidence accumulates up to a fixed thresh-
old changes to one involving what is known as an urgency function
(O’Connell et al., 2018; Ratcliff et al., 2016). In such a model, if the
agent discovers from the length of time it is taking to reach the
threshold that the information it is receiving is not very accurate, it
can make a quick, potentially inaccurate, decision, and hope that the
next problem will be easier (Drugowitsch et al., 2012).

It would be possible to extend our models in a similar manner,
allowing separate informational accumulations over time for actor
and rater; with the seeker judging when to stop and allow the actor to
perform. The added complexity would be that the explicit commu-
nication between actor and rater that we allowed (with the actor’s
first action a; observed by the rater; and the rater’s confidence report
¢y being observed by the second actor) would have to be adjusted.

Our models focused on noise coming from the signals them-
selves, and so we assumed entirely noise-free decision and confi-
dence processes in our theoretical results and simulations. This
allowed us to pinpoint the influences of different confidence models
on search. However, it is of course also limiting. Decision noise is
ubiquitous in behavior (Mueller & Weidemann, 2008; Wilson et al.,
2014), and noisy computations offer a different lens for understand-
ing metacognitive inefficiencies (Shekhar & Rahnev, 2020) and
exploration (Findling et al., 2019). It is particularly interesting
whether agents might take into account such noise processes. For
example, in contrast to our noise-free agent, consider an agent which
would have the opportunity to collect very accurate information, but
has difficulty translating this information to good actions. Here, the
sources of such noise are not crucial and might include forgetting
that degrades information over time, lossy accumulation of evidence
or noisy computations and action selections. In turn, agents that
know about their own inaccuracies should issue confidence judg-
ments and seeking decisions that take them into account. For
instance, Moutoussis et al. (2011) hypothesized that people with
paranoia appear to ‘“jump to conclusions” by refusing to gather
information, because decision noise renders such collection futile
(although see Ermakova et al., 2018).

Throughout, we modeled the information-seeking choice as being
made deterministically based on a threshold. As briefly discussed in
our data section, other reinforcement learning scenarios would often
assume a softmax or add a lapse parameter to this choice, making it
stochastic. Both would naturally reduce the prevalence of extreme
cases outlined in the theoretical results where the agent currently
seeks on all or none of the trials.

A more complicated problem arises if agents are confused about,
or even not fully aware of, their own metacognitive skill. Through-
out, we assumed a form of well-calibrated metametacognitive
knowledge, in that the rater knew the exact value of its variance
T;. While humans are indeed able to use the uncertainty of internal or
external stimuli and sensations in their decision making (Kording &
Wolpert, 2004; Whitney et al., 2008), these stimuli are what we
would consider first-order. Whether such capabilities extend to our
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metacognitive sense is itself questionable—and issues about how
agents tune this capacity, and its psychological and neural realiza-
tions have yet to be thoroughly examined. For example, agents
might exist that are metacognitively highly accurate, but might be
unaware of this skill, or have low confidence in it. Conversely,
individuals might posses little metacognitive skill, but could con-
sider themselves to be great raters, in essence a meta-Dunning—
Kruger effect (Kruger & Dunning, 1999). If agents do not know
whether they can trust their own confidence, this naturally also has
implications for our information-seeking problem and metacogni-
tive control more broadly.

Apart from these inference issues, human decision-making based
on inferred uncertain instrumental values is also widely known to be
subject to distortions (Hertwig et al., 2004; Tversky & Kahneman,
1992). Such distortions include temporal discounting or risk aver-
sion and have been shown to influence search (Gigerenzer & Garcia-
Retamero, 2017; Sadeghiyeh et al., 2020). In general, our value-
based approach allows for the integration of such effects, for
example, by applying a discount rate to the second decision,
assuming a nonlinear value function or even a more complex
coherent risk measure (Gagne & Dayan, 2022). Interindividual
differences in such parameters might exert a significant effect on
average information seeking and might be key in explaining some of
the unexpected characteristics of our average search results, espe-
cially if factors like risk-sensitivity or discounting are nontrivially
related to factors governing metacognition and objective accuracy
(Fleming & Dolan, 2010). We note however that our model is
already rich in parameters and so dissociating individual parameter
contributions might present a challenge.

Beyond our current minimal task, valence and motivational
effects impact information search over and above the purely instru-
mental and accuracy-focused seeking we discuss. Prominently,
humans are more likely to look for information that has positive
valence (Gesiarz et al., 2019; Hart et al., 2009; Jonas et al., 2001,
Sharot & Sunstein, 2020). In turn, we tend to be reluctant to seek
information that might have negative valence, but might in fact be
instrumentally useful—like the results of a medical test (Gigerenzer
& Garcia-Retamero, 2017; Thornton, 2008). Our models do not
accommodate these aspects at the moment. However, one might
combine our purely instrumental values with internal values for
certain beliefs—which may or may not be in line with the accuracy
goals we specify (Benabou & Tirole, 2016; Bromberg-Martin &
Sharot, 2020).

Even when there is no valence attached to the beliefs, empirical
work in paradigms close to the one we use here suggest that humans
integrate cues that favor an initial judgment more than those that
disconfirm it, especially when confidence is high (Rollwage et al.,
2020). Such a confirmation bias can be straightforwardly modeled
within our framework and might assist in explaining behavior
(Fleming et al., 2018). Recent simulation work (Rollwage &
Fleming, 2021) has shown that this apparent confidence-induced
confirmation bias can in fact be adaptive when an agent posseses
second-order metacognitive hypersensitivity. Notably, Rollwage
and Fleming (2021) used a different information flow for the final
decision. However, this still raises interesting questions about what
constitutes optimality in both the passive and active sampling of
information.

Also weakening the tie to normativity are recent empirical
findings that human confidence based on choices with more than
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two options does not necessarily resemble the full Bayesian poste-
rior, but rather tracks the difference between the two most likely
options (Li & Ma, 2020). This has interesting implications for more
complex choices, and it will be important to consider how search
manifests in these settings.

Future Steps in Dissociating Action,
Confidence, and Search

While our reanalysis of Schulz et al. (2020) provided insights into
the empirical use of metacognition when seeking, it left various open
questions. As we previewed, we believe more targeted paradigms
and experimental manipulations will be necessary to better disen-
tangle the role of metacognition and its informational architecture in
search. Among them, transcranial magnetic stimulation (Fleming
et al., 2015; Rounis et al., 2010; Shekhar & Rahnev, 2018) or
pharmacological manipulations (Clos et al., 2019) are able to create
dissociable effects on action and confidence. Metacognition can also
be trained (Carpenter et al., 2019), and there are task conditions
which selectively impact decision and confidence quality like the
positive evidence bias we discussed above. (Bona & Silvanto, 2014;
Desender et al., 2018; Graziano & Sigman, 2009; Spence et al.,
2016; Vlassova et al., 2014). Investigating how search would
manifest following such manipulations might provide key insights
into the interplay of metacognitive monitoring and control and their
underlying computations, especially with more of a focus on within-
subject effects.

Furthermore, some neurological (Del Cul et al., 2009; Fleming
et al., 2014; Goldstein et al., 2009; Persaud et al., 2007; Shimamura &
Squire, 1986) and psychological disorders (David et al., 2012;
Hoven et al., 2019; Rouault et al., 2018) as well as aging
(Palmer et al., 2014; Weil et al., 2013) specifically affect an
individual’s metacognition but leave their “object-level” abilities
relatively untouched. These would have implications for informa-
tion search. For instance, agents might over- or under-estimate the
usefulness of the second cue or have higher thresholds for stopping
to seek, or for returning to check that some action (such as turning
off a gas stove) has been completed (Hauser et al., 2017; Tolin
et al., 2003).

Experimental manipulations of or individual differences in meta-
cognition might provide one way to get a better understanding of
metacognitive search. Particularly, there are other specific aspects of
second-order computations that warrant further investigation. Most
prominently, computing second-order confidence relies on observ-
ing the actor’s decision (Fleming & Daw, 2017), and its insight is
curtailed when it cannot do so, a corollary also supported by
empirical evidence (Pereira et al., 2020; Siedlecka et al., 2016).
Future experiments could follow-up on this by varying whether
participants make an initial decision. When participants only rate
their confidence but do not perform an action, this should lead to
reduced metacognitive insight, and the optimal seeking computa-
tions would be more akin to a first-order model. It would be
especially interesting whether such conditions could give rise to
the step-like average seeking curves when varying the underlying
object-level accuracy.

The aim of this article was not to make strong statements about the
veracity of one model versus another. For simplicity, we presented a
relatively limited postdecisional model that in its current form is
unable to capture the sorts of hyposensitivity observed in the
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empirical data, but could do so with relatively simple changes
(e.g., the addition of confidence noise). In contrast, we think that
qualitative effects of action on confidence provide a more promising
route for clean tests of the role of second-order inference—treating
our own actions as “data”—on a confidence computation. Recent
empirical studies have begun to identify the aforementioned action-
specific contributions to perceptual confidence, which future model-
ing studies could harness (also in the context of information seeking)
to offer a more precise test of different model architectures (Fleming
et al., 2015; Pereira et al., 2020; Siedlecka et al., 2016)

For more definitive comparisons between individual confidence
models, further research could also follow the lead of Shekhar and
Rahnev (2022), who compared a host of metacognitive monitoring
models in terms of their fit to a large existing database of confidence
ratings (Rahnev et al., 2020). Richer tasks, such as those involving
three or more possible choices, together with information search,
may also aid in discriminating between different computational
architectures (Li & Ma, 2020; Rahnev et al., 2022). Overall, we
believe that novel and bespoke experimental designs tailored to test-
specific model predictions will be the most fruitful avenue for testing
models of metacognition more broadly, such as those aimed at
evaluating the tell-tale effect of self-action on confidence in the
second-order model.

Links to Other Types of Information
Search and Metacognitive Control

Here we addressed a very restricted information-seeking problem.
In other laboratory tasks or in real-world situations, information
seeking is itself often embedded in more complex decision-making
tasks (Mobbs et al., 2018; Schulz et al., 2019). For example, in
reinforcement learning problems with several options of unknown
value, agents face an exploration—exploitation dilemma (Schulz &
Gershman, 2019; Sutton & Barto, 2018). Theoretical treatments of
(optimal) exploration (Gittins, 1979; Schwartenbeck et al., 2019;
Sutton & Barto, 2018) and empirical investigations (Boldt et al.,
2019; Speekenbrink & Konstantinidis, 2015; Wilson et al., 2014;
Wu et al., 2018) of human exploration also highlight the key role of
uncertainty in this decision problem.

At first sight, more sequential tasks might seem far removed from
the setting we discussed. However, along with tasks that not only ask
whether to sample information but also where to sample information
from, tasks with longer horizons in fact share the same computational
problem as the simple task we focus on here. For example, belief
states in the exploration—exploitation problem are over action—reward
contingencies rather than “world” states, and the penalty arises as an
opportunity cost. Alternatively, an agent faced with a similar task as
ours but with several possible information sources whose quality is
unclear will have a belief state that quantifies both the uncertainty
about the state as well as the quality of the sources (Pescetelli &
Yeung, 2021).

Optimal solutions to both our reduced task as well as those more
elaborate tasks rest on planning (Callaway et al., 2021; Hunt et al.,
2021). Essentially, our agent plans one step ahead, considering all
possible stimuli associated with its one source to compute its action
values (e.g., Equation 14). In the richer tasks, planning extends over
several steps and/or sources, but the key idea remains equivalent. Of
note is that optimal solutions to these more complex planning
problems quickly become intractable. Any heuristic solution,
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however, will try to approximate this optimal solution, or at least be
measured against it.

Models of exploration behavior or of more complex search almost
always consider uncertainty in what we would characterize a first-
order computation—at most wondering about the effect of different
prior distributions over unknown quantities. It would be interesting
to think about the equivalent of postdecisional and second-order
models—where agents could gain some extra, partially independent,
information about the quality of their actions, for instance by
observing other agents (Zhang & Glascher, 2020). It might then
be possible to use the sort of methods we have discussed to draw out
the implications for exploration.

On a shorter timescale, the basic computations we discussed line up
with those performed in drift-diffusion models. There, participants
can infer their chance of being correct from information that accu-
mulates over time and have to decide whether to stop or continue
sampling evidence (Gold & Shadlen, 2001, 2007; Ratcliff & Rouder,
1998; Wald, 1949). These models have been highly successful in
explaining the latent speed—accuracy trade-off present in many
perceptual tasks where participants decide implicitly to sample
information (Bogacz et al., 2010; Ratcliff et al., 2016), and it would
be interesting to see how they are sensitive to more metacognitive
architectures.

Outside of areas related to information acquisition, confidence
also plays a key role in controlling other processes. For example,
cognitive offloading (Gilbert et al., 2020; Hu et al., 2019; Risko &
Gilbert, 2016), such as setting reminders, is closely tied to our
subjective feeling of future success. Humans also prioritize the
completion of different tasks as a function of their confidence
(Aguilar-Lleyda et al., 2020) and use confidence to decide adap-
tively when to deploy attention (Desender, Boldt, et al., 2019; van
den Berg et al., 2016) or engage in reflection about the value of
options (Lee & Daunizeau, 2021). All these decision problems
essentially boil down to a planning problem akin to our
information-seeking case where an agent needs to balance the
benefits of an action like setting a reminder with its (opportunity)
cost. It would be furthermore interesting to consider parallels to
metacognitive search sensitivity in these areas, for example, asking
whether a reminder was set in vein or not.

On a longer time horizon, confidence also shapes learning (Bjork
et al., 2013; Metcalfe & Finn, 2008). Here, computational modeling
has shown, that, on the one hand, we learn from our local confidence
about our own broader skills (Rouault et al., 2019). On the other, we
use momentary estimates of uncertainty to steer how much we learn
from errors (Behrens et al., 2007; McGuire et al., 2014; Meyniel et
al., 2015; Purcell et al., 2010; Vaghi et al., 2017). Investigating the
effects of confidence on learning and on controlling future courses
of actions through a more detailed and integrated model of meta-
cognitive monitoring and control might provide insights into both
their function and dysfunction.

Whether in our paradigm or in exploration—exploitation, the
collection of information serves to increase an agent’s reward
and thus has a direct instrumental purpose. However, there is
also a large literature dealing with what at first glance appears to
be noninstrumental information seeking. Such “curiosity” for seem-
ingly (at least currently) reward-irrelevant information has long been
a puzzle to experimentalists and theoreticians (Gottlieb & Oudeyer,
2018; Iigaya et al., 2016; Kidd & Hayden, 2015; Kobayashi et al.,
2019). As in instrumental information search, confidence often
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plays a key role in the treatment of such behavior, although its
role is contested. Whereas some propose a monotonic relationship
between confidence and curiosity similar to our instrumental results
(Berlyne, 1950; Lehman & Stanley, 2011), others argue that inter-
mediate levels of confidence are most conducive to curiosity
(Baranes et al., 2014; Kang et al., 2009; Kidd et al., 2012)."" Others
have attempted to reconcile these two perspectives (Dubey &
Griffiths, 2020). These various models might benefit from the
sort of explicit treatment of the underlying confidence that we
have discussed.

As briefly alluded to above, in the real world, information is often
not solely provided by faceless sources, but by other agents with
their own intentions. Over and above just being noisy (and indeed
nosey), such social sources might have their own biases and interests
of which successful agents need to be aware when evaluating
whether they should invest in hearing their opinion and using
them to inform themselves (Hutter & Ache, 2016; Pescetelli &
Yeung, 2021; van der Plas et al., 2019). This is a particular pressing
issue when faced with misinformation and disinformation (Lazer et
al., 2018; Pennycook & Rand, 2021). Such scenarios will require
adaptive metacognitive systems to make inferences not only about
themselves but also about others. From a computational perspective,
theories such as cognitive hierarchy (Camerer et al., 2004), interac-
tive POMDPs (Gmytrasiewicz & Doshi, 2004), or rational speech
acts (Goodman & Stuhlmuller, 2013) could be adapted to consider
hierarchies of partially self-aware agents interacting with each other.

Finally, we note that hierarchies of ever more sophisticated
subagents that model each other inside a single decision maker
constitute a form of theory of (an internal) mind that is somewhat
reminiscent of these externally directed cognitive hierarchies
(Carruthers, 2009). If the internal subagents enjoy their own par-
tially individual rewards—so, for instance, the rater might have an
incentive to lie about its confidence if it faces an overwhelming loss
for being wrong or because it believes that the lie might have
adaptive benefits (Benabou & Tirole, 2016; Johnson & Fowler,
2011; Kurvers et al., 2021)—we can expect very rich patterns of
behavior to emerge, with agents partially fooling themselves as well
as others.

Conclusion

By offering a joint account of metacognitive monitoring and
control, our work provides theoretical grounding for, and empirical
evidence of, rich patterns of behavior that can emerge when
considering both parts of a metacognitive process. Such an inte-
grated treatment highlights the importance of considering the dif-
ferent building blocks of (meta-)cognition together rather than
treating them as isolated processes. Our discussion has described
the wide conceptual applicability of this integrated approach, and
pointed to a range of remaining empirical and theoretical questions,
from neural realizations to more detailed accounts of potential
irrationalities in human choice. Our hope is that this will provide
a better lens for understanding the richness of metacognitive control
behavior, in search and beyond.

"' We observe inverse U shapes under some extreme parameter settings,
but stress that these are due to the signal and noise properties of the second-
order model (see Appendix C).
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Appendix A
Model Details

Postdecisional Model
Predicting X

To predict the location of X for the value of seeking, the seeker
combines the two possible normal distribution weighted them by the
associated confidence:

p(XF‘ZI) =P(XF|d =-1)P(d = -1{Z)

+p(Xpld =1)P(d =1|Z). (23)

Second-Order Model
Confidence

Fleming and Daw (2017) describe the computations underlying
their second-order model. Here, we present them in our notation.
Recall that the rater observes the actor’s decision a; and receives its
own cue Y;. The rater then has to use this information to compute the
probability that the actor’s decision was the correct one:

c;=Pla; =d|Y ;%)

{ P(d=1|Y;,a;%;)
P(d=-11Y; a5%)

ifa, =1.

ifa, =—1. (24)

As with the postdecisional model, we apply Bayes rule to
compute this. In the following, we suppress X; for clarity:

P(d|Y)P(a;|Y;,d)

P ) = Sy Py )

(25)

We begin teasing this apart, beginning with the second term:

P(a;|Y;,d) =J P(a;|X;)P(X,|Y;, d)dX;. (26)

X;

Because P(a,lX)) is contingent on the threshold (so that a; = 1 if
X; > 0), this can also be expressed as:

ifa] =1.

Plaj|Y}.d) ifa, = —1.

{jo (X;|Y;. d)dX,; a7

[O XI|Y1, )dX]

This is cumulative density function of the conditional density of a
multivariate Gaussian. This conditional density of a multivariate
Gaussian is itself simply a univariate Gaussian.

P(Xl\Yl,d)NN(Hx,\y,yGx,\y,)~ (28)

The conditional parameters of this distribution are defined as
follows:
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c
Bx |y, =d + T_jP(YI -d), (29

ox, v, = \/ (1 = p?)o7. (30)

The first term is the normalized likelihood of Y; conditioned
on ad:

P(d|Y;) « P(Y,|d). (€29)]

P(Y;ld) in turn equals the density of a unidimensional Gaussian
with mean d and standard deviation 7; at Y.

Optimal Weighting of X; and Y; for Y; Under Covariance

In contrast to the postdecisonal model, we cannot simply
weigh X; and Y; according to their variances when combining
them to Z;. Rather, we need to take into account their covariance
(Orug et al., 2003). As a result, X; and Y; are summed with their
respective weights wy, and wy,.

Z[ = WX,XI + WYIYI‘ (32)

These weights are functions of the reliabilities of the cues, which
in turn are corrected for the correlation.

",X, ”’Y,
Wx, == 7 and Wy, == 7> (33)
ryl+er ryl+rxl
r'x, =rX1—p11/rXIry1 and rylzryl—p11/rxlry1, (34)
1 1
er =? and ryl = 17 (35)
1 I

This way we can also define the standard deviation {; of Z,.

1
G=y/— (36)
Iz,
rx, +ry, — 2p, /7x, Ty,
Iz, = = p% . (37)

This form of cue combination can give rise to several nonintuitive
results, which we discuss further below.

Value Computations

In the following, we detail the value computations in the the
second-order model. First, if there is no seeking, the actor uses Z;
(see above) to make its decision. The value of this combined
stimulus is defined as:

V;.Z, =max{P(d = 1|Z;),P(d = —-1|Z;) }r. (38)

This is then used in the Q-value computations for the Q value of
not seeking (see Equation 17)

However, the seeker does not know Z;, because it does not have
access to X;. It therefore has to marginalize out this quantity:

Vivo= L p(Z/|Y}.a))Vi 2, dZ,, (39)
JZ,

=J P(X1|Y1701)V*F’Z,dX,, where (40)
X;

p(X)\Yp.ar) = p(X,|Y;.a;,d = =1)P(d = —1|Y},ay)
+p(X1|Y1,a1,d= I)P(dz 1|Y1,a1). (41)

Given seeking, the actor receives X (again as per Equation 10)
which it combines with Z; to form a joint variable Zx (see Equation
12). This variable can then again be compared against a threshold for
ar,;. Given this setup, we can now consider the values that go into
the individual Q-value computations.

Viz, =max{P(d = 1|Zp),P(d = —1|Zg)}rp. (42)

Similarly to the first-order and postdecisional models, the seeker
does not know all the variables underlying Zy, when it decides
whether to seek, and it also does not know Z;. Therefore, it has to
marginalize over them both:

Vey,. = L P(Zp|Y1. a))Vi g, dZp, 43)

F

= J J p(XI’XF|YI’ aI)V;ZFdXFdXI, where (44)
X;

X

p(X, XplY1,ar) = p(X)|Y), 1) (p(Xpld = =1)P(d = =1|Y}, q;)
+p(X1:|d = I)P(d = 1\Y1,611))- 45)

Notice how both the with- and without-search value computation
contain, P(dlY;, a;), or the rater’s confidence.

Over- and Under-Confidence

As discussed in the main text, the second-order model can
produce over- and under-confidence by way of dissociating the
parameter underlying the sampling of the actual actor stimulus, and
the parameter that the rater uses to invert the model and compute its
confidence. In more detail, this means that we use an objective and
subjective o,, where the stimuli are still sampled with o; as in
Equations 7 and 8. In contrast to this, the rater and seeker proceed
in their computations using oX, for example, when forming the
confidence:

C1=P(a1=d‘YI;Zf), (46)

of)? oft
PIor T T

This then also applies to the seeker’s computations outlined in
Equations 41-45.
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Appendix B
Method

We implemented our models, simulations, and data analysis in R.
Our code and data is hosted on a dedicated GitHub repository
(https://github.com/lionschulz/SchulzFlemingDayan). Our work
only includes theoretical simulations and additional analysis of
previously published data from Schulz et al. (2020). That study
was not preregistered.

Simulation Details

To simulate the effects of over- and under-confidence on optimal
search, we sampled values of o; and of to span the empirically
observed accuracy range (60%—85%) from Schulz et al. (2020).
Specifically, we sampled accuracies individually from a uniform
distribution within this range and then transformed them to 6;and 6f
using the inverse of Function 21:

1

¢~ (Accuracy)’ “8)

o) =

where ¢~' denotes the inverse cumulative density function of the
normal distribution. To simulate different degrees of metacognitive
sensitivity, we furthermore sampled using the same procedure and
range. The correlation p; was fixed to 0.3, and the cost of the
information r, to 0.1 (rp = 1).

To probe agent’s average confidence in these simulations, we
simulated 1,000 trials for each stimulus combination. To compute
the agent’s meta-d’, we split these confidences into five equally
spaced confidence bins (details on meta-d’ fit below).

Data

Here, we reanalyzed participant data from Schulz et al. (2020)
who collected choices and confidence ratings from 734 participants
in an information-seeking task that shares many commonalities with
the theoretical task we discuss. A few subtle differences between the
task we describe in the theory section and Schulz et al. (2020) exist:
Our theoretical task uses a continuous confidence report made after
the initial decision, offering an arbitrarily fine-grained picture of
confidence. In contrast, Schulz et al. (2020) employed a discrete,
three-step, scale that probed confidence conjointly with the judg-
ment. This lowers the resolution of possible confidence values. Such
discrete confidence ratings are usual in the field of metacognition
(Rahnev et al., 2020). Because of the joint assessment of choice and
confidence, confidence could not fall below 50%. Furthermore,
Schulz et al. (2020) employed just one, stair-cased, strength of
the initial (and yoked final) stimulus limiting our ability to probe
changes in accuracy level to post hoc analyses (see Figure B1, for
the two accuracies). However, the task employed two levels of costs,
letting us probe the effects of cost on participants search. A detailed
description of this task can be found in Schulz et al. (2020).

As is usual in the literature (Fleming & Daw, 2017; Rahnev et al.,
2020; Shekhar & Rahnev, 2020), participants displayed significant
variation in their metacognitive sensitivity. We show the distribu-
tion of perceptual (d') and metacognitive (meta-d’) sensitivities in
Figure B2.

Figure B1
Average Initial and Final Accuracies, and Average Search in Schulz
et al. (2020)

L]

5 0.8
@ Av. Search
=] 1.0
o
[&]
< |
8 05
z 0.7
z 0.0

0.6 1

0.50 0.75 1.00
Av. Final Accuracy
Note. Participants with high initial average accuracy were able to reach

almost perfect final decisions through search. Plot uses a small scatter for
better visibility. See the online article for the color version of this figure.

Data and Simulation Analyses

Trial-by-trial effects were computed using the mixed logistic models
in the “afex” (Singmann et al., 2018). To analyze correlations in the
data, we used Pearson correlation, and for linear regression models, we
applied the Im() function. We employed HMeta-d’ (Fleming, 2017)
using nonhierarchical fits to fit meta— d'.

Figure B2
Distribution of Perceptual and Metacognitive Sensitivity in Schulz
et al. (2020)

3 -

y M-ratio
- 2
?
ful 1
O 1
€ 0

Note. The ratio meta-d'/d’, known as metacognitive efficiency or M ratio,
indexes the relative balance between the information available for perfor-
mance (d’) and confidence ratings (meta-d’). Values greater than 1 indicate
metacognitive hypersensitivity, and values smaller than 1 indicate hyposen-
sitivty. See the online article for the color version of this figure.
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Appendix C

Further Second-Order Results

Confidence and General Stimulus Conditions
Signal, Noise Correlation

In the second-order model, the correlation can give rise to
counterintuitive confidence curves. This is visible in Figure C1
where we plot confidence values for a positive decision (a; = 1)
varying the parameters individually. We observe a few aspects
already reported by Fleming and Daw (2017):

* Panel A: Increasing the accuracy of the actor (lower c;)
increases the boost that the confidence receives through
the action. If the actor is very accurate, it takes a highly
negative Y; to overturn the decision.

* Panel B: Higher rater noise (t;) means the confidence

However, what has yet to be reported is the following: Under
conditions of metacognitive hyposensitivity, that is when o; is
sufficiently smaller than t;, and when p; is large enough, confidence
will begin rising again with seemingly contradictory Y;’s. This is
particularly visible in the rightmost panel where p; is most pro-
nounced, but is also visible in the most extreme cases in Panels A
and B. As an example, imagine the actor has received X; = 0.5 and
decides a; = 1. If the rater receives Y; = — 5, this would usually be a
strong error signal and the confidence in the initial decision very
lower than when Y; would have had more intermediate values.
However, under some parameter conditions, the exact opposite is
the case: There, when Y; strongly contradicts the decision sign,
confidence will in fact be higher for this very low Y; than for ¥; = 0.

While we note that the marginal probability of these cases is

mZ=rzo
Joron

relatively low given the underlying correlation, such a pattern is
striking. The reason for it lies in the way the two possible sources
occupy the X; and Y; space and create signal and noise (compare
Figure 1E). A crucial aspect of this is the line on which the posterior

curves will be less well tuned.

* Panel C: Higher correlations (p;) also results in a reduced
sharpness in the confidence curves.
Figure C1

Second-Order Confidence Across Parameter Regimes

Second-order confidence (for a = 1)

A B C
1.0 I 1.0 1.0
TI
S 0.51 0.51 I5 0.51
—1
0.0 1,=2,p,=05 0.0 6,=2,p,=05 0.0 1=2,06=15
10 -0 -5 0 5 10 -10 -5 0 5 10
Y Y|
Posterior equality line
D E
10 1 104
51 54
P(d=1IX,Y) >
- P(d=-1IX,Y,
> 0 01
Pd=-11X,Y) >
51 54 P(d=1IX,Y)
-1 O L T T T T T -1 O 1 T T T T
-10 -5 0 5 10 -0 -5 0 5 10
X| XI
Note. (A—C) Second-order confidence as a function of Y; for a;= 1. In general, note how confidence for a completely ambiguous

rater cue (¥; = 0) doesn’t necessarily mean that confidence c¢; will be 0.5. (A) This is mainly a function of the relationship between
o7 and 1. (B) High values of t; for a fixed o; can lead to the confidence being less sensitive to ¥;. When t; is particularly large in
relation to oy, the confidence will in fact again begin to rise for negative Y;’s (which intuitively contradict a;). Gray line in (A) and
(B) highlights an equivalent parameter setting of t; = 6; =2, p;=.5. (C) This rise of confidence with contradictory rater cues Y; is
particularly pronounced for high correlations p,. The rising confidence is tied to the way the correlation affects signal and noise
and in extension the line on which the joint posterior P(dIX;, Y;) is equivalent between the two d. This line is plotted in (D-F).
When an agent is metacognitively hyposensitive (6; < t;) and when the correlation p; between Y; and X; is high enough,
confidence will not decrease for negative Y; but rather again rise. See the online article for the color version of this figure.
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based on Z; (i.e., the combination of X; and Y;) is uniform, so that
P(d=1X;, Y) = P(d = —-11X}, Y) = 0.5. It is this posterior that the
rater only has partial information about. The equality line subdivides
the space in two zones where the likelihood of d =1 is larger than the
likelihood of d = —1 (or vice versa). Given the equal prior, this line
of equality in turn is defined by the points at which the two
likelihoods equal each other.
p(Xp.Y,|ld=-1)=p(X;.Y,|d=1). (49)
The two likelihoods are defined by the bivariate normal distribu-
tion’s density:

(X;=d)2  2p(X;—d)(Y;=d) | (Y;-d)?
1 1 — 1 1 + 1 >

P(X1Y)ld) = e I K

216,74/ 1 — p?

From this, we can define the values of Y; for which the two
posteriors equal each other as a function of X;:

(50)

Y, = -—mX,, (51)
where from Equation 49, we get:
1 _pr
m= (52)

We plot this in Figure C1D-F for a range of parameter combina-
tions. When there is no correlation p; = 0, m (Panel F) this line is
defined by ;—’2, and the space is thus divided diagonally from a positive
Ytoa negat’ive Y; with the slope defined by the relationship between
the two parameters. This general result holds, even when reintroducing
the correlation. Importantly, what this division of space means is that
for every possible actor cue X;, more positive rater cues Y; will favor
d = 1 and more negative Y; will favor d = —1. Crucially however,
under metacognitive hyposensitivity (t; > o;) this diagonal becomes
steeper and steeper until it is fully vertical. This point is defined when:

O

pr=—-
T

(53)

In other words, at this point, the decision rule based on Y;and X;is
the same as based on X; alone—Y; thus affords no additional help
with the decision. Beyond this vertical point, the space is again
divided diagonally, but the dividing line now has a positive rather
than negative slope. This only appears under relatively extreme
parameter combinations, but will crucially flip the logic outlined
above. Now, for every X, lower values of Y; will begin providing
more evidence for d = 1 instead of d = —1. This then in turn gives
rise to the confidence rising with seemingly contradictory values of
Y;. This phenomenon will appear once the equality lines have
“flipped,” as is visible when comparing the confidence curves
and slopes depicted in Figure Cl1.

Relationship Between {; and 6;, T/, and p;

As alluded to in the main text, the joint standard deviation {;
produced from optimally combining o;, T;, and p; stands in a
nontrivial relationship with its subparts.

For context, recall how the 6; and t; are combined when there is
no correlation (see Equation 5). As we discussed in the main text, the

maximum of {; is then defined by the smaller of the two standard
deviations o; and 1;. Additionally, the smaller the larger of the two
is, the smaller {; becomes. In other words, the agent would benefit
from a reduction of noise in both cases. For an illustration of this
effect, see the yellow-most lines in Figure C2A that show a cue
integration in accuracy space, ¢((;), as a function of ¢(c;) for p; = 0.
Notice how lower 1;’s shift the baseline upwards and how the better
accuracy of afforded by o; increases the accuracy afforded by ;.

In most cases of optimal cue combination, two independent
sources (low p;) of information hold more information (lower {;)
than two correlated sources (high ;). This is also the case for most
parameter combinations in our scenario. Crucially however, this
intuitive relationship fails for some specific combinations of values,
particularly for very high correlations. This is visible in Figure C2A
where for a fixed rater noise t; lower accuracy o; produce more
accurate {; than higher accuracy o; (especially t; =2 in Panel A and
p; = 0.8 in Panel B).

Figure C2 shows these nonmonotonic relationships for a range of
parameter combinations. This broadly highlights that, if parameter
combinations are extreme, then there is no monotonic relationship
between the three initial source parameters and the accuracy af-
forded by their combination (p(C;).

These patterns again partially stem from how the space is optimally
divided by the two sources. Specifically, when the equality line
“flips,” the posteriors get compressed differently between the two
sources, allowing a better inference than in the classical separation of
X, Y; space.

The effects of this “flip” are formally analogous to the way in
population codes that correlations between the activities of units can
either help or hurt discrimination and decoding depending on their
alignment relative to the way that signals are coded (the mean
difference; Abbott & Dayan, 1999).

Figure C2
Accuracy Obtainable Through the Standard Deviation {; of
Combined Cue Z; in the Second-Order Model

A
1.0 7=1 1,=2
0.9-§§ /
2 0.8 1
<
0.7
0.6

06 0.7 0.8 09 06 0.7 0.8 0.9 0.6
Initial Acc. ¢ (o))

1.0

p, =02 p, =05
0.9
2 0.8
<
0.7 1
0.6 1

06 0.7 0.8 09 06 0.7 0.8 0.9 0.6
Initial Acc. 6(a))

07 0.8 0.9

Note. Optimally combining the parameters of the initial decision (o, T/,
and p;) can give rise to nonmonotonic relationships between initial accuracy
and accuracy attained through {,, that is, ¢(C;). See the online article for the
color version of this figure.

(Appendices continue)

Template Version: 17 October 2022 m 2:33 pm IST

REV-2021-0061_format_final m 14 November 2022 m 11:56 am IST

mz=rzo
JOron



mZ=rzo
Joron

36 SCHULZ, FLEMING, AND DAYAN

Final Accuracy

Figure C3
Effects of High Correlation Between Actor and Rater Signal
A Average Search B
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Av. Search
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Note. (A) Average search by average initial accuracy and rater noise ;. (B) Final accuracy by
average initial accuracy and rater noise, and conditioned on whether the agent sought out
information or not. See the online article for the color version of this figure.

Seeking and Final Accuracy for the High p,

The two aforementioned particularities of the second-order model
also impact the agent’s search behavior and final accuracy, which we
depict in Figure C3.

The fact that confidence rises again with contradictory values of
Y; will result in U-shaped seeking curves for most t;. This is
because the rising confidence will favor not seeking, rather than
seeking once the actor accuracy is below a specific value while
keeping t; fixed.

Template Version: 17 October 2022 m 2:33 pm IST

With regards to the final accuracy, the maximum attainable
accuracy from combining X; and Y; (and X) will be impacted by
the combination of o, T;, and p; giving rise to {; (discussed above).
This will for example, mean that more accurate (low ;) raters can
produce less accurate final judgments than noisier (high t,) raters.
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