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ABSTRACT

The ability to predict future visual observations conditioned on past observations
and motor commands can enable embodied agents to plan solutions to a variety of
tasks in complex environments. This work shows that we can create good video
prediction models by pre-training transformers via masked visual modeling. Our
approach, named MaskViT, is based on two simple design decisions. First, for
memory and training efficiency, we use two types of window attention: spatial
and spatiotemporal. Second, during training, we mask a variable percentage of
tokens instead of a fixed mask ratio. For inference, MaskViT generates all to-
kens via iterative refinement where we incrementally decrease the masking ratio
following a mask scheduling function. On several datasets we demonstrate that
MaskViT outperforms prior works in video prediction, is parameter efficient, gen-
erates high-resolution videos (256 × 256) and can be easily adapted to perform
goal-conditioned video prediction. Further, we demonstrate the benefits of in-
ference speedup (up to 512×) due to iterative decoding by using MaskViT for
planning on a real robot. Our work suggests that we can endow embodied agents
with powerful predictive models by leveraging the general framework of masked
visual modeling with minimal domain knowledge.

1 INTRODUCTION

Evidence from neuroscience suggests that human cognitive and perceptual capabilities are supported
by a predictive mechanism to anticipate future events and sensory signals (Tanji & Evarts, 1976;
Wolpert et al., 1995). Such a mental model of the world can be used to simulate, evaluate, and select
among different possible actions. This process is fast and accurate, even under the computational
limitations of biological brains (Wu et al., 2016). Endowing robots with similar predictive capabil-
ities would allow them to plan solutions to multiple tasks in complex and dynamic environments,
e.g., via visual model-predictive control (Finn & Levine, 2017; Ebert et al., 2018).

Predicting visual observations for embodied agents is however challenging and computationally
demanding: the model needs to capture the complexity and inherent stochasticity of future events
while maintaining an inference speed that supports the robot’s actions. Therefore, recent advances in
autoregressive generative models, which leverage Transformers (Vaswani et al., 2017) for building
neural architectures and learn good representations via self-supervised generative pretraining (De-
vlin et al., 2019), have not benefited video prediction or robotic applications. We in particular
identify three technical challenges. First, memory requirements for the full attention mechanism
in Transformers scale quadratically with the length of the input sequence, leading to prohibitively
large costs for videos. Second, there is an inconsistency between the video prediction task and au-
toregressive masked visual pretraining – while the training process assumes partial knowledge of
the ground truth future frames, at test time the model has to predict a complete sequence of future
frames from scratch, leading to poor video prediction quality (Yan et al., 2021; Feichtenhofer et al.,
2022). Third, the common autoregressive paradigm effective in other domains would be too slow
for robotic applications.

To address these challenges, we present Masked Video Transformers (MaskViT): a simple, effective
and scalable method for video prediction based on masked visual modeling. Since using pixels
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Figure 1: MaskViT. (a) Training: We encode the video frames into latent codes via VQ-GAN.
A variable number of tokens in future frames are masked, and the network is trained to predict
the masked tokens. A block in MaskViT consists of two layers with window-restricted attention:
spatial and spatiotemporal. (b) Inference: Videos are generated via iterative refinement where we
incrementally decrease the masking ratio following a mask scheduling function. Videos available at
this project page.

directly as frame tokens would require an inordinate amount of memory, we use a discrete variational
autoencoder (dVAE) (Van Den Oord & Vinyals, 2017; Esser et al., 2021) that compresses frames
into a smaller grid of visual tokens. We opt for compression in the spatial (image) domain instead
of the spatiotemporal domain (videos), as preserving the correspondence between each original and
tokenized video frame allows for flexible conditioning on any subset of frames – initial (past), final
(goal), and possibly equally spaced intermediate frames. However, despite operating on tokens,
representing 16 frames at 256 tokens per frame still requires 4, 096 tokens, incurring prohibitive
memory requirements for full attention. Hence, to further reduce memory, MaskViT is composed of
alternating transformer layers with non-overlapping window-restricted (Vaswani et al., 2017) spatial
and spatiotemporal attention.

To reduce the inconsistency between the masked pretraining and the video prediction task and to
speed up inference, we take inspiration from non-autoregressive, iterative decoding methods in gen-
erative algorithms from other domains (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhari-
wal, 2021; Ghazvininejad et al., 2019; Chang et al., 2022). We propose a novel iterative decoding
scheme for videos based on a mask scheduling function that specifies, during inference, the number
of tokens to be decoded and kept at each iteration. In contrast to autoregressive decoding, which
involves predicting tokens one by one, our iterative decoding scheme is faster as the number of
decoding iterations is significantly less than the number of tokens. A few initial tokens are pre-
dicted over multiple initial iterations, and then the majority of the remaining tokens can be predicted
rapidly over the final few iterations. This brings us closer to the ultimate video prediction task,
where only the first frame is known and all tokens for other frames must be inferred. To further
close the training-test gap, during training we mask a variable percentage of tokens, instead of using
a fixed masking ratio. This simulates the different masking ratios MaskViT will encounter during
iterative decoding in the actual video prediction task.

Through experiments on several publicly available real-world video prediction datasets (Ebert et al.,
2017; Geiger et al., 2013; Dasari et al., 2019), we demonstrate that MaskViT achieves competitive or
state-of-the-art results in a variety of metrics. Moreover, MaskViT can predict considerably higher
resolution videos (256 × 256) than previous methods. We also show the flexibility of MaskViT
by adapting it to predict goal-conditioned video frames. In addition, thanks to iterative decoding,
MaskViT is up to 512× faster than autoregressive methods, enabling its application for planning
on a real robot (§ 4.5). These results indicate that we can endow embodied agents with powerful
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predictive models by leveraging the advances in self-supervised learning in language and vision,
without engineering domain-specific solutions.

2 RELATED WORK

Video prediction. The video prediction task refers to the problem of generating videos conditioned
on past frames (Ranzato et al., 2014; Lotter et al., 2016), possibly with an additional natural lan-
guage description (Li et al., 2018; Gupta et al., 2018; Pan et al., 2017; Wu et al., 2021b) and/or
motor commands (Finn et al., 2016; Villegas et al., 2019; Wu et al., 2021a; Babaeizadeh et al.,
2021). Multiple classes of generative models have been utilized to tackle this problem, such as Gen-
erative adversarial networks (GANs) (Clark et al., 2019; Tulyakov et al., 2018; Luc et al., 2020),
Variational Autoencoders (VAEs) (Villegas et al., 2019; Wu et al., 2021a; Babaeizadeh et al., 2021;
2018; Denton & Fergus, 2018; Akan et al., 2021; 2022), invertible networks (Dorkenwald et al.,
2021), autoregressive (Yan et al., 2021; Rakhimov et al., 2020; Nash et al., 2022) and diffusion (Ho
et al., 2022; Voleti et al., 2022) models. Our work focuses on predicting future frames conditioned
on past frames or motor commands and belongs to the family of two-stage methods that first encode
the videos into a downsampled latent space and then use transformers to model an autoregressive
prior (Yan et al., 2021; Rakhimov et al., 2020). A common drawback of these methods is the large
inference time due to autoregressive generation. MaskViT overcomes this issue by using an iterative
decoding scheme, which significantly reduces inference time.

Masked autoencoders. Masked autoencoders are a type of denoising autoencoder (Vincent et al.,
2008) that learn representations by (re)generating the original input from corrupted (i.e., masked)
inputs. Masked language modeling (MLM) was first proposed in BERT (Devlin et al., 2019) and
has revolutionized the field of natural language processing, especially when scaled to large datasets
and model sizes (Brown et al., 2020; Radford et al., 2019). MLM with fixed and low masking ratio
has also been extended for multi-modal representation learning (Lu et al., 2019; Sun et al., 2019;
Zellers et al., 2021). The success in NLP has also been replicated in vision by masking a fixed
but high ratio of patches of pixels (He et al., 2021; Dosovitskiy et al., 2020) or masking tokens
generated by a pretrained dVAE (Bao et al., 2022; Chen et al., 2020). Recently, these works have
also been extended to video domains to learn good representations for action recognition (Tong
et al., 2022; Feichtenhofer et al., 2022). Unlike them, we apply masked visual modeling for video
prediction, and we use a variable masking ratio during training to reduce the difference between
masked pretraining and video prediction. Another related line of work is leveraging good visual
representations learnt via self supervised learning methods (Laskin et al., 2020; Nair et al., 2022;
Parisi et al., 2022) including masked autoencoders (Xiao et al., 2022) for motor control.

Non-autoregressive decoding. A key limitation of autoregressive decoding is that each token is
predicted sequentially. Hence, the decoding time is proportional to the dimensionality of the data.
An appealing alternative is iterative decoding, where all tokens are predicted simultaneously and
then refined for a fixed number of steps independent of the data dimensionality (Gu et al., 2017;
Ghazvininejad et al., 2019; Saharia et al., 2020). Ghazvininejad et al. (2019) proposed a mask-
predict decoding paradigm for machine translation by training a bidirectional decoder instead of
a causal decoder. During inference, entire translated sequences are predicted in parallel within a
constant number of steps. Chang et al. (2022) extend this framework to the image domain and
use mask scheduling functions during training and decoding. We extend the framework of mask-
predict (Ghazvininejad et al., 2019) and MaskGiT (Chang et al., 2022) for video prediction. We
pre-train a bidirectional window transformer model via masked visual modeling where we mask
a variable percentage of tokens independent of the mask scheduling function. Importantly, unlike
MaskGiT, instead of keeping the most confident tokens during each decoding step, we add temper-
ature annealed Gumbel noise to the token confidence to produce diverse outputs.

3 MASKVIT: MASKED VIDEO TRANSFORMER

MaskViT is the result of a two-stage training procedure (Van Den Oord & Vinyals, 2017; Razavi
et al., 2019): First, we learn an encoding of the visual data that discretizes images into tokens
based on a discrete variational autoencoder (dVAE). Next, we deviate from the common autoregres-
sive training objective and pre-train a bidirectional transformer with window-restricted attention via

3



Published as a conference paper at ICLR 2023

Ground 
truth

Predicted

KITTI t = 0 

(context)

t = 5 t = 10 t = 15 t = 20 t = 25 t = 29 

RoboNet

Ground 
truth

Predicted

(context)

t = 0 t = 2 t = 3 t = 5 t = 7 t = 9 t = 11 

Figure 2: High resolution video prediction. Video prediction results on test set of KITTI and
RoboNet at 256× 256 resolution. See § B.2 for additional qualitative results.

masked visual modeling (MVM). In the following section, we describe our image tokenizer, bidirec-
tional transformer, masked visual pre-training, and iterative decoding procedure.

3.1 LEARNING VISUAL TOKENS

Videos contain too many pixels to be used directly as tokens in a transformer architecture. Hence,
to reduce dimensionality, we first train a VQ-VAE (Van Den Oord & Vinyals, 2017) for individual
video frames so that we can represent videos as sequences of grids of discrete tokens. VQ-VAE con-
sists of an encoder E(x) that encodes an input image x ∈ RH×W×3 into a series of latent vectors.
The vectors are discretized through a nearest neighbour look up in a codebook of quantized embed-
dings, Z = {zk}Kk=1 ⊂ Rnz . A decoder D is trained to predict a reconstruction of the image, x̂, from
the quantized encodings. In our work, we leverage VQ-GAN (Esser et al., 2021), which improves
upon VQ-VAE by adding adversarial (Goodfellow et al., 2014) and perceptual losses (Johnson et al.,
2016; Zhang et al., 2018). Each video frame is individually tokenized into a 16× 16 grid of tokens,
regardless of their original resolution (Fig. 1, a, left). Instead of using 3D extensions of VQ-VAE
which perform spatiotemporal compression of videos (Yan et al., 2021), our per-frame compression
enables us to condition on arbitrary context frames: initial, final, and possibly intermediate ones.

3.2 MASKED VISUAL MODELING (MVM)

Inspired by the success of masked language (Devlin et al., 2019) and image (Bao et al., 2022; He
et al., 2021) modeling, and in the spirit of unifying methodologies across domains, we pre-train
MaskViT via MVM for video prediction. Our pre-training task and masking strategy are straightfor-
ward: we keep the latent codes corresponding to context frames intact and mask a random number
of tokens corresponding to future frames. The network is trained to predict masked latent codes
conditioned on the unmasked latent codes.

Concretely, we assume access to input context frames for Tc time steps, and our goal is to pre-
dict Tp frames during test time. We first quantize the entire video sequence into latent codes
Z ∈ RT×h×w. Let Zp = [zi]

N
i=1 denote the latent tokens corresponding to future video frames,

where N = Tp × h × w. Unlike prior work on MVM (Bao et al., 2022; He et al., 2021) that
uses a fixed masking ratio, we propose to use a variable masking ratio that reduces the gap be-
tween pre-training task and inference leading to better evaluation results (see § 3.4). Specifically,
during training, for each video in a batch, we first select a masking ratio r ∈ [0.5, 1) and then ran-
domly select and replace ⌊r · N⌋ tokens in Zp with a [MASK] token. The pre-training objective
is to minimize the negative log-likelihood of the visual tokens given the masked video as input:
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LMVM = − E
x∈D

[∑
∀i∈NM log p(zi|ZM

p , Zc)
]
, where D is the training dataset, NM represents ran-

domly masked positions, and ZM
p denotes the output of applying the mask to Zp, and Zc are latent

tokens corresponding to context frames. The MVM training objective is different from the causal
autoregressive training objective: LAR = − E

x∈D

[∑
∀i∈Zp

log p(zi|zj<i, Zc)
]
. The key difference

is that for MVM the conditional dependence is bidirectional: all masked tokens are predicted con-
ditioned on all tokens.

3.3 BIDIRECTIONAL WINDOW TRANSFORMER

Transformer models composed entirely of global self-attention modules incur significant compute
and memory costs, especially for video tasks. To achieve more efficient modeling, we propose to
compute self-attention in windows, based on two types of non-overlapping configurations: 1) Spatial
Window (SW): attention is restricted to all the tokens within a subframe of size 1× h× w (the first
dimension is time); 2) Spatiotemporal Window (STW): attention is restricted within a 3D window
of size T ×h′×w′. We sequentially stack the two types of window configurations to gain both local
and global interactions in a single block (Fig. 1, a, center) that we repeat L times. Surprisingly, we
find that a small window size of h′ = w′ = 4 is sufficient to learn a good video prediction model
while significantly reducing memory requirements (Table 2b). Note that our proposed block enjoys
global interaction capabilities without requiring padding or cyclic-shifting like prior works (Liu
et al., 2021a;b), nor developing custom CUDA kernels for sparse attention (Child et al., 2019) as
both window configurations can be instantiated via simple tensor reshaping.

3.4 ITERATIVE DECODING

Decoding tokens autoregressively during inference is time-consuming, as the process scales linearly
with the number of tokens, and this can be prohibitively large (e.g., 4, 096 for a video with 16
frames and 256 tokens per frame). Our video prediction training task allows us to predict future
video frames via a novel iterative non-autoregressive decoding scheme: inspired by the forward
diffusion process in diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021) and the iterative
decoding in generative models e.g., mask-predict Ghazvininejad et al. (2019) and MaskGiT Chang
et al. (2022), we predict videos in T steps where T << N , the total number of tokens to predict.

Concretely, let γ(t), where t ∈ { 0
T ,

1
T , . . . ,

T−1
T }, be a mask scheduling function (Fig. 3) that

computes the mask ratio for tokens as a function of the decoding steps. We choose γ(t) such that it
is monotonically decreasing with respect to t, and it holds that γ(0) → 1 and γ(1) → 0 to ensure
that our method converges. At t = 0, we start with Z = [Zc, Zp] where all the tokens in Zp

are [MASK] tokens. At each decoding iteration, we predict all the tokens conditioned on all the
previously predicted tokens. For the next iteration, we mask out n = ⌈γ( t

T )N⌉ tokens by keeping
all the previously predicted tokens and the most confident token predictions in the current decoding
step. We use the softmax probability as our confidence measure.

Empirically we found that selecting the most confident tokens while performing iterative decoding
generates videos with little or no motion. Intuitively, given only a few (1 − 2) context frames,
selecting the most confident tokens results in videos where the context frames are copied across all
time steps. Hence, we add temperature annealed Gumbel noise to the token confidence to encourage
the model to produce more diverse outputs. Concretely, let Ct ∈ RN be the vector of softmax
probabilities of the sampled tokens Zt

p at decoding iteration t. We select the most confident tokens
to keep at iteration t from Ct

g where, Ct
g = Ct +Gumbel(0,1) ·

(
1− t

T

)
.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate our method on three different datasets and compare its performance
with prior state-of-the-art methods, using four different metrics. We also perform extensive ablation
studies of different design choices, and showcase that the speed improvements due to iterative de-
coding enable real-time planning for robotic manipulation tasks. For qualitative results, see § B.2
and videos on our project website.
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RoboNet param. FVD↓ PSNR↑ SSIM↑ LPIPS↓

SVG 298M 123.2 23.9 87.8 0.060
GHVAE 599M 95.2 24.7 89.1 0.036
FitVid 302M 62.5 28.2 89.3 0.024

MaskViT 257M 133.5 23.2 80.5 0.042
MaskViT (256) 228M 211.7 20.4 67.1 0.170

KITTI param. FVD↓ PSNR↑ SSIM↑ LPIPS↓

SVG 298M 1217.3 15.0 41.9 0.327
GHVAE 599M 552.9 15.8 51.2 0.286
FitVid 302M 884.5 17.1 49.1 0.217

MaskViT 181M 401.9 27.2 58.1 0.089
MaskViT (256) 228M 446.1 26.2 40.7 0.270

BAIR param. FVD↓

SV2P (Babaeizadeh et al., 2018) — 262.5
LVT (Rakhimov et al., 2020) — 125.8
SAVP (Lee et al., 2018) — 116.4
DVD-GAN-FP (Clark et al., 2019) — 109.8
VideoGPT (Yan et al., 2021) — 103.3
TrIVD-GAN-FP (Luc et al., 2020) — 103.3
VT (Weissenborn et al., 2020) 373M 94.0
FitVid (Babaeizadeh et al., 2021) 302M 93.6

MaskViT (ours) 189M 93.7
MaskViT (ours, goal cond.) 255M 76.9
MaskViT (ours, act cond.) 255M 70.5

Table 1: Comparison with prior work. We evaluate MaskViT on BAIR, RoboNet and KITTI
datasets. Our method is competitive or outperforms prior work while being more parameter efficient.

4.1 EXPERIMENTAL SETUP

Implementation. Our transformer model is a stack of L blocks, where each block consists of two
transformer layers with attention restricted to the window size of 1 × 16 × 16 (spatial window)
and T × 4 × 4 (spatiotemporal window), unless otherwise specified. We use learnable positional
embeddings, which are the sum of space and time positional embeddings. See § A.1 for architecture
details and hyperparameters.

Metrics. We use four evaluation metrics to compare our method with prior work: Fréchet Video
Distance (FVD) (Unterthiner et al., 2018), Peak Signal-to-noise Ratio (PSNR), Structural Simi-
larity Index Measure (SSIM) (Wang et al., 2004) and Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018). To account for the stochastic nature of video prediction, we follow
prior work (Babaeizadeh et al., 2021; Villegas et al., 2019) and report the best SSIM, PSNR, and
LPIPS scores over 100 trials for each video. For FVD, we use all 100 with a batch size of 256. We
only conducted 1 trial per video for evaluating performance on the BAIR dataset (Ebert et al., 2017).

4.2 COMPARISON WITH PRIOR WORK

BAIR. We first evaluate our model on the BAIR robot pushing dataset (Ebert et al., 2017), one of
the most studied video modeling datasets (Fig. 7). We follow the evaluation protocol of prior works
and predict 15 video frames given 1 context frame and no actions. The lack of action conditioning
makes this task extremely challenging and tests the model’s ability to predict plausible future robot
trajectories and object interactions. MaskViT achieves similar performance to FitVid (Babaeizadeh
et al., 2021) while being more parameter efficient, and it outperforms all other prior works (Table 1).
Finally, to predict action-conditioned future frames, we linearly project the action vectors and add
them to Z. As expected, action conditioning performs the best, with 25% improvement in FVD.

KITTI. The KITTI dataset (Geiger et al., 2013) is a relatively small dataset of 57 training videos. We
follow the evaluation protocol of prior work (Villegas et al., 2019) and predict 25 video frames given
5 context frames. Compared to other datasets in our evaluation, KITTI is especially challenging,
as it involves dynamic backgrounds, limited training data, and long-horizon predictions. We use
color jitter and random cropping data augmentation for training VQ-GAN and do not use any data
augmentation for training the second stage. Across all metrics, we find that MaskViT is significantly
better than prior works while using fewer parameters (Table 1). Training a transformer model with
full self-attention would require prohibitively large GPU memory due to the long prediction horizon
(30 × 16 × 16 = 7680). However, MaskViT can attend to all tokens because its spatiotemporal
windows significantly reduce the size of the attention context. We also report video prediction
results for the KITTI dataset at 256× 256 resolution (Fig. 2, 8), a higher resolution that prior work
was not able to obtain.

RoboNet. RoboNet (Dasari et al., 2019) is a large dataset of 15 million video frames of 7 different
robotic arms interacting with objects and provides 5 dimensional robot action annotations. We
follow the evaluation protocol of prior work (Babaeizadeh et al., 2021) and predict 10 video frames
given 2 context frames and future actions. At 64× 64 resolution, MaskViT is competitive but does
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blocks embd. dim FVD↓

6 768 96.6
6 1024 94.2
8 768 99.3
8 1024 99.5

(a) Model size. Increasing em-
bedding dim improves FVD.

st window FVD↓ train mem. train time

16 × 1 × 1 100.6 5.4 GB 12.3 hr
16 × 4 × 4 96.6 7.0 GB 12.5 hr
16 × 8 × 8 93.7 7.9 GB 14.2 hr

16 × 16 × 16 96.6 11.6 GB 27.9 hr

full self attn. 98.2 16.4 GB 40.3 hr

(b) Spatiotemporal window size.
Smaller window size is faster, memory
efficient, and achieves lower FVD scores.

mask ratio FVD↓

0.75 189.3
0.90 124.1
0.95 110.9
0.98 214.4

0.5 - 1 96.6

(c) Mask ratio. Vari-
able masking ratio
works best.

Table 2: MaskViT ablation experiments on BAIR. We compare FVD scores to ablate important design deci-
sions with the default setting: 6 blocks, 768 embedding dimension (embd. dim), 1× 16× 16 spatial window,
16× 4× 4 saptiotemporal (st) window, and variable masking ratio. Default settings are marked in blue .

not outperform prior works (Table 1). FVD of the VQ-GAN reconstructions is a lower bound for
MaskViT. We found flicker artifacts in the VQ-GAN reconstructions, probably due to our use of
per-frame latents, resulting in a high FVD score of 121 for the VQ-GAN reconstructions. MaskViT
achieves FVD scores very close to this lower bound but performs worse than prior works due to
temporally inconsistent VQ-GAN reconstructions. Finally, we also report video prediction results
for the RoboNet dataset at 256× 256 resolution (Fig. 2, 9).

4.3 FLEXIBLE CONDITIONING

Planning for long horizon tasks via Visual MPC can quickly become computationally intractable
as the search complexity grows exponentially with the number of planning steps. Goal conditioned
planning can be especially helpful in reducing the search space by breaking down tasks into sub-
goals (Nasiriany et al., 2019; Pertsch et al., 2020). Methods like FitVid (Babaeizadeh et al., 2021)
and prior two-stage methods (Yan et al., 2021), which rely on compression in both temporal and spa-
tial domain, cannot predict goal conditioned video frames. In contrast, we can easily adapt MaskViT
to predict goal-conditioned video frames by including the last frame in Zc. Goal conditioning signif-
icantly (18% FVD improvement) improves performance without requiring any architectural change
(Table 1). We believe our method could also be extended to perform video interpolation but leave
that investigation to future work.

4.4 ABLATION STUDIES

We ablate MaskViT to understand the contribution of each design decision with the default settings:
6 blocks, 768 embedding dimension, 1 × 16 × 16 spatial window, 16 × 4 × 4 spatiotemporal win-
dow, and variable masking ratio (Table 2). See § B.1 and § B.2 for additional ablation studies and
discussion.

Model hyperparameters. We compare the effect of the number of blocks and the embedding
dimension in Table 2a. We find that having a larger embedding dimension improves the performance
slightly, whereas increasing the number of blocks does not improve the performance.

Spatiotemporal window (STW). An important design decision of MaskViT is the size of the STW
(Table 2b). We compare three different window configurations and MaskViT with full self-attention
in all layers. Note that training a model with full self-attention requires using gradient checkpointing,
which significantly increases the training time. In fact, the STW size of 16 × 4 × 4 achieves better
accuracy, while requiring 60% less memory and speeds up training time by 3.3×.

Masking ratio during training. We find that a fixed masking ratio results in poor video prediction
performance (Table 2c). A large masking ratio until a maximum of 95% decreases FVD. Further
increase in masking ratio significantly deteriorates the performance. A variable masking ratio per-
forms best, as it best approximates the different masking ratios encountered during inference.

Mask scheduling. The choice of mask scheduling function and the number of decoding iterations
during inference has a significant impact on image (Chang et al., 2022) and video generation quality
(Fig. 3). We compare three types of scheduling functions: concave (cosine, square, cubic, exponen-
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Figure 3: Mask scheduling functions. Left: 3 categories of mask scheduling functions: concave
(cosine, square, cubic, exponential), linear, and convex (square root). Middle: FVD scores for differ-
ent mask scheduling functions and decoding iterations. Concave functions perform the best. Right:
FVD score vs. decoding iterations for different temperature values. Lower and higher temperature
values lead to poor FVD scores, with a sweet spot temperature value of 3 and 4.5.

tial), linear, and convex (square root). Concave functions performed significantly better than linear
and convex functions. Videos have a lot of redundant information due to temporal coherence, and
consequently with only 5% of unmasked tokens (Table 2c) the entire video can be correctly pre-
dicted. The critical step is to predict these few tokens very accurately. We hypothesize that concave
functions perform better as they capture this intuition by slowly predicting the initial tokens over
multiple iterations and then rapidly predicting the majority of remaining tokens conditioned on the
(more accurate) initial tokens in the final iterations. Convex functions operate in an opposite manner
and thus perform significantly worse. Across all functions, FVD improved with increased numbers
of decoding steps until a certain point. Further increasing the decoding steps did not improve FVD.
Additionally, we found that selecting the most confident tokens while performing iterative decod-
ing led to video predictions with little or no motion. Hence, we add temperature annealed Gumbel
noise to the token confidence to encourage the model to produce more diverse outputs (Fig. 3).
Empirically, we found that a temperature value of 4.5 works best across different datasets.

4.5 VISUAL MODEL PREDICTIVE CONTROL WITH MASKVIT ON A REAL ROBOT

auto reg. ours
dataset pred frames # fwd. pass # fwd. pass speed up

BAIR 15 3,840 24 160×
BAIR w/ act. 15 3,840 12 320×
KITTI 25 6,400 48 133×
RoboNet 10 2,560 5 512×

Table 3: Inference speedup of MaskViT over auto-
regressive generation as measured by the number of for-
ward passes. Iterative decoding in MaskViT can predict
video frames in significantly fewer forward passes, espe-
cially when conditioned on actions.

In this section, we test how our gener-
ally designed framework performs when
applied to real robotic tasks. We eval-
uate the capability of our method on
the control of embodied agents through
experimental evaluation on a Sawyer
robot arm. We first train our model
on the RoboNet dataset along with a
small collection of random interaction
trajectories in our setup. We then
leverage MaskViT to perform visual
model-predictive control, and evaluate
the robot’s performance on several ma-
nipulation tasks.

Setup and data collection. We found that the VQGAN model trained only on RoboNet data did
not generalize to variations in lighting, and background, or to novel objects. Therefore, we au-
tonomously collect 120K frames of additional data with a random policy to finetune VQGAN to our
setup by augmenting RoboNet. We hypothesize that this dependency on domain-specific data could
be substantially reduced with a large-scale pre-training of VQ-VAEs on internet-scale data as shown
by prior work (Ramesh et al., 2021), but it is beyond the scope of our experiment. At each timestep,
the robot takes a 5-dimensional action representing a desired change in end-effector pose: [x, y, z]
gripper position, θ yaw angle, and a binary gripper open/close command. During data collection,
the robot interacts with a diverse collection of random household objects (Fig. 4).
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Figure 4: Left: Third person view of real-world data collec-
tion. Right: An example evaluation task. The overlaid white
arrow depicts the goal location of the green bowl.

method success rate

MaskViT (all data) 67%
FitVid (all data) 63%
MaskViT (finetuned) 53%
MaskViT (RN only) 6%
Random policy 3%

Table 4: Control evaluation results.
We perform 30 trials for each method,
and report aggregated success rates.

Model predictive control using MaskViT. We evaluate the planning capabilities of MaskViT using
visual foresight (Finn & Levine, 2017; Ebert et al., 2018) on a series of robotic pushing tasks. Our
control evaluation contains two task types: table setting, which involves pushing a bowl
to a specified location, and sweeping, where objects are moved into an unseen dustpan. For
each task, the robot is given a 64 × 64 goal image and we perform planning based on MaskViT
by optimizing a sequence of actions using the cross-entropy method (CEM) (Boer et al., 2004),
using the ℓ2 pixel error between the last predicted image and the goal as the cost. We compare
with two baseline methods: a FitVid model trained on combined RoboNet and the domain-specific
dataset, and a random Gaussian policy. We evaluate three variants of our model: one trained on
the combined RoboNet and domain-specific datasets (all data), one pretrained using RoboNet
and then finetuned with domain-specific data (finetuned), and one trained only on RoboNet (RN
only). See § A.2 for additional details and hyperparameters.

Results. As shown in Table 4, our model improves performance compared to FitVid on real robot
experiments. Our model achieves slightly better performance when trained jointly on all data
as opposed to pre-training on RoboNet and then finetuning on real robot data. Qualitatively, we
found that domain-specific data significantly improves the scene fidelity and arm motion prediction
accuracy for our model, resulting in better planning performance.

We highlight two advantages of our method when applied to real robot tasks compared to prior
methods. The first advantage is the computation efficiency during inference time. Prior two-stage
methods (Rakhimov et al., 2020; Yan et al., 2021) cannot be used for real-time planning due to
extremely slow inference speed. Furthermore, compared to autoregressive models, MaskViT is
orders of magnitude more efficient as shown in Table 3. Indeed, our method achieves ∼ 6.5 seconds
per CEM iteration. Second, compared to CNN-based architectures such as FitVid, which is the state-
of-the-art method on this task, our method does not require any domain-specific inductive biases and
allows for a more general inference procedure, without sacrificing any performance.

5 CONCLUSION

In this work, we explore MaskViT, a simple but powerful and versatile method for video prediction
that leverages masked visual modeling as a pre-training task and transformers with window atten-
tion as a backbone for computation efficiency. We showed that by masking a variable number of
tokens during training, we can achieve competitive video prediction results. Our iterative decoding
scheme is significantly faster than autoregressive decoding and achieves state-of-the-art performance
in planning for real robot manipulation tasks.

Limitations and future work. While our results are encouraging, we found that using per frame
quantization can lead to flickering artifacts, especially in videos that have a static background like
in RoboNet. Although MaskViT is efficient in terms of memory and parameters, scaling up video
prediction, especially for scenarios that have significant camera motion (e.g., self-driving (Geiger
et al., 2013) and egocentric videos (Grauman et al., 2021)) remains challenging. Finally, an im-
portant future avenue of exploration is scaling up the complexity of robotic tasks (Srivastava et al.,
2022) integrating our video prediction method in more complex planning algorithms.
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REPRODUCIBILITY STATEMENT

We use an open-source implementation of VQ-GAN (https://github.com/CompVis/
taming-transformers) for all our experiments. We use the default parameters specified in
the original implementation unless specified in Table A.1. We use PyTorch (Paszke et al., 2019)
1.7 library for implementing MaskViT. Architecture details and hyperparameters are described in
§ 3 and Table A.1 respectively. The inference parameters used for iterative decoding for different
datasets are provided in Table A.1. Finally, please refer to the detailed description of our real robot
data collection setup and experiments in § A.2.

ACKNOWLEDGMENTS

This work is in part supported by ONR MURI N00014-22-1-2740 and the Stanford Human-Centered
Institute for AI (HAI).

REFERENCES

Adil Kaan Akan, Erkut Erdem, Aykut Erdem, and Fatma Güney. Slamp: Stochastic latent ap-
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A IMPLEMENTATION DETAILS

A.1 TRAINING MASKVIT

VQ-GAN. We train a VQ-GAN (Esser et al., 2021) model for each dataset which downsamples each
frame into 16 × 16 latent codes, i.e., by a factor of 4 for frames of size 64 × 64 frames and 16 for
frames of size 256× 256. Table 5 summarizes our settings for all three datasets. Training VQ-GAN
with discriminator loss can lead to instabilities. Hence, as suggested by (Esser et al., 2021) we start
GAN losses after the reconstruction loss has converged. We also found that GAN losses were not
always helpful, especially at lower input resolutions for BAIR and RoboNet.

Transformer. Our transformer model is a stack of L blocks, where each block consists of two
transformer layers with attention restricted to the window size of 1 × 16 × 16 (spatial window)
and T × 4 × 4 (spatiotemporal window), unless otherwise specified. We use learnable positional
embeddings, which are the sum of space and time positional embeddings. Following (Liu et al.,
2021a), we adopt relative position biases in our layers. We use the Adam (Kingma & Ba, 2015)
optimizer with linear warmup (Goyal et al., 2017) and a cosine decay learning rate schedule. Table 5
summarizes our settings for all three datasets.

Evaluation. We find the optimal evaluation parameters by doing a grid search of the following
parameters: γ (cosine, square), temperature (3, 4.5) and decoding iterations depending on the pre-
diction horizon length. We use a top-p value of 0.95 for the BAIR dataset only. Table 5 summarizes
our evaluation settings.

Dataset BAIR KITTI KITTI RoboNet RoboNet

Image resolution 64 64 256 64 256
Context frames 1 5 5 2 2

VQ-GAN
Channel 160 128 128 192 128
K 1024 1024 1024 1024 1024
nz 256 256 256 256 256
Batch size 320 1120 112 720 112
Training steps 3e5 5e4 3e5 3e5 3e5
Learning rate 1e-4 1e-3 1e-4 5e-4 1e-4
Disc. start - 2e4 1.5e5 - 1.5e5

Transformer
Spatial window 1× 16× 16 1× 16× 16 1× 16× 16 1× 16× 16 1× 16× 16
Spatiotemporal window 16× 8× 8 16× 4× 4 16× 4× 4 16× 4× 4 16× 4× 4
Blocks 6 8 6 8 6
Attention heads 4 4 4 4 4
Embedding dim. 768 768 1024 768 1024
Feedforward dim. 3072 3072 4096 3072 4096
Dropout 0.0 0.0 0.0 0.0 0.0
Batch size 64 32 32 224 224
Learning rate 3e-4 3e-4 3e-4 3e-4 3e-4
Training steps 1e5 1e5 1e5 3e5 3e5

Evaluation
Mask scheduling func. square cosine cosine cosine cosine
Decoding iters. 18 48 64 7 16
Temperature 4.5 3.0 4.5 - -

Table 5: Training and evaluation hyperparameters.
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A.2 REAL ROBOT EXPERIMENTS

Data collection. Our robot setup consists of a Sawyer robot arm with a Logitech C922 PRO con-
sumer webcam for recording video frames at 640 × 480 resolution. All raw image observations
are center-cropped to 480 × 480 resolution before being resized to 64 × 64 for model training and
control in our experiments. For the finetuning dataset, we autonomously collect 5000 trajectories of
30 timesteps. At each step the robot takes a 5-dimensional action representing a change in state of
the end-effector: a delta translation in Cartesian space, [x, y, z], for the gripper position in meters,
change in θ yaw angle of the end-effector, and a binary gripper open/close command. Following
the action space used to collect the RoboNet dataset, the pitch and roll of the end-effector are kept
fixed such that the gripper points with the fingers towards the table surface. Each action within
a trajectory is selected independently and each dimension of the action vector is independent of
the others, sampled from a diagonal Gaussian distribution, except the gripper open/close command
that closes automatically when the z-position of the end-effector reaches below a certain thresh-
old to increase the rate of object interaction. The random action distribution is parameterized by
N (0, diag([0.035, 0.035, 0.08, π/18, 2]). During data collection, we provide the robot with a di-
verse set of training objects to interact with. During evaluation, we test on tasks which require the
robot to manipulate bowls in one setting and to push training items into an unseen dustpan in another.

Visual-MPC. Our control strategy is a visual MPC (Finn & Levine, 2017; Ebert et al., 2018)
procedure. Given a start and goal image I0, Ig ∈ R64×64×3, the objective is to find an optimal
sequence of actions to reach the goal observation from the start. The planning objective can be
written as: mina1,a2,...aH

∑H
i=1 ci∥f̂(I0, a1, ...aH)i − Ig∥22 , where f̂(I0, a1, ...aH)i represents the

ith predicted frame by the learned video prediction model (MaskViT in our case), and ci are a
sequence of constant hyperparameters that determine the importance of the difference between the
predicted frame and the goal for each time step.

We use the cross-entropy method (CEM) (De Boer et al., 2005) to optimize a sequence of H = 10
future actions for this objective. In each planning iteration, we first sample M = 256 sequences
of random actions. We then provide these sequences, together with two consecutive context frames
(the previous and current step observations), and one context action (the action taken at the previous
step) to MaskViT. Action sequences are sampled according to a multivariate Gaussian distribution.
To bias action sampling towards smoother trajectories, the noise samples for actions in a given
random trajectory are correlated across time as in Nagabandi et al. (2019). Specifically, given a
correlation coefficient hyperparameter β, we first compute u1

i , u
2
i , ...u

M
i

i.i.d∼ N(0,Σi), where Σi is
the variance of the action at timestep i in the current optimization iteration. The noise at timestep
i for the jth random trajectory, nj

i , is then computed as a weighted combination of the new noise
sample and the noise sample at the previous timestep, that is, nj

i = (1− β) ∗ uj
i + β ∗ nj

i−1. After
all noise samples are computed, they are summed with means µi for each timestep, which are also
iteratively updated. The final random trajectories are formed by rounding the elements in the last
action dimension (gripper action) to −1 or 1, whichever is closer.

Next, we compare the predictions to the goal image by computing the ℓ2 error and summing over
time as described by the objective above. We weight the cost on the final timestep by 10×, but still
include the costs on intermediate timesteps in the summation to encourage the robot to solve the
task quickly. The best action sequences based on this score are used to refit the sampling distribu-
tion mean and variance for the next optimization iteration. After K = 3 optimization iterations,
we execute the best scoring action sequence on the robot for the first 3 steps before performing
replanning.

The robot uses a total of 15 steps to solve the task, including one initial action = [0, 0,−0.08, 0.1, 0]
which is executed at the beginning of every trajectory. This ensures that at least two context images
provided for planning. The planning hyperparameters are summarized in Table 6.

FitVid model training details. For the FitVid comparison, we train FitVid on a combined dataset
consisting of RoboNet and our finetuning data, just as when training our model in the all data
case. Like in the original paper, we train the model to predict 10 future frames given 2 context
frames, and use the Adam optimizer with a learning rate of 3e−4. To be consistent with the training
setup for our model, we do not use data augmentation. We train for 245K gradient steps using a
batch size of 32 with 4 NVIDIA TITAN RTX GPUs.
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Hyperparameter Value

Total trajectory length (T ) 15
Planning horizon 10
Number of steps between replanning 3
Action dimension 5
# of samples per CEM iteration (M ) 256
# of CEM iterations (K) 3
Weights on each timestep in cost (ci) 1 if i = 0, ...8; 10 if i = 9
Initial sampling distribution mean [0, 0,−0.5, 0, 0]
Initial sample distribution std. [0.05, 0.05, 0.08, π/18, 2]
Sampled noise correlation coefficient (β) 0.3
CEM fraction of elites 0.05
MaskViT mask scheduling function Cosine
MaskViT decoding iterations 5

Table 6: Hyperparameters for visual-MPC.

Evaluation. We perform control evaluation on two categories of tasks: table setting and
sweeping. For each task, we test 5 different variations with 3 trials each. A trial is considered
successful if the center of the object of interest is within 8 cm of the goal position after the trajectory
is complete. Model inference for real robot control is performed using 8 NVIDIA RTX 3090 GPUs
with a batch size of 16 per GPU. We use 5 decoding iterations, which yields a forward pass time of
approximately 6.2 seconds for a batch of 256 samples.

B ADDITIONAL RESULTS

B.1 QUANTITATIVE RESULTS

Factorized attention. An important decision decision of MaskViT is factorizing full-self attention
into a block comprised of spatial and sptio-temporal window layers. This design ensures that each
token can attend to all other tokens just as in a full-self-attention layer but without huge memory
requirements. In Table 8, we compare MaskViT with a Transformer model composed entirely of
STW layers. For all window sizes, the FVD scores are worse than our default block design. We note
that a higher spatial resolution helps, which showcases the importance of our block design.

VQ-GAN training dataset. A key benefit of operating on individual frames is that we can poten-
tially use VQ-VAEs trained on internet scale datasets (Ramesh et al., 2021). As a step towards that
goal, we train a VQ-GAN model jointly on all three datasets considered in this work, i.e. BAIR,
RoboNet and KITTI. During training, we create a batch consisting of equal number of frames from
each dataset. We use the hyper-parameters for the RoboNet VQ-GAN model (Table 5). As shown
in Table 9, across the three data sets, the performance of MaskViT trained with a shared VQ-GAN
is better or similar to MaskViT trained with VQ-GAN specific to the dataset.

Real robot experiments. Table 7 shows per-task success rates for our real-world robotic control
evaluation. Each of our two task types (table setting, sweeping) has 5 variations, each of which in-
volves different objects to push (unseen bowls for table setting, toys previously seen in the finetuning
data for sweeping) and different target locations.

B.2 QUALITATIVE RESULTS

Video prediction. We present additional qualitative video prediction results for BAIR (Fig. 7),
KITTI (Fig. 8) and RoboNet (Fig. 9).

Real robot experiments. Fig. 5 and Fig. 6 depict sample predictions for MaskViT (all data)
and MaskViT trained only on RoboNet (RN only) for two example control tasks. We observe
that with our model, the planner is able to find sequences of actions which bring the blue bowl or
the soft red hat close to the position specified in the goal image. However, with a model which is
trained only on the RoboNet dataset, planning fails. We see qualitatively that the model trained in
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Task MaskViT (all data) MaskViT (finetuned) MaskViT (RN only) Random FitVid

table setting (bowl color; destination)
blue; front-left 1/3 1/3 0/3 0/3 2/3
green; back-right 1/3 0/3 0/3 0/3 0/3
blue; front-right 3/3 2/3 1/3 0/3 2/3
red; front 3/3 3/3 0/3 0/3 3/3
green; left 3/3 2/3 0/3 0/3 2/3

sweeping (object; destination)
toys; back-right 3/3 3/3 0/3 0/3 3/3
hat; front-right 2/3 2/3 0/3 1/3 3/3
hat; front-left 1/3 1/3 1/3 0/3 2/3
toys; back-left 1/3 1/3 0/3 0/3 1/3
toys; front-left 2/3 1/3 0/3 0/3 1/3

Aggregated 20/30 16/30 2/30 1/30 19/30

Table 7: Per-task quantitative results for our robotic control evaluation. We evaluate each of 5
variants of the two tasks using 3 trials with each model or policy. Success is determined by the
center of the object being within 11cm of the goal position at the end of 15 steps.

st window s window FVD↓

16× 1× 1 - 442.8
16× 4× 4 - 242.9
16× 8× 8 - 126.6

16× 4× 4 1× 16× 16 96.6

Table 8: Block design ablation on BAIR. We
compare FVD scores for blocks consisting of
only spatiotemporal window (STW) with our
block design. All STW sizes perform worse due
to lack of global interactions across all tokens.

dataset VQ-GAN FVD↓

BAIR joint 99.8
BAIR indv. 96.6

KITTI joint 388.4
KITTI indv. 401.9

RoboNet joint 169.6
RoboNet indv. 133.5

Table 9: VQ-GAN training dataset. We com-
pare using VQ-GAN models trained on indi-
vidual datasets and a single VQ-GAN models
trained on BAIR, KITTI and RoboNet dataset.
Across all three datasets the performance of
MaskViT trained with a shared VQ-GAN is bet-
ter or similar to MaskViT trained with dataset
specific VQ-GAN.

RoboNet-only, even when solely performing reconstruction of the first two context images using
the VQ-GAN component, is unable to reconstruct the background and robot arm with high fidelity.
Despite the diversity of the RoboNet dataset, finetuning on domain-specific data is still required to
produce reasonable predictions in our setting.

Discussion. We performed extensive experiments comparing different design choices: model size,
window design, masking ratio, and mask scheduling functions. Qualitatively, we found that all
model sizes and different window designs work equally well, as also indicated by similar FVD
scores. However, when our backbone consisted only of spatio-temporal windows, we found the
performance to be much worse (Table 8). A key failure mode was lack of global consistency in
the predicted video frames, e.g. the robot arm would generally disappear after the first few frames.
We believe that this failure could be attributed to the lack of global interactions i.e. a token could
no longer attend to all other tokens. Models trained with a low masking ratio or without adding
annealed noise had a high FVD score because they showed very little or no motion of the robot
arm. Finally, in comparison with other works, we found that the biggest qualitative difference was
in the KITTI dataset. KITTI presents a unique challenge, as we have to predict 25 video frames. As
shown in Fig. 2 and Fig. 8, MaskViT can predict future video frames without perceptually visible
degradation, whereas prior work predict frames that degrade rapidly.
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B.3 LIMITATIONS AND FUTURE WORK

Although MaskViT addresses important limitations of current work in video prediction, we believe
the field has not yet witnessed progress similar to text-to-image generation (Ramesh et al., 2021).
Key areas of improvement are short-term temporal consistency, long-term temporal consistency,
increasing the prediction horizon, and moving beyond narrow domain-specific datasets to “in-the-
wild” settings like everyday egocentric videos (Grauman et al., 2021).

One possible way to improve short-term consistency is incorporating temporal consistency losses for
VQ-GAN training. Despite using a bidirectional window attention mechanism to reduce memory
requirements, we are still limited to predicting 25 frames in the future. Possible ways to predict long-
horizon videos include training multiple networks at different temporal resolutions and incorporating
advances in increasing the context length of Transformers. Finally, scaling both data and model
parameters might be necessary to move to more realistic and complicated everyday scenes.
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