
Retrospective In-Context Learning for Temporal
Credit Assignment with Large Language Models

Wen-Tse Chen1 Jiayu Chen2 Fahim Tajwar1 Hao Zhu3 Xintong Duan1

Ruslan Salakhutdinov1 Jeff Schneider1
1 Carnegie Mellon University 2 The University of Hong Kong 3 Stanford University

Abstract

Learning from self-sampled data and sparse environmental feedback remains a
fundamental challenge in training self-evolving agents. Temporal credit assignment
mitigates this issue by transforming sparse feedback into dense supervision signals.
However, previous approaches typically depend on learning task-specific value
functions for credit assignment, which suffer from poor sample efficiency and
limited generalization. In this work, we propose to leverage pretrained knowledge
from large language models (LLMs) to transform sparse rewards into dense train-
ing signals (i.e., the advantage function) through retrospective in-context learning
(RICL). We further propose an online learning framework, RICOL, which itera-
tively refines the policy based on the credit assignment results from RICL. We
empirically demonstrate that RICL can accurately estimate the advantage function
with limited samples and effectively identify critical states in the environment for
temporal credit assignment. Extended evaluation on four BabyAI scenarios show
that RICOL achieves comparable convergent performance with traditional online
RL algorithms with significantly higher sample efficiency. Our findings highlight
the potential of leveraging LLMs for temporal credit assignment, paving the way
for more sample-efficient and generalizable RL paradigms.

1 Introduction

Online learning with LLMs, guided by self-generated data and environmental feedback, offers a
promising research direction for advancing beyond the constraints of demonstration [Dong et al.,
2024]. However, this task is inherently difficult because valuable environmental feedback is often
sparse [Andrychowicz et al., 2017, Sukhbaatar et al., 2017]. This challenge is particularly evident
in multi-turn settings, where agents must execute a sequence of correct actions to receive a reward
signal. Sparse environmental feedback increases both the sample complexity and the instability of
the learning process [Chaudhari et al., 2024, Cao et al., 2024]. In this work, we explore effective
temporal credit assignment methods to convert sparse feedback into dense training signals based on a
creative use of LLMs, enabling the identification of critical states and actions in the environment and
facilitating more efficient online learning (of LLM agents).

In particular, we adopt LLMs as policies and update them using a novel Retrospective In-Context
Learning (RICL) algorithm. RICL is designed specifically for multi-turn setting. At each turn
(i.e., environment time step), RICL first analyze environmental feedback (i.e., reward signals) by
leveraging the pretrained knowledge of an LLM reflector, then incorporate this analysis into the
prompt to perform an in-context update of the LLM policy. Further, we introduce a novel paradigm
to estimate the advantage function of an LLM policy by utilizing the log-probabilities of both the
original policy and its in-context updated version. This process is theoretically grounded, and our
experiments demonstrate that it can accurately estimate the advantage function with high sample
efficiency. In this way, we transform sparse reward signals into advantage functions, which are

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

dense training signals facilitating both temporal credit assignment and policy training. These
improvements stem from the pretrained knowledge in LLMs and our new approach to estimating
advantage functions using LLMs.

Further, we introduce RICOL, a novel online learning framework for LLMs that iteratively refines the
policy based on the credit assignment results from RICL. Leveraging the accurate credit assignment
performed by RICL and the strong generalization ability of LLMs, RICOL is significantly more
sample-efficient than traditional online RL methods across multiple language-conditioned, sparse-
reward sequential decision-making tasks. This demonstrates the potential of our algorithm to enable
LLMs to self-improve through online learning.

In summary, our main contributions are as follows: (1) We propose RICL for temporal credit
assignment, which transforms sparse reward signals into advantage functions by comparing the log-
probabilities of LLM policies before and after an in-context update. (2) We propose RICOL, an online
learning framework that uses advantage weighted regression to incorporate credit assignment results
(i.e., advantage functions) from RICL into the LLMs’ parameters. This integration enables LLM
agents to self-improve based on sparse environmental feedback. (3) Empirical results demonstrate
the effectiveness of RICL in temporal credit assignment and the efficacy and efficiency of RICOL in
iterative policy improvement. Altogether, RICL and RICOL represent a more sample-efficient and
generalizable RL paradigm for LLM agents.

2 Related Works

Intrinsic Self-Correction: In recent studies, LLMs have demonstrated advanced capabilities in self-
verifying generated responses and correcting potential issues through in-context learning [Madaan
et al., 2024, Kim et al., 2023]. However, critiques have suggested that intrinsic self-correction, in
the absence of ground truth environment feedback, may not always enhance and could potentially
degrade performance of LLMs [Huang et al., 2023, Olausson et al., 2023, Valmeekam et al., 2023].
In contrast, our focus is on learning from environmental feedback, a challenging task due to its sparse
and complex nature.

Self-Correction based on an Extra Reflector Network: Another line of research aims to improve
the self-correction capability of LLMs by fine-tuning it on an external dataset [Yao et al., 2023]. It
often requires to collect an additional dataset especially tailored for the training of a reflector network.
For instance, Chen et al. [2024] design an erroneous solution rewriting task for reflector training. In
contrast, we perform self-correction using free-form environmental feedback and do not need to train
an extra network.

Self-Correction based on Induction: Prior work has explored encoding past experiences into text-
form memory and incorporating this memory into prompts to enhance decision-making in subsequent
trials [Shinn et al., 2024, Zhao et al., 2024, Zelikman et al., 2022]. There is also a line of works
leveraging LLMs to generate rewards – either as codes or natural language prompts – and iteratively
refine these rewards based on environmental feedback through in-context learning [Ma et al., 2023,
Kwon et al., 2023, Yu et al., 2023, Li et al., 2024]. These studies assume that LLMs, through
in-context learning, can infer environmental rules and adapt to new trajectories/experiences with only
a few observed transitions. In contrast to these approaches, we assume that the rewards or reflections
obtained from one trajectory are not directly transferable to other trajectories. Thus, in this work, we
proposed to use in-context learning in a "retrospective" manner.

Self-Correction Through Preference Alignment: Iterative RPO [Pang et al., 2024] labels preference
data based on environmental feedback and uses this feedback as a supervised signal to fine-tune
LLMs. RICO-GRPO [Wang et al., 2025] use trajectory level reward and ground normalization to
estimate the advantage function for multi-turn online RL training. However, these methods don’t
perform explicit temporal credit assignment. In contrast, our approach generates dense rewards by
leveraging the pretrained knowledge of LLMs through in-context learning. This enables the policy to
be trained with more informative supervision signals.

Temporal Credit Assignment using LLMs: The goal of temporal credit assignment is to identify the
critical states and actions in sequential decision-making. A common approach to credit assignment
involves estimating a value or advantage function based on learning experiences [Schulman et al.,
2015, Ahmadian et al., 2024]. Unlike RICO-PPO [Wang et al., 2025] training a value network from

2

scratch, which can be sample inefficient, our approach leverages in-context learning with pretrained
LLMs to perform credit assignment more effectively. Please refer to Table 1 for a more intuitive
comparison of our proposed method with related works on self-correction in LLMs.

3 Preliminary

Markov Decision Process: A Markov Decision Process (MDP) can be described as a tuple
(S,A, P, r, γ, ρ0). Here, S andA represent the state and action space, respectively; P : S×A×S →
[0, 1] is the transition kernel; r : S ×A → R is a reward function; γ ∈ [0, 1) is the discount factor;
ρ0(·) denotes a distribution of the initial state.

KL-Regularized Policy Updates: KL-regularized policy optimization [Abdolmaleki et al., 2018]
enhances policy stability by constraining each update to remain close to the previous policy. The objec-
tive is to learn a new policy πk+1 that maximizes the expected advantage while penalizing deviations
from the old policy: πk+1 = argmaxπ Es∼ρπk ,a∼π(·|s)[A

πk(s, a)−βDKL(π(·|s)||πk(·|s))], where
Aπk(s, a) is the advantage function, and β > 0 controls the trade-off between policy improvement
and stability. The resulting policy update admits a closed-form solution:

πk+1(a|s) ∝ πk(a|s) exp
(
1
βA

πk(s, a)
)
, ∀(s, a) ∈ S ×A. (1)

This update exponentially favors advantageous actions while ensuring smooth policy changes via the
KL constraint.

4 Retrospective In-Context Learning for Temporal Credit Assignment

Given the current policy and its experience, the goal of temporal credit assignment is to identify
critical state-action pairs for sequential decision-making. Critical states are those where policy
decisions significantly influence the expected return-to-go, while critical actions indicate policy
update directions at those states. In RL, credit assignment is typically performed by estimating the
advantage function, which measures the impact of different actions at a given state on the future
return-to-go under the current policy. Thus, in this section, we propose leveraging LLMs to
estimate advantage functions for temporal credit assignment, using retrospective in-context
learning guided by environmental feedback.

4.1 LLMs as Policies

Consider the case where an LLM is used as a policy π0
1. This policy can be refined through in-

context learning by embedding task descriptions or goal-related hints into the prompt, resulting in an
in-context updated policy, π′. Unlike standard RL, the transition from π0 to π′ in in-context learning
is not an explicit optimization process. However, we can infer the implicit advantage function driving
this policy improvement by analyzing the log-probabilities of π0 and π′. The theoretical foundation
of this approach is established in the following theorem.
Theorem 4.1. Let π0 : S × A → (0, 1) and π′ : S × A → (0, 1) be any two policies in an MDP
with transition kernel P : S × A × S → [0, 1] and discount factor γ ∈ [0, 1]. Then, there exists a
reward function r : S ×A → R such that the following relationship holds:

β log
π′(a|s)
π0(a|s)

∝ Aπ0
r (s, a), (2)

where β > 0 is a known scaling parameter, and Aπ0
r (s, a) denotes the advantage function under

policy π0 in the finite MDP (S,A, P, r, γ).
Proof. See Appendix B.

Our algorithm, as detailed later, assumes the existence of a reward function such that the corresponding
advantage function explains the discrepancy between the in-context updated policy π′ and the actor
policy π0. Theorem 4.1 establishes the existence of such a reward function for any pair of policies,
thereby supporting the soundness of our proposed online RL framework.

1For an LLM-based policy, each state s corresponds to a prompt, while each action a is represented as a
sequence of tokens (e.g., "turn right" or "move forward"). Consequently, the probability π(a|s) can be computed
as the token prediction probability of a occurring after s in the LLM’s autoregressive generation.

3

4.2 Implementation Details

The procedure for estimating the advantage function Aπ0
r (s, a) of a policy π0 is as follows: First,

we collect n trajectories starting from the state-action pair (s, a), by executing the policy π0. Then,
for each trajectory τ (i), we perform retrospective in-context learning (introduced in the following
subsection) to update the LLM and get an updated policy π′(i).

According to Theorem 4.1, we have β log π′(i)(a|s) = β log π0(a|s) + Aπ0
ri (s, a) − β logZ(i)(s),

where Z(i)(s) is a partition function to ensure that π′(i) is a valid probability distribution. In this paper,
we consider only tasks with a discrete and enumerable action space, allowing Z(i)(s) to be computed
by summing over the probabilities of all possible actions. Aπ0

ri (s, a) is derived from log π′(i)(a|s)
and log π0(a|s) and is a sample estimate for the ground-truth advantage function Aπ0

r∗ (s, a). Thus,
we can use the sample mean Āπ0

r as the estimated advantage function, which is defined as:

Āπ0
r (s, a) =

β

n

n∑
i=1

(
log

π′(i)(a|s)
π0(a|s)

+ logZ(i)(s)

)
. (3)

Empirical results demonstrate that Āπ0
r (s, a) closely approximates the ground-truth advantage func-

tion Aπ
r∗(s, a). Recall the policy improvement step shown in Eq. (1), this alignment suggests

that the in-context learning with LLMs implicitly performs KL-Regularized Policy Updates.

4.3 Retrospective In-Context Learning

As aforementioned, π′ is updated from π0 using Retrospective In-Context Learning (RICL), a novel
in-context learning algorithm for refining LLM agents. RICL is illustrated as step ② and step ③ in
Figure 1. First, given a state st and its corresponding hindsight trajectory – a sequence of future states,
actions, and rewards {st:T , at:T−1, rt:T−1} where T denotes the episode horizon –we input this
trajectory into a reflector LLM, πreflect, to generate a verbal feedback ft. The reflector can be any
LLM, prompted to analyze the hindsight trajectory and provide corrective feedback to improve the
agent’s performance at state st. Next, we integrate the feedback ft into the original LLM’s prompt,
yielding an in-context updated policy π′(·|st) = π0(·|st, ft). This policy is then used to estimate the
advantage function for temporal credit assignment, as introduced in the previous subsection.

RICL offers two key advantages over previous in-context learning algorithms [Shinn et al., 2024].
First, it generates verbal feedback for each action individually, whereas prior methods provide a
single feedback for the entire trajectory, allowing for more fine-grained guidance. Second, it employs
retrospective updates, meaning the policy is updated specifically for the states it has just encountered,
rather than requiring the reflector LLM to generalize to unseen states. This method reduces the
complexity of tasks assigned to in-context learning and lessens the dependence on reflector LLMs.

5 Retrospective In-Context Online Learning

Once the log-probabilities of the in-context updated policy are obtained, which indicate the advan-
tage function, policy improvement can be performed straightforwardly using advantage-weighted
regression [Peng et al., 2019]. In this section, we integrate the policy improvement phase with the
previously introduced policy evaluation phase (i.e., RICL) to develop a practical online RL algorithm:
Retrospective In-Context Online Learning (RICOL).

5.1 Policy Improvement based on RICL

To learn from the in-context improved policy π′, we can adopt the following objective:

π∗ = argmax
π

Es,a∼π [A
π0(s, a)] = argmax

π
Es∼dπ,a∼π(·|s) [log π

′(a|s)− log π0(a|s)] , (4)

where dπ(s) = (1− γ)
∑∞

t=0 γ
tρπt (s) represents the discounted state occupancy measure for policy

π and ρπt (s) denotes the probability that policy π visits state s at time t.

4

s0

𝜋𝑟𝑒𝑓𝑙𝑒𝑐𝑡

feedback0

𝑠0, 𝑎0, 𝑠1

 ,𝑎1, 𝑠2, 𝑟

𝜋0 (∙ | s0)

𝑠0 𝑠1 𝑠2

𝑎0~ 𝜋0 (∙ | s0)

𝑟

𝑎1~𝜋0(∙ | s1)

𝑠0 𝑠1 𝑠2

𝑎0

𝑟

𝑎1

𝜋𝑝𝑜𝑙𝑖𝑐𝑦

s0

feedback0

𝜋
′(∙ | s0)

𝜋𝑝𝑜𝑙𝑖𝑐𝑦
𝜋𝑟𝑒𝑓𝑙𝑒𝑐𝑡

feedback1
𝑠1,𝑎1, 𝑠2, 𝑟

1

3

2

2

4 𝜋
∗ = argmin

𝜋

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜋|𝜋
′)

feedback0 feedback1

Figure 1: The pipeline of retrospective in-context online learning, where step ② and step ③ represent
retrospective in-context learning.

Inspired by AWR [Peng et al., 2019], we can reuse samples collected with π0 to avoid resampling
from π and so improve the algorithm’s sample efficiency, with a smarter objective design:

min
π

Es∼dπ0

[
DKL

(
1

Z(s)
⊙ exp ((1− α) log π0(·|s) + α log π′(·|s)) ||π(·|s)

)]
(5)

where Z(s) is a partition function , ⊙ denotes element-wise multiplication, and hyperparameter α
controls the size of the trust region. The derivation from Eq. (4) to Eq. (5) is detailed in Appendix A.

Integrating the sampling policy π0 into the objective function introduces trust region constraints, akin
to those used in online RL [Schulman, 2015]. These constraints regulate policy updates, ensuring
that deviations from the current sampling policy remain bounded during optimization. By anchoring
updates within a local region around π0, the trust region term helps mitigate overfitting to potentially
noisy verbal feedback generated through in-context learning.

5.2 Pipeline of RICOL

Algorithm 1 RICOL

Input: π0, πreflect,K, n
for k = 0 · · ·K − 1 do

for i = 1 · · ·n do
τ
(i)
k ∼ πk(·|s0)

for st = s0 · · · sT−1 ∈ τ
(i)
k do

feedbackt ∼ πreflect(·|st:T , rt:T−1)

π
′(i)
k+1(·|st)← πk(·|st, feedbackt)

end for
end for
πk+1 ← argminπ Es∼τk [DKL

(
1

Z(s) ⊙ exp(

(1− α) log πk(·|s) + α log π′(·|s))||π(·|s)
)
]

end for

Trajectory Collection: During iteration k, the
policy πk interacts with the environment to col-
lect a batch of trajectories τk. Each trajec-
tory comprises state-action-reward sequences
(s1:T , a1:T−1, r1:T−1).

Policy Evaluation: For each state st in τ
(i)
k ,

RICOL applies RICL (detailed in Section 4.3)
to perform an in-context update on the pol-
icy πk(·|st), resulting in an improved policy
π
′(i)
k+1(·|st). To estimate π′

k+1(·|st), we fol-

low the process: [π
′(i)
k+1(·|st), πk(·|st)]ni=1 →

[Aπk
ri (st, ·)]

n
i=1 → Āπk

r (st, ·) → π′
k+1(·|st),

where the first two steps are detailed in Sec-
tion 4.2 and the last step is according to
β log

π′
k+1(at|st)
πk(ak|st) ∝ Āπk

r (st, at) (i.e., Eq. (2)).

Policy Improvement: After computing π′
k+1(·|st) across the batch of states in τk, the policy πk

is updated via gradient descent to minimize the objective in Eq. (5). For environments with small,
discrete action spaces, the KL-divergence in Eq. (5) is computed exactly by enumerating all actions.
This requires querying the LLM |A| times per state. For general tasks, the KL-divergence can be
estimated by sampling from π∗(·|s) ∝ exp ((1− α) log πk(·|s) + α log π′(·|s)), avoiding exhaustive
action enumeration.

5

6 Experiments

In this section, we present a series of experiments to address the following research questions (RQs):
RQ1: How effective is RICL at credit assignment in multi-turn tasks? Compared to traditional RL
methods, how sample-efficient is RICL in credit assignment? RQ2: The proposed method relies on
LLMs, which may be unreliable. How does RICL compare to other reflection-based LLM methods
in terms of reliability? Given that RICL may be unreliable, can RICOL still learn effectively from
noisy labels? RQ3: Can RICOL efficiently learn from sparse rewards in multi-turn tasks? How does
its performance compare to baseline methods, and what types of tasks is it best suited for?

6.1 Environments

We evaluate our algorithms on a 1D Key-Door environment and four BabyAI scenarios. In all settings,
both the policy inputs (observations) and outputs (actions) are represented in text form. The action
space is discrete and enumerable. In the 1D Key-Door environment, the agent operates on a 1D grid
world, moving along the x-axis. The key is placed in the leftmost cell, and the door in the rightmost.
The agent starts without the key and must first move left to retrieve it, then move right to unlock the
door. This setup enables exact computation of the ground-truth advantage at each cell, making it
ideal for evaluating RICL’s credit assignment capabilities. We test RICOL on four BabyAI [Carta
et al., 2023] tasks: goto, pickup, pick_up_seq_go_to, and open. BabyAI is a 2D grid world where the
agent must complete language-conditioned tasks. These tasks are challenging to LLMs, due to their
limited spatial reasoning abilities and the long episode lengths. As shown in Figure 4, even GPT-4o
mini achieves a success rate of no more than 40% across all four BabyAI scenarios. More details on
the tasks and associated prompt templates are available in Appendix E.

6.2 Sample Efficiency of RICL in Credit Assignment (RQ1)

1 10 100 1000
Samples

0.0

0.5

1.0

1.5

2.0

Er
ro

r (
e m

et
ho

d)

RICL
MC

Figure 2: Comparison of error in advan-
tage function estimation. The x-axis rep-
resents the number of trajectories used
for estimation, while the y-axis shows
the mean error between the estimated ad-
vantage and the ground-truth advantages.
RICL achieves significantly lower error
with fewer samples (around 10) com-
pared to Monte Carlo, which requires
about 1000 samples for similar accuracy.
Additionally, the error of RICL is more
stable across trials (lower variance).

In this subsection, we demonstrate that RICL achieves
greater sample efficiency (100×) compared to classic
Monte Carlo (MC) methods when estimating the advan-
tage function in the 1D Key-Door scenario. Since RL
methods alternate between policy evaluation (value func-
tion estimation) and policy improvement, a more sample-
efficient policy evaluation approach can significantly speed
up the overall training process.

We measure the discrepancy between estimated and
ground-truth advantage functions for both MC and RICL.
For each (st, at), we generate n trajectories starting
from st using the policy π0. MC estimates the Q-
value Q̂π0(st, at) as the average return-to-go across the
n trajectories. The estimated advantage function is de-
fined as Âπ0(st, at) = Q̂π0(st, at) − V̂ π0(st), where
V̂ π0(st) = Ea∼π0(·|st)[Q̂

π0(st, at)]. The updated pol-
icy under MC is accordingly defined as πMC(at|st) ∝
π0(at|st) exp(Âπ0(st, at)/β). On the other hand, RICL
estimates the advantage function Āπ0(st, at) directly from
n trajectories using the procedure outlined in Section 4.2.
The corresponding policy πRICL(at|st) is similarly defined
as πRICL(at|st) ∝ π0(at|st) exp(Āπ0(st, at)/β). Finally,
to evaluate both methods, we leverage ground-truth advan-
tage function Aπ0(st, at) to compute the reference policy
πgt(at|st) ∝ π0(at|st) exp(Aπ0(st, at)/β).

The performance of MC and RICL is assessed by computing the expected KL divergence between
their respective policies and the ground-truth policy. This expectation is taken over states sampled
from ρ0, a uniform distribution over all possible initial states in the 1D grid-world. Formally, the
error for each method is defined as: emethod = Es∼ρ0

[DKL (πmethod(·|s) ∥πgt(·|s))]. By definition

6

of the policies, when πmethod(·|s) closely approximates πgt(·|s), the estimated advantage function
likewise approaches the ground-truth advantage function.

For each value of n (number of trajectories), we run eight trials with different random seeds. We
report the mean KL divergence and standard deviation. These results are visualized in Figure 2, where
the x-axis represents the number of samples n. As shown in Figure 2, LLMs achieve an accurate
estimate of advantage functions with just 10 samples, while MC requires around 1000 samples to
reach a similar accuracy. Furthermore, the standard deviation of the error of RICL is much lower
than that of MC. This suggests that RICL is particularly advantageous for tasks that require high
sample efficiency, where leveraging the pretrained knowledge of LLMs is crucial. In Appendix H,
we compare RICL with an LLM-based method (Retroformer [Yao et al., 2023]) in terms of
sample efficiency for value function estimation. Further, in Appendix G, we show that RICL can
identify critical states in sequential decision-making, based on the result of credit assignment.

6.3 RICL Enables More Reliable In-Context Updates via Retrospective Design (RQ2)

Base ICL RICL0.40

0.43

0.46

0.49

0.52

A
cc

ur
ac

y

Figure 3: Accuracy comparison of ICL
and RICL on predicting expert actions
in the BabyAI goto scenario across 1000
trajectories. The Base bar shows the
zero-shot performance of LLaMA-3.1-
8B-Instruct. RICL outperforms ICL by
7.2%, demonstrating the effectiveness of
retrospective updates.

Standard ICL follows these steps: (1) Use an actor LLM to
generate a trajectory τ ; (2) Use a reflector LLM to generate
verbal feedback based on τ ; (3) Use the verbal feedback to
perform an in-context update of the actor. While integrat-
ing ICL into the training loop improves sample efficiency,
it also introduces instability, because we cannot assume
that experiences from one trajectory can be applied to any
other state in the environment. As an improvement, RICL
shares steps (1)–(3) with ICL, but uses the in-context up-
dated policy to compute the action distribution over the
states in τ only. In this section, we empirically demon-
strate that using environmental feedback to retrospectively
in-context update the policy on the same trajectory that
produced the feedback (i.e., RICL) leads to more effective
and reliable policy improvement than updating the policy
on a different trajectory (i.e., ICL).

Figure 3 compares RICL and ICL in the BabyAI goto
scenario and uses LLaMA-3.1-8B-Instruct as actor and
reflector LLMs. We conduct experiments on 1000 different
trajectories. We use accuracy as the evaluation metric,
defined as the probability that the policy selects the expert action. The base policy reflects the
performance of the zero-shot LLaMA-3.1-8B-Instruct model. In terms of accuracy, RICL outperforms
ICL by 7.2%, confirming that retrospective updates are both more effective and more reliable.

6.4 Benchmarking RICOL (RQ3)

Here, we compare RICOL against four baseline algorithms across four BabyAI scenarios and
demonstrate that it achieves state-of-the-art performance in solving multi-turn tasks with higher
sample efficiency. We adopt Llama-3.2-3B-Instruct as the policy and GPT-4o mini as the reflector.
Regarding evaluation metrics, we use environment time steps (for sampling) and task success rates
to evaluate sample efficiency and effectiveness of the algorithms, respectively. The remaining
experiments in the paper report the mean and standard deviation across three different random seeds.

Baselines: (1) GPT-4o mini: This baseline uses GPT-4o-mini as the policy, providing a measure of
the zero-shot performance of state-of-the-art LLMs on the benchmark tasks. Moreover, since GPT-
4o-mini serves as the reflector in our algorithm, improvements over this baseline demonstrate that
simple behavioral cloning of the reflector is insufficient, highlighting the necessity of our algorithmic
design for effective policy improvement. (2) Reflexion: Reflexion [Shinn et al., 2024] relies on
in-context learning with iterative self-reflection. A base policy first interacts with the environment
to collect a trajectory, which is used to prompt an LLM for verbal feedback. The policy then uses
this feedback to generate a new trajectory, which is again used to update the feedback. This process
repeats iteratively. (3) PPO (3B): We fine-tune a Qwen2.5-3B-Instruct model using PPO, where
the 3B model serves as both the policy’s and the critic’s backbone. More details are provided in

7

102 103 104 105 106

Env Steps

0

25

50

75

100

W
in

 R
at

e
(%

)

goto

102 103 104 105 106

Env Steps

0

25

50

75

100
pickup

102 103 104 105 106

Env Steps

0

25

50

75

100
pick_up_seq_go_to

102 103 104 105 106

Env Steps

0

2

4

6

open
Reflexion RICOL (ours) PPO (3B) PPO (10M) GPT-4o mini

Figure 4: Comparison of our method (RICOL) against four baseline algorithms across four BabyAI
scenarios. RICOL consistently demonstrates superior sample efficiency, achieving strong performance
with significantly fewer interactions. Notably, RICOL outperforms both PPO (10M) and PPO
(3B), by over 50× and 10× fewer environment steps, respectively. Compared to Reflexion, an
in-context learning method using trajectory-level verbal feedback, RICOL exhibits better convergent
performance by leveraging temporal credit assignment (from RICL) and state-specific feedback.
Additionally, RICOL surpasses GPT-4o mini, despite using a smaller policy model (LLaMA-3.2-3B-
Instruct), underscoring the importance of interactive learning from the environment. As a useful
trick to boost performance, we use the real environment rewards as the advantage and apply
advantage-weighted regression during the second stage of training, after RICOL completes its
predefined training schedule in the first stage.

Appendix F. We use Qwen instead of LLaMA due to prior findings [Gandhi et al., 2025] suggesting
Qwen exhibits stronger reasoning behaviors such as verification and backtracking. (4) PPO (10M):
This baseline uses two randomly initialized 3-layer MLPs for the policy and critic, respectively. It
serves to test whether LLMs’ pretrained knowledge provides any advantage during learning.

Results: (1) Figure 4 shows that the in-context learning method Reflexion is sample-efficient, but its
performance gains saturate quickly. We attribute this to two factors. First, unlike other algorithms,
in-context learning does not update the LLM’s parameters, limiting its ability to effectively acquire
new knowledge. Second, Reflexion relies on verbal feedback at the trajectory level, while our method
provides verbal feedback for each specific state. As a result, Reflexion saturates early because
the general (trajectory-level) rules it can easily capture from the environment are limited. Here
is an example of the verbal feedback learned by Reflexion: "In future navigation tasks, look for
opportunities to reposition yourself to move closer to your goal". In contrast, our method generates
more precise, state-specific feedback: "Prioritize picking up the green key first by taking action D
when you are in front of it, rather than moving towards the grey box." (2) Regarding comparisons
with PPO-based methods, PPO (10M) requires approximately 0.1 to 1 million time steps to converge
across most scenarios, highlighting the sample inefficiency of training from scratch without leveraging
LLMs’ pretrained knowledge. In contrast, our method achieves comparable performance while using
nearly 50 times less data. PPO (3B), which adopts LLMs as both the policy and critic, converges in
about 20,000 time steps on most scenarios. Our method is approximately 10×more sample efficient
than this approach. While our algorithm also uses an LLM for the policy, it does not require training
a critic. Instead, our value function approximation method, RICL, is more sample-efficient than
Monte Carlo-based ones (as used in PPO), further supporting the argument made in Section 6.2. (3)
Finally, our method outperforms GPT-4o-mini in success rates across all four scenarios, despite using
a smaller 3B model as the policy. This underscores the importance of learning through interaction
with the environment, rather than merely imitating the outputs of a larger models. In addition to
sample efficiency, we also report the training time of each algorithm on each task in Table 2. In
summary, RICOL is well-suited for settings with limited simulation budgets, typically ranging from
1,000 to 10,000 environment steps. In these scenarios, where environment interactions are costly,
sample efficiency is crucial, making our method a compelling and practical choice.

6.5 RICOL Benefits from Credit Assignment (RQ3)

RICOL can be interpreted as a combination of RICL for credit assignment and AWR for policy
improvement. In contrast, RWR [Peters and Schaal, 2007] directly uses trajectory-level rewards as
returns to perform AWR updates on an LLM policy. Unlike RICOL, RWR does not assign credit to
individual time steps within an episode, making it less effective for tasks with sparse rewards. Here,
we compare RWR with RICOL to show that RICOL benefits from credit assignment.

8

0 1 2
Env Steps (k)

25

50

75

W
in

 R
at

e
(%

) goto

0 1 2
Env Steps (k)

0

20

40

pickup

0 5 10
Env Steps (k)

0

20

pick_up_seq_go_to

0 5 10
Env Steps (k)

0

5

open
RICOL RWR

Figure 5: RICOL employs in-context credit assignment to generate dense learning signals, enabling
more sample-efficient policy training. In contrast, RWR lacks credit assignment, depends on strong
base policies with high initial success rates, and performs poorly on tasks with sparse rewards.

Figure 5 shows that RWR achieves competitive performance only in the goto scenario, where the
base policy already attains a relatively high success rate of 25%. This highlights the limitation of
relying solely on trajectory-level rewards. In contrast, our method leverages RICL to generate dense
supervised signals, as described in Section 4, thereby enabling more effective policy training for
LLMs, particularly in sparse-reward environments.

6.6 RICOL is Robust to Noisy Verbal Feedback (RQ2)

0 2 4 6 8
Iterations

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Su
cc

es
s R

at
e

Imitation Learning
100% feedback
80% feedback
70% feedback

Figure 6: The performance of RICOL
under varying verbal feedback accuracy.
The agent is trained with hand-crafted
verbal feedback of different accuracy
levels. Despite the presence of noise,
RICOL maintains strong performance.
Note that 50% accuracy corresponds to
random feedback.

Figure 6 illustrates how the accuracy of verbal feedback
affects the performance of RICOL in the BabyAI goto
scenario. In this experiment, we train the agent using
hand-crafted verbal feedback and systematically vary its
accuracy to assess RICOL’s robustness. The hand-crafted
verbal feedback acts as a binary correctness indicator for
the actions in trajectories, framed as: "In the previous
attempt, I chose action [Action]. This time, I will main-
tain/change the selected action." To manipulate feedback
accuracy, we randomly flip the correctness labels in the
verbal feedback at different rates, thus simulating various
levels of feedback reliability. An accuracy of 100% corre-
sponds to perfectly accurate feedback, while random feed-
back yields an accuracy of approximately 50%. As shown
in Figure 6, RICOL remains effective even when verbal
feedback accuracy drops to 70%. This result demonstrates
that RICOL does not rely heavily on accurate verbal feed-
back during training. We attribute this robustness to the
trust region term introduced in the loss function during the
policy improvement step (Eq. 5), which helps normalize
the impact of noisy supervision and stabilize learning.

7 Conclusion

We propose a novel in-context learning algorithm, RICL, to convert sparse environmental feedback
into dense training signals for estimating advantage functions and conducting temporal credit assign-
ment. We further propose an online learning framework, RICOL, for iterative policy improvement
based on the RICL results. Our method mitigates the instability of in-context learning and enables
continuous policy refinement. Empirical results on the 1D Key-Door scenario demonstrate RICL’s
effectiveness in credit assignment, while results on the BabyAI benchmark show that RICOL is
significantly more sample-efficient than traditional online RL methods. As a future direction, we aim
to extend and test our algorithm on token-level MDPs and reasoning tasks.

Limitations: RICOL only supports tasks with discrete, finite action spaces, as when calculating the
KL divergence in Eq. 5, it needs to calculate the partition term Z by enumerating all the actions. We
believe this limitation is acceptable, as we use LLMs as policies and their output space, i.e., the token
space, is inherently discrete. When the action space is not enumerable, for example, when the policy
generates extremely long chains of thought before producing the next action, we can replace action
enumeration with action sampling. We leave this extension for future work.

9

8 Acknowledgement

This work was supported in part by the U.S. Army Futures Command under Contract No. W519TC-
23-C-0030.

This work used Delta at the National Center for Supercomputing Applications (NCSA) through
allocation CIS250651 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services
& Support (ACCESS) program [Boerner et al., 2023], which is supported by U.S. National Science
Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.

References
A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maximum a

posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun. Reinforcement learning: Theory and algorithms.
CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, O. Pietquin, A. Üstün, and S. Hooker.
Back to basics: Revisiting reinforce style optimization for learning from human feedback in llms.
arXiv preprint arXiv:2402.14740, 2024.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J. Towns. Access: Advancing innovation:
Nsf’s advanced cyberinfrastructure coordination ecosystem: Services & support. In Practice
and experience in advanced research computing 2023: Computing for the common good, pages
173–176. 2023.

M. Cao, L. Shu, L. Yu, Y. Zhu, N. Wichers, Y. Liu, and L. Meng. Drlc: Reinforcement learning with
dense rewards from llm critic. arXiv preprint arXiv:2401.07382, 2024.

T. Carta, C. Romac, T. Wolf, S. Lamprier, O. Sigaud, and P.-Y. Oudeyer. Grounding large language
models in interactive environments with online reinforcement learning. In International Conference
on Machine Learning, pages 3676–3713. PMLR, 2023.

S. Chaudhari, P. Aggarwal, V. Murahari, T. Rajpurohit, A. Kalyan, K. Narasimhan, A. Deshpande,
and B. C. da Silva. Rlhf deciphered: A critical analysis of reinforcement learning from human
feedback for llms. arXiv preprint arXiv:2404.08555, 2024.

Z. Chen, K. Zhou, W. X. Zhao, J. Wan, F. Zhang, D. Zhang, and J.-R. Wen. Improving large language
models via fine-grained reinforcement learning with minimum editing constraint. arXiv preprint
arXiv:2401.06081, 2024.

M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and Y. Bengio.
Babyai: A platform to study the sample efficiency of grounded language learning. arXiv preprint
arXiv:1810.08272, 2018.

H. Dong, W. Xiong, B. Pang, H. Wang, H. Zhao, Y. Zhou, N. Jiang, D. Sahoo, C. Xiong, and T. Zhang.
Rlhf workflow: From reward modeling to online rlhf. arXiv preprint arXiv:2405.07863, 2024.

K. Gandhi, A. Chakravarthy, A. Singh, N. Lile, and N. D. Goodman. Cognitive behaviors that enable
self-improving reasoners, or, four habits of highly effective stars. arXiv preprint arXiv:2503.01307,
2025.

J. Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, and D. Zhou. Large language models
cannot self-correct reasoning yet. arXiv preprint arXiv:2310.01798, 2023.

G. Kim, P. Baldi, and S. McAleer. Language models can solve computer tasks. Advances in Neural
Information Processing Systems, 36:39648–39677, 2023.

10

M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh. Reward design with language models. arXiv preprint
arXiv:2303.00001, 2023.

H. Li, X. Yang, Z. Wang, X. Zhu, J. Zhou, Y. Qiao, X. Wang, H. Li, L. Lu, and J. Dai. Auto mc-reward:
Automated dense reward design with large language models for minecraft. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16426–16435, 2024.

Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and A. Anand-
kumar. Eureka: Human-level reward design via coding large language models. arXiv preprint
arXiv:2310.12931, 2023.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye,
Y. Yang, et al. Self-refine: Iterative refinement with self-feedback. Advances in Neural Information
Processing Systems, 36, 2024.

T. X. Olausson, J. P. Inala, C. Wang, J. Gao, and A. Solar-Lezama. Demystifying gpt self-repair for
code generation. CoRR, 2023.

D. Paglieri, B. Cupiał, S. Coward, U. Piterbarg, M. Wolczyk, A. Khan, E. Pignatelli, Ł. Kuciński,
L. Pinto, R. Fergus, et al. Balrog: Benchmarking agentic llm and vlm reasoning on games. arXiv
preprint arXiv:2411.13543, 2024.

R. Y. Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and J. Weston. Iterative reasoning preference
optimization. arXiv preprint arXiv:2404.19733, 2024.

X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

J. Peters and S. Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Z. Ghahramani, editor, Machine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, volume
227 of ACM International Conference Proceeding Series, pages 745–750. ACM, 2007. doi:
10.1145/1273496.1273590. URL https://doi.org/10.1145/1273496.1273590.

E. Pignatelli, J. Ferret, T. Rockäschel, E. Grefenstette, D. Paglieri, S. Coward, and L. Toni. Assessing
the zero-shot capabilities of llms for action evaluation in rl. arXiv preprint arXiv:2409.12798,
2024.

A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia, J. Varley,
et al. Robots that ask for help: Uncertainty alignment for large language model planners. arXiv
preprint arXiv:2307.01928, 2023.

J. Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

G. Sheng, C. Zhang, Z. Ye, X. Wu, W. Zhang, R. Zhang, Y. Peng, H. Lin, and C. Wu. Hybridflow: A
flexible and efficient rlhf framework. In Proceedings of the Twentieth European Conference on
Computer Systems, pages 1279–1297, 2025.

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language agents with
verbal reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation and
automatic curricula via asymmetric self-play. arXiv preprint arXiv:1703.05407, 2017.

K. Valmeekam, M. Marquez, and S. Kambhampati. Investigating the effectiveness of self-critiquing
in LLMs solving planning tasks. In NeurIPS 2023 Foundation Models for Decision Making
Workshop, 2023. URL https://openreview.net/forum?id=gGQfkyb0KL.

Z. Wang, K. Wang, Q. Wang, P. Zhang, L. Li, Z. Yang, K. Yu, M. N. Nguyen, L. Liu, E. Gottlieb,
et al. Ragen: Understanding self-evolution in llm agents via multi-turn reinforcement learning.
arXiv preprint arXiv:2504.20073, 2025.

11

https://doi.org/10.1145/1273496.1273590
https://openreview.net/forum?id=gGQfkyb0KL

W. Yao, S. Heinecke, J. C. Niebles, Z. Liu, Y. Feng, L. Xue, R. Murthy, Z. Chen, J. Zhang, D. Arpit,
et al. Retroformer: Retrospective large language agents with policy gradient optimization. arXiv
preprint arXiv:2308.02151, 2023.

W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez, L. Hasen-
clever, J. Humplik, et al. Language to rewards for robotic skill synthesis. arXiv preprint
arXiv:2306.08647, 2023.

E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

A. Zhao, D. Huang, Q. Xu, M. Lin, Y.-J. Liu, and G. Huang. Expel: Llm agents are experiential
learners. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
19632–19642, 2024.

B. D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal
Entropy. PhD thesis, Carnegie Mellon University, USA, 2010.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, pages
1433–1438. AAAI Press, 2008.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contribution is the proposal of RIOCL, an online reinforcement
learning algorithm that leverages the pretrained knowledge of LLMs to learn sample-
efficiently from interactions with the environment.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

12

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the proof of Theorem 4.1 in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the code in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed

13

instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the code in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the training environment in Section 6.1 and the prompt templates
in Appendix E.

Guidelines:

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars or confidence intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide enough details in Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conform, in every respect, with the NeurIPS Code of Ethics.

15

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

16

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all assets used in the paper—including code, data, and models—are
properly credited. Their licenses and terms of use are explicitly stated and fully respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

17

paperswithcode.com/datasets

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: While LLMs are used in this work, their usage does not constitute an important,
original, or non-standard component of the core methodology. They were not involved in
a way that impacts the scientific rigor, novelty, or conclusions of the research. Therefore,
declaration is not required under the given guidelines.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

A Derivation of the Loss Function

The derivation is mainly from Peng et al. [2019]. The goal of the gradient update step is to bring π
closer to π′. One way to achieve this is by maximizing the following objective:

η(π) = Es∼dπ(·),a∼π(·|s) [log π
′(a|s)− log πk(a|s)] , (6)

where dπ(s) =
∑∞

t=0 γ
tp(st = s|π) represents the unnormalized discounted state distribution

induced by the policy π, and p(st = s|π) is the likelihood of the agent being in state s after following
π for t time-steps. For simplicity, we use πk in the appendix but π0 in the main text; both denote the
sampling policy.

In practice, to enhance sample efficiency, we aim to use dπk
(s) instead of dπ(s) when estimating

η(π), where πk is the policy used to sample new data. Therefore, similar to Peng et al. [2019], we
can employ η̂(π) as an approximation of η(π) in practical implementations.

η̂(π) =
∑
s

dπk
(s)

∑
a

π(a|s)
[
log (

π′(a|s)
πk(a|s)

)

]
. (7)

η̂(π) is a reasonable estimator of η(π) only when π and πk are sufficiently similar. Therefore, rather
than directly solving the optimization problem maxπ η(π), we can instead reformulate it as the
following optimization problem:

argmax
π

∑
s

dπk
(s)

∑
a

π(a|s)
[
log(

π′(a|s)
πk(a|s)

)

]
s.t.

∑
s

dπk
(s)DKL (π(·|s)||πk(·|s)) ≤ ϵ∑

a

π(a|s) = 1,∀s.

(8)

By applying the method of Lagrange multipliers to the constrained optimization problem, the optimal
policy can be expressed as follows:

π∗(a|s) = 1

Z(s)
πk(a|s) exp

(
1

α
log

π′(a|s)
πk(a|s)

)
, (9)

where Z(s) =
∑

a′ πk(a
′|s) exp

(
1
α log π′(a|s)

πk(a|s)

)
normalizes the optimal policy and α is the La-

grange multiplier.

Finally, we need to project π∗ back onto the manifold of parameterized policies. This can be achieved
by optimizing the following objective:

argmin
π

Es∼dπ0
(s) [DKL (π∗(·|s)||π(·|s))]

= argmin
π

Es∼dπ0 (s)

[
DKL

(
1

Z(s)
· πk(·|s)⊙ exp(

1

α
log

π′
k+1(·|s)
πk(·|s)

)||π(·|s)
)]

=argmin
π

Es∼dπ0
(s)

[
DKL

(
1

Z(s)
· exp((1− 1

α
) log πk(·|s) +

1

α
log π′

k+1(·|s))||π(·|s)
)]

=argmin
π

Es∼dπ0
(s)

[
DKL

(
1

Z(s)
· exp((1− α∗) log πk(·|s) + α∗ log π′

k+1(·|s))||π(·|s)
)]

,
(10)

where ⊙ represents the element-wise multiplication. In practice, we treat α∗ = 1/α as a hyper-
parameter that controls the size of the trust region.

19

B Proof of Theorem 4.1

Proof. Let π0 : S × A → (0, 1) and π : S × A → (0, 1) be any two policies in a finite MDP
(S,A, P, r, γ), where r : S ×A → R is unknown. According to Eq. (2), we have: (∀s ∈ S, a ∈ A)

π(a|s) = π0(a|s) exp (Aπ0
r (s, a)/β)

Z(s)
⇒ Aπ0

r (s, a) = β

(
log

π(a|s)
π0(a|s)

+ logZ(s)

)
(11)

Here, Z(s) is a normalization factor and is a function of π(·|s) and π0(·|s) since
∑

a A
π0
r (s, a)/β =∑

a log
π(a|s)
π0(a|s) + logZ(s) = h(π0). Thus, given π and π0, we can acquire the advantage function

Aπ0
r (s, a) for all (s, a).

Next, we derive the relation between Aπ0
r and r under the maximum entropy RL framework. Accord-

ing to Ziebart et al. [2008], Ziebart [2010], the advantage function Aπ0
r , value function V π0 , and Q

function Qπ0 of a policy π0 are related as follows: (t is a time step and (st, at) ∈ S ×A.)
Aπ0

r (st, at) = Qπ0(st, at)− V π0(st)

V π0(st) = Eat∼π0(·|st) [Q
π0(st, at)− β log π0(at|st)] =

∑
at

π0(at|st)Qπ0(st, at) + βH(π0(·|st))

(12)
whereH(π0(·|st)) is the policy entropy at state st. Thus, Eat∼π0(·|st)[A

π0
r (st, at)] = −βH(π0(·|st))

and h(π0) = −H(π0(·|st)). The Q function satisfies the Soft Bellman Equation:
Qπ0(st, at) =r(st, at) + γβEst+1∼P (·|st,at)[H(π0(·|st+1))]

+ γEst+1∼P (·|st,at),at+1∼π0(·|st+1)[Q
π0(st+1, at+1)]

(13)

Denote f(st, at) = γβEst+1∼P (·|st,at)[H(π0(·|st+1))], which can be calculated based on P and π0,
then we have:

Qπ0 = (I − γPπ0)−1(r + f) (14)
where Qπ0 , r, and f are vectors of size |S||A|, I is an identity matrix, Pπ0 ∈ [0, 1]|S||A|×|S||A| is the
transition kernel between any two state-action pairs defined with P and π0. I − γPπ0 is invertible,
according to Corollary 1.5 in Agarwal et al. [2019]. Combining Eq. (12) and Eq. (14), we have the
following linear system:

Aπ0
r + g = (I ′ −Π0)(I − γPπ)−1(r + f) (15)

Here, Aπ0
r , log π0, r, f are vectors of Aπ0

r (s, a), log π0(s, a), r(s, a), f(s, a), respectively; I ′ is
an identity matrix; g is a vector of size |S||A|, where each g(s, a) = βH(π0(·|s)); Π0 is a block
diagonal matrix of size |S||A| × |S||A|, composed of |S| submatrices, each of size |A| × |A|.
Specifically, the submatrix corresponding to s is Π0(s) = [π0(·|s) · · ·π0(·|s)]T = 1π0(·|s)T , where
1 is an all-one vector. I ′(s)−Π0(s) is a diagonal block of I ′ −Π0 corresponding to state s and
has a rank of |A| − 1. This is because: (1) rank(I ′(s) − Π0(s) + Π0(s)) = |A| ≤ rank(I ′(s) −
Π0(s)) + rank(Π0(s)) = rank(I ′(s)− Π0(s)) + 1⇒ rank(I ′(s)− Π0(s)) ≥ |A| − 1 and (2) 1 is
an eigenvector of I ′(s)−Π0(s) corresponding to an eigenvalue of 0.

Next, we proof that the linear system Cx = b corresponding to Eq. (15) is consistent, where
C = (I ′ −Π0)(I − γPπ)−1, x = r+ f , and b = Aπ0

r + g. Note that C, f , and b are defined with γ,
β, P , π0, and π and so are known. We can apply elementary row operations, represented by a matrix
D, to the augmented matrix [C | b]. In particular, D is also a block diagonal matrix, composed of
|S| submatrices, each of size |A| × |A|. The submatrix corresponding to state s is an identity
matrix with the first row replaced by π(·|s)T . Notably, the 1st, (|A|+ 1)-th, (2|A|+ 1)-th, · · · ,
((|S| − 1)|A|+1)-th rows of D(I ′ −Π0) (and so DC) and Db are all 0. This can be easily proved
based on the following facts:

π0(a|s)(1− π0(a|s))− π0(a|s)

∑
a′ ̸=a

π0(a
′|s)

 = 0⇒ π0(·|s)T (I ′(s)−Π0(s)) = 0T ;

Ea∼π0(·|s)[A
π0
r (s, a)] = −βH(π0(·|s))⇒ Ea∼π0(·|s)b(s) = 0.

(16)

Eliminating these rows in [DC | Db], we can get a new augmented matrix [C̃ | b̃] where C̃ has a
full row rank (based on the facts that rank(I ′(s)−Π0(s)) = |A| − 1, ∀s and I − γPπ is invertible).
Thus, the original linear system Cx = b (i.e., Eq. (15)) is consistent, according to the Rouché-Capelli
theorem.

20

C Related Works

Table 1: We propose RICL for LLMs to learn from environmental feedback, fundamentally different
from intrinsic self-correction work like SELF-REFINE Madaan et al. [2024]. Unlike STaR [Zelikman
et al., 2022] and Reflexion [Shinn et al., 2024], our method utilizes environmental feedback to
retrospectively update the policy. Additionally, we do not fine-tune an extra reflector, as done in
RLMEC [Chen et al., 2024] and Retroformer [Yao et al., 2023]. By generating dense training signals
from sparse environmental feedback, our approach is more sample-efficient than methods that rely
solely on sparse preference rewards, such as Iterative RPO [Pang et al., 2024].

Involving
Env Feedback

Requiring an
Extra Reflector

Retrospective
Updating

Multi-turn
Credit Assignment

SELF-REFINE ✗ ✗ ✗ ✗
STaR, Reflexion ✓ ✗ ✗ ✗

RLMEC,
Retroformer ✓ ✓ ✗ ✗

Iterative RPO,
RICO-GRPO ✓ ✗ ✓ ✗

RICL (Ours) ✓ ✗ ✓ ✓

D Comparison of Training Times

Table 2: Training time (in minutes) required for each algorithm on different tasks, along with the
GPU setup used.

Method goto pickup pick_up_seq_go_to open GPU Type
RWR 72 69 232 227 NVIDIA A40 × 2
RICOL 96 95 594 585 NVIDIA A40 × 2
PPO (10M) 258 257 234 198 GeForce RTX 2080 Ti × 1
PPO (3B) 1440 1440 1440 1440 NVIDIA A40 × 4

E Environments

E.1 1D Key-Door Environment

Key DoorCorridor

Figure 7: An illustration for the 1D Key-Door scenario.

As illustrated in Figure 7, the environment consists of a 1D grid world where the agent can traverse
along the x-axis. The key is located at the leftmost grid cell, and the door is positioned at the rightmost
grid cell. Initially, the agent starts without holding the key, aiming to move left to retrieve the key
and subsequently move right to unlock the door. The corridor length used in the paper is 10. The
available action includes {move left, move right, pick up the key, unlock the door}. The prompt can
be found in Figure 8 and Figure 9.

For any given policy, we can compute the corresponding transition matrix P , where the entry in the
i-th row and j-th column represents the probability of the agent transitioning from state si to state sj
in a single step. The ground truth value function V can then be computed as:V = (I − γP)−1R,
where γ is the discount factor and R is the reward function. Once the value function is determined,
and given that the environment is deterministic, we can compute the advantage function using the
following formula:A(s, a) = V (s) − r(s, a) − γV (s′) where s′ is the next state resulting from
applying action a in state s, and r(s, a) is the immediate reward received when transitioning from s
to s′ by taking action a.

21

You are a helpful navigation agent.

Please thoroughly review your goal, the available actions, objects around you, and any advice from experts, if

available, and respond to the question strictly adhering to this specified format: ACTION: [your_answer]

System Prompt

User Prompt

Your goal is to open the locked door. You can choose to: move left, move right, pick up the key, or unlock

the door. You see the locked door 200 meters away on your right. You don't have the key. You see a key on the

ground around you. After reviewing the rules of the environment, your goal and objects around you, what do

you do next to achieve the goal?

Figure 8: The prompt used for the LLM policy in the 1D Key-Door scenario.

I will provide you with a trajectory starting from step 0 and the state at step 0.

Firstly, you have to analyze the task, the goal, and the current state, generate a rough plan.

Then, based on this trajectory, you need to evaluate whether the decision you made at step 0 was correct.

Additionally, if given another opportunity, how would you modify it, if needed?

Provide concise verbal feedback as a guideline for others new to this task and facing the same state in the future.

If the policy is generally correct, you can reply with "No modifications needed."

After providing your explanation, output your final feedback by strictly following this format: "Verbal Feedback:

[your_answer]"

System Prompt

User Prompt

Trajectory/state (skip due to the space limit)

Figure 9: The prompt used for the LLM reflector in the 1D Key-Door scenario.

22

(a) goto (b) pickup (c) pick_up_seq_go_to (d) open

Figure 10: Screenshots of four BabyAI scenarios, where the agent is partial-observable.

E.2 BabyAI Environment

We evaluate our algorithm in the BabyAI environment [Chevalier-Boisvert et al., 2018], a 2D grid
world where the player navigates an agent to accomplish specified tasks. We use BALROG’s [Paglieri
et al., 2024] implementation of the environment. We test our algorithm on four scenarios: goto,
pickup, pick_up_seq_go_to, and open. As shown in Figure 10, the player directs the agent (a red
triangle) toward a specified local object or manipulate it. The environment is partially observable,
with the agent having a 7x7 window of visibility in front of it, viewed from an egocentric perspective.
The agent can perform six actions: Turn Left, Turn Right, Move Forward, Pickup, Drop, and Toggle.
Both input and output for the tasks are presented in text form. The prompt can be found in Figure 11
and Figure 12. We did two editions to the BabyAI environment. Firstly, following Ren et al. [2023],
we modify the policy prompt so that its output is constrained to a single character between A and F,
with each character corresponding to a specific action. This ensures that the probability of each action
is not biased by differences in token length. Secondly, we set the maximum episode length to 16 for
the goto and pickup tasks, and 32 for the pick_up_seq_go_to and open tasks. This early truncation
improves sample efficiency. All baseline algorithms are evaluated using the updated environment to
ensure a fair comparison.

You are an agent playing a simple navigation game. Your goal is to {mission}.

The following are the possible actions you can take in the game, followed by a short description of each action:

"A": "turn to the left",

"B": "turn to the right",

"C": "take one step forward",

"D": "pick up the object one step in front of you",

"E": "drop the object that you are holding",

"F": "manipulate the object in front of you",

In a moment I will present you an observation. Tips:

- Once the desired object you want to interact or pickup in front of you, you can use the 'toggle' action to interact with it.

- It doesn't make sense to repeat the same action over and over if the observation doesn't change.

- answer the alphanumerical action, not the description.

PLAY!

System Prompt

User Prompt

Current Observation:

a wall 3 steps forward

a wall 1 step right

You always have to output one of the above actions at a time and no other text. You always have to output an action

until the episode terminates.

Figure 11: The prompt used for the LLM policy in all the BabyAI scenarios.

23

You are an agent playing a simple navigation game. Your goal is to {mission}.

The following are the possible actions you can take in the game, followed by a short description of each action:

"A": "turn to the left",

"B": "turn to the right",

"C": "take one step forward",

"D": "pick up the object one step in front of you",

"E": "drop the object that you are holding",

"F": "manipulate the object in front of you",

System Prompt

User Prompt

You are a coach that can provide feedback to the agent.

I will provide you the observation at time step t and the action taken by the agent at time step t.

Then I will provide you the trajectory after that.

Your task is to carefully analyze the trajectory and reflect on the agent’s decision at time step t.

If the agent were to face the same situation again (observation at time step t), what advice would you give to better

achieve the goal?

Provide your feedback as a concise and informative string.

The observation at time step t is: {o_t}

The action taken by the agent at time step t is: {a_t}

The trajectory after that is: {traj}

Provide a concise, specific verbal feedback that can help the agent improve its performance when it encounters state

t again to help it achieve the goal.

Breifly analyze the agent's decision at time step t and the consequences of the action then provide the feedback.

You should always follow the format:

Your goal: [your goal]

state t: [the state at time step t]

action t: [the action taken by the agent at time step t]

state t+1: [the state at time step t+1]

analyze: [The agent took action t in state t and transitioned to state t+1. Analyze the decision and its consequences,

does the action help the agent achieve the goal or make progress?]

Conclusion: [Based on the helpfulness, will you suggest the agent to take action t again, why?]

Feedback: [your concise verbal feedback that can help the agent improve its performance]

Figure 12: The prompt used for the LLM reflector in all the BabyAI scenarios. Only the Feedback
part is extracted and used for RICL’s in-context policy updates.

24

F PPO Implementation Details

We implement PPO (3B) based on the VeRL RLVR framework [Sheng et al., 2025], integrated with
our own multi-turn dialogue pipeline. Below, we outline the key implementation details.

State: We largely follow the prompt template provided by the BALROG benchmark [Paglieri et al.,
2024]. To efficiently manage context length, we include only the two most recent state–action pairs
in the prompt. RICOL adopts the same context management strategy to ensure a fair comparison
between our method and the baseline.

Reward: We employ a sparse binary reward scheme, assigning a single positive reward at the end of
a successful trajectory and zero otherwise. This reward structure is applied consistently to both our
method and the baselines. Unlike PPO, our algorithm additionally leverages dense implicit rewards
derived from the LLM policy, improving sample efficiency.

Actions: The environment features a discrete action space consisting of move_forward,
turn_right, turn_left, pickup, drop, and toggle. We assign a penalty of −0.1 to LLM
agents when they select an invalid action.

G RICL can Identify Critical States in Sequential Decision-Making

Move to the Key
Pick-up the Key

Open the Door

States

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
rit

ic
al

 S
co

re RICL
GT
Verbal

Figure 13: Comparison of critical states identified by RICL and verbal credit assignment. The x-axis
represents a sequence of states: the agent first moves toward the key over 9 steps, picks up the key,
then moves toward the door over another 9 steps, and finally opens the door. The y-axis indicates the
score reflecting how critical each state is, where GT denotes the ground truth. The results show that
both algorithms correctly identify the “pick up the key” action as a critical state-action pair. However,
only RICL additionally identifies some of the earlier states in the “move to the key” phase as critical.

Here, we demonstrate that RICL assigns higher credits to critical states in the environment. Critical
states are defined as those where policy adjustments lead to greater performance gains. For the
sampling policy π0 and an improved policy π, DKL(π(·|s)||π0(·|s)) serves as a measure of how
significantly the policy needs to be adjusted at state s to achieve policy improvement (from π0(·|s) to
π(·|s)). Thus, it can be used as a criterion for identifying critical states. Specifically, π can be πgt
or πRICL (as defined in Section 6.2) to identify the critical states with the ground-truth policy or the
RICL-updated policy, respectively.

Figure 13 depicts the (normalized) critical score (i.e., vπ = DKL(π(·|s)||π0(·|s))) in the 1D Key-
Door scenario using LLaMA-3.1-8B-Instruct as π0. The yellow curve shows two peaks in the critical
score vπgt . The right peak corresponds to the state – picking up the key, which is critical in the 1D
Key-Door scenario. The left peak corresponds to a state where the expert decides to move toward
the key. Due to imperfections in π0, this state also becomes critical. The blue curve in Figure 2
represents vπRICL . The peaks of the blue curve align with those of the yellow curve (i.e., the ground
truth), demonstrating that RICL effectively identifies critical states.

25

We further compare RICL with methods that explicitly utilize LLMs for credit assignment [Pignatelli
et al., 2024] (represented by the green curve in Figure 13). Specifically, these methods prompt an
LLM with a trajectory and ask it to identify the critical state within the sequence. We evaluate this
approach on 1000 distinct trajectories, using the frequency with which a state s is labeled as critical to
compute its critical score. As shown by the green curve in Figure 13, this method can only identify the
"pick-up-the-key" state as critical. It fails to detect the left peak of the yellow curve. This limitation
arises because identifying this critical state requires knowledge of the sampling policy π0, which is
provided to but overlooked by this baseline approach.

H Comparisons between Retroformer and RICOL

First, Retroformer [Yao et al., 2023] fine-tunes a reflector LLM to generate prompts for a fixed actor
LLM, whereas our method fine-tunes an actor LLM using guidance from a fixed reflector LLM.
The objectives of the two approaches are fundamentally orthogonal. Second, Retroformer relies on
trajectory-level sparse rewards for LLM fine-tuning, whereas RICL leverages step-level dense training
signals. Specifically, Retroformer requires rolling out two trajectories – one with reflector-generated
hints (τ1) and one without (τ2) – and computes the reward as the return difference between the
two, which is then used to fine-tune the reflector. In contrast, our method applies step-level dense
supervision by estimating the advantage function at each time step. This is computed based on the
change in policy before and after the in-context update: log πin-context updated(a|s)

πsampling(a|s) . In short, for an episode
of length n, RICL collects n supervised signals from n environment steps, while Retroformer
requires 2n environment steps to obtain just one supervision signal.

Retroformer estimates ∆(s0, feedback) = V πin-context updated(s0)− V πsampling(s0), i.e., the value difference
between two policies, using the difference in trajectory returns: Reward(τ1) − Reward(τ2). In
contrast, our method only requires estimating the advantage function under a single policy, πsampling,
defined as A(s, a) = Qπsampling(s, a)− V πsampling(s). This is generally more sample-efficient. The fol-
lowing experiments use the Monte Carlo method to estimate both quantities. The table below reports
the mean squared error (MSE) between the estimated and ground truth values of ∆(s0, feedback)
and A(s, a).

Table 3: Approximation errors vs. number of sample trajectories.
Number of Sample Trajectories 1,000 10,000 100,000 1,000,000
MSE on A(s, a) 0.1287 0.0492 0.0492 0.0454
MSE on ∆(s0, feedback) 0.2763 0.2788 0.2713 0.2641

The results indicate that, under Monte Carlo sampling, Retroformer requires significantly more
trajectories than our method to achieve accurate value estimations. Further, as shown in Figure 2
of the main paper, our actual sampling strategy (i.e., RICL) achieves over 100× greater sample
efficiency compared to the Monte Carlo baseline. Altogether, these findings demonstarte that our
approach is substantially more sample-efficient than Retroformer in terms of value estimation.

26

	Introduction
	Related Works
	Preliminary
	Retrospective In-Context Learning for Temporal Credit Assignment
	LLMs as Policies
	Implementation Details
	Retrospective In-Context Learning

	Retrospective In-Context Online Learning
	Policy Improvement based on RICL
	Pipeline of RICOL

	Experiments
	Environments
	Sample Efficiency of RICL in Credit Assignment (RQ1)
	RICL Enables More Reliable In-Context Updates via Retrospective Design (RQ2)
	Benchmarking RICOL (RQ3)
	RICOL Benefits from Credit Assignment (RQ3)
	RICOL is Robust to Noisy Verbal Feedback (RQ2)

	Conclusion
	Acknowledgement
	Derivation of the Loss Function
	Proof of Theorem 4.1
	Related Works
	Comparison of Training Times
	Environments
	1D Key-Door Environment
	BabyAI Environment

	PPO Implementation Details
	RICL can Identify Critical States in Sequential Decision-Making
	Comparisons between Retroformer and RICOL

