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Figure 1: Episodic, Reset-Free, and Reset-Minimizing RL. In standard (i.e. episodic) reinforce-
ment learning (RL) agents have their environments reset after every success or failure, an expensive
operation in the real world. In Reset-Free RL (RF-RL), researchers have designed “reset games”
which allow for learning so long as special care is taken to avoid irreversible transitions (e.g. an
apple falling out of reach). We consider Reset-Minimizing RL (RM-RL) where in realistic and dy-
namic environments agents may request human interventions but should minimize these requests.

Put potato into pan

1 Introduction

Episodic training, where an agent’s environment is reset to some initial condition after every success
or failure, is the de facto standard when training embodied reinforcement learning (RL) agents.
Work in learning without any resets, i.e. Reset-Free RL (RF-RL) [1, 2, 3,4, 5, 6,7, 8, 9, 10], is
very promising but is plagued by the problem of irreversible transitions which hinders learning.
Moreover, the limited state diversity and instrument setup encountered during RF-RL means that
works studying RF-RL largely do not require their models to generalize to new environments.

In this work, we instead look to minimize, rather than completely eliminate, resets while build-
ing visual agents that can meaningfully generalize. Refer to Fig 1 for comparisons with episodic,
RF-RL, and our proposed Reset-Minimizing RL (RM-RL). We propose a new Stretch Pick-and-
Place (STRETCH-P&P) benchmark designed for evaluating generalizations across goals, cosmetic
variations, and structural changes. Moreover, towards building performant reset-minimizing RL
agents, we propose unsupervised metrics to detect irreversible transitions and a single-policy train-
ing mechanism to enable generalization. Our proposed approach significantly outperforms prior
episodic, reset-free, and reset-minimizing approaches achieving higher success rates with fewer re-
sets in STRETCH-P&P and another popular RF-RL benchmark. Finally, we find that our proposed
approach can dramatically reduce the number of resets required for training other embodied tasks, in
particular for RoboTHOR ObjectNav we obtain higher success rates than episodic approaches using
99.97% fewer resets. The full paper is available at https://arxiv.org/abs/2303.17600.
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(a) Sawyer Peg (b) STRETCH-P&P (c) ObjectNav

‘ IND OoD Resets Pos Vis OBJ ALL Resets ‘ Success SPL  Resets
Ours 1.00+0.00 0.98+0.02 113.3+7.5 0.93+0.07 0.78+0.02 0.07 0.02 678.7+40 Ours 0.551 0.275 635
FB-RL+GT | 1.00+0.00 0.864+0.08 304.0+0.0  0.29+0.02 0.204+0.00 0.02 0.007 890+£236.5 H=300| 0355 0.167 1M
Periodic 1.00£0.00 0.98+0.02 303.3+1.0  0.054+0.04 0.04£0.04 0.01 0.00 592.04+0.0 H=10k | 0.418 0218 10k
Episodic 1.004-0.00  0.9540.00 30k 0.5440.04 0.36+0.02 0.03 0.00 66k H=c0 0339 0.178 60
[10] 0.804+0.20 0.054+0.05 128.84+44.0 [11] 0504 0.234 2M

Table 1: Sawyer Peg for in-domain and out-of-domain random box hole tests within 3M training
steps, with an extra comparison with supervised method [10]. STRETCH-P &P for four evaluations
when budget=1, trained for 3M steps. ObjectNav Benchmark success and SPL evaluating in the
unseen validation set, training for 100M steps.

2 The Stretch Pick-and-Place Benchmark

We build our benchmark within AI2-THOR [12], a high visual fidelity simulator of indoor en-
vironments. During evaluation in STRETCH-P&P, a Stretch RE1 Robot is placed before a table
within a room. On this table are two objects, a container and a small household item. The agent
is given a text description of a task involving how the household item should be moved where
this instruction can be semantic e.g., “Put apple into plate”, or point-based, “Put the apple at X
where X encodes the relative position between the goal coordinate and the agent’s gripper. To study
generalization, we consider four evaluation settings: (1) Positional out-of-domain (P0S-O0D): the
environment and objects are seen during training but object and goal positions are randomized to
be much more diverse. (2) Visually out-of-domain (VIS-O0D): object instances are the same as in
training but the lighting and the materials/colors of background objects will be varied. (3) Novel
objects (OBJ-O0D): none of the above visual augmentations will be applied but the container and
household object instances will be distinct from those seen during training. (4) All out-of-domain
(ALL-O0D): the agent experiences visual augmentations from (2), novel object instances as in (3),
and the addition of new background distractor objects simultaneously.

During training, the agent is placed before a table with a container and a household object. The ta-
ble, lighting, and object materials are all kept constant during training. Upon requesting a reset, the
agent’s position, as well as the position of the two objects, may be placed into any initial configura-
tion. As achieving this generalization may be challenging, we do consider allowing more diversity
to be introduced during training by allocating a budget for more than one seen object or container.

3 Methods

Measures of Irreversibility. Some irreversible transitions are explicit, e.g. a glass is dropped and
shatters. However, in a more complex real-world environment, they may be more subtle. In such
cases, the robot may find success challenging, but not strictly impossible. We refer to these states
that are difficult, but not impossible, to recover from as near-irreversible (NI) states. Intuitively,
undergoing an NI transition should correspond to a decrease in the degrees of freedom available to
the agent to manipulate its environment: that is, if an agent underwent an NI transition at timestep
1 then the diversity of states 7 (¢ 4+ 1), ..., 7(t) should be small compared to the diversity before
undergoing the irreversible transition. To formalize this, we can compute the above count, which we
call pw .4, (T¢), as
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where d : S H — Ry>g is some non-negative measure of diversity among states. As Qo q iS a
counting function, we can turn it into a decision function simply by picking some count N > 0

and deciding to reset when ¢, ¢4 > N. In our experiments we evaluate several diversity measures
d(s1,...,sy) including: (1) a dispersion-based method using an empirical measure of entropy or
the mean standard deviation of all s;, (2) a distance-based method using Euclidean distance or
dynamic time warping (DTW). )



Single Policy. In contrast to the multi-policy Forward-Backward RL (FB-RL) approaches used by
most works studying FB-RL, we aim to use a single policy to achieve RM-RL that can adapt to
general embodied tasks. Recall the objective for goal-conditioned POMDP in traditional episodic
RL: argmax, E [> ;2 7'7(st,a¢ | g)]. In FB-RL, the “forward” goal space is normally defined
as a singleton Gy = {g*} for the target task goal g* (e.g. the apple is on the plate). The goal
space for “backward” phase is then the (generally limited) initial state space G, = Z C S such that
Gr NGy = (. As the goal spaces in FB-RL are disjoint and asymmetric, it is standard for separate
forward/backward policies and even different learning objectives for training FB-RL agents. In our
setting, however, there is only a single goal space which, in principle, equals the entire state space
excluding the states we detect as being NI states.

4 Experiments

We consider three tasks in different embodied settings: the STRETCH-P&P, Sawyer Peg [13, 2],
and RoboTHOR ObjectNav [14] tasks. ! We compare against FB-RL with ground truth resets for
explicit irreversible states (FB-RL+GT) and a periodically resetting approach which resets every
fixed number, e.g. 10k, of steps (Periodic). All models are trained using the PPO [15] RL algorithm.
We use frozen CLIP [16] with CNN adapters to encourage visual generalization and language un-
derstanding for STRETCH-P&P tasks. The model used for Sawyer Peg is similar as [17, 18] but we
only use single CNN visual encoder that digests both views for parameter-efficiency. We use the
same ResNet50 CLIP architecture with only egocentric visual observation input for ObjectNav as
proposed in [11].

As shown in Table 1, our method achieves high success rates more consistently and with far fewer
resets than other baselines. Surprisingly our method is also more efficient in terms of training steps.
This suggests that our measures of NI transitions can consistently and accurately identify time-points
where a reset will be of high value for learning. Intuitively the forward-backward gameplay of FB-
RL models should be easier to learn than when using random targets as the space of goal states of FB-
RL is a small subset of those used when randomizing targets. However, we demonstrate that random
targets introduce little additional difficulty over FB-RL, and provide significant benefit in positional
generalizations. More details can be found at https://zcczhang.github.io/rmrl.

"Visualizations at https://zcczhang.github.io/rmrl
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