Named Entity Recognition
as Graph Classification

Ismail Harrando®™ and Raphaél Troncy

EURECOM, Sophia Antipolis, France
{ismail.harrando,raphael.troncy}@eurecom.fr

Abstract. Injecting real-world information (typically contained in Knowl-
edge Graphs) and human expertise into an end-to-end training pipeline
for Natural Language Processing models is an open challenge. In this
preliminary work, we propose to approach the task of Named Entity
Recognition, which is traditionally viewed as a Sequence Labeling prob-
lem, as a Graph Classification problem, where every word is represented
as a node in a graph. This allows to embed contextual information as
well as other external knowledge relevant to each token, such as gazetteer
mentions, morphological form, and linguistic tags. We experiment with a
variety of graph modeling techniques to represent words, their contexts,
and external knowledge, and we evaluate our approach on the standard
CoNLL-2003 dataset. We obtained promising results when integrating
external knowledge through the use of graph representation in compari-
son to the dominant end-to-end training paradigm.

Keywords: Named Entity Recognition - Graph Classification.

1 Introduction

Transformer-based language models such as BERT [2] have tremendously im-
proved the state of the art on a variety of Natural Language Processing tasks
and beyond. While it is hard to argue against the performance of these lan-
guage models, taking them for granted as the fundamental building-block for
any NLP application stifles the horizon of finding new and interesting methods
and approaches to tackle quite an otherwise diverse set of unique challenges re-
lated to specific tasks. This is especially relevant for tasks that are known to be
dependent on real-world knowledge or domain-specific and task-specific exper-
tise. Although these pre-trained language models have been shown to internally
encode some real-world knowledge (by virtue of being trained on large and ency-
clopedic corpora such as Wikipedia), it is less clear which information is actually
learnt and how it is internalized, or how one can inject new external information
(e.g. from a knowledge base) into these models in a way that it does not require
retraining them from scratch.

In this work, we propose a novel method to tackle Named Entity Recognition,
a task that has the particularity of relying on both the linguistic understanding
of the sentence as well as some form of real-world information, as what makes a

2 Harrando and Troncy

Named Entity is the fact that it refers to an entity that is generally designated by
a proper name. Since graphs are one of the most generic structures to formally
represent knowledge (e.g. Knowledge Graphs), they constitute a promising rep-
resentation to model both the linguistic (arbitrarily long) context of a word as
well as any external knowledge that is deemed relevant for the task to perform.
Graph connections between words and their descriptions seems to intuitively
resemble how humans interpret words in a sentence context (how they relate to
preceding and following words, and how they relate external memorized knowl-
edge such as being a ”city name” or "an adjective”). Hence, we propose to cast
Named Entity Recognition as a Graph Classification task, where the input of
our model is the representation of a graph that contains the word to classify, its
context, and other external knowledge modeled either as nodes themselves or as
node features. The output of the classification is a label corresponding to the
entity type of the word (Figure 1).

)
Third - @ -
v —
was %) B-Noun Phrase
g o
i £ g
>
Ford 2 =2 g
— Male 1st name 3 2
¢ 2 @ @,
& : W=
with =1 =l i
3 (Famiy name) 5
< =13
v 2 s
& italized =
&
35,563 @
¢ ©)

Fig. 1. Left: Traditional sequence tagging model. Right: Each word in a sentence be-
comes the central node of a graph, linked to the words from its context, as well as other
task-related features such as grammatical properties (e.g. ”Proper Noun”), gazetteers
mentions (e.g. ”Car Brand”) and task-specific features (e.g. ”Capitalized”). The graph
is then embedded which is passed to a classifier to predict an entity type.

2 Approach

In order to perform Named Entity Recognition as a Graph Classification task, the
”word graph” needs to be transformed into a fixed-length vector representation,
that is then fed to a classifier, e.g. a feed-forward neural network (see figure 1).
This graph representation needs to embed the word to classify (the central node),
as well as its context — words appearing before and after it — and its related tags
(properties such as gazetteers mention, grammatical role, etc). This formalization
is interesting because it allows to represent the entire context of the word (as
graphs can be arbitrarily big), to explicitly model the left and the right context

Named Entity Recognition as Graph Classification 3

separately, and to embed different descriptors to each word seamlessly (either as
node features or as other nodes in the graph) and thus help the model to leverage
knowledge from outside the sentence and the closed training process. This is a
first difference with the traditional sequence labeling methods that only consider
a narrow window the tokens to annotate. While we posit that this method can
integrate any external data in the form of new nodes or node features in the
input graph, we focus on the following properties that are known to be related
to the NER task:

— Context: which is made of the words around the word we want to classify.

— Grammatical tags: we use the Part of Speech tags (P0S) e.g. ‘Noun’, as
well as the shallow parsing tags (chunking) e.g. ‘Verbal Phrase’.

— Case: in English, capitalization is an important marker for entities. We thus
add tags such as: ‘Capitalized’ if the word starts with a capital letter, ‘All
Caps’ if the word is made of only uppercase letters, and so on.

— Gazetteers: we generate lists of words that are related to potential en-
tity types by querying Wikidata for labels and synonyms corresponding to
entities belonging to types of interest such as Family Name, Brand, etc.

The literature on Graph Representations shows a rich diversity in approaches
[1,4], but for our early experiments, we choose one candidate from each of the
main representation families: a neural auto-encoder baseline, Node2Vec for node
embeddings, TransE for Entity Embeddings, and a Graph Convolutional Net-
work based on [4]. This is admittedly a small sample of the richness that can be
further explored in the future, both in terms of the models and the way the input
graph is constructed (how to model the context and the added knowledge).

3 Experiments and Results

3.1 Experimental protocol

To train each of the aforementioned models, we construct a dataset! by going
through every word in every document from the CoNLL training dataset, and
build its graph (Figure 1). Each of these graphs is then turned into a fixed-
length vector that is fed to a neural classifier (Section 3.2). For each of the
representations, we fine-tune the hyper-parameters using the ConLL validation
(dev) set. We report the Micro-F1 and Macro-F1 scores for all trained models in
Table 1 for both the validation and the test sets together with the best currently
reported performance approach from the state of the art?.

3.2 Methods

To evaluate the approach, we selected the following methods to generate graph
embeddings:

! https://github.com/Siliam/graph_ner/tree/main/dataset/conll
2 See also http://nlpprogress.com/english/named_entity_recognition.html

4 Harrando and Troncy

1. Binary Auto-encoder: we represent the word graph as a binary vector. We
concatenate one-hot embeddings of the word, its left and right context, and all
other extra tags in the vocabulary (e.g. POS tags, gazetteers mention, etc.). We
use this "flat” representation of the graph as a baseline that incorporates all
the external data without leveraging the graph structure. We first train a neural
encoder-decoder (both feed-forward neural networks with one hidden layer) to
reconstruct the input binary representation of the graph. We then use the en-
coder part to generate a graph embedding to feed to our final classifier.

2. Node2Vec: we generate the graph representing all nodes in the training set
(all words as related to their context, with the external knowledge tags also rep-
resented as nodes), and then we use Node2Vec|[3] to generate embeddings for all
nodes. The final input graph representation is obtained by averaging all nodes
representations, i.e. the word, its context and its tags.

3. TransE: we generate the graph as with the Node2Vec method, except that
the edges between the different nodes (entities) are now labeled relations such
as "before’, ’after’, 'pos’. We average the representations of each of these nodes
to obtain a graph embedding.

4. GCN: unlike the previous approaches where a graph embedding is generated
before the training phase, we can directly feed the graph data into a GCN and
train it end-to-end, thus allowing the network to learn a task-specific graph rep-
resentation. We base our model on GraphSAGE-GCN [4], using an architecture
based on this model from the PyTorch Geometric library® that we modify to
account for additional node features (tags, gazetteers classes, etc). This allows
the network to learn a graph representation that is specific to this task.

3.3 Results

In Table 1, we observe a significant decrease in performance for all models be-
tween the evaluation and test sets (with a varying intensity depending on the
choice of the model) that is probably due to the fact that the test set contains
a lot of out-of-vocabulary words that do not appear in the training set. Thus,
they lack a node representation that we can feed to the network in inference
time. We also see that adding the external knowledge consistently improve the
performance of the graph models on both Micro-F1 and Macro-F1 for all mod-
els considered. Finally, while the performance on the test set for all graph-only
models is still behind LUKE, the best performing state of the art NER model
on ConLL 2003, we observe that these models are significantly smaller and thus
faster to train (in matters of minutes once the graph embeddings are gener-
ated), when using a simple 2-layers feed-forward neural as a classifier. These
preliminary results show promising directions for additional investigations and
improvements.

4 Conclusion and Future work
While the method proposed in this paper shows some promising results, the
performance on the ConLL 2003 test set is still significantly lower than the

3 https://github.com/rustyls/pytorch_geometric/blob/master/examples/
proteins_topk_pool.py

Named Entity Recognition as Graph Classification 5

[Method [Dev m-F1 Dev M-F1[Test m-F1 Test M-F1

Auto-encoder 91.0 67.3 90.3 63.2
Auto-encoder+ 91.5 71.7 91.5 70.4
Node2Vec 93.3 81.6 90.0 68.3
Node2Vec+ 94.1 82.1 91.1 72.6
TransE 91.8 75.0 91.7 70.0
TransE+ 93.6 78.8 91.9 74.5
GCN 96.1 86.3 92.9 78.8
GCN+ 96.5 88.8 94.1 81.0
LUKE [5] 94.3

Table 1. NER results with different graph representations (CoNLL-2003 dev and test
sets). The entries marked with “+” represent the models with external knowledge
added to the words and their context.

best state-of-the-art Transformer-based method as of today. However, we have
made multiple design choices to limit the models search space and we believe
that additional work on the models themselves (different architectures, hyper-
parameters fine-tuning, adding attention, changing the classifier) can improve
the results. The drop of performance from the validation to the test set is prob-
ably due to the lack of any external linguistic knowledge outside of the training
set, which can be overcome by enriching the nodes with linguistic features such
as Word Embeddings. We will further study the gain from each of the added
external knowledge, and test the method on other specialized datasets in or-
der to demonstrate its value for domain-specific applications (fine-grained entity
typing). To facilitate reproducibility, we published the code of our experiments
at https://github.com/D2KLab/GraphNER.

Acknowledgments

This work has been partially supported by the French National Research Agency
(ANR) within the ASRAEL (ANR-15-CE23-0018) and ANTRACT (ANR-17-
CE38-0010) projects, and by the European Union’s Horizon 2020 research and
innovation program within the MeMAD (GA 780069) project.

References

1. Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine Learning on
Graphs: A Model and Comprehensive Taxonomy. arxiv 2005.03675 (2021)

2. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. In: NAACL-HLT (2019)

3. Grover, A., Leskovec, J.: Node2vec: Scalable Feature Learning for Networks. In: 2
ACM International Conference on Knowledge Discovery and Data Mining (2016)

4. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive Representation Learning on Large
Graphs. In: NeurIPS (2017)

5. Yamada, 1., Asai, A., Shindo, H., Takeda, H., Matsumoto, Y.: Luke: Deep contex-
tualized entity representations with entity-aware self-attention. In: EMNLP (2020)

2nd

