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Abstract

We present a new framework for the evaluation of speech rep-

resentations in zero-resource settings, that extends and comple-

ments previous work by Carlin, Jansen and Hermansky [1]. In

particular, we replace their Same/Different discrimination task

by several Minimal-Pair ABX (MP-ABX) tasks. We explain the

analytical advantages of this new framework and apply it to de-

compose the standard signal processing pipelines for computing

PLP and MFC coefficients. This method enables us to confirm

and quantify a variety of well-known and not-so-well-known

results in a single framework.

Index Terms: zero-resource, speech representations, evalua-

tion framework, minimal-pair ABX task

1. Introduction

Speech recognition technology crucially rests on adequate

speech features for encoding input data. Several such fea-

tures have been proposed and studied (MFCCs, PLPs, etc), but

they are often evaluated indirectly using complex tasks like

phone classification or word identification. Such an evalua-

tion technique suffers from several limitations. First, it requires

a large enough annotated corpus in order to train the classi-

fier/recognizer. Such a resource may not be available in all lan-

guages or dialects (the so-called “zero or limited resource” set-

ting). Second, supervised classifiers may be too powerful and

may compensate for potential defects of speech features (for in-

stance noisy/unreliable channels). However, such defects are

problematic in unsupervised learning techniques. Finally, the

particular statistical assumptions of the classifier (linear, Gaus-

sian, etc.) may not be suited for specific speech features (for in-

stance sparse neural codes as in Hermansky [2]). It is therefore

important to replace these complex evaluation schemes by sim-

pler ones which tap more directly the properties of the speech

features.

Here, we extend and complement the framework proposed

by Carlin, Jansen and Hermansky [1] for the evaluation of

speech features in zero resource settings. This framework uses

a Same-Different word discrimination task that does not depend

on phonetically labelled data, nor on training a classifier. It

assumes a speech corpus segmented into words, and derives a

word-by-word acoustic distance matrix computed by comparing

every word with every other one using Dynamic Time Warping

(DTW). Carlin et al. then compute an average precision score

which is used to evaluate speech features (the higher average

precision, the better the features).

We explore an extension of this technique through

Minimal-Pair ABX tasks (MP-ABX tasks) tested on a phonet-

ically balanced corpus [3]. This improves the interpretability

of the Carlin et al evaluation results in three different ways.

First, the Same/Different task requires the computation of a

ROC curve in order to derive average precision. In contrast, the

ABX task is a discrimination task used in psychophysics (see

[4], chapter 9) which allows for the direct computation of an

error rate or a d’ measure that are easier to interpret than aver-

age precision [1] and involve no assumption about ROC curves.

Second, the Same/Different task compares sets of words, and

as a result is influenced by the mix of similar versus distinct

words or short versus long words in the corpus. The ABX task,

in contrast, is computed on word pairs, and therefore enables

to make linguistically precise comparisons, as in word minimal

pairs, i.e. words differing by only one phoneme. Variants of

the task enable to study phoneme discrimination across talkers

and/or phonetic contexts, as well as talker discrimination across

phonemes. Because it is more controlled and provides a param-

eter and model-free metric, the MP-ABX error rate also enables

to compare performance across databases or across languages.

Third, we compute bootstrap-based estimates of the variability

of our performance measures, which allows us to derive confi-

dence intervals for the error rates and tests of the significance

of the difference between the error rates obtained with different

representations.

We provide technical details about our evaluation frame-

work in Section 2 and apply it to the analysis of a pipeline of

signal processing operations involved in the computation of the

standard PLP [5] and MFC [6] coefficients in Section 3.

2. Methods

2.1. Stimuli

We used the CV subset of the Articulation Index Corpus (LDC-

2005S22) [3], consisting in all possible Consonant-Vowel syl-

lables of American English pronounced in isolation by 12 male

and 8 female speakers, i.e., a total of 6839 stimuli recorded and

sampled at 16KHz. We removed the silence surrounding each

syllable through manual correction of the output of a speech

activity detector.



2.2. Tasks

ABX tasks consist in presenting three stimuli A, B and X. A and

B differ by some minimal contrast, and X is matched to either A

or B. We use three variants of the task: in the Phoneme across

Talker task (PaT), A and B differ by one phoneme (either the

vowel or the consonant) and are spoken by the same talker. X is

spoken by a different talker but has the same phonemes as either

A or B. It measures talker invariance in phoneme discrimina-

tion. In the Phoneme across Context task (PaC), A and B differ

only by one phoneme and are spoken by the same talker. X,

also spoken by the same talker, matches A or B in one phoneme

and differs from both in the other phoneme, measuring con-

text invariance in phoneme discrimination. In the Talker across

Phoneme task (TaP), A and B are spoken by two different speak-

ers and are phonemically identical. X is spoken by the same

speaker as either A or B, but differs from them by one segment,

enabling the measurement of talker discrimination (see Table 1

for sample stimuli).

Table 1: Example of a possible choice of the A, B and X stimuli

for each MP-ABX task. sp stands for speaker.

Task A B X Answer

PaT /ba/ sp1 /ga/ sp1 /ba/ sp2 A

PaC /ba/ sp1 /ga/ sp1 /gu/ sp1 B

TaP /ba/ sp1 /ba/ sp2 /ga/ sp1 A

2.3. Model of the MP-ABX tasks

To perform these tasks on the basis of the speech representations

a, b and x of the stimuli A, B and X, we begin as in [1] by

computing the DTW distances d(a, x) and d(b, x) between A,

X and B,X on the basis of an underlying frame-based distance

metrics. Then, the sign of d(a, x)−d(b, x), is used to determine

the response of the model (respectively B or A for a positive or

negative sign) and an error rate is computed. The choice of the

underlying frame-based metrics is important and may impact

the results. Here, we follow the recommendation of [1] and use

the cosine distance in all our tests.

2.4. Analyses

The error rate score for a given MP-ABX task is defined as the

average error rate over all the relevant triplets of stimuli A, B

and X in the database. For the PaT and PaC tasks, we addi-

tionally compute average error rates over consonantal or vo-

calic constrats. We compute confidence intervals for these aver-

age error rates by resampling across talkers. We also resample

across talkers to perform significance tests when we test error

rates differences.

2.5. The classical MFC/PLP signal processing pipeline

As in [7], we apply our evaluation framework to representations

obtained at various stages of a speech processing pipeline lead-

ing to standard MFC [6] or PLP [5] coefficients with or without

RASTA filtering [8]. We start from a short-term power spec-

trum representation of the speech waveform obtained through

a Fast Fourier Transform of 25ms frames taken each 10ms.

Then we form one of 16 representations by making a suc-

cession of 4 binary choices (see Figure 1): use a linear or

a Mel frequency scale; weight frequency channels according

to human’s equal-loudness contour or not; cubic root com-

press the dynamic range of frequency channels or not; ap-

ply RASTA filtering or not. We study these representations

with 2, 5, 8, 13, 22, 36, 60 and 100 frequency channels. To

complete our study of the MFC/PLP pipeline we apply Lin-

ear Predictive Coding to some of these 16 representations and

re-estimate a cepstrum from the filter coefficients. In partic-

ular, we obtain standard PLP coefficients through the follow-

ing path in the pipeline: Mel/equal-loudness/compression/no

RASTA/LPC/cepstrum estimation. We also apply a cepstral

transform (log plus DCT transform) to some of the represen-

tations and obtain the standard MFC coefficients through the

following path in the pipeline: Mel/no equal-loudness/no com-

pression/no RASTA/cepstral transform. We study these repre-

sentations with 2, 5, 8, 13, 22, 60 and 100 cepstral coefficients.

These pipelines were adapted from Dan Ellis’ audio toolbox [9].

!"#$%&'($)*%+,&-../0&

Linear 

1",(%$''2"3&

456/5&

No Yes 

Yes No 

No Yes No Yes 

.%$7+$3)8&')9:$&

;7+9:<:"+=3$''&#$2>?@3>&

Mel 

1",(%$''2"3&
Yes No 

456/5&

21.2% 

17.2% 17.2% 

15.1% 19.9% 15.1% 16.5% 

Figure 1: First stages in processing pipelines for the computa-

tion of standard MFC and PLP coefficients. The MP-ABX error

rate for the PaT minimal pair discrimination task is in italics.

The best pipelines are shown with plain arrows, and the best

scores are underlined. Parts of the pipeline not shown are indi-

cated by dashed arrows and the best error rate achieved in each

hidden part is indicated next to the arrow.

3. Results

3.1. First stages of the MFC/PLP pipeline

We first analyze the results for the 16 spectral representations

represented on Figure 1. We begin with the effect of the num-

ber of spectral channels on the MP-ABX error rate (Figure 2).

For a simple Mel-spectrum (Figure 2 (a)), the optimal number

of channels is highest in the TaP task (36), intermediate in the

PaC task (13) and lowest in the PaT task (8). The difference be-

tween the error rate for the optimal number of channels and the

error rates for neighboring number of channels is small in all

three tasks, but we find that it is significant for the PaC and PaT

tasks when resampling across talkers. This means that these

precise optimal values can be found robustly across talkers. We

also observed that the optimal number of spectral channels is

consistently higher in the PaC task than in the PaT task for the

8 representations from Figure 1 that are derived from a Mel-

spectra (Figure 2 (b)). These results are coherent with previ-

ous findings [5] that speaker-specific information is contained

in the fine details of the spectra, so that coarser spectral resolu-

tion yields features more invariant to speaker change.

Next, we compare the error rates of the different represen-

tations in the PaT task (Figure 1). The number of spectral chan-

nels is optimized for each feature independently. Using a Mel-

scale is clearly beneficial: the worst error rate for a represen-



!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

%" &" #" (" $&" %%" &)" )!" $!!"

!"#$%&%'()*+%,-

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

%" &" #" (" $&" %%" &)" )!" $!!"

!"#$%&%'.#$/%0/-

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

%" &" #" (" $&" %%" &)" )!" $!!"

()*+%,'!"#$%&%-

Number of spectral channels 

E
rr

o
r 

ra
te

 (
%

) 

(a) (b) 

*""""*"""""""""*"""""""""*""""""""""*""""""""*""""""""""*"""""""""*" *""""*"""""""""*"""""""""*""""""""""*""""""""*""""""""""*"""""""""*" *""""*"""""""""*"""""""""*""""""""""*"""""""""""""""""""""*"""""""""*"

!"

#"

$!"

$#"

%!"

%#"

()1+-

Phoneme/ 

Talker 

Phoneme/ 

Context 

O
p

ti
m

a
l 
n

b
 o

f 
C

h
a

n
n

e
ls

 

Figure 2: (a) Average MP-ABX error rate in each task for a simple Mel spectrum with various number of spectral channels. Error bars

represent 95% confidence intervals (sampled across talkers). The optimal number of channels is underlined and differences between

error rates for adjacent number of channels that are significant at a level α = 1% are indicated by a star. (b) Optimal numbers of

channels in the PaC and PaT tasks for the 8 representations from figure 1 that are derived from a Mel-scale.
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Figure 3: MP-ABX error rate in the three tasks for (a) a simple

Mel-scale or linear scale spectrum, (b) a Mel-scale spectrum

with or without cubic root compression, (c) a Mel-scale spec-

trum with or without equal-loudness weighting. Error bars rep-

resent 95% confidence intervals (sampled across talkers). Dif-

ferences significant at a level α = 5% and alpha = 1% are

indicated by one and two stars respectively.

tation using a Mel-scale (19.9%) is better than the best error

rate for a representation using a linear scale (21.2%). The best

representations are also consistently obtained when using cubic

root compression and RASTA filtering, which yield improve-

ments of 2.1% and 1.4% respectively of the error rate for the

best representation. The other effect we observe is more sur-

prising: equal-loudness filtering has a detrimental effect (3.4%

increase in error rate) in the absence of RASTA filtering. When

RASTA filtering is applied the effect of equal-loudness filtering

is wiped out.

We now look at the effect of the frequency scale, cubic-root

compression of the dynamic range and equaI-loudness weight-

ing in each task (Figure 3). Using a Mel-scale benefits strongly

to phoneme discriminability both across talker and contexts and

does not affect the ability to discriminate speakers. Cubic-root

compression benefits to phoneme discriminability across talker

and contexts too, but also to speaker discriminability. The ad-

verse effect of equal-loudness filtering on phoneme discrim-

inability occurs also across contexts and coincides with a slight
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Figure 4: (a) MP-ABX error rate in the three tasks for a cubic-

root compressed Mel-scale spectrum with RASTA filtering or

not. (b) Consonantal and vocalic MP-ABX error rates in the

PaC and PaT tasks for the same representations. Error bars

represent 95% confidence intervals (sampled across talkers).

Differences significant at a level α = 5% and alpha = 1%
are indicated by one and two stars respectively.

improvement of talker discriminability.

We next study the effect of RASTA filtering in the three

tasks (Figure 4(a)). We start from our best representation so

far: a cubic-root compressed Mel-sepctrum. RASTA filtering

improves the discriminability of phoneme across talkers at the

same time that it impairs discriminability of talkers across pho-

netic contexts thus performing a form of speaker normalization.

This is also supported by the absence of significant difference

between RASTA filtering and mean-variance normalization on

the discriminability of phonemes across contexts. We uncover

additional details on the coding properties of RASTA filtering

by looking at error rates for consonants and vowels separately

(Figure 4 (b)). RASTA filtering improves consonant coding and

impairs vowels coding across both contexts and talkers. More-

over, while RASTA filtering improves consonant coding in both

tasks by a comparable amount (3.7% and 3.4%) it impairs vowel

coding by a lesser amount in the PaT task (1.8%) than in the

PaC task (4.5%). All these results are coherent with the view of

RASTA filtering as a form of short-term adaptation, enhancing

transients in the signal that are useful for discriminating conso-

nants and removing speaker-specific steady-state information,



which is helpful in discriminating vowels within a given talker

but less so across talkers.

3.2. Standard MFC and PLP coefficients

We now investigate the final steps of the pipeline. First we study

the effect of the number of cepstral coefficients for standard

MFCC (Figure 5 (a)). The number of spectral channels had

a very small effect on the error rate in the three tasks with a

range of variation lower than 0.9% in the PaC, 1.2% in the PaT

task and 3% in the TaP task for any given number of cepstral

coefficients. By contrast, the number of cepstral channel has a

much bigger effect (Figure 5 (b)), similar to that of the number

of spectral channels in the absence of a cepstral transform (Fig-

ure 2 (a)). Best results were obtained with 22 spectral channels

in the Phoneme/Talker task, 60 in the Phoneme/Context task

and 100 in the Talker/Phoneme task with respectively 13, 8 and

36 cepstral coefficients, coherent with the idea that a coarser

spectral and cepstral resolution increases talker invariance and

in striking accord with usual choices for these parameters.

Next, we compare standard MFC and PLP features error

rates on the three tasks. In these and subsequent results each

representation is computed with 47 spectral channels (1 chan-

nel per Mel) and 13 cepstral coefficients. MFCC (Table 2, 1)

outperform PLP coefficients (Table 2, 2) on all tasks. To test

whether this is due to the detrimental effect of equal-loudness

filtering previously found we tested PLP coefficients computed

without equal-loudness filtering (Table 2, 3). Now PLP coef-

ficients are slightly better than MFCC except on the TaP task.

We next look at MFCC computed with cubic-root compression

(Table 2, 4) and PLP computed without it (Table 2, 5). There is

no clear pattern of improvement or worsening in the result. This

may be because the logarithm of the spectra is taken to obtain

cepstral coefficients, which constitute a form of compression of

the dynamic range, so that the benefits of doing an additional

cubic-root compression are not clear. We also see that the bene-

fit of using a Mel-scale (Table 2, 1) instead of a linear scale (Ta-

ble 2, 6) and the talker normalization effects of using RASTA

filtering (Table 2, 7) carry on to the cepstral domain.

4. Conclusion

We built upon previous work by Carlin, Jansen & Hermansky

[1] to propose a new framework for the evaluation of speech

Table 2: MP-ABX error rates (%).

Feature PaC PaT TaP

1 standard MFC 13.7 17.8 17.7

2 standard PLP 14.2 18.3 18.9

3 PLP unequalized 13.6 17.6 19.5

4 MFC compressed 13.7 18.1 18.2

5 PLP uncompressed 14.2 17.6 20.6

6 MFC linear 17 24.9 16.2

7 MFC RASTA 13.8 16.7 21

representations in the zero or low resource setting. We used

several MP-ABX tasks to provide rich and easily interpretable

information about the coding properties of each representation.

We demonstrated the effectiveness of our framework by apply-

ing it to a pipeline of signal processing operations involved in

the computation of standard MFC and PLP coefficients. We

were able to confirm quantitatively some-well known results,

such as the talker-normalization properties of RASTA filtering

and also uncover a few unexpected results, such as the detrimen-

tal effect of equal-loudness weighting of the frequency channels

on the discriminability of phonemes. In future work the coding

properties of speech representations could be further character-

ized by looking at more detailed aspects, such as, for example,

the coding of specific linguistic features. Also, other classical

signal processing techniques (e.g. mean-variance normaliza-

tion, cepstral liftering or delta-coefficients), more sophisticated

models (e.g. [10, 11, 12, 13, 14, 15, 16, 17, 18]), other metrics

[19] as well as human performance could be investigated within

our framework.
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