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Abstract

Using medical data for Deep Learning mod-001
els can be highly beneficial, but protecting002
sensitive and personal patient information in003
the clinical field is critical. One of the most004
common ways to use this data while protect-005
ing patient privacy is by generating synthetic006
text with Large Language Models (LLMs) us-007
ing differential privacy (DP). Although DP008
techniques, such as the Differentially Private009
Stochastic Gradient Descent (DP-SGD), are of-010
ten assumed to guarantee privacy, they require011
specific conditions to be met. This study shows012
how memorization in LLMs can occur when013
these privacy guarantees are compromised, po-014
tentially leading to the leakage of personal and015
sensitive information in generated clinical re-016
ports. If these gaps are addressed, DP could017
offer more reliable safeguards for clinical data,018
improving privacy without sacrificing utility.019

1 Introduction020

The utilization of Electronic Health Records021

(EHRs) for Natural Language Processing (NLP)022

offers numerous benefits, particularly in enhancing023

healthcare research and outcomes (Dalianis, 2018).024

However, protecting the privacy of the patients in025

these records is crucial. Privacy is recognized as a026

core human right in the Universal Declaration of027

Human Rights, placing the control individuals have028

over their personal information on par with the au-029

thority exercised by corporations and governments030

(Nampewo et al., 2022).031

According to the 2021 Annual Report of the032

United Nations High Commissioner, privacy re-033

flects human dignity and plays a critical role in034

safeguarding individual autonomy and identity. In035

today’s digital age, privacy concerns are even more036

pronounced as personal data—often considered a037

valuable commodity—can be collected, sold, and038

potentially misused. This is particularly concern-039

ing when sensitive health data is involved (e.g.,040

apps that collect reproductive information, or dat- 041

ing apps that ask for HIV status) (Citron, 2022). 042

The mishandling of such data not only threatens 043

privacy but can also foster discrimination and erode 044

human dignity. 045

There are several techniques to protect pa- 046

tient privacy in EHRs, such as Named Entity 047

Recognition (NER) for de-identification or pseudo- 048

anonymization (Aracena et al., 2024; Verkijk and 049

Vossen, 2022; Vakili et al., 2023). However, syn- 050

thetic text generation with Differential Privacy (DP) 051

is often preferred for due to its formal privacy guar- 052

antees and its widespread use (Yue et al., 2023; 053

Flemings and Annavaram, 2024; Xin et al., 2022; 054

Abay et al., 2019). 055

Synthetic text refers to artificially generated text 056

that mimics human language and content. One way 057

to create it is by using Large Language Models 058

(LLMs), which generate text through "next-token 059

prediction." This process involves predicting the 060

next word in a sentence based on the previous ones, 061

allowing the model to generate coherent text. In 062

this context, the goal is to create realistic synthetic 063

Electronic Health Records (EHRs) that are similar 064

to original EHRs, making them useful for research 065

and other purposes. To achieve this, an LLM can 066

be trained using real EHR data. 067

Training an LLM involves exposing the model 068

to a dataset and adjusting its parameters based on 069

the patterns it learns. However, during this process, 070

the model might memorize personal information 071

and reproduce it (Bender et al., 2021), which is 072

critical when dealing with clinical data. To prevent 073

this, DP can be applied. DP, in essence, ensures 074

that individual data points within a dataset do not 075

significantly influence the outcome of an algorithm, 076

protecting information quantified by a level of pri- 077

vacy ϵ (Dwork, 2006). A common technique used 078

for training an LLM with DP is Differentially Pri- 079

vate Stochastic Gradient Descent (DP-SGD), which 080

adds noise during training to prevent memoriza- 081
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Injected Can. ϵ
MAUVE

Model 1 Model 2
PPL

Model 1 Model 2
Leaked Can.

Model 1 Model 2
0 8 0.48 0.84 7.84±0.42 8.27±0.43 0 0
0 16 0.55 0.88 7.56± 0.21 8.44±0.39 0 0
0 ∞ 0.83 0.89 6.02±0.29 4.73±0.24 0 0
50 8 0.47 0.76 7.76±0.44 8.34±0.37 0 1
50 16 0.59 0.80 7.57± 0.23 8.76±0.32 2 2
50 ∞ 0.82 0.87 6.06±0.27 4.39±0.07 76 120
200 8 0.41 0.81 8.05±0.35 8.32±0.39 1 1
200 16 0.55 0.85 7.75±0.30 8.45±0.19 3 8
200 ∞ 0.84 0.95 5.72±0.32 4.91±0.64 103 331

Table 1: Privacy-utility evaluation results for Model 1 : mistralai/Mistral-7B-v0.1 and Model 2 :
meta-llama/Meta-Llama-3.1-8B-Instruct. The models were evaluated across varying privacy levels (ϵ =
8, 16,∞) and different quantities of injected canaries (Injected Can.). The evaluation metrics include MAUVE,
Perplexity (PPL), and the number of leaked canaries (Leaked Can.) in the 500 synthetic generated data.

tion, ensuring both privacy and utility (Abadi et al.,082

2016; Klymenko et al., 2022).083

However, the mere use of DP-SGD often leads084

to an assumption of privacy guarantees, but in prac-085

tice, is frequently overlooked. DP-SGD provides086

“sample-level” privacy (Wang et al., 2023; Kly-087

menko et al., 2022), meaning it protects individual088

data points as long as the same individual does not089

appear in multiple samples. In clinical datasets,090

this assumption is unfeasible, as the same individ-091

ual may be represented in multiple samples. This092

raises serious concerns about the true effectiveness093

of DP in such contexts.094

To address potential privacy concerns, it is impor-095

tant to evaluate privacy beyond standard guarantees,096

such as by assessing the level of memorization. Pre-097

vious research has primarily focused on measuring098

model memorization and the leakage of sensitive in-099

formation in synthetic data, particularly the leakage100

of isolated pieces of Personally Identifiable Infor-101

mation (PII) (Yue et al., 2023; Carlini et al., 2019).102

Building on these studies, this work introduces a103

novel method for analyzing the memorization of104

LLMs and the risk of information leakage in syn-105

thetic EHRs generated in Spanish. This presents106

unique challenges specific to the language (e.g. the107

more frequent use of gendered terms throughout108

sentences).109

2 Experimental Setup110

In this study we used the MEDDOCAN dataset111

(Marimon et al., 2019), which consists of 1,000112

manually crafted Spanish clinical reports enriched113

with personal information and annotated with 114

NER for PII and sensitive data. For computing 115

limitations, the final dataset used consisted of 116

750 reports, divided into 500 documents for 117

training and 250 for validation. These documents 118

are used to analyze information leakage at the 119

document level. We conducted the experiments 120

using the LLMs mistralai/Mistral-7B-v0.1 121

(Jiang et al., 2023) and 122

meta-llama/Meta-Llama-3.1-8B-Instruct 123

(Dubey et al., 2024). 124

3 Methodology 125

The training used DP-SGD, which adds noise to 126

gradients during the training process to safeguard 127

the original data’s privacy (Abadi et al., 2016). 128

We trained the models using identical parameters 129

across different dataset versions, each with varying 130

levels of differential privacy. ϵ, a key parameter 131

in differential privacy, measures privacy loss, with 132

lower values providing stronger protection. The 133

used values are ϵ = 8, 16, and ∞ (no privacy). 134

After training, 500 synthetic documents were 135

generated with each model. These documents were 136

analyzed to assess memorization and evaluate the 137

quality and utility of the generated text. The gen- 138

eration process was standardized putting the same 139

training parameters to ensure comparable results 140

across models. Finally, we applied various met- 141

rics to examine the privacy-utility trade-off and the 142

extent of memorization. 143
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3.1 Utility Metrics144

The utility of the synthetic documents generated by145

each model was evaluated using key metrics such146

as MAUVE and perplexity (PPL). MAUVE (Pil-147

lutla et al., 2021) measures the quality and diversity148

of generated text using divergence frontiers, reflect-149

ing how closely the synthetic data aligns with the150

distribution of real text. PPL assesses how well a151

model predicts a sample, with lower values indi-152

cating better performance (Miaschi et al., 2021).153

These metrics were used to evaluate the impact of154

differential privacy on the quality and coherence of155

the generated EHRs.156

3.2 Leakage of Sensitive Information157

To evaluate the impact of synthetic text generation158

with DP-SGD when private patient information is159

repeated across documents, we adapted the “ca-160

nary” experiment (Carlini et al., 2019). This in-161

volved injecting a “canary” sentence containing162

a single piece of PII repeated across documents,163

allowing us to track how often it appeared in gener-164

ated samples. In our version, two pieces of infor-165

mation—a reference to positive HIV as sensitive166

data and the name “Lopez Perez” to link it to per-167

sonal information—were embedded into 0, 50, and168

200 documents. We then counted how often this169

information appeared in the generated samples. In170

this way, we assess the memorization of links be-171

tween sensitive data and individuals rather than the172

memorization of individual data points, which is173

crucial in the context of sensitive clinical data, as174

the ability to link sensitive information (such as an175

illness or medical history) to an individual must be176

protected.177

4 Results and Discussion178

Table 1 shows the results of synthetically generated179

texts evaluated by models trained with different pri-180

vacy levels (ϵ = 8, 16, ∞) and varying numbers of181

injected canaries (0, 50, 200). The utility metrics,182

MAUVE and PPL, reveal that as privacy increases183

(lower ϵ), MAUVE decreases and PPL rises, indi-184

cating lower text quality and diversity due to the185

added noise from DP-SGD. Additionally, Model186

1 displays lower PPL but also a lower MAUVE187

than Model 2, suggesting that while the text gen-188

erated by Model 1 is more predictable, it is less189

natural and diverse—consistent with the definitions190

of MAUVE and PPL. Except in the case where191

there is no privacy (ϵ = ∞), where Model 1 shows192

both lower MAUVE and higher PPL than Model 2. 193

Regarding canary leakage, the more frequently a 194

canary (e.g., name and disease) is injected into the 195

training data, the more it appears in the generated 196

texts, with over 15% of the text containing personal 197

information in some cases. However, when differ- 198

ential privacy is applied, this percentage drops to 199

less than 2%. Despite this reduction, conditions 200

for privacy guarantees are still violated, as differ- 201

ential privacy requires that no individual appear in 202

more than one sample. Consequently, the gener- 203

ated text would be leaking that the individual with 204

the surname “Lopez Perez” is HIV positive. 205

5 Conclusions and Future Work 206

While DP-SGD is widely believed to provide 207

strong privacy guarantees, our findings reveal that 208

memorization in LLMs occurs when those privacy 209

guarantees are compromised, particularly in cases 210

where the same individual appears across multiple 211

samples—an aspect rarely considered when apply- 212

ing these methods. This was done by injecting 213

the same linked personal and sensitive information 214

multiple times in the training data of an LLM and 215

then quantifying the leakage of this information 216

in synthetic generated data by the model, offering 217

a more comprehensive view of information leak- 218

age across entire documents, rather than focusing 219

on individual PII entities. This raises concerns 220

about the effectiveness of DP in clinical datasets, 221

where privacy protection is paramount. Despite 222

these challenges, DP can still serve as a valuable 223

tool for safeguarding individuals if its conditions 224

are properly fulfilled. 225

As future work, we propose employing feature 226

extraction and NER algorithms for personal and 227

sensitive information in each synthetically gener- 228

ated text to further analyze memorization in various 229

differentially private algorithms for generating syn- 230

thetic clinical data. 231
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