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Abstract

Using medical data for Deep Learning mod-
els can be highly beneficial, but protecting
sensitive and personal patient information in
the clinical field is critical. One of the most
common ways to use this data while protect-
ing patient privacy is by generating synthetic
text with Large Language Models (LLMs) us-
ing differential privacy (DP). Although DP
techniques, such as the Differentially Private
Stochastic Gradient Descent (DP-SGD), are of-
ten assumed to guarantee privacy, they require
specific conditions to be met. This study shows
how memorization in LLMs can occur when
these privacy guarantees are compromised, po-
tentially leading to the leakage of personal and
sensitive information in generated clinical re-
ports. If these gaps are addressed, DP could
offer more reliable safeguards for clinical data,
improving privacy without sacrificing utility.

1 Introduction

The utilization of Electronic Health Records
(EHRs) for Natural Language Processing (NLP)
offers numerous benefits, particularly in enhancing
healthcare research and outcomes (Dalianis, 2018).
However, protecting the privacy of the patients in
these records is crucial. Privacy is recognized as a
core human right in the Universal Declaration of
Human Rights, placing the control individuals have
over their personal information on par with the au-
thority exercised by corporations and governments
(Nampewo et al., 2022).

According to the 2021 Annual Report of the
United Nations High Commissioner, privacy re-
flects human dignity and plays a critical role in
safeguarding individual autonomy and identity. In
today’s digital age, privacy concerns are even more
pronounced as personal data—often considered a
valuable commodity—can be collected, sold, and
potentially misused. This is particularly concern-
ing when sensitive health data is involved (e.g.,

apps that collect reproductive information, or dat-
ing apps that ask for HIV status) (Citron, 2022).
The mishandling of such data not only threatens
privacy but can also foster discrimination and erode
human dignity.

There are several techniques to protect pa-
tient privacy in EHRs, such as Named Entity
Recognition (NER) for de-identification or pseudo-
anonymization (Aracena et al., 2024; Verkijk and
Vossen, 2022; Vakili et al., 2023). However, syn-
thetic text generation with Differential Privacy (DP)
is often preferred for due to its formal privacy guar-
antees and its widespread use (Yue et al., 2023;
Flemings and Annavaram, 2024; Xin et al., 2022;
Abay et al., 2019).

Synthetic text refers to artificially generated text
that mimics human language and content. One way
to create it is by using Large Language Models
(LLMs), which generate text through "next-token
prediction." This process involves predicting the
next word in a sentence based on the previous ones,
allowing the model to generate coherent text. In
this context, the goal is to create realistic synthetic
Electronic Health Records (EHRs) that are similar
to original EHRs, making them useful for research
and other purposes. To achieve this, an LLM can
be trained using real EHR data.

Training an LLM involves exposing the model
to a dataset and adjusting its parameters based on
the patterns it learns. However, during this process,
the model might memorize personal information
and reproduce it (Bender et al., 2021), which is
critical when dealing with clinical data. To prevent
this, DP can be applied. DP, in essence, ensures
that individual data points within a dataset do not
significantly influence the outcome of an algorithm,
protecting information quantified by a level of pri-
vacy € (Dwork, 2006). A common technique used
for training an LLM with DP is Differentially Pri-
vate Stochastic Gradient Descent (DP-SGD), which
adds noise during training to prevent memoriza-



Injected Can. ¢ MAUVE PPL Leaked Can.
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
0 8 0.48 0.84 7.84+0.42  8.27+0.43 0 0
0 16 0.55 0.88 7.56+ 0.21 8.4440.39 0 0
0 00 0.83 0.89 6.02+0.29 4.73+0.24 0 0
50 8 0.47 0.76 7.76£0.44  8.34+0.37 0 1
50 16 0.59 0.80 7.57£0.23  8.76+0.32 2 2
50 00 0.82 0.87 6.06+0.27 4.391+0.07 76 120
200 8 0.41 0.81 8.05+0.35  8.324+0.39 1 1
200 16 0.55 0.85 7.75£0.30 8.45+0.19 3 8
200 00 0.84 0.95 5.724+0.32 4.91+0.64 103 331
Table 1: Privacy-utility evaluation results for Model 1 : mistralai/Mistral-7B-v@.1 and Model 2 :

meta-1lama/Meta-Llama-3.1-8B-Instruct. The models were evaluated across varying privacy levels (e =
8,16, 00) and different quantities of injected canaries (Injected Can.). The evaluation metrics include MAUVE,
Perplexity (PPL), and the number of leaked canaries (Leaked Can.) in the 500 synthetic generated data.

tion, ensuring both privacy and utility (Abadi et al.,
2016; Klymenko et al., 2022).

However, the mere use of DP-SGD often leads
to an assumption of privacy guarantees, but in prac-
tice, is frequently overlooked. DP-SGD provides
“sample-level” privacy (Wang et al., 2023; Kly-
menko et al., 2022), meaning it protects individual
data points as long as the same individual does not
appear in multiple samples. In clinical datasets,
this assumption is unfeasible, as the same individ-
ual may be represented in multiple samples. This
raises serious concerns about the true effectiveness
of DP in such contexts.

To address potential privacy concerns, it is impor-
tant to evaluate privacy beyond standard guarantees,
such as by assessing the level of memorization. Pre-
vious research has primarily focused on measuring
model memorization and the leakage of sensitive in-
formation in synthetic data, particularly the leakage
of isolated pieces of Personally Identifiable Infor-
mation (PII) (Yue et al., 2023; Carlini et al., 2019).
Building on these studies, this work introduces a
novel method for analyzing the memorization of
LLMs and the risk of information leakage in syn-
thetic EHRs generated in Spanish. This presents
unique challenges specific to the language (e.g. the
more frequent use of gendered terms throughout
sentences).

2 Experimental Setup

In this study we used the MEDDOCAN dataset
(Marimon et al., 2019), which consists of 1,000
manually crafted Spanish clinical reports enriched

with personal information and annotated with
NER for PII and sensitive data. For computing
limitations, the final dataset used consisted of
750 reports, divided into 500 documents for
training and 250 for validation. These documents
are used to analyze information leakage at the
document level. We conducted the experiments
using the LLMs mistralai/Mistral-7B-v@.1
(Jiang et al., 2023) and
meta-llama/Meta-Llama-3.1-8B-Instruct
(Dubey et al., 2024).

3 Methodology

The training used DP-SGD, which adds noise to
gradients during the training process to safeguard
the original data’s privacy (Abadi et al., 2016).
We trained the models using identical parameters
across different dataset versions, each with varying
levels of differential privacy. e, a key parameter
in differential privacy, measures privacy loss, with
lower values providing stronger protection. The
used values are € = 8, 16, and co (no privacy).

After training, 500 synthetic documents were
generated with each model. These documents were
analyzed to assess memorization and evaluate the
quality and utility of the generated text. The gen-
eration process was standardized putting the same
training parameters to ensure comparable results
across models. Finally, we applied various met-
rics to examine the privacy-utility trade-off and the
extent of memorization.



3.1 Utility Metrics

The utility of the synthetic documents generated by
each model was evaluated using key metrics such
as MAUVE and perplexity (PPL). MAUVE (Pil-
lutla et al., 2021) measures the quality and diversity
of generated text using divergence frontiers, reflect-
ing how closely the synthetic data aligns with the
distribution of real text. PPL assesses how well a
model predicts a sample, with lower values indi-
cating better performance (Miaschi et al., 2021).
These metrics were used to evaluate the impact of
differential privacy on the quality and coherence of
the generated EHRs.

3.2 Leakage of Sensitive Information

To evaluate the impact of synthetic text generation
with DP-SGD when private patient information is
repeated across documents, we adapted the “ca-
nary” experiment (Carlini et al., 2019). This in-
volved injecting a “canary” sentence containing
a single piece of PII repeated across documents,
allowing us to track how often it appeared in gener-
ated samples. In our version, two pieces of infor-
mation—a reference to positive HIV as sensitive
data and the name “Lopez Perez” to link it to per-
sonal information—were embedded into 0, 50, and
200 documents. We then counted how often this
information appeared in the generated samples. In
this way, we assess the memorization of links be-
tween sensitive data and individuals rather than the
memorization of individual data points, which is
crucial in the context of sensitive clinical data, as
the ability to link sensitive information (such as an
illness or medical history) to an individual must be
protected.

4 Results and Discussion

Table 1 shows the results of synthetically generated
texts evaluated by models trained with different pri-
vacy levels (e = 8, 16, co) and varying numbers of
injected canaries (0, 50, 200). The utility metrics,
MAUVE and PPL, reveal that as privacy increases
(lower ¢), MAUVE decreases and PPL rises, indi-
cating lower text quality and diversity due to the
added noise from DP-SGD. Additionally, Model
1 displays lower PPL but also a lower MAUVE
than Model 2, suggesting that while the text gen-
erated by Model 1 is more predictable, it is less
natural and diverse—consistent with the definitions
of MAUVE and PPL. Except in the case where
there is no privacy (e = co), where Model 1 shows

both lower MAUVE and higher PPL than Model 2.

Regarding canary leakage, the more frequently a
canary (e.g., name and disease) is injected into the
training data, the more it appears in the generated
texts, with over 15% of the text containing personal
information in some cases. However, when differ-
ential privacy is applied, this percentage drops to
less than 2%. Despite this reduction, conditions
for privacy guarantees are still violated, as differ-
ential privacy requires that no individual appear in
more than one sample. Consequently, the gener-
ated text would be leaking that the individual with
the surname “Lopez Perez” is HIV positive.

5 Conclusions and Future Work

While DP-SGD is widely believed to provide
strong privacy guarantees, our findings reveal that
memorization in LLMs occurs when those privacy
guarantees are compromised, particularly in cases
where the same individual appears across multiple
samples—an aspect rarely considered when apply-
ing these methods. This was done by injecting
the same linked personal and sensitive information
multiple times in the training data of an LLM and
then quantifying the leakage of this information
in synthetic generated data by the model, offering
a more comprehensive view of information leak-
age across entire documents, rather than focusing
on individual PII entities. This raises concerns
about the effectiveness of DP in clinical datasets,
where privacy protection is paramount. Despite
these challenges, DP can still serve as a valuable
tool for safeguarding individuals if its conditions
are properly fulfilled.

As future work, we propose employing feature
extraction and NER algorithms for personal and
sensitive information in each synthetically gener-
ated text to further analyze memorization in various
differentially private algorithms for generating syn-
thetic clinical data.
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