
Under review as a conference paper at ICLR 2024

GRAPH AS POINT SET

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphs, fundamental data structures with diverse real-world applications, are
composed of interconnected nodes. Current Graph Neural Networks (GNNs) have
primarily focused on encoding these intricate connections. They employ a mes-
sage passing framework or complex neural network architectures to handle ad-
jacency matrices, resulting in numerous intricate designs. In contrast, this paper
proposes a paradigm-shifting approach by introducing a novel graph-to-set con-
version method. This innovative technique bijectively transforms interconnected
nodes into independent points, suitable for processing by a set encoder, such as the
Transformer model. We achieve graph representation learning through the lens of
set learning, eliminating the need for intricate positional encodings used in previ-
ous graph Transformers. Theoretically, our method outperforms existing models
in terms of both short-range and long-range expressivity. Extensive experimental
validation further confirms our model’s outstanding real-world performance.

1 INTRODUCTION

Graphs, composed of interconnected nodes and edges, have wide-ranging applications and have
been extensively investigated. In graph machine learning, a central focus is effectively leveraging
the adjacency relationships between nodes. Many distinct architectures have arisen for graph tasks,
exhibiting significant divergence in their approaches to utilizing the adjacency information.

Two primary paradigms have evolved for encoding adjacency information. The first paradigm in-
volves message passing between nodes via edges. Notable methods in this category include Message
Passing Neural Network (MPNN) (Gilmer et al., 2017), a foundational framework for Graph Neural
Networks (GNNs) like Graph Convolutional Networks (Kipf & Welling, 2017), Graph Isomorphism
Networks (Xu et al., 2019a), and GraphSAGE (Hamilton et al., 2017). These models aggregate mes-
sages from neighboring nodes to update the central node’s representation. Additionally, subgraph-
based GNNs (Zhang & Li, 2021; Huang et al., 2023; Bevilacqua et al., 2022; Qian et al., 2022;
Frasca et al., 2022; Zhao et al., 2022; Zhang et al., 2023a) select subgraphs from the whole graph
and run MPNN within each subgraph. Simultaneously, Graph Transformers (GTs) integrate adja-
cency information into the attention matrix (Mialon et al., 2021; Kreuzer et al., 2021; Wu et al.,
2021; Dwivedi & Bresson, 2020; Ying et al., 2021; Shirzad et al., 2023), with some recent variants
incorporating message-passing layers directly into their architectures (Rampásek et al., 2022; Kim
et al., 2021). All these models rely on adjacency relationships to facilitate information exchange
among nodes. The second paradigm designs permutation-equivariant neural networks that directly
take the adjacency matrix as input. Techniques in this category include high-order Weisfeiler-Leman
tests (Maron et al., 2019a), invariant graph neural networks (Maron et al., 2019b), and relational
pooling (Chen et al., 2020). Additionally, various studies have explored manual feature extraction
from the adjacency matrix, including methods like random walk structural encoding (Dwivedi et al.,
2022a), Laplacian matrix eigenvectors (Wang et al., 2022; Lim et al., 2023), and shortest path dis-
tances (Li et al., 2020). However, it’s important to note that these approaches typically serve as data
augmentation steps for other models, rather than constituting an independent paradigm.

This paper deviates from the prevailing paradigms of graph representation learning by introducing an
innovative graph-to-set approach as shown in Figure 1: converting interconnected nodes into a set of
independent points, subsequently encoded through a set encoder like Transformer. This graph-to-set
conversion constitutes a primary contribution of this work. Leveraging our symmetric rank decom-
position, we break down the augmented adjacency matrix A + D into QQT , wherein Q is consti-
tuted by column-full-rank rows—each denoting a node coordinate. This representation enables us to

1

Under review as a conference paper at ICLR 2024

Input Graph
Interlinked nodes

Point Set
Independent points with
coordinates containing

full adjacency information
Set E

ncoder

Set Encoder
O(r)–equivariant

Transformer

𝑟 dimensions

Figure 1: A new paradigm for graph learning.
Converting the input graph to a point set first and
encoding it with a set encoder. O(r) denotes the
set of r-dimension orthogonal transformations.

express the presence of edges as inner prod-
ucts of coordinate vectors (Qi and Qj). Con-
sequently, interlinked nodes can be trans-
formed into independent points and supple-
mentary coordinates without information loss.
We theoretically show that two graphs are
isomorphic iff the two converted point sets
are equal up to an orthogonal transforma-
tion. This equivalence empowers us to en-
code the set with coordinates in an orthogonal-
transformation-equivariant manner, in analogy
to E(3)-equivariant models designed for 3D geometric deep learning.

Our work’s second contribution is to introduce an orthogonal-transformation-equivariant Trans-
former to encode the point set. This architecture provably surpasses existing models in both long-
range and short-range expressivity. Extensive experiments verify these claims across synthetic
datasets, small molecule datasets, and long-range graph benchmarks. Specifically, we outperform
all baselines on QM9 (Wu et al., 2017), ZINC (Gómez-Bombarelli et al., 2016), and Long Range
Graph Benchmark (Dwivedi et al., 2022b).

In summary, this paper introduces a new paradigm of graph representation learning by convert-
ing interconnected graphs into sets of independent points and subsequently encoding them via
an orthogonal-transformation-equivariant Transformer. This novel approach outperforms existing
methods in both long- and short-range tasks, as validated by comprehensive experiments.

2 PRELIMINARY

Given a matrix Z ∈ Ra×b, we define Zi ∈ Rb as the i-th row of Z in the form of a column vector,
and Zij ∈ R as the element of Z in the (i, j) position. Considering a vector Λ ∈ Ra, we define
diag(Λ) ∈ Ra×a as the diagonal matrix with Λ as its diagonal elements. Moreover, for a matrix
S ∈ Ra×a, we define diagonal(S) ∈ Ra as the vector of the diagonal elements of S.

Let G = (V,E,X) denote an undirected graph. Here, V = {1, 2, 3, ..., n} represents the set of n
nodes, E ⊆ V × V is the set of edges, and X ∈ Rn×d is the node feature matrix. The v-th row Xv

of X is the features of node v. The edge set E can also be represented using the adjacency matrix
A ∈ Rn×n, where Auv is 1 if the edge exists (i.e., (u, v) ∈ E) and 0 otherwise. A graph G can also
be represented by the pair (V,A,X) or (A,X). The degree matrix D is a diagonal matrix with node
degree (sum of corresponding rows of matrix A) as the diagonal elements.

Given a permutation function π : {1, 2, 3, ..., n} → {1, 2, 3, ..., n}, the permuted graph is π(G) =
(π(A), π(X)). Here π(A) ∈ Rn×n, and for all nodes u and v in V , π(A)π(u)π(v) = Auv . Moreover,
π(X) ∈ Rn×d, where π(X)π(v) = Xv . Essentially, the permutation π reindex each node v to π(v)
while preserving the original graph structure and node features. Two graphs are isomorphic iff they
can be mapped to each other through a permutation.

Definition 1. Graphs G1 = (A1, X1) and G2 = (A2, X2) are isomorphic, denoted as G1 ≃ G2, if
there exists a permutation π such that π(G1) = G2 (equivalent to π(A1) = A2 and π(X1) = X2).

Isomorphic graphs can be transformed into each other by merely reindexing their nodes. In tasks in-
volving whole graph classification, models should assign the same prediction to isomorphic graphs.

Symmetric Rank Decomposition (SRD) Decomposing an arbitrary matrix into two full-rank ma-
trices is a well-known technique (Puntanen et al., 2011). We further extend this technique to demon-
strate that a positive semi-definite matrix can be decomposed into a full-rank matrix.

Definition 2. (Symmetric Rank Decomposition, SRD) Given a (symmetric) positive semi-definite
matrix L ∈ Rn×n of rank r, the SRD of L is given by L = QQT , where Q ∈ Rn×r.

As L = QQT , it follows that rank(Q) = rank(L) = r, which implies that Q must be full column
rank. Moreover, two SRDs of the same matrix are equivalent up to an orthogonal transformation.
Let O(r) denote the set of orthogonal matrices in Rr×r.

2

Under review as a conference paper at ICLR 2024

Proposition 1. Matrices Q1 and Q2 in Rn×r represent the SRD of the same matrix if and only if
there exists an orthogonal matrix R ∈ O(r) such that Q1 = Q2R.

SRD is closely related to eigendecomposition. Let L = Udiag(Λ)UT denote the eigendecomposi-
tion of L, where Λ ∈ Rr is the vector of non-zero eigenvalues, and U ∈ Rn×r is the matrix whose
columns are the corresponding eigenvectors. Setting Q = Udiag(Λ1/2) yields an SRD of L, where
the superscript denotes element-wise square root operation.

3 GRAPH AS POINT SET

In this section, we present our innovative method for converting graphs into sets of points. We first
demonstrate that the Symmetric Rank Decomposition (SRD) can theoretically achieve this trans-
formation: two graphs are isomorphic if and only if the sets of coordinates generated by SRD are
equal up to orthogonal transformations. Additionally, we parameterize the SRD for better real-world
performance. All proofs for the theorems in this section can be found in Appendix A.

3.1 SYMMETRIC RANK DECOMPOSITION FOR COORDINATES

A natural approach to breaking down the interconnections between nodes is to decompose the adja-
cency matrix. While previous methods utilize the outputs of eigendecomposition as supplementary
node features, these features are not unique. Consequently, models naively utilizing such features
fail to provide consistent predictions for isomorphic or even identical graphs, ultimately leading
to poor generalization. To address this, we show that Symmetric Rank Decomposition (SRD) can
convert graph-level tasks into set-level tasks with perfect alignment.

Since SRD only applies to positive semi-definite matrices, we use the augmented adjacency matrix
D +A, which is always positive semi-definite (see Appendix A.2 for the proof).
Theorem 1. Given two graphs G = (V,A,X) and G′ = (V ′, A′, X ′) with respective degree matri-
ces D and D′, the two graphs are isomorphic (G ≃ G′) if and only if ∃R ∈ O(r), {{(Xv, RQv)|∀v ∈
V }} = {{(X ′

v, Q
′
v)|v ∈ V ′}}, where r denotes the rank of matrix A, and Q and Q′ are the symmetric

rank decompositions of D +A and D′ +A′ respectively.

In this theorem, the graph G = (V,A,X) is converted to a set of points {(Xv, Qv)|v ∈ V }, where
Xv , the v-th row of node feature matrix X , is the original node feature of v, and Qv , the v-th row of
SRD of D+A, is the r-dimensional coordinate of node v. Consequently, two graphs are isomorphic
if their sets of points are equal up to an orthogonal transformation. Intuitively, we can imagine that
we map the graph into an r-dimensional space, where each node is associated with a coordinate,
and the inner product between two coordinates define the existence of an edge. Nevertheless, this
mapping is not unique, since we can arbitrarily rotate the coordinates through an O(r) matrix with-
out changing the inner products. This conversion can be roughly understood as an inverse process
of 3D-point-set-to-graph transformation in geometric deep learning, where Euclidean distances be-
tween points are used to define edges between nodes. Many molecular graphs are constructed this
way. Note that here the analogy is only for intuitive understanding and not a precise equivalence.
Our primary focus is graph learning rather than its connection with 3D geometric deep learning.

Leveraging Theorem 1, we can transform a graph into a set and use a set encoder, such as Trans-
former, to encode the graph. Notably, our method generates consistent representations for iso-
morphic graphs if the encoder remains invariant to orthogonal transformations. Furthermore, the
expressivity of the entire method depends on the set encoder’s expressivity to distinguish non-equal
sets. The more powerful the set encoder is, the more expressive the whole method is on graph tasks.

3.2 GENERALIZED COORDINATES

The Symmetric Rank Decomposition (SRD) offers a theoretical pathway to convert graph problems
into set problems perfectly. In this section, we further parameterize SRD for better performance
in practice. As shown in Section 2, SRD can be implemented using eigendecomposition, where
Q = Udiag(Λ1/2), with Λ ∈ Rr is the vector of non-zero eigenvalues, and U ∈ Rn×r are the
corresponding eigenvectors. To generalize it, we can replace the element-wise square root with a
permutation-equivariant function f : Rr → Rr. This modification also removes the constraint that

3

Under review as a conference paper at ICLR 2024

all eigenvalues must be non-negative. Now, various symmetric matrices that contain adjacency in-
formation, like the adjacency matrix A and the normalized adjacency matrix Â = D−1/2AD−1/2.,
can be used to produce coordinates. Let Q̃(Z, f) = Uf(Λ) ∈ Rn×r denote the generalized coor-
dinates, where U,Λ are produced by the eigendecomposition of the matrix Z. Given a fixed f , the
two sets with generalized coordinates are still equal up to orthogonal transformations if two graphs
are isomorphic. Moreover, the reverse is true when f is expressive enough.

Theorem 2. Given two graphs G = (V,A,X) and G = (V ′, A′, X ′), and an injective
permutation-equivariant function Z mapping adjacency matrix to a symmetric matrix: (1) For
all permutation-equivariant function f , if G ≃ G′, then the two sets of generalized coordinates
are equal up to an orthogonal transformation, i.e., ∃R ∈ O(r), {{Xv, RQ̃(Z(A), f)v|v ∈ V }} =

{{X ′
v, Q̃(Z(A′), f)v|v ∈ V ′}}, where r is the rank of A, Q̃, Q̃′ are the generalized coordinates of A

and A′ respectively. (2) There exists a continuous permutation-equivariant function f : Rr → Rr×2,
such that G ≃ G′ if ∃R ∈ O(r),∀i = 1, 2, ..., d, {{(Xv, RQ̃(Z(A), f1)v, RQ̃(Z(A), f2)v)|v ∈
V }} = {{(X ′

v, Q̃(Z(A′), f1)v, Q̃(Z(A′), f2)v)|v ∈ V ′}}, where f1 : Rr → Rr and f2 : Rr → Rr

are two output channels of f .

Therefore, we can use arbitrary permutation-equivariant functions to transform the eigenvalues with-
out worrying about producing different predictions for isomorphic graphs. Moreover, with an ex-
pressive enough eigenvalue function, the graph-level tasks can be converted to set problems per-
fectly. In implementation, we use DeepSet (Segol & Lipman, 2020) due to its universal expressivity
for permutation-equivariant functions. The output coordinates will have multiple channels, each
channel corresponds to an output dimension of the eigenvalue function. The detailed Architecture
is shown in Figure 3 in Appendix G. In summary, we use SRD and its parameterized generalization
to decompose the adjacency matrix or its variants into coordinates. Thus, we transform a graph
into a point set in which each point corresponds to a node and has the original node feature and the
coordinates as its feature.

4 POINT SET TRANSFORMER

As shown in Figure 1, our method consists of two steps: converting graph to a set of independent
points and encoding the set. Section 3.1 has illustrated how to transform the graph to a set bijectively.
To encode the transformed point set, this section introduces a novel transformer architecture, which
maintains invariance to orthogonal transformations and achieves outstanding expressivity.

The overall architecture is depicted in Figure 4 in Appendix G. Our transformer operates with nodes
carrying two types of representations: scalars, which remain invariant to coordinate orthogonal
transformations, and vectors, which adapt equivariantly to coordinate changes. Scalars are initialized
using input node features, while vectors draw from the coordinate values. For a point i, its scalar
representation is denoted by si ∈ Rd, and its vector representation is denoted by vi ∈ Rd×r, where d
is the hidden dimension, and r is the rank of the decomposed matrix of the graph (Laplacian matrix
by default in this model). si is initialized with the node feature Xi, and vi is initialized with the
parameterized coordinates containing graph structural information, as detailed in Section 3.2.

Our point set transformer (PST) is composed of several transformer layers. Each layer involves two
key components analogous to ordinary transformer structures:

Scalar-Vector Mixer. This component, akin to the feed-forward networks in transformers, indi-
vidually transforms point representations. To enable the information exchange between vector and
scalar features, we design a mixer architecture as follows.

s′i ← MLP1(si∥diagonal(W1viv
T
i W

T
2)), v′i ←W3diag(MLP2(si))vi +W4vi (1)

Here, W1,W2,W3, and W4 ∈ Rd×d are learnable matrices for mixing different channels of vector
features. Additionally, MLP1 : R2d→d and MLP2 : Rd→d represent two multi-layer perceptrons
transforming scalar representations. The operation diagonal(W1viv

T
i W2) takes the diagonal ele-

ments of a matrix, which translates vectors to scalars, while diag(MLP2(si))vi transforms scalar
features into vectors. As viRRT vTi = viv

T
i ,∀R ∈ O(r), the scalar update is invariant to orthogonal

transformations of the coordinates. Similarly, the vector update is equivariant to O(r).

4

Under review as a conference paper at ICLR 2024

Attention Layer. Similar to ordinary attention layer, this component computes inner products be-
tween representations of point pairs to linearly combine node representations.

Attenij = MLP(Kij), Kij = (W s
q si ⊙W s

k sj)∥diagonal(W v
q viv

T
j W

v
k) (2)

Here, W s
q and W v

q denote the linear transformations for scalars and vectors queries, respectively,
while W s

k and W v
k are for keys. The equation computes the inner products of queries and keys,

similar to standard attention mechanisms. It is easy to see Attenij is also invariant to O(r).

Following the calculation of the attention matrix, we multiply it with point representations:

si ←
∑
j

Attenijs
′
j , vi ←

∑
j

Attenijv
′
j (3)

Each transformer layer is of time complexity O(n2r) and space complexity O(n2 + nr).

Pooling. After several layers, we pool all points’ scalar representations as the set representation s.
s← Pool({si|i ∈ V }), (4)

where Pool is pooling function like sum, mean, and max.

5 EXPRESSIVITY

Though our primary focus is a new paradigm for graph representation learning, we also delve into
the theoretical expressivity of our methods in this section. Our generalized coordinates and the PST
architecture exhibit strong long-range expressivity, allowing for efficient computation of distance
metrics between nodes, as well as short-range expressivity, enabling the counting of paths and cycles
rooted at each node. Therefore, our model is more expressive than many existing models, including
GIN (equivalent to the 1-WL test) (Xu et al., 2019b), PPGN (equivalent to the 2-FWL test, more ex-
pressive in some cases) (Maron et al., 2019a), GPS (Rampásek et al., 2022), and Graphormer (Ying
et al., 2021) (two representative graph transformers). More details are in Appendix B.

5.1 LONG RANGE EXPRESSIVITY

This section demonstrates that the inner product of generalized coordinates exhibits strong long-
range expressivity. PST inherits this strong expressivity, since it utilizes these inner products.

When assessing a model’s capacity to capture long-range interactions (LRI), an essential metric is its
ability to compute shortest path distances (spd) between nodes. Since formally characterizing LRI
can be challenging, we focus on analyzing models’ performance concerning this specific metric. We
observe that existing models vary significantly in this metric (e.g., MPNNs even cannot express spd).
Moreover, we find an intuitive way to explain these differences: Shortest path distances between
nodes are calculated using the expression spd(i, j, A) = argmink{k|Ak

ij > 0}, and the ability to
compute AK , the K-th power of the adjacency matrix A, can serve as an intuitive indicator of a
model’s capacity for computing spd, yet different models need different # layers to compute AK .

Generalized Coordinates. Generalized coordinates can capture arbitrarily large shortest path dis-
tances through their inner products in one step. To illustrate it, we decompose the adjacency matrix
as A = UΛUT , and employ coordinates as U and Udiag(ΛK). Their inner products are as follows:

1 step︷ ︸︸ ︷
Udiag(ΛK)UT → AK (5)

Theorem 3. For all undirected graphs G = (A,X), there exists permutation-equivariant func-
tions fk, k = 0, 1, 2, ...,K, such that the shortest path distance between node i, j is a function of
⟨Q̃(A, f0)i, Q̃(A, fk)j⟩, k = 0, 1, 2, ...K, where Q̃(A, f) is the generalized coordinates defined in
Section 3.2, K is the maximum shortest path distance between nodes (the diameter of graph).

2-FWL. A powerful graph isomorphic test, 2-Folklore-Weisfeiler-Leman Test (2-FWL) (Maron
et al., 2019a), produces node pair representations in a matrix X ∈ Rn×n. X is initialized with
A. Each layer updates X with XX . So intuitively, computing AK takes ⌈log2 K⌉ layers.

⌈log2 K⌉ layers︷ ︸︸ ︷
A→ A2 = (A)(A)→ A4 = (A2)(A2)→ A8 = (A4)(A4)→ ...→ AK = (AK/2AK/2) (6)

Formally, we state the following theorem:

5

Under review as a conference paper at ICLR 2024

Theorem 4. For all K ∈ N+, for all undirected graphs G = (A,X) and G′ = (A′, X ′), let c(G)kij
denote the color of node tuple (i, j) of graph G at iteration k. For all node tuples (i, j) and (i′, j′),
if spd(i, j, A) < spd(i′, j′, A′) ≤ 2K , then c(G)Kij ̸= c(G′)Ki′j′ . Moreover, for all L > 2K , there
exists i, j, i′, j′, such that spd(i, j, A) > spd(i′, j′, A′) = L while c(G)Kij = c(G′)Ki′j′ .

In other words, using K iterations of 2-FWL allows us to distinguish between pairs of nodes with
different spds, as long as that distance is at most 2K . Moreover, K-iteration 2-FWL cannot differ-
entiate all tuples with arbitrary spd > 2K from other tuples with different spds, which indicates that
K-iteration 2-FWL is effective in counting shortest path distances up to a maximum of 2K .

MPNNs. Intuitively, each MPNN layer uses AX to update node representations X . However, this
operation in general cannot compute AK unless the initial node feature X = I .

K layers︷ ︸︸ ︷
X → AX → A2X = A(AX)→ A3X = A(A2X)→ ...→ AKX = A(AK−1)X (7)

Formally, we state the following theorem which indicates that MPNNs cannot compute spds:
Theorem 5. A graph pair exists that MPNN cannot differentiate, but their set of all-pair shortest
path distances are different.

If MPNNs can compute spds between all pairs of nodes, then from the set of spds they should be
able to distinguish this graph pair. However, we show no MPNNs can distinguish the pair, thus
proving that MPNNs are unable to compute spds.

It is known that Graph Transformers (GTs) possess a strong capacity for capturing long-range in-
teractions (Dwivedi et al., 2022b), given their ability to aggregate information from the entire graph
to update each node’s representation. However, note that aggregating information from the entire
graph is not equivalent to capturing the distance between nodes, and some Graph Transformers
fail to compute the shortest path distance between nodes. Details are in Appendix C. Note that this
slightly counter-intuitive results is because we take a new perspective to study long range interaction
rather than showing GTs are weak in long range capacity.

Besides shortest path distances, our generalized coordinates are parameterized, enabling the unifica-
tion of various structure encodings, encompassing various distance metrics between nodes, including
random walk (Li et al., 2020; Dwivedi et al., 2023; Rampásek et al., 2022), heat kernel (Mialon et al.,
2021), resistance distance (Zhang & Li, 2021; Zhang et al., 2023b). For further insights and details
about the versatility of our generalized coordinates, please refer to Table 5 in Appendix D.

5.2 SHORT RANGE EXPRESSITIVITY

This section shows PST’s expressivity in representative short-range tasks: path and cycle counting.
Theorem 6. With sufficiently large hidden dimensions, a one-layer Point Set Transformer can count
paths of length 1 and 2, a two-layer model can count paths of length 3 and 4, and a four-layer
model can further count paths of length 5 and 6. Here, “count” means that the (i, j) element of the
attention matrix in the last layer can express the number of paths between nodes i and j.

Therefore, with enough layers, our PST models can count the number of paths of length≤ 6 between
nodes. Furthermore, our PST can also count cycles.
Theorem 7. With sufficiently large hidden dimensions, a one-layer Point Set Transformer can count
cycles of length 3, a three-layer model can count cycles of length 4 and 5, and a five-layer model
can further count cycles of length 6 and 7. Here, “count” means the representation of node i in the
last layer can express the number of cycles involving node i.

Therefore, with enough layers, our PST models can count the number of cycles of length ≤ 7
between nodes. Given that even 2-FWL is restricted to counting cycles up to length 7, the cycle
counting power of our Point Set Transformer is at least on par with 2-FWL.

6 RELATED WORK

Graph Neural Network with Eigen-Decomposition. Our approach, the Point Set Transformer,
leverages coordinates derived from the symmetric rank decomposition (SRD) of adjacency or re-

6

Under review as a conference paper at ICLR 2024

lated matrices as input. In contrast, prior studies primarily focus on eigendecomposition (EVD)
techniques. Although two approaches share similarities, our SRD offers a distinct advantage by
transforming the graph isomorphism problem into a set problem bijectively—an achievement not
possible through EVD. This fundamental divergence in theoretical capabilities has significant impli-
cations for model design. Early efforts by Dwivedi et al. (2023) introduce eigenvectors to augment
input node features in MPNNs (Gilmer et al., 2017). Subsequent works, such as Graph Transform-
ers (Dwivedi & Bresson, 2020; Kreuzer et al., 2021), incorporate eigenvectors as positional node
encodings. However, due to the non-uniqueness of eigenvectors, these models generate disparate
predictions even for isomorphic graphs, leading to poor generalization. Lim et al. (2023) propose
sign-and-basis-invariant networks to address this, but these solutions only apply when eigenvalue
multiplicity remains constant, limiting their applicability in graph tasks. Wang et al. (2022) and
Bo et al. (2023) use eigenvectors to produce edge features. They solves non-uniqueness, but these
methods are still essentially MPNNs. In stark contrast, we convert graph-level tasks into set-level
tasks with perfect alignment and thus propose a new paradigm of graph representation learning: use
a orthogonal-transformation-equivariant set encoder to handle the transformed point set.

Equivariant Point Cloud and 3-D Molecule Neural Networks. Equivariant point cloud and 3-D
molecule tasks share resemblances: both involve unordered sets of 3-D coordinate points as input
and require models to produce predictions invariant/equivariant to orthogonal transformations and
translations of coordinates. Several works (Chen et al., 2021; Winkels & Cohen, 2018; Cohen et al.,
2018; Gasteiger et al., 2021) introduce specialized equivariant convolution operators to preserve
prediction symmetry, yet are later surpassed by models that learn both invariant and equivariant rep-
resentations for each point, transmitting these representations between nodes. Notably, certain mod-
els (Satorras et al., 2021; Schütt et al., 2021; Deng et al., 2021; Wang & Zhang, 2022) directly uti-
lize vectors mirroring input coordinate changes as equivariant features, while others (Thomas et al.,
2018; Batzner et al., 2022; Fuchs et al., 2020; Hutchinson et al., 2021; Worrall et al., 2017; Weiler
et al., 2018) incorporate high-order irreducible representations of the orthogonal group, achieving
proven universal expressivity (Dym & Maron, 2021). Our Point Set Transformer (PST) similarly
learns both invariant and equivariant point representations. However, due to the specific conver-
sion of point sets from graphs, PST’s architecture varies from existing models. While translation
invariance characterizes point clouds and molecules, graph properties are sensitive to coordinate
translations. Hence, we adopt inner products of coordinates. Additionally, these prior works center
on 3D point spaces, whereas our coordinates exist in high-dimensional space, rendering existing
models and theoretical expressivity results based on high-order irreducible representations incom-
patible with our framework.

7 EXPERIMENTS

In our experiments, we validate the effectiveness of our model across three key dimensions: sub-
structure counting tasks (Huang et al., 2023) to demonstrate theoretical short-range expressive-
ness, real-world small graph properties prediction tasks (Wu et al., 2017; Gómez-Bombarelli et al.,
2016; Hu et al., 2020) to assess experimental expressiveness, and Long-Range Graph Bench-
marks (Dwivedi et al., 2022b) to evaluate its ability to capture long-range interactions. Additionally,
our generalized coordinates is validated to be effective on both long and short range tasks in ablation
study (see Section H). Our PST also have a similar scalability to our baselines (see Section I). For
all dataset, our PST uses less or comparable number of parameter compared with baselines. Details
of datasets and experiment settings could be found in Appendix E and Appendix F.

7.1 GRAPH SUBSTRUCTURE COUNTING

As highlighted in previous research (Chen et al., 2020), the ability to count substructures is a critical
metric for assessing expressivity. Therefore, we evaluate our model’s capabilities in substructure
counting tasks on synthetic graphs following Huang et al. (2023). The considered substructures en-
compass paths of lengths 2 to 6, cycles of lengths 3 to 7, and other substructures including tailed
triangles (TT), chordal cycles (CC), and triangle-rectangle (TR). Our task involves predicting the
number of paths originating from each node and the cycles and other substructures in which each
node participates. For comparison, we evaluate our Point Set Transformer (PST) alongside other

7

Under review as a conference paper at ICLR 2024

Table 1: We evaluate the normalized Mean Absolute Error (MAE) (↓) of substructure counting tasks
on a synthetic dataset. Similar to the approach in Huang et al. (2023), models successfully count the
corresponding structure if the test loss is below 10 units (yellow cell in the table), measured using a
scale of 10−3. TT means Tailed Triangle. CC means Chordal Cycle, TR means Triangle-Rectangle.
Method 2-Path 3-Path 4-Path 5-path 6-path 3-Cycle 4-Cycle 5-Cycle 6-Cycle 7-cycle TT CC TR

MPNN 1.0 67.3 159.2 235.3 321.5 351.5 274.2 208.8 155.5 169.8 363.1 311.4 297.9
IDGNN 1.9 1.8 27.3 68.6 78.3 0.6 2.2 49 49.5 49.9 105.3 45.4 62.8
NGNN 1.5 2.1 24.4 75.4 82.6 0.3 1.3 40.2 43.9 52.2 104.4 39.2 72.9
GNNAK 4.5 40.7 7.5 47.9 48.8 0.4 4.1 13.3 23.8 79.8 4.3 11.2 131.1
I2-GNN 1.5 2.6 4.1 54.4 63.8 0.3 1.6 2.8 8.2 39.9 1.1 1.0 1.3
PPGN 0.3 1.7 4.1 15.1 21.7 0.3 0.9 3.6 7.1 27.1 2.6 1.5 14.4

PST 0.7±0.1 1.1±0.1 1.5±0.1 2.2±0.1 3.3±0.3 0.8±0.1 1.9±0.2 3.1±0.3 4.9±0.3 8.6±0.5 3.0±0.1 4.0±0.7 9.2±0.9

Table 2: Test Mean Absolute Error (MAE) for property prediction on the QM9 dataset. LRP repre-
sents Deep LRP (Chen et al., 2020). DF represents 2-DRFWL(2) GNN (Zhou et al., 2023). 1GNN
and 123 correspond to 1-GNN and 1-2-3-GNN (Morris et al., 2019), respectively. * denotes models
with 3D coordinates or features as input.

Target Unit LRP NGNN I2GNN DF PST 1GNN* DTNN* 123* PPGN* PST*

µ 10−1D 3.64 4.28 4.28 3.46 3.19±0.04 4.93 2.44 4.76 2.31 0.23±0.01

α 10−1a3
0 2.98 2.90 2.30 2.22 1.89±0.04 7.80 9.50 2.70 3.82 0.78±0.05

εhomo 10−2meV 6.91 7.21 7.10 6.15 5.98±0.09 8.73 0.1056 9.17 7.51 2.59±0.08

εlumo 10−2meV 7.54 8.08 7.27 6.12 5.84±0.08 9.66 0.1393 9.55 7.81 2.20±0.07

∆ε 10−2meV 9.61 10.34 10.34 8.82 8.46±0.07 13.33 30.48 13.06 11.05 4.47±0.09

R2 a2
0 19.30 20.50 18.64 15.04 13.08±0.16 34.10 17.00 22.90 16.07 0.93±0.03

ZPVE 10−2meV 1.50 0.54 0.38 0.46 0.39±0.01 3.37 4.68 0.52 17.42 0.26±0.01

U0 meV 11.24 8.03 5.74 4.24 3.46±0.17 63.13 66.12 1.16 6.37 3.33±0.19

U meV 11.24 9.82 5.61 4.16 3.55±0.10 56.60 66.12 3.02 6.37 3.26±0.05

H meV 11.24 8.30 7.32 3.95 3.49±0.20 60.68 66.12 1.14 6.23 3.29±0.21

G meV 11.24 13.31 7.10 4.24 3.55±0.17 52.79 66.12 1.28 6.48 3.25±0.15

Cv 10−2cal/mol/K 12.90 17.40 7.30 9.01 7.77±0.15 27.00 243.00 9.44 18.40 3.63±0.13

expressive GNN models, such as ID-GNNs (You et al., 2021), NGNNs (Zhang & Li, 2021), GN-
NAK+(Zhao et al., 2022), I2-GNN(Huang et al., 2023), and PPGN (Maron et al., 2019a).

The results are shown in Table 1. Following the criteria established by Huang et al. (2023), we
consider a model able to count a specific substructure if its normalized test Mean Absolute Error
(MAE) is below 10−2 (10 units in the table). Remarkably, our PST demonstrates can count all
substructures listed in the table, whereas the second-best model, I2-GNN, can only count 10 out
of the 13 substructures in total. The low loss on counting cycles and paths aligns well with our
theoretical results (Theorem 6 and Theorem 7).

7.2 MOLECULAR PROPERTIES PREDICTION

To validate the real-world effectiveness of our Point Set Transformer (PST), we conduct experiments
on four well-known molecular graph datasets: QM9 (Wu et al., 2017), ZINC, ZINC-full (Gómez-
Bombarelli et al., 2016), and ogbg-molhiv (Hu et al., 2020). For the QM9 dataset, we use various
expressive GNNs as baseline models. Some of these models incorporate the Euclidean distance
between atoms in 3D space, including 1-GNN, 1-2-3-GNN (Morris et al., 2019), DTNN (Wu et al.,
2017), and PPGN (Maron et al., 2019a). Others focus solely on learning the graph structure without
considering 3D atom coordinates, such as Deep LRP (Chen et al., 2020), NGNN (Zhang & Li,
2021), I2-GNN (Huang et al., 2023), and 2-DRFWL(2) GNN (Zhou et al., 2023). To ensure a
fair comparison, we introduce two versions of our model: PST without Euclidean distance (PST)
and PST with Euclidean distance (PST*). Baseline results are obtained from (Zhou et al., 2023),
and the comprehensive findings are presented in Table 2. Notably, PST outperforms all baseline
models without Euclidean distance on 11 out of 12 targets and achieves an average 11% reduction
in loss compared to the strongest baseline, 2-DRFWL(2) GNN. Meanwhile, PST* outperforms all
Euclidean distance-based baselines on 8 out of 12 targets and achieves an average 4% reduction in
loss compared to the strongest baseline, 1-2-3-GNN. Both models also rank second in performance
for the remaining targets.

8

Under review as a conference paper at ICLR 2024

Table 3: Results on small molecule datasets
with 500k parameter budget.

zinc zinc-full molhiv
MAE↓ MAE↓ AUC↑

GIN 0.163±0.004 0.088±0.002 77.07±1.49

GNN-AK+ 0.080±0.001 – 79.61±1.19

ESAN 0.102±0.003 0.029±0.003 78.25±0.98

SUN 0.083±0.003 0.024±0.003 80.03±0.55

SSWL 0.083±0.003 0.022±0.002 79.58±0.35

DRFWL 0.077±0.002 0.025±0.003 78.18±2.19

CIN 0.079±0.006 0.022±0.002 80.94±0.57

NGNN 0.111±0.003 0.029±0.001 78.34±1.86

Graphormer 0.122±0.006 0.052±0.005 80.51±0.53

GPS 0.070±0.004 - 78.80±1.01

GMLP-Mixer 0.077±0.003 - 79.97±1.02

SAN 0.139±0.006 - 77.75±0.61

Specformer 0.066±0.003 - 78.89±1.24

SignNet 0.084±0.006 0.024±0.003 -
Grit 0.059±0.002 0.024±0.003 -
PST 0.063±0.003 0.018±0.001 80.32±0.71

For the ZINC, ZINC-full, and ogbg-molhiv
datasets, we have conducted an evaluation of our
Point Set Transformer (PST) in comparison to
a range of expressive GNNs and graph trans-
formers. This set of models includes GIN (Xu
et al., 2019b), GNNAK+(Wang & Zhang, 2022),
ESAN(Bevilacqua et al., 2022), SUN (Frasca
et al., 2022), SSWL (Zhang et al., 2023a), 2-
DRFWL(2) GNN (Zhou et al., 2023), CIN (Bod-
nar et al., 2021), NGNN (Zhang & Li, 2021),
Graphormer (Ying et al., 2021), GPS (Rampásek
et al., 2022), Graph MLP-Mixer (He et al., 2023),
SAN (Kreuzer et al., 2021), Specformer (Bo et al.,
2023), SignNet (Lim et al., 2023), and Grit (Ma
et al., 2023). Performance results for the expres-
sive GNNs are sourced from (Zhou et al., 2023),
while those for the Graph Transformers are ex-
tracted from (He et al., 2023; Ma et al., 2023; Lim
et al., 2023). The comprehensive results are pre-
sented in Table 3.

Notably, our PST consistently outperforms all
baseline models on the ZINC and ZINC-full datasets, achieving reductions in loss of 5% and 18%,
respectively. On the ogbg-molhiv dataset, our PST also delivers competitive results, with only CIN
and Graphormer surpassing it. Overall, the Point Set Transformer demonstrates exceptional perfor-
mance across these four diverse datasets.

7.3 LONG RANGE GRAPH BENCHMARK

Table 4: Results on long range graph benchmark. *
stands for using RWSE, ** stands for using LapPE. All
baselines are around 500k parameters. PST takes about
500k parameters on PascalVOC-SP and about 1M on the
other two datasets.

Model PascalVOC-SP Peptides-Func Peptides-Struct
F1 score ↑ AP ↑ MAE ↓

GCN 0.1268±0.0060 0.5930±0.0023 0.3496±0.0013

GINE 0.1265±0.0076 0.5498±0.0079 0.3547±0.0045

GatedGCN 0.2873±0.0219 0.5864±0.0077 0.3420±0.0013

GatedGCN* 0.2860±0.0085 0.6069±0.0035 0.3357±0.0006

Transformer** 0.2694±0.0098 0.6326±0.0126 0.2529±0.0016

SAN* 0.3216±0.0027 0.6439±0.0075 0.2545±0.0012

SAN** 0.3230±0.0039 0.6384±0.0121 0.2683±0.0043

GraphGPS 0.3748±0.0109 0.6535±0.0041 0.2500±0.0005

Exphormer 0.3975±0.0037 0.6527±0.0043 0.2481±0.0007

GMLP-Mixer - 0.6970±0.0080 0.2475±0.0015

Graph ViT - 0.6942±0.0075 0.2449±0.0016

Grit - 0.6988±0.0082 0.2460±0.0012

PST 0.4010±0.0072 0.6984±0.0051 0.2470±0.0015

To evaluate the long-range capac-
ity of our Point Set Transformer
(PST), we conducted experiments us-
ing the Long Range Graph Bench-
mark (Dwivedi et al., 2022b). Fol-
lowing He et al. (2023), we com-
pared our model to a range of base-
line models, including GCN (Kipf
& Welling, 2017), GINE (Xu et al.,
2019a), GatedGCN (Bresson & Lau-
rent, 2017), SAN (Kreuzer et al., 2021),
Graphormer (Ying et al., 2021), GMLP-
Mixer, Graph ViT (He et al., 2023), and
Grit (Ma et al., 2023). Our PST outper-
forms all baselines on the PascalVOC-
SP and Peptides-Func datasets. Addi-
tionally, it attained the second-highest
performance on the Peptides-Struct
dataset. This demonstrates its remark-
able ability to capture long-range inter-
actions and produce competitive results across various benchmark datasets.

8 CONCLUSION

We introduce a novel approach employing symmetric rank decomposition to transform intercon-
nected nodes within a graph into independent nodes with associated coordinates. Additionally, we
propose the Point Set Transformer (PST) to encode the point set. Our approach demonstrates re-
markable theoretical expressivity and excels in real-world performance, addressing both short-range
and long-range tasks effectively. It also provides a new paradigm for graph machine learning.

9

Under review as a conference paper at ICLR 2024

9 LIMITATIONS

Our models’ scalability is still constrained by the Transformer architecture. To overcome this, ac-
celeration techniques such as sparse attention and linear attention could be explored, which will be
our future work.

10 REPRODUCIBILITY STATEMENT

Our code is in the supplementary material. Proofs of all theorems in the maintext are in Appendix A.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. In SIGKDD, 2019.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Ko-
rnbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature communications, 13(1):
1–11, 2022.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. In ICLR, 2022.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. In ICLR, 2023.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F. Montúfar, and
Michael M. Bronstein. Weisfeiler and lehman go cellular: CW networks. In NeurIPS, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. TPAMI, 45(1), 2023.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets, 2017.

Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall W. Hill Jr. Equivariant point network
for 3d point cloud analysis. In CVPR, 2021.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? In NeurIPS, 2020.

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. In ICLR, 2018.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J.
Guibas. Vector neurons: A general framework for so(3)-equivariant networks. In ICCV, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs,
2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In ICLR, 2022a.

Vijay Prakash Dwivedi, Ladislav Rampásek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In NeurIPS, 2022b.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. J. Mach. Learn. Res., 24:43:1–43:48,
2023.

Nadav Dym and Haggai Maron. On the universality of rotation equivariant point cloud networks. In
ICLR, 2021.

10

Under review as a conference paper at ICLR 2024

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. In NeurIPS, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
CoRR, abs/1903.02428, 2019.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. In NeurIPS, 2022.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-
translation equivariant attention networks. NeurIPS, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
neural networks for molecules. In NeurIPS, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-
Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical
design using a data-driven continuous representation of molecules, 2016.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In ICML, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power
of graph neural networks with i$ˆ2$-gnns. In ICLR, 2023.

Michael J. Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and
Hyunjik Kim. Lietransformer: Equivariant self-attention for lie groups. In ICML, 2021.

Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. Understanding isomorphism bias in graph data
sets. CoRR, abs/1910.12091, 2019.

Jinwoo Kim, Saeyoon Oh, and Seunghoon Hong. Transformers generalize deepsets and can be
extended to graphs & hypergraphs. In NeurIPS, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In NeurIPS, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. In NeurIPS, 2020.

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
ICLR, 2023.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
Philip H. S. Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message
passing. In ICML, 2023.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In NeurIPS, 2019a.

11

Under review as a conference paper at ICLR 2024

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In IGN, 2019b.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8024–8035, 2019.

SN Perepechko and AN Voropaev. The number of fixed length cycles in an undirected graph. explicit
formulae in case of small lengths. MMCP, 148, 2009.

Simo Puntanen, George PH Styan, and Jarkko Isotalo. Matrix tricks for linear statistical models:
our personal top twenty. Springer, 2011.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered
subgraph aggregation networks. In NeurIPS, 2022.

Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In NeurIPS, 2022.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In ICML, 2021.

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In ICML, 2021.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In ICLR, 2020.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. JMLR, 2011.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In ICML, 2023.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In ICLR, 2022.

Xiyuan Wang and Muhan Zhang. Graph neural network with local frame for molecular potential
energy surface. LoG, 2022.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. In NeurIPS, 2018.

Asiri Wijesinghe and Qing Wang. A new perspective on ”how graph neural networks go beyond
weisfeiler-lehman?”. In ICLR, 2022.

Marysia Winkels and Taco S. Cohen. 3d g-cnns for pulmonary nodule detection, 2018.

Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Harmonic
networks: Deep translation and rotation equivariance. In CVPR, 2017.

12

Under review as a conference paper at ICLR 2024

Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion
Stoica. Representing long-range context for graph neural networks with global attention. In
NeurIPS, 2021.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: A benchmark for molecular machine
learning, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In NeurIPS, 2021.

Jiaxuan You, Jonathan Michael Gomes Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In AAAI, 2021.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In ICML, 2023a.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via
graph biconnectivity. In ICLR, 2023b.

Muhan Zhang and Pan Li. Nested graph neural networks. In NeurIPS, 2021.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI, 2018.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In ICLR, 2022.

Junru Zhou, Jiarui Feng, Xiyuan Wang, and Muhan Zhang. Distance-restricted folklore weisfeiler-
leman gnns with provable cycle counting power, 2023.

A PROOF

A.1 PROOF OF PROPOSITION 1

The matrices QT
1 Q1 and QT

2 Q2 in Rr×r are full rank and thus invertible. This allows us to derive
the following equations:

L = Q1Q
T
1 = Q2Q

T
2 (8)

Q1Q
T
1 = Q2Q

T
2 ⇒ QT

1 Q1Q
T
1 = QT

1 Q2Q
T
2 (9)

⇒ QT
1 = (QT

1 Q1)
−1QT

1 Q2Q
T
2 (10)

⇒ ∃R ∈ Rm×m, QT
1 = RQT

2 (11)

⇒ ∃R ∈ Rm×m, Q1 = Q2W (12)

Q1Q
T
1 = Q2RRTQT

2 = Q2Q
T
2 ⇒ QT

2 Q2RRTQT
2 Q2 = QT

2 Q2Q
T
2 Q2 (13)

⇒ RRT = (QT
2 Q2)

−1QT
2 Q2Q

T
2 Q2(Q

T
2 Q2)

−1 = I (14)

Since R is orthogonal, any two full rank Q matrices are connected by an orthogonal transformation.
Furthermore, if there exists an orthogonal matrix R where RRT = I , then Q1 = Q2R, and L =
Q1Q

T
1 = Q2RRTQT

2 = Q2Q
T
2 .

13

Under review as a conference paper at ICLR 2024

A.2 MATRIX D+A IS ALWAYS POSITIVE SEMI-DEFINITE

∀x ∈ Rn,

xT (D +A)x =
∑

(i,j)∈E

xixj +
∑
i∈V

(
∑
j∈V

Aij)x
2
i (15)

=
∑

(i,j)∈E

xixj +
1

2

∑
(i,j)∈E

x2
i +

1

2

∑
(i,j)∈E

x2
j (16)

=
1

2

∑
(i,j)∈E

(xi + xj)
2 ≥ 0 (17)

Therefore, D +A is always positive semi-definite.

A.3 PROOF OF THEOREM 1

We restate the theorem here:

Theorem 8. Given two graphs G = (V,A,X) and G′ = (V ′, A′, X ′) with degree matri-
ces D and D′, respectively, the two graphs are isomorphic (G ≃ G′) if and only if ∃R ∈
O(r), {{(Xv, RQv)|∀v ∈ V }} = {{(Xv, Q

′
v)|v ∈ V ′}}, where r denotes the rank of matrix A,

and Q and Q′ are the symmetric rank decompositions of D +A and D′ +A′ respectively.

Proof. Two graphs are isomorphic⇔ ∃π ∈ Πn, π(A) = A′ and π(X) = X ′.

Now we prove that ∃π ∈ Πn, π(A) = A′ and π(X) = X ⇔ ∃R ∈ O(r), {{(Xv, RQv)|v ∈ V }} =
{{(Xv, Q

′
v)|v ∈ V ′}}.

When ∃π ∈ Πn, π(A) = A′ and π(X) = X ′, as

π(Q)π(Q)T = π(A+D) = A′ +D′ = Q′Q′T , (18)

according to Proposition 1, ∃R ∈ O(r), π(Q)RT = Q′. Moreover, π(X) = X ′, so

{{(Xv, RQv)|v ∈ V }} = {{(X ′
v, Q

′
v)|v ∈ V ′}} (19)

When ∃R ∈ O(r), {{(Xv, RQv)|v ∈ V }} = {{(X ′
v, Q

′
v)|v ∈ V ′}}, there exists permutation π ∈ Πn,

π(X) = X ′, π(Q)RT = Q′. Therefore,

π(A+D) = π(Q)π(Q)T = π(Q)RTRπ(Q)T = Q′Q′T = A′ +D′ (20)

As A = D +A− 1
2diag((D +A)⃗1), A′ = D +A− 1

2diag((D +A)⃗1), where 1⃗ ∈ Rn is an vector
with all elements = 1.

π(A) = A′ (21)

A.4 PROOF OF THEOREM 2

Now we restate the theorem.

Theorem 9. Given two graphs G = (V,A,X) and G = (V ′, A′, X ′), and an injective
permutation-equivariant function Z mapping adjacency matrix to a symmetric matrix: (1) For
all permutation-equivariant function f , if G ≃ G′, then the two sets of generalized coordinates
are equal up to an orthogonal transformation, i.e., ∃R ∈ O(r), {{Xv, RQ̃(Z(A), f)v|v ∈ V }} =

{{X ′
v, Q̃(Z(A′), f)v|v ∈ V ′}}, where r is the rank of A, Q̃, Q̃′ are the generalized coordinates of A

and A′ respectively. (2) There exists a continuous permutation-equivariant function f : Rr → Rr×2,
such that G ≃ G′ if ∃R ∈ O(r),∀i = 1, 2, ..., d, {{(Xv, RQ̃(Z(A), f1)v, RQ̃(Z(A), f2)v)|v ∈
V }} = {{(X ′

v, Q̃(Z(A′), f1)v, Q̃(Z(A′), f2)v)|v ∈ V ′}}, where f1 : Rr → Rr and f2 : Rr → Rr

are two output channels of f .

14

Under review as a conference paper at ICLR 2024

Proof. First, as Z is an injective function, forall permutation π ∈ Πn

π(Z(A)) = Z(A′)⇔ Z(π(A)) = Z(A′)⇔ π(A) = A′. (22)
Therefore, two matrix are isomorphic ⇔ ∃π ∈ Πn, π(X) = X ′, π(Z) = Z ′, where Z,Z ′ denote
Z(A), Z(A′) respectively.

In this proof, we denote eigendecomposition as Z = Udiag(Λ)UT and Z ′ = U ′diag(Λ′)U ′T ,
where elements in Λ and Λ′ are sorted in ascending order. Let the multiplicity of eigenvalues in Z
be r1, r2, ..., rl, corresponding to eigenvalues λ1, λ2, ..., λi.

(1) If G ≃ G′, there exists a permutation π ∈ Πn, π(X) = X ′, π(Z) = Z ′.

π(Z) = Z ′ ⇒ Z ′ = π(U)diag(Λ)π(U)T = U ′diag(Λ′)U ′T . (23)
π(U)diag(Λ)π(U)T is also an eigendecomposition of Z ′, so Λ = Λ′ as they are both sorted in
ascending order. Moreover, since π(U), U ′ are both matrices of eigenvectors, they can differ only in
the choice of bases in each eigensubspace. So there exists a block diagonal matrix V with orthogonal
matrix V1 ∈ O(r1), V2 ∈ O(r2), ..., Vl ∈ O(rl) as diagonal blocks that π(U)V = U ′.

As f is a permutation equivariant function,
Λi = Λj ⇒ ∃π ∈ Πr, π(i) = j, π(j = i), π(Λ) = Λ (24)

⇒ ∃π ∈ Πr, π(i) = j, π(j = i), π(f(Λ)) = f(π(Λ)) = f(Λ) (25)
⇒ f(Λ)i = f(Λ)j (26)

Therefore, f will produce the same value on positions with the same eigenvalue. Therefore, f can
be consider as a block diagonal matrix with f1Ir1 , f2Ir2 , ..., flIrl as diagonal blocks, where fi ∈ R
is f(Λ)pi

, pi is a position that Λpi
= λi, and Ir is an identity matrix ∈ Rr×r.

Therefore,
V diag(f(Λ)) = diag(f1V1, f2V2, ..., flVl) = diag(f(Λ))V. (27)

Therefore,
π(Q(Z, f))V = π(U)diag(f(Λ))V (28)

= π(U)V diag(f(Λ)) (29)

= U ′diag(f(Λ′)) (30)

= Q(Z ′, f) (31)

As V V T = I, V ∈ O(r),

∃R ∈ O(r), {{Xv, RQ̃(Z(A), f)v|v ∈ V }} = {{X ′
v, Q̃(Z(A′), f)v|v ∈ V ′}} (32)

(2) We simply define f1 is element-wise abstract value and square root
√
|.|, f1 is element-wise

abstract value and square root multiplied with its sign sgn(|.|)
√
|.|. Therefore, f1, f2 are continuous

and permutation equivariant.

if ∃R ∈ O(r),

{{Xv, RQ̃(Z(A), f1)v, RQ̃(Z(A), f2)v|v ∈ V }} = {{X ′
v, Q̃(Z(A′), f1)v, Q̃(Z(A′), f2)v|v ∈ V ′}}.

then there exist π ∈ Πn, so that
π(X) = X ′ (33)

π(U)diag(f1(Λ))RT = U ′diag(f1(Λ′)) (34)
π(U)diag(f2(Λ))RT = U ′diag(f2(Λ′)). (35)

Therefore,
π(Z) = π(U)diag(f1(Λ))diag(f2(Λ))π(U ′)T (36)

= π(U)diag(f1(Λ))RRT diag(f2(Λ))π(U ′)T (37)

= U ′diag(f1(Λ′))diag(f2(Λ′))U ′T (38)

= Z ′. (39)
As π(Z) = Z ′, π(X) = X ′, two graphs are isomorphic.

15

Under review as a conference paper at ICLR 2024

A.5 PROOF OF THEOREM 5

Let Hl denote a circle of l nodes. Let Gl denote a graph of two connected components, one is H⌊l/2⌋
and the other is H⌈l/2⌉. Obviously, there exists a node pair in Gl with shortest path distance equals
to infinity, while Hl does not have such a node pair. So the multiset of shortest path distance is easy
to distinguish them. However, they are regular graphs with node degree all equals to 2, so MPNN
cannot distinguish them:
Lemma 1. For all nodes v, u in Gl, Hl, they have the same representation produced by k-layer
MPNN, forall k ∈ N .

Proof. We proof it by induction.

k = 0. Initialization, all node with trivial node feature and are the same.

Assume k − 1-layer MPNN still produce representation h for all node. At the k-th layer, each
node’s representation will be updated with its own representation and two neighbors representations
as follows.

h, {{h, h}} (40)
So all nodes still have the same representation.

A.6 PROOF OF THEOREM 4 AND 14

Given two function f, g, f can be expressed by g means that there exists a function ϕ ϕ ◦ g = f ,
which is equivalent to given arbitrary input H,G, f(H) = f(G) ⇒ g(H) = g(G). We use f → g
to denote that f can be expressed with g. If both f → g and g → f , there exists a bijective mapping
between the output of f to the output of g, denoted as f ↔ g.

Here are some basic rule.

• g → h⇒ f ◦ g → f ◦ h.
• g → h, f → s⇒ f ◦ g → s ◦ h.
• f is bijective, f ◦ g → g

2-folklore Weisfeiler-Leman test produce a color ht
ij for each node pair (i, j) at t-th iteration. It

updates the color as follows,

ht+1
ij = hash(ht

ij , {{(ht
ik, h

t
kj)|k ∈ V }}). (41)

The color of the the whole graph is

ht
G = hash({{ht

ij |(i, j) ∈ V × V }}). (42)

Initially, tuple color hashes the node feature and edge between the node pair, h0
ij → δij , Aij , Xi, Xj .

We are going to prove that
Lemma 2. Forall t ∈ N, ht

ij can express Ak
ij , k = 0, 1, 2, ..., 2t, where A is the adjacency matrix

of the input graph.

Proof. We prove it by induction on t.

• When t = 0, h0
ij → Aij , Iij in initialization.

• If t > 0,∀t′ < t, ht′

ij → Ak′
, k′ = 0, 1, 2, ..., 2t

′
. For all k = 0, 1, 2,

ht
ij → hash(ht

ij , {{(ht
ik, h

t
kj)|k ∈ V }}) (43)

→ hash(ht
ij , {{(A

⌊k/2⌋
ik , A

⌈k/2⌉
kj)|k ∈ V }}) (44)

→
∑
k∈V

A
⌊k/2⌋
ik A

⌈k/2⌉
kj (45)

→ Ak
ij (46)

16

Under review as a conference paper at ICLR 2024

To prove that t-iteration 2-FWL cannot compute shortest path distance larger than 2t
′
, we are going

to construct an example.

Lemma 3. Let Hl denote a circle of l nodes. Let Gl denote a graph of two connected components,
one is H⌊l/2⌋ and the other is H⌈l/2⌉. ∀K ∈ N+, 2-FWL can not distinguish HlK and GlK , where
lK = 2× 2× (2K). However, GlK contains node tuple with 2K +1 shortest path distance between
them while HlK does not, any model count up to 2K + 1 shortest path distance can count it.

Proof. Given a fixed t, we enumerate the iterations of 2-FWL. Given two graphs HlK , GlK ,
we partition all tuples in each graph according to the shortest path distance between nodes:
c0, c1, ..., cl, ..., c2K , where cl contains all tuples with shortest path distance between them as l,
and c>2K contains all tuples with shortest path distance between them larger than 2K . We are going
to prove that at k-th layer k <= K, all ci, i ≤ 2k nodes have the same representation (denoted as
hk
i) c2k+1, c2k+2, ..., c2K , c>K nodes all have the same representation (denoted as hk

2k+1).

Initially, all c0 tuples have representation h0
0, all c1 tuples have the same representation h0

1 in both
graph, and all other tuples have the same representation h0

2.

Assume at k-th layer, all ci, i ≤ 2k nodes have the same representation hk
i ,

c2k+1, c2k+2, ..., c2K , c>2K tuples all have the same representation hk
2k+1. At k + 1-th layer,

each representation is updated as follows.

ht+1
ij ← ht

ij , {{(ht
iv, h

t
vj)|v ∈ V }} (47)

For all tuples, the multiset has lK elements in total.

For c0 tuples, the multiset have 1 (hk
0 , h

k
0) as v = i, 2 (hk

t , h
k
t) for t = 1, 2, .., 2k respectively as v

is the k-hop neighbor of i, and all elements left are (hk
2k+1, h

k
2k+1) as v is not in the k-hop neighbor

of i.

For ct, t = 1, 2, ..., 2k tuples: the multiset have 1 (hk
a, h

k
t−a) for a = 0, 1, 2, .., t respectively as

v is on the shortest path between (i, j), and 1 (hk
a, h

k
2k+1) for a = 1, 2, ..., 2k respectively, and 1

(hk
2k+1, h

k
a) for a = 1, 2, ..., 2k respectively, with other elements are (hk

2k+1, h
k
2k+1).

For ct, t = 2k + 1, 2k + 2, ..., 2k+1 tuples: the multiset have 1 (hk
a, h

k
t−a) for a = t− 2k, t− 2k +

1, ..., 2k respectively as v is on the shortest path between (i, j), 1 (hk
a, h

k
t−a) for a ∈ {0, 1, 2, ..., t−

2k − 1} ∪ {2k + 1, 2k + 2, ..., 2k+1} respectively as v is on the shortest path between (i, j), and
1 (hk

a, h
k
2k+1) for a = 1, 2, ..., 2k respectively, and 1 (hk

2k+1, h
k
a) for a = 1, 2, ..., 2k respectively,

with other elements are (hk
2k+1, h

k
2k+1).

For ct, t = 2k+1 + 1, ..., 2K , > 2K : the multiset are all the same : 2 (hk
a, h

k
2k+1) and 2 (hk

2k+1, h
k
a)

for a = 1, 2, 3, ..., 2k, respectively.

A.7 PROOF OF THEOREM 3

We can simply choose fk(Λ) = Λk. Then ⟨Q̃(A, f0)i, Q̃(A, fk)j⟩ = Ak
ij . The shortest path distance

is
spd(i, j, A) = argmin

k
{k ∈ N|Ak

ij > 0} (48)

A.8 PROOF OF THEOREM 6 AND 7

This section assumes that the input graph is undirected and unweighted with no self-loops. Let A
denote the adjacency matrix of the graph. Note that AT = A,A⊙A = A

An L-path is a sequence of edges [(i1, i2), (i2, i3), ..., (iL, iL+1)], where all nodes are different
from each other. An L-cycle is an L-path except that i1 = iL+1. Two paths/cycles are considered
equivalent if their sets of edges are equal. The count of L path from node u to v is the number of

17

Under review as a conference paper at ICLR 2024

non-equivalent pathes with i1 = u, iL+1 = v. The count of L-cycle rooted in node u is the number
of non-equivalent cycles involves node u.

Perepechko & Voropaev (2009) show that the number of path can be expressive with a polynomial
of A, where A is the adjacency matrix of the input unweight graph. Specifically, let PL denote path
matrix whose (u, v) elements denote the number of L-pathes from u to v, Perepechko & Voropaev
(2009) provides formula to express PL with A for small L.

This section considers a weaken version of point cloud transformer. Each layer still consists of sv-
mixer and multi-head attention. However, the multi-head attention matrix takes the scalar and vector
feature before sv-mixer for Q,K and use the feature after sv-mixer for V .

At k-th layer sv-mixer:

s′i ← MLP1(si∥diag(W1viv
k,T
i W2)) (49)

v′i ←W3diag(MLP2(s
′
i))vi +W4vi (50)

Multi-head Attention:

Yij = MLP3(Kij),Kij = (W s
q si ⊙W s

k sj)∥diag(W v
q viv

T
i W

v
k), (51)

As s′i and v′i can express si, vi, so the weaken version can be expressed with the original version.

si ← MLP4(s
′
j∥

∑
j

Attenijs′j) (52)

vi ←W5(v
′
j∥

∑
j

Attenijv
′
j) (53)

Let Y k denote the attention matrix at k-th layer. Y k is a learnable function of A. Let Yk denote the
polynomial space of A that Y k can express. Each element in it is a function from Rn×n → Rn×n

We are going to prove some lemmas about Y.

Lemma 4. Yk ⊆ Yk+1

Proof. As there exists residual connection, scalar and vector representations of layer k + 1 can
always contain those of layer k, so attention matrix of layer k + 1 can always express those of layer
k.

Lemma 5. If y1, y2, ..., ys ∈ Yk, their hadamard product y1 ⊙ y2 ⊙ ...⊙ ys ∈ Yk.

Proof. As (y1⊙y2⊙ ...⊙ys)ij =
∏s

l=1(yl)ij is a element-wise polynomial on compact domain, an
MLP (denoted as g) exists that takes (i, j) elements of the y1, y2, ..., ys to produce the correspond-
ing elements of their hadamard product. Assume g0 is the MLP3 in Equation 52 to produce the
concatenation of y1, y2, .., ys, use g ◦ g0 (the composition of two mlps) for the MLP3 in Equation 52
produces the hadamard product.

Lemma 6. If y1, y2, ..., ys ∈ Yk, their linear combination
∑s

l=1 alyl ∈ Yk, where al ∈ R.

Proof. As (
∑s

l=1 alyl)ij =
∑s

l=1 al(yl)ij is a element-wise linear layer (denoted as g). Assume g0
is the MLP3 in Equation 52 to produce the concatenation of y1, y2, .., ys, use g ◦ g0 for the MLP3 in
Equation 52 produces the linear combination.

Lemma 7. ∀s > 0, As ∈ Y1.

Proof. As shown in Section 5.1, the inner product of coordinates can produce As.

Lemma 8. ∀y1, y2, y3 ∈ Yk, s ∈ N+, d(y1)y2, y2d(y1), d(y1)y2d(y3), y1A
s, Asy1, y1A

sy2 ∈ Yk

18

Under review as a conference paper at ICLR 2024

Proof. According to Equation 49 and Equation 51, s′i at k-th layer can express yii for all y ∈
Yk. Therefore, at k + 1-th layer in Equation 51, MLP3 can first compute element (i, j) (y2)ij
from si, sj , vi, vj , then multiply (y2)ij with (y1)ii from si, (y3)jj from sj and thus produce
d(y1)y2, y2d(y1), d(y1)y2d(y3).

Moreover, according to Equation 52, vi at k + 1-th layer can express∑
k(y1)ikvk,

∑
k(y2)ikvk. So at k + 1-th layer, the (i, j) element can ex-

press ⟨
∑

k(y1)ikvk, vj⟩, ⟨vi,
∑

k(y1)jkvk⟩, ⟨(y1)ikvk,
∑

k(y2)jkvk⟩, corresponds to
y1A

s, Asy2, y1A
sy2, respectively.

Therefore,
Lemma 9. • ∀s > 0, l > 0, ai > 0, ⊙l

i=1A
ai ∈ Y1.

• ∀s1, s2 > 0, l > 0, As1d(⊙l
i=1A

ai), d(⊙l
i=1A

ai)As1 , d(⊙l1
i=1A

bi)As1d(⊙l2
i=1A

bi) ∈ Y2.

• ∀s1, s2, s3 > 0, As1d(⊙l
i=1A

ai)

Therefore, we come to our main theorem.
Theorem 10. The attention matrix of 1-layer PST can express P2, 2-layer PST can express P3,
3-layer PST can express P4, P5, 5-layer PST can express P6.

Proof. As shown in (Perepechko & Voropaev, 2009),

P2 = A2 (54)

Only one kind basis ⊙l
i=1A

ai . 1-layer PST can express it.

P3 = A3 +A−Ad(A2)− d(A2)A (55)

Three kind of basis ⊙l
i=1A

ai (A3, A), As1d(⊙l
i=1A

ai)(Ad(A2)), and d(⊙l
i=1A

ai)As1 . 2-layer PST
can express it.

P4 = A4 +A2 + 3A⊙A2 − d(A3)A− d(A2)A2 −Ad(A3)−A2d(A2)−Ad(A2)A (56)

Four kinds of basis ⊙l
i=1A

ai (A4, A2, A ⊙ A2), As1d(⊙l
i=1A

ai) (Ad(A3), A2d(A2)),
d(⊙l

i=1A
ai)As1 (d(A3)A, d(A2)A2), and As1d(⊙l

i=1A
ai)As3 (Ad(A2)A). 3-layer PST can ex-

press it.

P5 = A5 + 3A3 + 4A (57)

+ 3A2 ⊙A2 ⊙A+ 3A⊙A3 − 4A⊙A2 (58)

− d(A4)A− d(A3)A2 − d(A2)A3 + 2d(A2)2A− 2d(A2)A− 4d(A2)A (59)

−Ad(A4)−A2d(A3)−A3d(A2) + 2Ad(A2)2 − 2Ad(A2)− 4Ad(A2) (60)

+ d(A2)Ad(A2) (61)

+ 3(A⊙A2)A (62)

+ 3A(A⊙A2) (63)

−Ad(A3)A−Ad(A2)A2 −A2d(A2)A (64)

+ d(Ad(A2)A)A (65)
(66)

Basis are in

• Y1

19

Under review as a conference paper at ICLR 2024

– ⊙l
i=1A

ai : A5, A3, A,A2 ⊙A2 ⊙A,A⊙A3, A⊙A2.

• Y2

– As1d(⊙l
i=1A

ai):Ad(A4), A2d(A3), A3d(A2), Ad(A2)2, Ad(A2), Ad(A2).
– d(⊙l

i=1A
ai)As1 : Ad(A4), A2d(A3), A3d(A2), Ad(A2)2, Ad(A2), Ad(A2).

– d(⊙l1
i=1A

ai)As1d(⊙l1
i=1A

bi): d(A2)Ad(A2).
– As1(⊙l

i=1A
ai): A(A⊙A2).

– (⊙l
i=1A

ai)As1 : (A⊙A2)A

• Y3:

– AsY2: Ad(A3)A, Ad(A2)A2, A2d(A2)A.
– d(Y2)As: d(Ad(A2)A)A

3-layer PST can express it.

Formula for 6-path matrix is quite long.

P6 = A6 + 4A4 + 12A2 (67)

+ 3A⊙A4 + 6A⊙A2 ⊙A3 +A2 ⊙A2 ⊙A2 − 4A2 ⊙A2 + 44A⊙A2 (68)

− d(A5)A− d(A4)A2 − d(A3)A3 − 5d(A3)A− d(A2)A4 − 7d(A2)A2 (69)

+ 2d(A2)2A2 + 4(d(A2)⊙ d(A3))A (70)

−Ad(A5)−A4d(A2)−A3d(A3)− 5Ad(A3)−A2d(A4)− 7A2d(A2) (71)

+ 2A2d(A2)2 + 4A(d(A2)⊙ d(A3)) (72)

+ d(A2)Ad(A3) + d(A3)Ad(A2) + d(A2)A2d(A2) (73)

+ 2(A⊙A3)A+ 2(A⊙A2 ⊙A2)A+ (A2 ⊙A2 ⊙A)A− 3(A⊙A2)A+ (A⊙A3)A
(74)

+ (A⊙A2)A2 + 2(A⊙A2)A2 − (A⊙A2)A (75)

+ 2A(A⊙A3) + 2A(A⊙A2 ⊙A2) +A(A2 ⊙A2 ⊙A)− 3A(A⊙A2) +A(A⊙A3)
(76)

+A2(A⊙A2) + 2A2(A⊙A2)−A(A⊙A2) (77)

− 8A⊙ (A(A⊙A2))− 8A⊙ ((A⊙A2)A) (78)

− 12d(A2)(A⊙A2)− 12(A⊙A2)d(A2) (79)

−Ad(A4)A−Ad(A2)A3 −A3d(A2)A−Ad(A3)A2 −A2d(A3)A−A2d(A2)A2 (80)

− 10Ad(A2)A+ 2Ad(A2)2A (81)

+ d(A2)Ad(A2)A+Ad(A2)Ad(A2) (82)

− 3A⊙ (Ad(A2)A) (83)

− 4Ad((A⊙A2)A)− 4Ad(A(A⊙A2)) (84)

+ 3A(A⊙A2)A (85)

− 4d(A(A⊙A2))A− 4d((A⊙A2)A)A (86)

+ d(Ad(A3)A)A+ d(Ad(A2)A)A2 + d(Ad(A2)A2)A+ d(A2d(A2)A)A (87)

+Ad(Ad(A3)A) +A2d(Ad(A2)A) +Ad(A2d(A2)A) +Ad(Ad(A2)A2) (88)

+Ad(Ad(A2)A)A (89)
(90)

Basis are in

• Y1

20

Under review as a conference paper at ICLR 2024

– ⊙l
i=1A

ai : A6, A4, A2, A⊙A4, A⊙A2 ⊙A3, A2 ⊙A2 ⊙A2, A2 ⊙A2, A⊙A2.

• Y2

– As1d(⊙l
i=1A

ai):Ad(A5), A4d(A2), A3d(A3), Ad(A3), A2d(A4), A2d(A2),
A2d(A2)2, A(d(A2)⊙ d(A3)).

– d(⊙l
i=1A

ai)As1 : d(A5)A, d(A4)A2, d(A3)A3, d(A3)A, d(A2)A4, d(A2)A2,
d(A2)2A2, (d(A2)⊙ d(A3))A.

– d(⊙l1
i=1A

ai)As1d(⊙l1
i=1A

bi): d(A2)Ad(A3), d(A3)Ad(A2), d(A2)A2d(A2).
– As1(⊙l

i=1A
ai): A(A⊙A3), A(A⊙A2⊙A2), A(A2⊙A2⊙A), A(A⊙A2), A(A⊙A3),

A2(A⊙A2), A2(A⊙A2), A(A⊙A2).
– (⊙l

i=1A
ai)As1 : (A⊙A3)A, (A⊙A2⊙A2)A, (A2⊙A2⊙A)A, (A⊙A2)A, (A⊙A3)A,

(A⊙A2)A2, (A⊙A2)A2, (A⊙A2)A

– Y2 ⊙ Y2: A⊙ ((A⊙A2)A), A⊙ ((A⊙A2)A).
– d(Y1)Y1: d(A2)(A⊙A2)

– Y1d(Y1): (A⊙A2)d(A2)

• Y3:

– AsY2: Ad(A4)A, Ad(A2)A3, A3d(A2)A, Ad(A3)A2, A2d(A3)A, A2d(A2)A2,
Ad(A2)A, Ad(A2)2A, Ad(A2)Ad(A2), A(A⊙A2)A.

– Y2As: d(A2)Ad(A2)A.
– Y3 ⊙ Y3: A⊙ (Ad(A2)A).
– d(Y2)Y2: d(Ad(A2)A)A,d(A(A⊙A2))A,d((A⊙A2)A)A

– Y2d(Y2):Ad((A⊙A2)A),Ad(A(A⊙A2))

• Y4:

– d(Y3)Y3: d(Ad(A3)A)A, d(Ad(A2)A)A2, d(Ad(A2)A2)A, d(A2d(A2)A)A.
– Y3d(Y3): Ad(Ad(A3)A), A2d(Ad(A2)A), Ad(A2d(A2)A), Ad(Ad(A2)A2).

• Y5:

– As1d(Y3)As2 :Ad(Ad(A2)A)A

5-layer PST can express it.

Count cycle is closely related to counting path. A L+1 cycle contains edge (i, j) can be decomposed
into a L-path from i to j and edge (i, j). Therefore, the vector of count of cycles rooted in each node
CL+1 = diagonal(APL)

Theorem 11. The diagonal elements of attention matrix of 2-layer PST can express C3, 3-layer PST
can express C4, 4-layer PST can express C5, C6, 6-layer PST can express C7.

Proof. It is a direct conjecture of Theorem 10 as CL+1 = diagonl(APL) and ∀k, PL ∈ Yk ⇒
APL ∈ Yk+1

B EXPRESSIVITY COMPARISION WITH OTHER MODELS

Algorithm A is considered more expressive than algorithm B if it can differentiate between all pairs
of graphs that algorithm B can distinguish. If there is a pair of links that algorithm A can distinguish
while B cannot and A is more expressive than B, we say that A is strictly more expressive than B.
We will first demonstrate the greater expressiveness of our model by using PST to simulate other
models. Subsequently, we will establish the strictness of our model by providing a concrete example.

Our transformer incorporates inner products of coordinates, which naturally allows us to express
shortest path distances and various node-to-node distance metrics. These concepts are discussed in
more detail in Section 5.1. This naturally leads to the following theorem, which compares our PST
with GIN (Xu et al., 2019a).

21

Under review as a conference paper at ICLR 2024

Theorem 12. A k-layer Point Set Transformer is strictly more expressive than a k-layer GIN.

Proof. We first prove that one PST layer can simulate an GIN layer.

Given node features si and vi. Without loss of generality, we can assume that one channel of vi
contains Udiag(Λ1/2). The sv-mixer can simulate an MLP function applied to si. Leading to s′i. A
GIN layer will then update node representations as follows,

si ← s′i +
∑

j∈N(i)

s′j (91)

By inner products of coordinates, the attention matrix can express the adjacency matrix. By set-
ting W s

q ,W
s
k = 0, and W v

q ,W
v
k be a diagonal matrix with only the diagonal elements at the row

corresponding the the channel of Udiag(Λ1/2).

Kij = (W s
q si ⊙W s

k sj)∥diagonal(W v
q viv

T
j W

v
k)→ ⟨diag(Λ1/2)Ui, diag(Λ1/2)Uj⟩ = Aij (92)

Let MLP express an identity function.

Attenij = MLP(Kij)→ Aij (93)

The attention layer will produce

si ←
∑
j

Aijs
′
j =

∑
j∈N(i)

s′j (94)

with residual connection, the layer can express GIN

si ← s′i + si = s′i +
∑

j∈N(i)

s′j (95)

Moreover, as shown in Theorem 5, MPNN cannot compute shortest path distance, while PST can.
So PST is strictly more expressive.

Moreover, our transformer is strictly more expressive than some representative graph transformers,
including Graphormer (Ying et al., 2021) and GPS with RWSE as structural encoding (Rampásek
et al., 2022).
Theorem 13. A k-layer Point Set Transformer is strictly more expressive than a k-layer Graphormer
and a k-layer GPS.

Proof. We first prove that k-layer Point Set Transformer is more expressive than a k-layer
Graphormer and a k-layer GPS.

In initialization, besides the original node feature, Graphormer further add node degree features and
GPS further utilize RWSE. Our PST can add these features with the first sv-mixer layer.

s′i ← MLP1(si∥diagonal(W1viv
T
i W

T
2)) (96)

Here, diagonal(W1viv
T
i W

T
2) add coordinate inner products, which can express RWSE (diagonal

elements of random walk matrix) and degree (see Appendix D), to node feature.

Then we are going to prove that one PST layer can express one GPS and one Graphormer layer.
PST’s attention matrix is as follows,

Attenij = MLP(Kij), Kij = (W s
q si⊙W s

k sj)∥diagonal(W v
q viv

T
j W

v
k)→ ⟨diag(Λ1/2)Ui, diag(Λ1/2)Uj⟩

(97)
The Hadamard product (W s

q si ⊙ W s
k sj) with MLP can express the inner product of node repre-

sentations used in Graphormer and GPS. The inner product of coordinates can express adjacency
matrix used in GPS and Graphormer and shortest path distance used in Graphormer. Therefore,
PST’ attention matrix can express the attention matrix in GPS and Graphormer.

To prove strictness, Figure 2(c) in (Zhang et al., 2023b) provides an example. As PST can capture
resistance distance and simulate 1-WL, so it can differentiate the two graphs according to Theorem

22

Under review as a conference paper at ICLR 2024

4.2 in (Zhang et al., 2023b). However, Graphormer cannot distinguish the two graphs, as proved in
(Zhang et al., 2023b).

For GPS, Two graphs in Figure 2(c) have the same RWSE: RWSE is

diagonal(Ûdiag(Λ̂k)ÛT), k = 1, 2, 3, ..., (98)

where the eigendecomposition of normalized adjacency matrix D−1/2AD−1/2 is Û . By com-
putation, we find that two graphs share the same Λ̂. Moroever, diagonal(Ûdiag(Λ̂k)ÛT)
are equal in two graphs for k = 0, 1, 2, ..., 9, where 9 is the number of nodes in graphs.
Λk and diagonal(Ûdiag(Λ̂k)ÛT) with larger k are only linear combinations of Λk and thus
diagonal(Ûdiag(Λ̂k)ÛT) for k = 0, 1, ..., 9. So the RWSE in the two graphs are equal and equiva-
lent to simply assigning feature h1 to the center node and feature h2 to other nodes in two graphs.
Then GPS simply run a model be a submodule of Graphormer on the graph and thus cannot differ-
entiate the two graphs either.

Even against a highly expressive method such as 2-FWL, our models can surpass it in expressivity
with a limited number of layers:

Theorem 14. For all K > 0, a graph exists that a K-iteration 2-FWL method fails to distinguish,
while a 1-layer Point Set Transformer can.

Proof. It is a direct corollary of Theorem 4.

C SOME GRAPH TRANSFORMERS FAIL TO COMPUTE SHORTEST PATH
DISTANCE

First, we demonstrate that computing inner products of node representations alone cannot accurately
determine the shortest path distance when the node representations are permutation-equivariant.
Consider Figure 2 as an illustration. In cases where node representations exhibit permutation-
equivariance, nodes v2 and v3 will share identical representations. Consequently, the pairs (v1, v2)
and (v1, v3) will yield the same inner products of node representations, despite having different
shortest path distances. Consequently, it becomes evident that the attention matrices of some Graph
Transformers are incapable of accurately computing the shortest path distance.

Theorem 15. GPS with RWSE (Rampásek et al., 2022) and Graphormer without shortest path
distance encoding cannot compute shortest path distance with the elements of adjacency matrix.

Proof. Their adjacency matrix elements are functions of the inner products of node representations
and the adjacency matrix.

Attenij = ⟨si, sj⟩||Aij . (99)

This element is equal for the node pair (v1, v2) and (v1, v3) in Figure 2. However, two pairs have
different shortest path distances.

Furthermore, while Graph Transformers gather information from the entire graph, they may not
have the capacity to emulate multiple MPNNs with just a single transformer layer. To address this,
we introduce the concept of a vanilla Graph Transformer, which applies a standard Transformer to
nodes using the adjacency matrix for relative positional encoding. This leads us to the following
theorem.

Theorem 16. For all k ∈ N, there exists a pair of graph that k + 1-layer MPNN can differentiate
while k-layer MPNN and k-layer vanilla Graph Transformer cannot.

Proof. Let Hl denote a circle of l nodes. Let Gl denote a graph of two components, one is H⌊l/2⌋
and the other is H⌈l/2⌉. Let H ′

l denote adding a unique feature 1 to a node in Hl (as all nodes are
symmetric for even l, the selection of node does not matter), and G′

l denote adding a unique feature
1 to one node in Gl. All other nodes have feature 0. Now we prove that

23

Under review as a conference paper at ICLR 2024

Figure 2: The failure of using inner products of permutation-equivariant node representations to pre-
dict shortest path distance. v2 and v3 have equal node representations due to symmetry. Therefore,
(v1, v2) and (v1, v3) will have the same inner products of node representations but different shortest
path distance.

Lemma 10. For all K ∈ N, (K + 1)-layer MPNN can distinguish H ′
4(K+1) and G′

4(K+1), while
K-layer MPNN and K-layer vanilla Graph Transformer cannot distinguish.

Given H ′
4(K+1), G

′
4(K+1), we assign each node a color according to its distance to the node with

extra label 1: c0 (the labeled node itself), c1 (two nodes connected to the labeled node), c2 (two
nodes whose shortest path distance to the labeled node is 2),..., cK (two nodes whose shortest path
distance to the labeled node is K), c>K (nodes whose shortest path distance to the labeled node
is larger than K). Now by simulating the process of MPNN, we prove that at k-th layer k <= K,
∀i ≤ k, ci nodes have the same representation (denoted as hk

i), respectively, ck+1, ck+2, ..., cK , c>K

nodes all have the same representation (denoted as hk
k+1).

Initially, all c0 nodes have representation h0
0, all other nodes have representation h0

1 in both graph.

Assume at k-th layer, ∀i ≤ k, ci nodes have the same representation hk
i , respectively,

ck+1, ck+1, ..., cK , c>K nodes all have the same representation hk
k+1. At k + 1-th layer, c0 node

have two neighbors of representation hk
1 . all ci, 1 < i <= k node two neighbors of representations

hk
i−1 and hk

i+1, respectively. ck+1 nodes have two neighbors of representation hk
k and hk

k+1. All
other nodes have two neighbors of representation hk

k+1. So ci, i ≤ k + 1 nodes have the same
representation (denoted as hk+1

i), respectively, ck+1+1, ..., cK , c>K nodes all have the same repre-
sentation (denoted as hk

k+1).

The same induction also holds for K-layer vanilla graph transformer.

However, in the K + 1-th message passing layer, only one node in G4(K+1) is of shortest path
distance K + 1 to the labeled node. It also have two neighbors of representation hK

K . While such a
node is not exist in H4(K+1). So (K + 1)-layer MPNN can distinguish them.

The issue with a vanilla Graph Transformer is that, although it collects information from all nodes
in the graph, it can only determine the presence of features in 1-hop neighbors. It lacks the ability
to recognize features in higher-order neighbors, such as those in 2-hop or 3-hop neighbors. A
straightforward solution to this problem is to manually include the shortest path distance as a feature.
However, our analysis highlights that aggregating information from the entire graph is insufficient
for capturing long-range interactions.

D CONNECTION WITH STRUCTURAL EMBEDDINGS

We show the equivalence between the structural embeddings and the inner products of our general-
ized coordinates in Table 5.

E DATASETS

We summarize the statistics of our datasets in Table 6. Synthetic is the dataset used in substructure
counting tasks provided by Huang et al. (2023), they are random graph with the count of substruc-
ture as node label. QM9 (Wu et al., 2017), ZINC (Gómez-Bombarelli et al., 2016), and ogbg-molhiv
are three datasets of small molecules. QM9 use 13 quantum chemistry property as the graph label.

24

Under review as a conference paper at ICLR 2024

Table 5: Connection between existing structural embeddings and our parameterized coordinates.
The eigendecomposition are Â← Û Λ̂Û , D − A← Ũ Λ̃ŨT , A← UΛUT . di denote the degree of
node i.

Method Description Connection

Random walk ma-
trix (Li et al., 2020;
Dwivedi et al., 2023;
Rampásek et al.,
2022)

k-step random walk matrix is
(D−1A)k, whose element (i, j) is
the probability that a k-step random
walk starting from node i ends at node
j.

(D−1A)kij
= (D−1/2(Â)kD1/2)ij

=
√

dj
di
⟨Ûi, diag(Λ̂k)Ûj⟩

Heat kernel ma-
trix (Mialon et al.,
2021)

Heat kernel is a solution of the heat
equation. Its element (i, j) represent
how much heat diffuse from node i to
node j

(I+Ũ(diag(exp(−tΛ̃))−I)ŨT)ij
= δij + ⟨Ũi, (diag(exp(−tΛ̃))−
I)Ũj⟩

Resistance dis-
tance (Zhang & Li,
2021; Zhang et al.,
2023b)

Its element (i, j) is the resistance be-
tween node i, j considering the graph
as an electrical network. It is also the
pseudo-inverse of laplacian matrix L,

(Ũdiag(Λ̃−1)ŨT)ij
= ⟨Ũi, diag(Λ̃−1)Ũj⟩

Equivariant and
stable laplacian
PE (Wang et al.,
2022)

The encoding of node pair i, j is ∥1K⊙
(Ui − Uj)∥, where 1K means a vector
∈ Rr with its elements coresponding to
K largest eigenvalue of L

∥1K ⊙ (Ui − Uj)∥2
= ⟨Ui, diag(1K)Ui⟩
+⟨Uj , diag(1K)Uj⟩
−2⟨Ui, diag(1K)Uj⟩

Degree and number
of triangular (Bourit-
sas et al., 2023)

di is the number of edges, and ti is the
number of triangular rooted in node i.

di = ⟨Ui, diag(Λ2)Uj⟩.
ti = ⟨Ui, diag(Λ3)Uj⟩

Table 6: Statistics of the datasets. #Nodes and #Edges denote the number of nodes and edges per
graph. In split column, ’fixed’ means the dataset uses the split provided in the original release.
Otherwise, it is of the formal training set ratio/valid ratio/test ratio.

#Graphs #Nodes #Edges Task Metric Split

Synthetic 5,000 18.8 31.3 Node Regression MAE 0.3/0.2/0.5.
QM9 130,831 18.0 18.7 Regression MAE 0.8/0.1/0.1
ZINC 12,000 23.2 24.9 Regression MAE fixed

ZINC-full 249,456 23.2 24.9 Regression MAE fixed
ogbg-molhiv 41,127 25.5 27.5 Binary classification AUC fixed

PascalVOC-SP 11,355 479.4 2710.5 Node Classification Macro F1 fixed
Peptides-func 15,535 150.9 307.3 Classification AP fixed

Peptides-struct 1 15,535 150.9 307.3 Regression MAE fixed

It provides both the graph and the coordinates of each atom. ZINC provides graph structure only
and aim to predict constrained solubility. Ogbg-molhiv is one of Open Graph Benchmark dataset,
which aims to use graph structure to predict whether a molecule can inhibits HIV virus replica-
tion. Besides these datasets of small molecules, we also use three datasets in Long Range Graph
Benchmark (Dwivedi et al., 2022b). They consists of larger graphs. PascalVOC-SP comes from the
computer vision domain. Each node in it representation a superpixel and the task is to predict the
semantic segmentation label for each node. Peptide-func and peptide struct are peptide molecular
graphs. Task in Peptides-func is to predict the peptide function. Peptides-struct is to predict 3D
properties of the peptide.

F EXPERIMENTAL DETAILS

Our code is primarily based on PyTorch (Paszke et al., 2019) and PyG (Fey & Lenssen, 2019).
All our experiments are conducted on NVIDIA RTX 3090 GPUs on a linux server. We select the

25

Under review as a conference paper at ICLR 2024

Table 7: Hyperparameters of our model for each dataset. #warm means the number of warmup
epochs, #cos denotes the number of cosine annealing epochs, gn denotes the magnitude of the gaus-
sian noise injected into the point coordinates, hiddim denotes hidden dimension, bs means batch
size, lr represents learning rate, and #epoch is the number of epochs for training.

dataset #warm #cos wd gn #layer hiddim bs lr #epoch #param

Synthetic 10 15 6e-4 1e-6 9 96 16 0.0006 300 961k
qm9 1 40 1e-1 1e-5 8 128 256 0.001 150 1587k
ZINC 17 17 1e-1 1e-4 6 80 128 0.001 800 472k
ZINC-full 40 40 1e-1 1e-6 8 80 512 0.003 400 582k
ogbg-molhiv 5 5 1e-1 1e-6 6 96 24 0.001 300 751k
PascalVOC-SP 5 5 1e-1 1e-5 4 96 6 0.001 40 527k
Peptide-func 40 20 1e-1 1e-6 6 128 2 0.0003 80 1337k
Peptide-struct 40 20 1e-1 1e-6 6 128 2 0.0003 40 1337k

Laplacian Matrix

D
eepS

et

Rank 𝑟

Eigen-
decomposition

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

Eigenvector 𝑉

Rank 𝑟

Eigenvalue Λ

Rank 𝑟
Hidden

dimension 𝑑

#
n

o
d

e
𝑛

Diagonal
matrice

Batch Matrix Multiplication

#
n

o
d

e
𝑛

Rank 𝑟
Hidden

dimension 𝑑

Figure 3: The pipeline of parameterized SRD. We first decompose Laplacian matrix or other matrice
for the non-zero eigenvalue and the corresponding eigenvectors. Then the eigenvalue is transformed
with DeepSet (Segol & Lipman, 2020). Multiply the transformed eigenvalue and the eigenvector
leads to coordinates.

hyperparameters by running optuna (Akiba et al., 2019) to optimize the validation score. We run
each experiment with 8 different seeds, reporting the averaged results at the epoch achieving the
best validation metric. For optimization, we use AdamW optimizer and cosine annealing scheduler.
Hyperparameters for datasets are shown in Table 7. All PST models (except these in ablation study)
decompose laplacian matrix for coordinates.

ZINC, ZINC-full, PascalVOC-SP, Peptide-func, and Peptide-struct have 500k parameter bud-
gets. Other datasets have no parameter limit. Graphormer (Ying et al., 2021) takes 47000k
parameters on ogbg-molhiv. 1-2-3-GNN takes 929k parameters on qm9.

G ARCHITECTURE

The architecture of parameterized SRD is shown in Figure ??. The architecture of PST is shown in
Figure 4.

H ABLATION

To assess the design choices made in our Point Set Transformer (PST), we conducted ablation exper-
iments. First, we removed the generalized coordinates (see Section 3.2) from our model, resulting
in a reduced version referred to as the PST-gc model. Additionally, we introduced a variant called
PST-onelayer, which is distinct from PST in that it only computes the attention matrix once and
does not combine information in scalar and vector features. Furthermore, PST decompose Lapla-
cian matrix by default to produce coordinates. PST-adj uses adjacency matrix instead. Similar to
PST, DeepSet takes node coordinates as input. However, it use DeepSet (Segol & Lipman, 2020)

26

Under review as a conference paper at ICLR 2024

𝑠 = 𝑥

Attention

(a) (b)

sv mixer

𝑣 = 𝑄

N ×

𝑠 𝑣

𝑠 𝑣

 ⟨⋅,⋅⟩

 𝑊ଵ 𝑊ଶ

 MLPଵ

𝑠
ᇱ

 MLPଶ

 𝑊ଷ 𝑊ସ

𝑣′

(c)

𝑠 𝑣

 𝑊
௦ 𝑊

௦ 𝑊
௩ 𝑊

௩

𝑠 𝑣

⟨⋅,⋅⟩

 MLP

Atten

𝑠 𝑣

Figure 4: Architecture of Point Set Transformer (PST) (a) PST contains several layers. Each layer is
composed of an scalar-vector (sv)-mixer and an attention layer. (b) The architecture of sv-mixer. (c)
The architecture of attention layer. si and s′i denote the scalar representations of node i, and v⃗i and
v⃗′i denote the vector representations. xi is the initial features of node i. Qi and point coordinates of
node i produced by parameterized SRD in Section 3.2.

Table 8: Ablation study on qm9 dataset.

µ α εhomo εlumo ∆ε R2 ZPVE U0 U H G Cv

Unit 10−1D 10−1a3
0 10−2meV 10−2meV 10−2meV a2

0 10−2meV meV meV meV meV 10−2cal/mol/K

PST 3.19±0.04 1.89±0.04 5.98±0.09 5.84±0.08 8.46±0.07 13.08±0.16 0.39±0.01 3.46±0.17 3.55±0.10 3.49±0.20 3.55±0.17 7.77±0.15

PST-onelayer 3.72±0.02 2.25±0.05 6.62±0.11 6.67±0.07 9.37±0.15 15.95±0.29 0.55±0.01 3.46±0.06 3.50±0.14 3.50±0.03 3.45±0.07 9.62±0.24

PST-gc 3.34±0.02 1.93±0.03 6.08±0.11 6.10±0.10 8.65±0.10 13.71±0.12 0.40±0.01 3.38±0.13 3.43±0.12 3.33±0.08 3.29±0.11 8.04±0.15

PST-adj 3.16±0.02 1.86±0.01 6.31±0.06 6.10±0.05 8.84±0.01 13.60±0.09 0.39±0.01 3.59±0.12 3.73±0.08 3.65±0.06 3.60±0.016 7.62±0.21

PST-normadj 3.22±0.04 1.85±0.02 5.97±0.23 6.15±0.07 8.79±0.04 13.42±0.15 0.41±0.01 3.36±0.25 3.41±0.24 3.46±0.18 3.38±0.23 8.10±0.12

DeepSet 3.53±0.05 2.05±0.02 6.56±0.03 6.31±0.05 9.13±0.04 14.35±0.02 0.41±0.02 3.53±0.11 3.49±0.05 3.47±0.04 3.56±0.14 8.35±0.09

DF 3.46 2.22 6.15 6.12 8.82 15.04 0.46 4.24 4.16 3.95 4.24 9.01

rather than transformer as the set encoder. For better comparison, we also use our strongest baseline
on QM9 dataset, DF (Zhou et al., 2023).

The results of the ablation study conducted on the QM9 dataset are summarized in Table 2. No-
tably, PST-gc exhibits only a slight increase in test loss compared to PST, and even outperforms
PST on 4 out of 12 target metrics, highlighting the effectiveness of the Graph as Point Set approach
with vanilla symmetric rank decomposition. In contrast, PST-onelayer performs significantly worse,
underscoring the advantages of PST over previous methods that augment adjacency matrices with
spectral features. PST-adj and PST-normadj achieves similar performance to PST, illustrating that
the choice of matrix to decompose does not matter. DeepSet performs worse than PST, but it still
outperforms our strongest baseline DF, showing the potential of combining set encoders other than
transformer with our convertion from graph to set. On the long-range graph benchmark, PST main-
tains a significant performance edge over PST-onelayer. However, it’s worth noting that the gap
between PST and PST-gc widens, further confirming the effectiveness of gc in modeling long-range
interactions.

I SCALABILITY

We present training time per epoch and GPU memory consumption data in Table 10.On the ZINC
dataset, PST ranks as the second fastest model, and its memory consumption is comparable to exist-
ing models with strong expressivity, such as SUN and SSWL, and notably lower than PPGN.

J RESULTS ON TU DATASETS

Following the setting of Feng et al. (2022), we test our PST on four TU datasets (Ivanov et al.,
2019). The results are shown in Table 12. Baselines include WL subtree kernel (Shervashidze et al.,
2011), GIN (Xu et al., 2019a), DGCNN (Zhang et al., 2018), GraphSNN (Wijesinghe & Wang,
2022), GNN-AK+ (Zhao et al., 2022), and three variants of KP-GNN (Feng et al., 2022) (KP-GCN,

27

Under review as a conference paper at ICLR 2024

Table 9: Ablation study on Long Range Graph Benchmark dataset.

Model PascalVOC-SP Peptides-Func Peptides-Struct

PST 0.4010±0.0072 0.6984±0.0051 0.2470±0.0015

PST-onelayer 0.3229±0.0051 0.6517±0.0076 0.2634±0.0019

PST-gc 0.4007±0.0039 0.6439±0.0342 0.2564±0.0120

Table 10: Training time per epoch and GPU memory consumption on zinc dataset with batch size
128.

PST SUN SSWL PPGN Graphormer GPS SAN-GPS

Time/s 15.20 20.93 45.30 20.21 123.79 11.70 79.08
Memory/GB 4.08 3.72 3.89 20.37 0.07 0.25 2.00

KP-GraphSAGE, and KP-GIN). We use 10-fold cross-validation, where 9 folds are for training and
1 fold is for testing. The average test accuracy is reported. Our PST consistently outperforms our
baselines.

28

Under review as a conference paper at ICLR 2024

Table 11: Training time per epoch and GPU memory consumption on pascalvoc-sp dataset with
batch size 6.

PST SUN SSWL PPGN Graphormer GPS SAN-GPS

Time/s 15.20 20.93 45.30 20.21 123.79 11.70 79.08
Memory/GB 4.08 3.72 3.89 20.37 0.07 0.25 2.00

Table 12: TU dataset evaluation result.

Method MUTAG PTC-MR PROTEINS IMDB-B

WL 90.4±5.7 59.9±4.3 75.0±3.1 73.8±3.9

GIN 89.4±5.6 64.6±7.0 75.9±2.8 75.1±5.1
DGCNN 85.8±1.7 58.6 ±2.5 75.5±0.9 70.0±0.9

GraphSNN 91.24±2.5 66.96±3.5 76.51±2.5 76.93±3.3
GIN-AK+ 91.30±7.0 68.20±5.6 77.10±5.7 75.60±3.7

KP-GCN 91.7±6.0 67.1±6.3 75.8±3.5 75.9±3.8
KP-GraphSAGE 91.7±6.5 66.5±4.0 76.5±4.6 76.4±2.7
KP-GIN 92.2±6.5 66.8±6.8 75.8±4.6 76.6±4.2

PST 94.4±3.5 68.8±4.6 80.7±3.5 78.9±3.6

29

	Introduction
	Preliminary
	Graph as Point Set
	Symmetric Rank Decomposition for Coordinates
	Generalized Coordinates

	Point Set Transformer
	Expressivity
	Long Range Expressivity
	Short Range Expressitivity

	Related Work
	Experiments
	Graph substructure counting
	Molecular properties prediction
	Long Range Graph Benchmark

	Conclusion
	Limitations
	Reproducibility Statement
	Proof
	Proof of Proposition 1
	Matrix D+A is Always Positive Semi-Definite
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 5
	Proof of Theorem 4 and 14
	Proof of Theorem 3
	Proof of Theorem 6 and 7

	Expressivity Comparision with Other Models
	Some Graph Transformers Fail to Compute Shortest Path Distance
	Connection with Structural Embeddings
	Datasets
	Experimental Details
	Architecture
	Ablation
	Scalability
	Results on TU datasets

