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Abstract

This paper reveals the phenomenon of parameter heterogeneity in large language
models (LLMs). We find that a small subset of “cherry” parameters exhibit a
disproportionately large influence on model performance, while the vast majority
of parameters have minimal impact. This heterogeneity is found to be prevalent
across different model families, scales, and types. Motivated by this observation,
we propose CherryQ, a novel quantization method that unifies the optimization of
mixed-precision parameters. CherryQ identifies and preserves the critical cherry pa-
rameters in high precision while aggressively quantizing the remaining parameters
to low precision. Extensive experiments demonstrate the effectiveness of CherryQ.
CherryQ outperforms existing quantization approaches in terms of perplexity and
downstream task performance. Notably, our 3-bit quantized Vicuna-1.5 exhibits
competitive performance compared to their 16-bit counterparts.

1 Introduction

The rapid development of large language models (LLMs) has increased the demand of efficient
deployment in various environments [1, 2, 11, 23]. However, the parameter size poses significant
challenges for GPU memory requirements. Quantization, which reduces the bit-width of model
parameters, has emerged as a solution to alleviate memory constraints of LLM deployment [12, 14,
18, 25, 26].

Low-precision parameter representation leads to quantization errors. Surprisingly, existing research
has shown that LLMs exhibit a high robustness for quantization errors even for low-bit settings.
For example, although 4-bit quantization can only represent 16 distinct values, even the simplest
round-to-nearest strategy does not significantly degrade performance [17]. This raises the question:
what causes LLMs to be robust to quantization?

We explore the parameters and answer this question via Parameter Heterogeneity, which refers
to the significant variation in the influence of quantization on different parameters. We reveal that
for the vast majority (> 99%) of normal parameters, the effect of their quantization to the model
are minimal and can thus be alleviated or ignored. However, there exists a small subset (< 1%) of
“cherry” parameters for which the effect are substantial and hard to mitigate.

Consider Figure 1a as an example. We show a scatter plot of the impacts on the model loss when
perturbing each individual parameter in a parameter matrix from LLaMA2-7b [23]. The derivation
of impacts is detailed in § 3. While 99% of the parameters fall within the range of (0, 0.1), a small
subset of “cherry” parameters exhibits values ranging from (5, 30), which is 50-300 times higher
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(a) LLaMA2 7B
layers.15.self_attn.v_proj

(b) LLaMA2 13B
layers.15.self_attn.v_proj

(c) Mistral 7B
layers.15.self_attn.q_proj

(d) Gemma 7B
layers.25.mlp.down_proj

(e) Vicuna-1.5 7B
layers.15.self_attn.v_proj

(f) Vicuna-1.5 13B
layers.16.self_attn.v_proj

Figure 1: Scatter plot of parameter impacts in different LLMs. We randomly sampled 4096 parameters
from the corresponding parameter matrix. Each point represents the impact of an individual parameter.
Insets show the zoomed-in y-axis. The heterogeneity is found across different model scales (1a,1b),
different model families (1c, 1d), and both base models and chat models (1e, 1f).

than the maximum value of the remaining 99% of parameters. Moreover, this phenomenon is not an
isolated case. We observed similar patterns across different scales of LLMs (Figure 1a1b), different
families of LLMs, including Mistral [11] (Figure 1c) and Gemma [22] (Figure 1d), and both base
models and chat models (Vicuna-1.5 [5] Figure 1e1f). The consistent presence of this phenomenon
suggests that parameter heterogeneity is an inherent characteristic of LLMs.

Therefore, 99% of normal parameters explain the high robustness of LLMs to quantization errors.
However, the small number of cherry parameters still leads to performance degradation under
quantization. Consequently, the key to reducing quantization errors lies in addressing the quantization
of cherry parameters.

The parameter heterogeneity also explains the previously discovered effectiveness of mixed-precision
quantization strategies [6, 12, 17, 18]. By preserving a small proportion of parameters with high
precision, the quantization performance can be effectively improved. Based on the heterogeneity,
this strategy alleviates the impact of cherry parameters on model performance by maintaining their
precision.

Indeed, mixed-precision strategies can effectively address the quantization error issue of cherry
parameters. However, the core challenge lies in identifying cherry parameters based on specific
metrics. Different metrics of parameter effects include weights [6, 13, 18], activations [17, 24],
output changes [8], as well as the impact of parameters on model loss used in this paper. Based on
the parameter heterogeneity, we argue that effective cherry parameter identification metrics should
exhibit high heterogeneity, clearly distinguishing between cherry parameters and normal parameters.
Accordingly, we compare three different metrics in Sec 5 and find that the impact best distinguishes
cherry parameters from normal parameters. The experimental results in Sec 6.5 verify that choosing
metrics with higher discriminative capability indeed leads to better performance.

Based on the above analysis, we design the CherryQ quantization algorithm, which selects cherry
parameters based on the impact metric and end-to-end optimizes parameters with mixed precisions.
Extensive experiments on various models and benchmarks demonstrate the effectiveness of CherryQ.
It consistently yields the lowest perplexity in most settings. Notably, our 3-bit Vicuna-1.5 model
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exhibits performance on par with the 16-bit counterpart on Vicuna-bench [5]. Our 2-bit quantization
method significantly outperforms the SOTA approaches.

In summary, by systematically revealing parameter heterogeneity in LLMs, we answer the following
questions:

1. What causes the high robustness of LLMs to quantization? It is due to the 99% of normal
parameters in parameter heterogeneity.

2. Why is mixed-precision quantization effective? This strategy addresses the quantization
problem of the very few cherry parameters in parameter heterogeneity.

3. How to find the optimal mixed-parameter selection strategy? Based on heterogeneity
that distinguishes normal parameters from cherry parameters, the impact-based metric
demonstrates the highest discriminative capability.

4. How to quantize parameters according to parameter heterogeneity? We propose CherryQ
based on these findings. Extensive empirical results verify its effectiveness in 2-, 3-, 4-bit
quantization.

2 Related Work

Quantization Strategies for LLMs Various quantization strategies have been proposed in the
literature to reduce the precision of weights and activations while maintaining acceptable accuracy.
These strategies can be broadly classified into post-training quantization and quantization-aware
training [14]. Post-training quantization methods, such as OBD, OBS, and GPTQ, directly quantize
the pre-trained model without fine-tuning [15, 10, 9]. On the other hand, quantization-aware training
methods, such as LLM-QAT [18], incorporate quantization operations into the training process to
jointly optimize the quantized model. Some works also explore mixed-precision quantization [12]
and adaptive quantization bins [7] to achieve a better trade-off between accuracy and efficiency.

Outliers in Language Model Quantization The idea of modeling parameter outliers in LLM
quantization is not new. Exploring outliers mainly includes the perspectives of magnitude [18, 7] and
activations [4, 6]. For example, from the magnitude perspective, QLoRA assumes that parameters
follow a Gaussian distribution [7] and designs information-theoretically optimal quantized bins based
on this assumption. [18] keeps outlier parameters in 16-bit precision. From the activation perspective,
[17] migrates the outlier amplifier to subsequent modules through an equivalent transformation.
Additionally, SqueezeLLM also measures outliers from the perspective of parameter impact [12]. To
the best of our knowledge, our work is the first to systematically reveal the outliers (heterogeneity) of
parameter impact across different models, and we show a more pronounced imbalance in parameter
impacts compared to magnitudes (§ 6.5). Furthermore, we propose a method to unify outlier (cherry)
parameter optimization and normal parameter optimization, addressing the optimization challenges
of heterogeneous parameters.

3 Quantifying the Impact of Parameters on Model Performance

The impact of parameters on model performance is quantified by the increase of the training loss when
perturbing the parameter weight, which is widely used in post-training quantization approaches [15,
10, 9]. We adopt a second-order Taylor approximation of the training loss w.r.t. parameter perturbation.
Given a parameter wi and a small perturbation ∆ applied to it, such that wi ← wi +∆, the change
in the training loss can be expressed as:

L(wi +∆)− L(wi) = gi∆+
1

2
Hii∆

2 +O(∆2) (1)

where gi = E[ ∂L
∂wi

] represents the expected gradient of the loss with respect to wi, and Hii = E[ ∂
2L

∂w2
i
]

denotes the i-th value of the Hessian matrix of the loss. Since the target model is a well-converged
model, we can assume that gi ≈ 0, simplifying the expression to:

L(wi +∆)− L(wi) ≈
1

2
Hii∆

2 (2)
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Therefore, Hii quantify the impact of quantization-induced perturbations on the model’s training loss.
Parameters with larger values of Hii exhibit higher sensitivity to quantization and require careful
treatment to maintain model performance. We denote Hii as the impact of wi.

Efficient Computation Computing Hii of the diagonal of Hessian matrix for each parameter is
computationally expensive, particularly for large-scale models. To overcome this challenge, we
propose an efficient approximation using the Fisher Information Matrix (F). Since H is the Hessian
matrix of a negative log-likelihood loss, H is equal to Fisher information matrix [16]. For the diagonal
of the Hessian matrix, we have:

Hii = Fii = E[g2i ] (3)

4 End-to-End Mixed-Precision Quantization

The insights gained from Figure 1 highlight the heterogeneity in model parameters. To mitigate the
impact of cherry parameters on quantization, we propose to preserve their high-precision values
during the quantization process. By maintaining the fidelity of these critical parameters, we ensure
that the essential information they capture is not compromised.

Optimizing mixed-precision parameters in LLMs presents a unique challenge in the widely adopted
Post-Training Quantization (PTQ) framework [14]. If we do not allow the updates of the cherry
parameters, the quantization will certainly lose the flexibility provided by these critical parameters.
This prevents the cherry parameters from reaching their optimum. On the other hand, PTQ struggles
to simultaneously optimize high-precision cherry parameters and low-precision normal parameters.
This is because the cherry parameter updates during the PTQ process significantly affect the optimal
values of the normal parameters. So normal parameters need to be continually updated as the cherry
parameter varies. However, in PTQ, once the normal parameters are quantized, they cannot be further
updated. This prevents the early-stage quantized parameters from reaching their optimal values.

To address this challenge, we propose a novel approach that end-to-end optimize the mixed-precision
parameters via backpropagation. Our method leverages a quantization-aware training framework.
To simultaneously optimize both the cherry parameters and normal parameters, we use two separate
backpropagation strategies. The high-precision cherry parameters are updated using standard gradient
descent, while the low-precision normal parameters employ the Straight-Through Estimator (STE)
trick [3] for low-precision gradient descent. This unified backpropagation enables the end-to-end
optimization of both cherry parameters and normal parameters, enhancing the overall optimization
effect. We show the quantization in Algorithm 1.

Algorithm 1 CherryQ

Require: Model parameters W, quantization function Quant(·), threshold τ , learning rate η
Ensure: Quantized model parameters

1: C← {wi ∈W | Hii > τ} ▷ Identify cherry parameters
2: N←W \C ▷ Identify normal parameters
3: for each training batch x do
4: L← model(x;C ∪Quant(N)) ▷ Compute loss w.r.t. mixed-precision parameters
5: C← C− η ∂L

∂C ▷ Standard gradient descent for cherry parameters
6: N← N− η · STE( ∂L

∂N ) ▷ Gradient approximation by STE for normal parameters
7: end for
8: return C ∪Quant(N)

5 Heterogeneity-based Cherry Parameter Selection

Correctly identifying cherry parameters is one of the main challenges of CherryQ quantization.
Candidate metrics for parameter influences include weights [13, 18, 6], activations [17, 24], and
impacts (Hii). We propose that an effective metric should reflect heterogeneity, specifically by
differentiating the influence of cherry parameters and normal parameters of the model.

To this end, we define the heterogeneity score. In Figure 1, a small subset of parameters exhibit signif-
icantly higher impacts compared to the maximum of the majority. Inspired by this, the heterogeneity
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score is defined as the ratio of the mean impact of the top 1% parameters to the maximum impact of
the bottom 99% parameters, as shown in Equation (4). A higher heterogeneity score indicates a more
significant disparity in parameter importance.

Heterogeneity Score(f) =
Mean(f(wi) top 1%)

Max(f(wi) bottom 99%)
(4)

where f(wi) denotes the parameter influence for parameter wi, and f is chosen from parameter
weights, activations, and impacts.

Figure 2 presents the heterogeneity scores for different metrics across various LLMs. The impact-
based metric consistently shows higher heterogeneity scores compared to weights and activations.
This indicates that the impact metric better distinguishes between the normal and cherry parameters,
thus providing a more effective means of identifying cherry parameters. The validity of using
heterogeneity scores for cherry parameter selection will be further verified in Sec 6.5, demonstrating
that higher heterogeneity scores lead to better model performance.
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(a) LLaMA-2 7B
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(e) Vicuna-1.5 7B
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(f) Vicuna-1.5 13B

Figure 2: Scatter distribution of heterogeneity scores for different parameter matrices in LLMs. Each
point represents a parameter matrix.

Data Independence We investigate whether impact-based parameter heterogeneity exhibits data
independence - that is, whether different data samples share the same cherry parameters. Applying
identical cherry parameters across different samples is only valid when there is data independence. To
examine data independence within the same dataset, we randomly selected five sets of 128 WikiText-2
samples. We evaluated the overlap of their cherry parameters in each pair of sample sets. To evaluate
cross-dataset data independence, we performed 9 independent sampling trials, each collecting 128
samples from C4 and 128 samples from WikiText-2 to evaluate the overlap. For Vicuna, we further
added Sharegpt as a data source. Table 1 presents the overlap ratios of the cherry parameters. Despite
the fact that cherry parameters constitute only 1/256 of the total parameters, all models demonstrate
significant overlap ratios. This finding suggests that the cherry parameters possess an inherent
data-independent nature.

6 Quantization Experiments

6.1 Implementation Details

Parameter Representation: Based on the observation that cherry parameters occupy a very small
proportion, for each row of parameters in each parameter matrix, we consider only the top 1/256
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Table 1: Overlap ratio (%) of cherry parameters (top 1/256), where L2: LLaMA-2, V: Vicuna-1.5, M:
Mistral, G: Gemma.

Model L2-7B L2-13B V-7B V-13B M-7B G-7B
Within dataset 84 75 68 63 89 90
Across datasets 68 66 65 60 85 86

parameters with the highest impact as cherry parameters and retain their FP16 precisions. For
example, the parameter matrix size of LLaMA2-7B is 4096× 4096. So we average the impact across
all rows for each column and then select the top 16 columns with the highest average impact, resulting
in 16 × 4096 parameters as cherry parameters. Furthermore, to recover the complete parameter
matrix, an INT16 is required to record the indices of these 16 columns. Thus, the storage overhead
for the column indices is minimal. For normal parameters, we employ full range symmetric MinMax
quantization to quantize their weights. And we adopt a widely-used parameter grouping strategy. For
more details, see Sec C.

Quantization Datasets: For the quantization of the base LLMs, we follow [9] to use C4 [20] as
the training data. We selected the first four partitions of C4 and chose data with a length of ≥ 2048
tokens, resulting in a total of 50k samples of 2048 tokens. For the chat LLMs, since Vicuna-1.5 [5] is
obtained by supervised fine-tuning based on ShareGPT [5], we also use the ShareGPT dataset for
training. We used a total of 20k training samples from ShareGPT for QAT and Cherry.

Baselines We compare our method with various quantization methods, including QAT [18], GPTQ [9],
SqueezeLLM [12], OmniQuant [21], and AWQ [17]. For OmniQuant and AWQ, we use their results
reported in [21]. For SqueezeLLM, we use the results in its original paper [12]. For GPTQ, its 4-bit
model is obtained from the open-source 2. Due to the lack of a 3-bit GPTQ model, we quantize the
model ourselves via the implementation of Auto-GPTQ 3. Since CherryQ is based on QAT, for fair
comparisons, the implementation of QAT is the same as CherryQ, except that it does not handle
cherry parameters.

6.2 Effect of Base LLM Quantization

In this section, we present the main experimental results to demonstrate the effectiveness of CherryQ
on LLaMA2 [23]. We evaluate CherryQ with both perplexity and downstream tasks, comparing its
performance with state-of-the-art quantization methods.

6.2.1 Perplexity Results

We follow [9, 21] to evaluate the perplexity of CherryQ on two widely used corpora: C4 and
WikiText-2 [19]. We use the validation split of C4 to avoid data leakage. We show the results of
3-bit quantization using different quantization approaches in Table 2. We show the results of different
model scales and different group sizes.

From the results, CherryQ consistently outperforms all other approaches across both model sizes
(7B and 13B) and grouping sizes (64 and 128), achieving the lowest perplexity on both the C4 and
WikiText-2 datasets. Notably, CherryQ’s perplexity is significantly closer to the full-precision (FP16)
baseline compared to other methods, highlighting its ability to preserve model performance after
quantization.

Table 3 compares different 4-bit quantization methods. Again, CherryQ achieves the lowest perplexity
scores in most settings, demonstrating its effectiveness in higher-bit quantization settings.

6.2.2 Downstream Task Performance

To further validate the effectiveness on specific tasks, we evaluated the quantized models on various
downstream tasks from the HuggingFace OpenLLM Leaderboard. Table 4 presents the performance
comparison of different 3-bit quantization methods for LLaMA2. CherryQ consistently outper-

2https://huggingface.co/TheBloke
3https://github.com/AutoGPTQ/AutoGPTQ
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forms other methods across almost all tasks, achieving the highest average score. This showcases
CherryQ’s ability to maintain the model’s generalization capabilities for downstream tasks.

Table 2: Perplexity (↓) of 3-bit quantization on LLaMA2 models. gX means the group size is X. The
results of OmniQuant and AWQ are from [21]. The results of SqueezeLLM are from [12].

Method Avg.
bit

7B-3bit-g128 Avg.
bit

7B-3bit-g64 Avg.
bit

13B-3bit-g128 Avg.
bit

13B-3bit-g64

c4 wiki2 c4 wiki2 c4 wiki2 c4 wiki2

FP16 16 6.97 5.47 16 6.97 5.47 16 6.47 4.88 16 6.47 4.88
QAT 3.13 9.25 6.90 3.25 8.74 7.13 3.13 7.19 5.63 3.25 7.02 5.48
GPTQ 3.15 8.28 6.74 3.30 8.20 6.62 3.15 7.24 5.63 3.30 7.10 5.56
AWQ 3.15 7.84 6.24 - - - 3.15 6.94 5.32 - - -
OmniQuant 3.15 7.75 6.03 - - - 3.15 6.98 5.28 - - -
SqueezeLLM - - - 3.24 7.51 5.96 - - - 3.24 6.82 5.23
CherryQ 3.17 7.39 5.93 3.30 7.34 5.87 3.17 6.80 5.26 3.29 6.76 5.21

Table 5 extends the comparison to 4-bit quantization. CherryQ continues to excel, achieving the
highest scores on most individual tasks and the highest average score overall. These results highlight
the generalization ability of CherryQ across different quantization bits and model sizes.

Table 3: Perplexity (↓) of 4-bit quantization on LLaMA2 models.
Method Avg.

bit
7B-4bit-g128 Avg.

bit
13B-4bit-g128

c4 wiki2 c4 wiki2

FP16 16 6.97 5.47 16 6.47 4.88
QAT 4.13 7.29 5.81 4.13 6.67 5.12
GPTQ 4.15 7.30 5.73 4.15 6.63 4.97
AWQ 4.15 7.13 5.62 4.15 6.56 4.97
OmniQuant 4.15 7.12 5.58 4.15 6.56 4.95
CherryQ 4.17 7.07 5.58 4.16 6.56 4.99

6.3 Effect of Chat LLM Quantization

We conducted experiments on Vicuna-1.5 [5]. We apply 3-bit quantization with group size=128 for
CherryQ and other baselines.

Evaluation To assess the performance of quantized open-ended chat models, we employ a pairwise
comparison on the Vicuna-bench [27], which consists of 80 test samples. We compare the responses
generated by the quantized models against those generated by the original 16-bit Vicuna-1.5. The
evaluation is performed using GPT-4, which automatically classifies the quantized model’s response
as “win”, “tie”, or “lose” relative to the FP16 model’s response. To get rid of the ordering effect of
the evaluation, we follow [17] to compare the responses with both orders, resulting in 160 trials.

Figure 3 presents the results of the pairwise comparison for each quantized model against its FP16
counterpart. The results demonstrate that CherryQ consistently outperforms other quantization
baselines in preserving the performance of chat models. It achieves the highest number of wins and
ties against the FP16 models, while minimizing the number of losses.

Notably, 3-bit CherryQ achieves a slightly better win-tie-lose ratio over the FP16 Vicuna model,
indicating that the 3-bit quantized model performs on par with or even better than the FP16 model. As
intuitively CherryQ cannot surpass the target 16 bit model, we think the result suggests that CherryQ
maintains almost all its performance even at 3 bit, making GPT-4 hard to distinguish the quality of
low-bit and FP16 models.

6.4 Extreme 2-Bit Quantization

We further explore the extreme case of 2-bit quantization. Although 2-bit quantization greatly reduces
memory requirements for model storage and inference, existing methods still show a significant
performance gap compared to their 16-bit counterparts.
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Table 4: Performance of different 3-bit quantization methods on Huggingface OpenLLM for LLaMA2-
7B and LLaMA2-13B.

Method Hellaswag Winogrande ARC TruthfulQA GSM8K MMLU Average (↑)
LLaMA2-7B-3bit-g64

FP16 78.6 74.0 53.2 38.8 14.5 46.7 51.0
QAT 75.5 71.6 49.2 37.3 7.3 40.6 46.9
GPTQ 73.9 71.7 48.6 38.8 8.1 39.4 46.8
CherryQ 77.0 71.8 50.6 38.6 10.4 43.9 48.7

LLaMA2-7B-3bit-g128

FP16 78.6 74.0 53.2 38.8 14.5 46.7 51.0
QAT 75.4 70.8 48.2 37.7 6.7 39.0 46.3
GPTQ 72.9 70.8 48.6 39.1 5.4 38.2 45.8
CherryQ 76.3 72.4 49.7 38.1 8.8 41.6 47.8

LLaMA2-13B-3bit-g64

FP16 82.1 76.6 59.4 37.4 22.5 55.7 55.6
QAT 80.7 75.1 55.5 39.0 16.8 52.9 53.3
GPTQ 79.2 74.4 56.5 36.0 16.4 52.4 52.5
CherryQ 81.1 76.2 57.3 38.0 18.4 53.5 54.1

LLaMA2-13B-3bit-g128

FP16 82.1 76.6 59.4 37.4 22.5 55.7 55.6
QAT 80.7 75.5 55.3 38.8 16.0 51.9 53.0
GPTQ 79.1 75.4 54.1 34.9 15.6 50.3 51.6
CherryQ 81.0 75.4 56.7 38.9 17.8 52.5 53.7

Table 5: Performance comparison of different 4-bit quantization methods for LLaMA2-7B and
LLaMA2-13B models over Huggingface OpenLLM Leaderboard.

Method Hellaswag Winogrande ARC TruthfulQA GSM8K MMLU Average (↑)
LLaMA2-7B-4bit-g128

FP16 78.6 74.0 53.2 38.8 14.5 46.7 51.0
QAT 77.5 72.2 52.0 39.0 10.6 43.7 49.2
GPTQ 77.6 72.9 52.0 39.1 11.1 43.8 49.4
CherryQ 77.8 73.5 51.5 39.5 12.9 44.4 49.9

LLaMA2-13B-4bit-g128

FP16 82.1 76.6 59.4 37.4 22.5 55.7 55.6
QAT 81.9 75.7 57.9 38.9 19.6 54.2 54.7
GPTQ 81.5 76.8 57.4 36.1 20.4 54.6 54.5
CherryQ 82.0 77.0 58.6 38.8 21.0 54.6 55.3

Implementation Details To achieve high-quality 2-bit quantization, we integrated the scaling-up trick
introduced in [17]. Specifically, after identifying cherry and normal parameters, we automatically
search for the optimal scale of each column of normal parameters that minimizes the output difference
after quantization for each layer. The quantization function is formulated as Q′(w) = Q(w · s)/s,
where Q(·) represents standard asymmetric quantization on the min-max grid, and s is a constant that
scales up the normal parameters and remains fixed during the training process. The cherry parameters
are excluded from quantization and retain their 16-bit precision throughout the grid search.

Results Table 6 presents the perplexities of 2-bit quantization on LLAMA2 models. Compared to
existing methods such as GPTQ, AWQ, and OmniQuant, our proposed CherryQ method demonstrates
superior performance across all metrics. Specifically, CherryQ achieves perplexity scores of 9.55
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Figure 3: Comparison of 3-bit quantized models to FP16 Vicuna-1.5. (Left) Comparisons to Vicuna-
1.5-7B. (Right) Comparisons to Vicuna-1.5-13B. CherryQ even shows competitive quality compared
to the 16-bit counterpart.

Table 6: Perplexity (↓) of 2-bit quantization on LLaMA2 models. The results of GPTQ, AWQ and
OmniQuant are from [21].
Method Avg.

bit
7B-2bit-g128 Avg.

bit
7B-2bit-g64 Avg.

bit
13B-2bit-g128 Avg.

bit
13B-2bit-g64

c4 wiki2 c4 wiki2 c4 wiki2 c4 wiki2

FP16 16 6.97 5.47 16 6.97 5.47 16 6.47 4.88 16 6.47 4.88
GPTQ 2.15 33.70 36.77 2.30 19.40 20.85 2.15 20.97 28.14 2.30 12.48 22.44
AWQ 2.15 > 105 > 105 2.30 > 105 > 105 2.15 > 104 > 105 2.30 > 104 > 105

OmniQuant 2.15 15.02 11.06 2.30 12.72 9.62 2.15 11.05 8.26 2.30 10.05 7.56
CherryQ 2.19 9.55 8.34 2.34 9.08 7.84 2.19 8.40 7.20 2.33 8.02 6.72

and 8.34 in the 7B-3bit-g128 and 7B-3bit-g64 settings, respectively. These results significantly
outperform other methods, validating the effectiveness of CherryQ in 2-bit quantization.

6.5 Comparison of Parameter Selection Criteria

To evaluate the effectiveness of our proposed impact-based parameter selection criterion, we con-
ducted experiments comparing it with the criterions of parameter weights and activations. Table 7
presents the perplexity of LLaMA2-7B-3bit and LLaMA2-13B-3bit models, using both criteria for
cherry parameter selection.

From the results, it is evident that the impact-based criterion consistently outperforms other criterions
across all settings. These results demonstrate that our proposed impact-based criterion is a more
effective measure to identify cherry parameters. The impacts identify and preserve the most critical
parameters during the quantization process. These results are consistent with the analysis in Sec 5
regarding the effectiveness of heterogeneity scores in selecting cherry parameters.

Table 7: Perplexity (↓) of different parameter selection criteria.
Method LLaMA2-7B-3bit LLaMA2-13B-3bit

c4 wiki2 c4 wiki2

Weight-g64 7.93 6.40 6.91 5.35
Activation-g64 7.37 5.89 6.77 5.22
Impact-g64 7.34 5.87 6.76 5.21
Weight-g128 8.12 6.58 6.94 5.37
Activation-g128 7.51 6.03 6.81 5.27
Impact-g128 7.39 5.93 6.80 5.26

LLaMA2-7B-4bit LLaMA2-13B-4bit

Weight-g128 7.19 5.68 6.62 5.05
Activation-g128 7.09 5.59 6.56 5.00
Impact-g128 7.07 5.58 6.56 4.99
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7 Conclusion

In this paper, we systematically investigated the phenomenon of parameter heterogeneity in large
language models (LLMs). Our experiments on LLaMA2, Mistral, Gemma, and Vicuna models
consistently demonstrated that a small subset of parameters, referred to as "cherry" parameters, play
a crucial role in maintaining the model’s performance, while the vast majority of parameters can be
quantized to ultra-low precision without significant degradation. This finding highlights the potential
of the heterogeneous nature of parameter importance.

Motivated by this observation, we proposed a novel CherryQ quantization algorithm, which uses a
quantization-aware training framework for the end-to-end optimization of both cherry parameters and
normal parameters. Extensive experiments demonstrate that CherryQ achieves significantly lower
perplexity scores and better downstream performance.

8 Limitations

There are some limitations to consider. First, the method relies heavily on the accurate identification
of cherry parameters, which may vary across different model architectures and training datasets.
This dependency could potentially limit the generalization ability of CherryQ to new or unseen
models. Second, the computational overhead required for the impact-based identification and scaling
of parameters, although justified by the performance gains, may pose challenges for extremely large
models or those deployed in real-time systems with stringent latency requirements.
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A Effect of Chat LLM Quantization on MMLU

We further evaluate the performance of CherryQ on the MMLU benchmark by quantizing the
Vicuna1.5 model. As shown in Table 8, CherryQ outperforms both QAT and GPTQ in terms of
average accuracy across almost all categories.

Table 8: Comparison of different 3-bit quantization methods on zero-shot MMLU accuracy applied
to Vicuna-1.5.

Method Humanities STEM Social Sciences Other Average

Vicuna1.5-7B-3bit-g128

FP16 46.8 39.4 57.9 56.3 49.9
QAT 43.4 37.7 53.0 52.4 46.4
GPTQ 42.7 37.3 53.0 51.0 45.7
CherryQ 43.8 37.2 54.3 53.5 46.9

Vicuna1.5-13B-3bit-g128

FP16 50.2 43.5 63.0 62.0 54.3
QAT 47.8 40.1 58.6 58.1 50.9
GPTQ 46.1 39.4 57.6 55.2 49.3
CherryQ 49.0 40.6 60.2 58.8 51.9

B Training Details

For all LLM scales (7B, 13B), and both base models and chat models (LLaMA2, Vicuna-v1.5), we
train the models on a single node with 8 x A100 80GiB GPUs. We use a total batch size of 128, a
learning rate of 2e-5, a weight decay of 0.0, a cosine scheduler with 5% warm-up steps. The final
learning rate is 25% of the peak learning rate for 2/3-bit LLMs, 10% for 4-bit LLMs. We train 1
epoch on base models, 2 epochs on chat models.

C Parameter Representation Details

For normal parameters, we employ full range symmetric MinMax quantization to quantize their
weights [14]. Specifically, an FP16 value is mapped to the range of [−2k−1, 2k−1 − 1] and symmetri-
cally distributed on both sides of the coordinate axis. The quantization of an FP16 tensor XFP16 to
k bits is computed by:

XIntk = ⌊Clip(
XFP16

S
,−2k−1 + ϵ, 2k−1 − ϵ)− 0.5⌉ (5)

where ⌊·⌉ denotes the round function, S is the quantization scaling factor S = Max(|XFP16|)
2k−1 , and ϵ

is a very small positive number (= 0.01 in our setting) to ensure that XIntk falls into the target range.

Dequantization restores the quantized integer values based on the scaling factor:

Dequant(S,XIntk) = S(XIntk + 0.5) (6)

To further improve the quantization accuracy, we adopt a widely-used parameter grouping strategy.
Specifically, the parameters are divided into groups in order, and each group independently calculates
its scaling factor. For example, if we divide a parameter matrix W ∈ Rr×c that needs to be quantized
with a group size of B, we will obtain a total of r × (c/B) groups.

D Licenses for Existing Assets

We list the assets used in this paper and their licenses below:
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• [5], llama2
• https://huggingface.co/TheBloke, llama2
• https://github.com/AutoGPTQ/AutoGPTQ, MIT License
• [23], arXiv.org perpetual, non-exclusive license 1.0
• [18], arXiv.org perpetual, non-exclusive license 1.0
• [20], arXiv.org perpetual, non-exclusive license 1.0
• [19], arXiv.org perpetual, non-exclusive license 1.0

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have fully explained the motivation and contributions of the paper in the
introduction section, and have verified them in the experimental section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Please refer to Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 6.1, Section B, and the attached code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have attached the codes in the submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 6.1, Section B, and the attached code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were completed on nodes with the GPUs of 8*A100 80G.
Please refer to Section 6.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully read and follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper is purely fundamental research and does not involve social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: This paper does not release new models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Section D

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have attached codes with documents.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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