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Abstract
We consider a framework for clustering edge-
colored hypergraphs, where the goal is to clus-
ter (equivalently, to color) objects based on the
primary type of multiway interactions they par-
ticipate in. One well-studied objective is to color
nodes to minimize the number of unsatisfied hy-
peredges – those containing one or more nodes
whose color does not match the hyperedge color.
We motivate and present advances for several di-
rections that extend beyond this minimization
problem. We first provide new algorithms for
maximizing satisfied edges, which is the same at
optimality but is much more challenging to ap-
proximate, with all prior work restricted to graphs.
We develop the first approximation algorithm for
hypergraphs, and then refine it to improve the best-
known approximation factor for graphs. We then
introduce new objective functions that incorpo-
rate notions of balance and fairness, and provide
new hardness results, approximations, and fixed-
parameter tractability results.

1. Introduction
Edge-colored clustering (ECC) is an optimization frame-
work for clustering datasets characterized by categorical
relationships among data points. The problem is formally
encoded as an edge-colored hypergraph (Figure 1), where
each edge represents an interaction between data objects (the
nodes) and the color of the edge indicates the type or cate-
gory of that interaction. The goal is to assign colors to nodes
in such a way that edges of a color tend to include nodes
of that color, by minimizing or maximizing some objective
function relating edge colors and node colors. ECC algo-
rithms have been applied to various clustering tasks where
cluster labels naturally match with interaction types. For
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Figure 1. The node coloring on the left satisfies 4 edges (2 blue, 2
red, 0 green). The coloring on the right only satisfies 3, but each
color has a satisfied edge.

example, if nodes are researchers, edges are author lists for
publications, and colors indicate publication field (computer
science, biology, etc.), then ECC provides a framework for
inferring researchers’ fields based on publications. ECC has
also been used for temporal hypergraph clustering (Amburg
et al., 2020), where edge colors encode time windows in
which interactions occur. ECC then clusters nodes into time
windows in which they are especially active. Variants of
ECC have also been used for team formation (Amburg et al.,
2022), in which case nodes are people, edges represent team
tasks, and colors indicate task type. In this setting, ECC cor-
responds to assigning tasks based on prior team experiences.
Related work and research gaps. Edge-colored clustering
has been well-studied in the machine learning and data min-
ing literature from the perspective of approximation algo-
rithms (Amburg et al., 2020; 2022; Veldt, 2023; Crane et al.,
2024; Angel et al., 2016) and fixed-parameter tractability
results (Kellerhals et al., 2023; Cai & Leung, 2018; Crane
et al., 2024). It is also closely related to chromatic corre-
lation clustering (Bonchi et al., 2012; 2015; Anava et al.,
2015; Klodt et al., 2021; Xiu et al., 2022), which is an
edge-colored variant of correlation clustering (Bansal et al.,
2004). Several variants of ECC have been encoded using
different combinatorial objective functions for assigning
colors to nodes. The earliest and arguably the most natural
is MAXECC (Angel et al., 2016), which seeks to maxi-
mize the number of satisfied edges—edges in which all the
nodes match the color of the edge. More recent attention
has been paid to MINECC (Amburg et al., 2020), where
the goal is to minimize the number of unsatisfied edges.
The latter is the same as MAXECC at optimality but differs
in terms of approximations and fixed-parameter tractabil-
ity results. The approximability of MINECC is currently
well-understood: a recent ICML paper designed improved
approximation guarantees that are tight with respect to linear
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programming integrality gaps and nearly tight with respect
to approximation hardness bounds (Veldt, 2023). However,
existing approximations for MAXECC apply only to graph
inputs, whereas nearly all algorithms for MINECC apply
to hypergraphs. There is also a much larger gap between
the previous best 0.3622-approximation algorithm (Ageev
& Kononov, 2020) and the best existing upper bound, which
only rules out approximation factors better than 0.972 as-
suming P 6= NP (Alhamdan & Kononov, 2019).

Another limitation of prior work is that nearly all objec-
tive functions for ECC (including MINECC and MAX-
ECC) only consider the total number of edges that are
(un)satisfied, even if it means certain colors are dispropor-
tionately (un)satisfied. Figure 1 provides a small example
where the optimal MINECC solution satisfies four edges
but only from two colors. Meanwhile, another color assign-
ment satisfies only three edges but includes a satisfied edge
of each color. The latter choice is natural for applications
where one may wish to incorporate some notion of balance
or fairness in edge satisfaction. For example, if coloring
nodes means assigning individuals to tasks for future team
interactions, then we would like to avoid situations where
one type of task is assigned no workers. Balanced and fair
objectives have been studied and applied for many other
recent clustering frameworks, but have yet to be explored
in the context of edge-colored clustering. As a key exam-
ple, there have been many recent advances in algorithms
for alternative objectives for correlation clustering, which is
closely related to ECC. This includes results for minimizing
the maximum number of edge “mistakes” incident to any
one node (Davies et al., 2023; Heidrich et al., 2024; Cao
et al., 2025), as well as algorithms for a generalized `p-norm
objective (Puleo & Milenkovic, 2016; Kalhan et al., 2019;
Jafarov et al., 2021; Charikar et al., 2017; Davies et al., 2024)
that captures the latter mini-max objective when p =∞ and
captures standard correlation clustering when p = 1.

Motivated by the above, we present new contributions to
ECC along two frontiers: improved MAXECC algorithms,
and new frameworks for balanced and fair ECC variants.

Our contributions for MAXECC. We present the first ap-
proximation algorithm for hypergraph MAXECC, which
has an approximation factor of (2/e)r(r + 1)−1 where r
is the maximum hyperedge size. The approximation factor
goes to zero as r increases, but this is expected since a prior
hardness result rules out the possibility of constant-factor
approximations that hold for arbitrarily large r (Veldt, 2023).
Our result shows that non-trivial constant-factor approxima-
tions can be obtained when r is a constant. We use insights
from our hypergraph algorithm to obtain a new best approx-
imation factor of 154/405 ≈ 0.38 for the graph version
of the problem, improving on the previous best 0.3622-
approximation shown five years ago (Ageev & Kononov,

2020). While the increase in approximation factor appears
small at face value, this improves on a long sequence of
papers on MAXECC for the graph case (Angel et al., 2016;
Ageev & Kononov, 2015; Alhamdan & Kononov, 2019;
Ageev & Kononov, 2020). Obtaining even a minor increase
in the approximation factor is highly non-trivial and consti-
tutes the most technical result of our paper.

Our contributions for balanced and fair ECC variants.
Our first contribution towards balanced and fair variants of
ECC is to introduce the generalized `p-NORM MINECC
objective, which uses a parameter p to control balance in
unsatisfied edges, and captures MINECC as a special case
when p = 1. For p = ∞, the objective corresponds to a
new problem we call COLOR-FAIR MINECC, where the
goal is to minimize the maximum number of edges of any
color that are unsatisfied. We prove COLOR-FAIR MINECC
is NP-hard even for k = 2 colors, even though standard
MINECC is polynomial-time solvable for k = 2. We pro-
vide a 2-approximation for `p-NORM MINECC for every
p ≥ 1 by rounding a convex relaxation, and give a 21/p-
approximation for every p ∈ (0, 1). We prove that this
factor 2 for p ≥ 1 is tight in the sense that it matches an
integrality gap for the p =∞ case. We then study COLOR-
FAIR MINECC from the perspective of parameterized com-
plexity, proving it is fixed-parameter tractable (FPT)1 in
terms of the total number of unsatisfied edges, but is not
FPT (under standard complexity assumptions) for many
other parameters including feedback edge number, cutwidth,
treewidth + maximum degree, and slim tree-cut width; this
is in contrast to positive results for the standard ECC ob-
jective (Kellerhals et al., 2023). We also consider a variant
of COLOR-FAIR MINECC that maximizes the minimum
number of satisfied edges of any one color, proving it is
NP-hard to approximate to within any multiplicative factor.

We also consider scenarios in which the “importance” of
the edge colors is unequal. In particular, we introduce
PROTECTED-COLOR MINECC, where we are given a spe-
cial color c1 which can be thought of as encoding a pro-
tected interaction type. The goal is to color nodes to min-
imize the number of unsatisfied edges subject to a strict
upper bound on the number of unsatisfied edges of color
c1. We give bicriteria approximation algorithms based on
rounding a linear programming relaxation, meaning that
our algorithm is allowed to violate the upper bound for the
protected color by a bounded amount, in order to find a
solution that has a bounded number of unsatisfied edges
relative to the optimal solution. Finally, although the con-
tributions of our paper are primarily theoretical, we also
implement our algorithms for COLOR-FAIR MINECC and

1A problem is FPT with respect to parameter k if it is solvable
in f(k) · nO(1) time, where n is the instance size and f is any
computable function. See Appendix A for a detailed introduction.
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PROTECTED-COLOR MINECC on a suite of benchmark
ECC datasets. Our empirical results show that (1) our algo-
rithms outperform their theoretical guarantees in practice,
and (2) our balanced and fair objectives still achieve good re-
sults with respect to the standard MINECC objective while
better incorporating notions of balance and fairness.

2. Improved MAXECC Algorithms
Preliminaries. For a positive integer n, let [n] =
{1, 2, . . . n}. We use bold lowercase letters to denote vec-
tors, and indicate the ith of entry of a vector x ∈ Rn by xi.
For a set S and a positive integer t, let

(
S
t

)
denote all subsets

of S of size t. An instance of edge-colored clustering is
given by a hypergraph H = (V,E, `, {ωe}e∈E) where V
is a node set, E is a set of hyperedges (usually just called
edges), and ` : E → [k] is a mapping from edges to a color
set [k] = {1, 2, . . . , k}. For e ∈ E, we let ωe ≥ 0 denote a
nonnegative weight associated with e, which equals 1 for all
edges in the unweighted version of the problem. For a color
c ∈ [k], let Ec ⊆ E denote the edges of color c. We use r
to denote the rank of H , i.e., the maximum hyperedge size.

The goal of ECC is to construct a map λ : V → [k] that
associates each node with a color, in order to optimize some
function on edge satisfaction. Edge e ∈ E is satisfied if
`(e) = λ(v) for each v ∈ e, and is otherwise unsatisfied.
The two most common objectives are maximizing the to-
tal weight of satisfied edges (MAXECC) or minimizing
the total weight of unsatisfied edges (MINECC). Formally,
MAXECC can be cast as a binary linear program (BLP):

max
∑
e∈E ωeze

s.t. ∀v ∈ V :

∀c ∈ [k], e ∈ Ec :

xcv, ze ∈ {0, 1}

∑k
c=1 x

c
v = 1

xcv ≥ ze ∀v ∈ e
∀c ∈ [k], v ∈ V, e ∈ E.

(1)

Setting xcu to 1 indicates that node u is given color c (i.e.,
λ(u) = c). We use xu =

[
x1u x2u · · · xku

]
to denote

the vector of variables for node u. For edge e ∈ E, the con-
straints are designed in such a way that ze = 1 if and only if
e is satisfied. A binary LP for MINECC can be obtained by
changing the objective function to min

∑
e∈E ωe(1− ze).

Challenges in approximating MAXECC. Although
MINECC and MAXECC are equivalent at optimality, the
latter is far more challenging to approximate. Due to an
approximation-preserving reduction from INDEPENDENT
SET, it is NP-hard to approximate MAXECC in hypergraphs
of unbounded rank r to within a factor |E|1−ε (Veldt, 2023;
Zuckerman, 2006). There also are simple instances (e.g.,
a triangle with 3 colors) where a simple 2-approximation
of Amburg et al. (2020) for MINECC (round variables of an
LP relaxation to 0 if they are strictly below 1/2, otherwise
round to 1) fails to satisfy any edges. These challenges

do not rule out the possibility of approximating MAXECC
when r is constant. Indeed there are many approximations
for graph MAXECC (r = 2) (Angel et al., 2016; Alhamdan
& Kononov, 2019; Ageev & Kononov, 2015; 2020), but
these require lengthy proofs, rely fundamentally on the as-
sumption that the input is a graph, and do not easily extend
even to the r = 3 case. Here we provide a generalized
approach that gives the first approximation guarantees for
hypergraph MAXECC, when r is constant. Our approach
also provides a simplified way to approximate graph MAX-
ECC, and we design a refined algorithm that achieves a new
best approximation factor for graph MAXECC, improving
on the long line of previous algorithms for this case.

2.1. Technical preliminaries for LP rounding algorithms

The LP relaxation for MAXECC can be obtained by relaxing
the binary constraints in Binary Linear Program (1) to linear
constraints 0 ≤ xcv ≤ 1 and 0 ≤ ze ≤ 1. Solving this LP
gives a fractional node-color assignment xcv ∈ [0, 1]. The
closer xcv is to 1, the stronger this indicates node v should
be given color c. For the remainder of this section, assume
{ze, xcv : e ∈ E, v ∈ V, c ∈ [k]} specifically refers to an
optimal set of LP variables for the relaxation. Our task is to
round these variables to assign one color to each node in a
way that satisfies provable approximation guarantees.

Our algorithms (Algorithms 1 and 2) are randomized. Both
use the same random process to identify colors that a node
“wants”. For each c ∈ [k] we independently generate a uni-
form random color threshold αc ∈ [0, 1]. If xcu > αc, we
say that node u wants color c, or equivalently that color c
wants node u. Because a node may want more than one
color, we use a random process to choose one color to assign,
informed by the colors the node wants. Our approximation
proofs rely on (often subtle) arguments about events that are
independent from each other. We begin by presenting sev-
eral useful observations that will aid in proving our results.

Our first observation is that if we can bound the expected
cost of every edge in terms of the LP upper bound, it pro-
vides an overall expected approximation guarantee.

Observation 1. LetA be a randomized ECC algorithm and
p ∈ [0, 1] be a fixed constant. If for each e ∈ E we have
P[e is satisfied by A] ≥ pze, then A is a p-approximation.

Let Xc
u denote the event that u wants c, and Ze be the event

that every node in edge e ∈ E wants color c = `(e).

Observation 2. For each node v ∈ V , the events {Xc
v}c∈[k]

are independent, and P[Xc
v ] = P[αc < xcv] = xcv ≤ 1.

Observation 3. P[Ze] = P[∩v∈eXc
v ] = minv∈e x

c
v = ze.

For an edge e and color i 6= `(e), we frequently wish to
quantify the possibility that some node in e wants color
i, as this opens up the possibility that e will be unsatisfied
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Algorithm 1 Approximation alg. for hypergraph MAXECC
Obtain optimal variables {ze;xcv} for the LP relaxation
π ← uniform random ordering of colors [k]
For c ∈ [k], αc ← uniform random threshold in [0, 1]
for v ∈ V do
W = {c ∈ [k] : αc < xcv}
if |W| > 0 then
λ(v)← argmaxc∈W π(c)

else
λ(v)← arbitrary color

end if
end for

because some node v ∈ e is given color i. Towards this goal,
for each e ∈ E and color i ∈ [k] we identify one node in e
that has the highest likelihood of wanting i. Formally, we
identify some representative node v ∈ e satisfying xiv ≥ xiu
for every u ∈ e (breaking ties arbitrarily if multiple nodes
satisfy this), and we define σe(i) = v. The definition of
σe(i) implies the following useful observation:
Observation 4. Color i does not want any nodes in e ⇐⇒
color i does not want v = σe(i).

Variations of Observations 1-3 have often been used to prove
guarantees for previous randomized ECC algorithms. How-
ever, Observation 4 is new and is key to our analysis.

2.2. Hypergraph MaxECC Algorithm

In addition to color thresholds {αc}, our hypergraph MAX-
ECC algorithm (Algorithm 1) generates a uniform random
permutation π to define priorities for colors. A node is then
assigned to the highest priority color it wants.

Theorem 2.1. Algorithm 1 is a
(

1
r+1

(
2
e

)r)
-approximation

algorithm for MAXECC in hypergraphs with rank r.

Proof. Fix an arbitrary edge e ∈ E and let c = `(e). Let
Te denote the event that e is satisfied. By Observation 1, it
suffices to show P[Te] ≥ ze

r+1

(
2
e

)r
.

Let C = [k] \ {c}. To partition the color set C, for each v ∈
e we define Cv = {i ∈ C : σe(i) = v}. Recall that σe(i)
identifies a node v ∈ e satisfying xiv = maxu∈e x

i
u. Let

Av denote the event that at most one color in Cv wants one
or more nodes in e. From Observation 4, Av is equivalent
to the event that v wants at most 1 color in Cv. Thus, the
probability of Av is the probability that at most one of
the events {Xi

v : i ∈ Cv} happens. Observation 2 gives∑k
i=1 P[Xi

v] =
∑k
i=1 x

i
v = 1, allowing us to repurpose a

supporting lemma of Angel et al. (2016) on graph MAXECC
to see that P[Av] ≥ 2/e (Lemma B.1 in Appendix B).

Because color thresholds {αi} are drawn independently for
each color, and because color sets {Cv : v ∈ e} are disjoint

from each other and from c, the events {Av, Xc
v : v ∈ e}

are mutually independent. Thus, using Observation 3 gives

P

[(⋂
v∈e

Av

)
∩ Ze

]
= P[Ze] ·

∏
v∈e

P[Av] ≥ ze ·
(

2

e

)r
.

If the joint event J = (∩v∈eAv)∩Ze holds, this means every
node in e wants color c, and at most r distinct other colors
(one for each node in v ∈ e since there is one setCv for each
v ∈ e) want one or more nodes in e. Conditioned on J , e is
satisfied if the color c has a higher priority (determined by
π) than the other r colors, which happens with probability
1/(r + 1). Thus,

P[Te] ≥ P [Te | J ]P [J ] ≥ ze
r + 1

(
2

e

)r
.

Comparison with prior graph MAXECC algorithms. Al-
gorithm 1 achieves a 4/(3e2) ≈ 0.18 approximation factor
for graph MAXECC (r = 2). This improves upon the
first ever approximation factor of 1/e2 ≈ 0.135 for graph
MAXECC (Angel et al., 2016), and comes with a signifi-
cantly simplified proof. There are two interrelated factors
driving this simplified and improved guarantee. The first
is our use of Observation 4. Angel et al. (2016) bound
the probability of satisfying an edge (u, v) ∈ Ec using
a delicate argument about certain dependent events we
can denote by Bv (the event that v wants at most 1 color
from C = [k] \ {c}) and Bu (defined analogously for u).
The algorithm of Angel et al. (2016) requires proving that
P[Bu ∩ Bv] ≥ P[Bu]P[Bv], even though Bu and Bv are
dependent. The proof of this result (Proposition 1 in Angel
et al. (2016)) is interesting but also lengthy. It fundamentally
relies on the assumption that there are exactly two nodes in
the edge, and involves several long algebraic expressions
to describe probabilities for different events. In its current
form the result does not apply when r > 2. Attempting to
generalize it even for r = 3 leads to far more complicated
algebraic expressions, and even then it is unclear if a similar
result can be shown. Subsequent approximation algorithms
for graph MAXECC also rely on complicated variants of
this proposition (Ageev & Kononov, 2015; 2020; Alhamdan
& Kononov, 2019). In contrast, Theorem 2.1 deals with
mutually independent events {Av : v ∈ e}, which allows
us to immediately see that P[∩v∈eAv] ≥

∏
v∈e P[Av] for

arbitrary sized hyperedges. Observation 4 provides the key
insight as to why it suffices to consider these events when
bounding probabilities, leading to a far simpler analysis that
extends easily to hypergraphs.

Our second key factor is the use of a global color ordering
π. Angel et al. (2016) and other results for graph MAXECC
apply a two-stage approach where Stage 1 identifies which
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Algorithm 2 0.38-approximation alg. for graph MAXECC
Obtain optimal variables {ze;xcv} for the LP relaxation
π ← uniform random ordering of colors [k]
For c ∈ [k], αc ← uniform random threshold in [0, 1]
for v ∈ V do
Sv ← {c ∈ [k] | xcv ≥ 2/3}; Wv ← [k] \ Sv
W ′v = {c ∈Wv | αc < xcv}
if |W ′v| > 0 then
λ(v)← argmaxi∈W ′v π(i)

else if ∃c s.t. Sv = {c} then
λ(v)← c

else
λ(v)← arbitrary color

end if
end for

nodes “want” which colors, and Stage 2 assigns nodes to col-
ors independently for each node. To illustrate the difference,
consider the probability of satisfying an edge (u, v) ∈ Ec
if we condition on u and v both wanting c and each want-
ing at most one other color. The algorithm of Angel et al.
(2016) has a 1/4 chance of satisfying the edge (each node
gets color c with probability 1/2), whereas Algorithm 1 has
a 1/3 chance (the probability that c is given higher global
priority than the other two colors). This is precisely why
Algorithm 1’s approximation guarantee is a factor 4/3 larger
than the guarantee of Angel et al. (2016).

2.3. Graph MaxECC Algorithm

Although Algorithm 1 does not improve on the 0.3622-
approximation of Ageev & Kononov (2020) for graph MAX-
ECC, we can incorporate its distinguishing features (the
color ordering π and Observation 4) into a refined algorithm
with a 154/405 ≈ 0.38 approximation factor. In order to
improve on this extensively studied special case of the prob-
lem, our analysis is much more involved than the proof of
Theorem 2.1 and requires proving several detailed techni-
cal lemmas that may be of interest in their own right. We
provide an overview here and a full proof in Appendix B.

Our refined algorithm (Algorithm 2) for graphs solves the
LP relaxation, generates color thresholds {αi : i ∈ [k]}, and
generates a color ordering π in the same way as Algorithm 1.
It differs in that it partitions colors for each v into colors
that are strong or weak for v, given respectively by the sets

Sv = {i ∈ [k] : xiv ≥ 2/3} and Wv = [k]− Sv.

Since
∑k
i=1 x

i
v = 1, we know |Sv| ∈ {0, 1}. We say color

i is strong for v if Sv = {i}, otherwise i is weak for v.
Note that a color being strong or weak for v is based on a
fixed and non-random LP variable. This is separate from
the notion of a color wanting v, which is a random event.

Algorithm 2 first checks if v wants any weak colors. If
so, it assigns v the weak color of highest priority (using π)
that v wants. If v wants no weak colors but has a strong
color, then v is assigned the strong color. Prioritizing weak
colors in this way appears counterintuitive, since if v has a
strong color c it suggests that v should get color c. However,
note that xcv ≥ 2/3 still implies v will get color c with high
probability, since a large value for xcv makes it less likely v
will want any weak colors. Meanwhile, prioritizing weak
colors enables us to lower bound the probability that an edge
e = (u, v) is satisfied even if `(e) is weak for u or v. We
prove the following result for an arbitrary edge e, which by
Observation 1 proves our approximation guarantee.

Theorem 2.2. For every e ∈ E, P[e is satisfied] ≥ pze
where p = 154/405 > 0.3802 when running Algorithm 2.

Proof sketch. Fix e = (u, v), let c = `(e), and set C =
[k]\{c}. DefineCv = {i ∈ C : xcv ≥ xcu} andCu = C\Cv .
As before, Te is the event that e is satisfied and Xi

v is the
event that v wants color i. Let Y iv be the event that v is
assigned color i by Algorithm 2, and Nv be the event that
v wants no colors in C. If c is strong for v, event Nv is
equivalent to event Y cv . Let W ′v denote colors in Wv that
want v. DefineXi

u, Y iu , W ′u, andNu analogously for u. The
proof is separated into (increasingly difficult) cases, based
on how many of {u, v} have c as a strong color.

Case 1: Su = Sv = {c}. Setting W ′ = W ′u ∪W ′v , we have

P [Te] =
∏
i∈C

P [i /∈W ′] =
∏
i∈Cv

P[i /∈W ′v]
∏
i∈Cu

P[i /∈W ′u]

=
∏
i∈Cv

(1− xiv)
∏
i∈Cu

(1− xiu) ≥ 2

3
· 2

3
≥ 4

9
ze.

The first equality holds because e is satisfied ⇐⇒ W ′u =
W ′v = ∅. The second follows from the definition of Cu
and Cv and Observation 4. The second to last step can be
shown using the constraint

∑k
i=1 x

i
w = 1 and the fact that

xcw ≥ 2/3 for w ∈ {u, v} (see Lemma B.3 in Appendix B).

Case 2: Sv = {c}, c ∈ Wu. Satisfying e is equivalent to
event Y cu ∩ Y cv , and Sv = {c} implies Y cv is equivalent to
Nv . Note that Y cu = Y cu ∩Xc

u. In Appendix B we combine
this with Bayes’ Theorem, the independence of Xc

u and Nv ,
and the fact that P [Xc

u] = xcu ≥ ze, to get

P[Te] = P [Y cu ∩Xc
u ∩Nv] ≥ P [Y cu | Nv ∩Xc

u]P [Nv] ze.

Similar to Case 1, we use Lemma B.3 to prove that

P [Nv] =
∏
i∈C

P [i /∈W ′v] =
∏
i∈C

(1− xiv) ≥
2

3
.

The most difficult steps for Case 2 are the two inequalities

P [Y cu | Nv ∩Xc
u] ≥ P [Y cu | Xc

u] ≥ 31/54,
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where the first inequality relies on Lemma B.2 and the sec-
ond on Lemma B.5, both of which require detailed proofs.
Putting all these pieces together yields

P [Te] ≥ P [Y cu | Xc
u]P [Nv] ze ≥

31

54
· 2

3
ze =

31

81
ze.

Case 3: c ∈Wu ∩Wu. First condition on Ze = Xc
u ∩Xc

v :

P [Te] = P [Te | Ze]P [Ze] = P [Te | Ze] ze.

DefineD = (Wu∪Wv)\{c} to be the weak colors inC that
want at least one of {u, v}. The proof ultimately bounds
P [Te | Ze], by conditioning on how many colors in D want
one or both of {u, v}. We partition D into Du = {i ∈
D : xiu ≥ xiv} and Dv = D−Du, and using the same logic
as Observation 4, note that i ∈ Du (respectively, i ∈ Dv)
wants one or more nodes in {u, v} if and only if i wants u
(respectively, i wants v). Let D′u be the colors in Du that
want u and define D′v analogously for v. Since |D′u| and
|D′v| are independent, we have

P[Te | Ze] =

|Du|∑
i=0

|Dv|∑
j=0

P [|D′u| = i]P [|D′v| = j]

1 + i+ j
, (2)

where the fraction 1/(1 + i + j) is the probability that—
conditioned on i + j colors in D wanting some nodes in
{u, v}—the color c will have higher priority than these i+j
other colors and hence e will be satisfied. Using multiple
applications of Lemma B.5 to bound sums of probabilities
on the right hand side of Eq. (2), we show that P[Te | Ze] ≥
154/405, which concludes the proof.

3. Alternative ECC Objectives
We now turn our attention to more general ECC objectives,
as well as several which incorporate notions of balance or
fairness with respect to edge colors. Given space constraints,
we defer proofs to Appendices C, D, and E.

3.1. Generalized Norm Objective

We begin by introducing `p-NORM MINECC, which we
define via the following convex program:

min (
∑k
c=1(mc)

p)
1
p

s.t. ∀v ∈ V :

∀c ∈ [k], e ∈ Ec :

∀c ∈ [k] :

dcv, γe ∈ {0, 1}

∑k
c=1 d

c
v ≥ k − 1

dcv ≤ γe ∀v ∈ e
mc =

∑
e∈Ec

γe

∀c ∈ [k], v ∈ V, e ∈ E.

(3)

Recalling the notation of BLP (1), we think of dcv = 1− xcv
as encoding the “distance” of node v to color c, and γe = 1−
ze as encoding whether hyperedge e is unsatisfied (γe = 1)
or not (γe = 0). The variables mc can be thought of as the

entries in a per-color error vector m ∈ Zk which tracks the
number of unsatisfied edges of each color. Otherwise, the
variables and constraints are similar to BLP (1), adapted for
the minimization objective. When p = 1, we recover the
standard MINECC problem, i.e., the `1-norm on m. We
now show how to approximate the generalized `p-NORM
MINECC problem. For p ≥ 1, if we relax the binary
constraints to linear constraints 0 ≤ dcv ≤ 1 and 0 ≤ γe ≤ 1,
we obtain a convex programming relaxation. We can then
apply convex optimization techniques to find the optimal
solution to this relaxation and round the resulting fractional
coloring. The rounding scheme is similar to that used for
MINECC (Amburg et al., 2020). In particular, given a
fractional coloring consisting of optimal variables {dcv},
we assign color c to vertex v if and only if dcv <

1
2 . We

show that the resulting coloring is well-defined and a 2-
approximation to the generalized objective. When 0 < p <
1 we lose convexity, but we can recover approximations via
reduction to SUBMODULAR VERTEX COVER.
Theorem 3.1. `p-NORM MINECC is approximable within
factor 2 when p ≥ 1, and factor 21/p when 0 < p < 1.

As p increases, the `p-norm on m converges to the maximum
component value in m. Thus, for p→∞ we recover a mini-
max variant of ECC, for which the objective is to minimize
the maximum number of unsatisfied edges of any color. This
variant will be the focus of Section 3.2, but first we pause to
note that this convergence of the `p objective implies that
we cannot hope to obtain a better-than 2-approximation by
rounding fractional solutions to Program (3).
Theorem 3.2. As p→∞, the integrality gap of Program (3)
converges to 2.

3.2. Color-fair ECC variants

Now we focus on the mini-max case of `p-NORM MINECC
given by p → ∞, which we refer to as COLOR-FAIR
MINECC. In the following, Mλ

c indicates the number of
edges of color c which are unsatisfied by a coloring λ.

Input: A k-edge-colored hypergraph H =
(V,E, `) and an integer τ .

Problem: Does there exist a vertex coloring λ of
H with maxc∈[k]M

λ
c ≤ τ?

COLOR-FAIR MINECC

The optimization problem asks for a coloring λ which min-
imizes maxc∈[k]M

λ
c . Also of interest is the corresponding

maxi-min variant COLOR-FAIR MAXECC, for which the
question is whether there exists a coloring which satisfies at
least τ edges of every color. These problems are not equiva-
lent at optimality in general, though they are when restricted
to hypergraphs with an equal number of edges of every color.
We begin by establishing hardness for both problems.
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Theorem 3.3. COLOR-FAIR MINECC is NP-hard even
when restricted to subcubic trees with cutwidth 2, exactly 3
edges of each color, and τ = 2. COLOR-FAIR MAXECC is
NP-hard even when restricted to paths with τ = 1.

Theorem 3.3 implies that it is NP-hard to provide any multi-
plicative approximation for COLOR-FAIR MAXECC, since
it is NP-hard even to decide whether the optimum objective
value is non-zero. Our reduction also rules out efficient
algorithms in graphs of bounded feedback edge number,
cutwidth, treewidth + max. degree, or slim tree-cut width.
This highlights interesting differences between COLOR-
FAIR MINECC and the standard ECC problem, which
was shown to be FPT in terms of all four of these struc-
tural parameters (Kellerhals et al., 2023). On the positive
side, we can give a FPT algorithm parameterized by the
total number t of unsatisfied edges. We remark (omitting
the details) that the dependence on t in the following theo-
rem is tight under the exponential time hypothesis (ETH).
To see this, we observe that the reduction of Theorem 3.3
creates linearly many vertices and edges with respect to
the BOOLEAN SATISFIABILITY instance from which we
reduce. In combination with a similar observation regarding
the reduction of Tovey (1984), we conclude that under the
ETH no 2o(|V |+|E|)-time (nor 2o(t)-time) algorithm exists
for COLOR-FAIR MINECC.
Theorem 3.4. COLOR-FAIR MINECC is solvable in
O(2tr|E|)-time.

Though Theorems 3.3 and 3.4 close the most natural param-
eterized complexity questions, it remains open to determine
whether COLOR-FAIR MINECC is hard when the number k
of colors is bounded. The standard ECC objective is in
P when k ≤ 2 and NP-hard whenever k ≥ 3 (Amburg
et al., 2020). We resolve this question via an intermediate
hardness result for a VERTEX COVER variant which may
be of independent interest. Specifically, in Appendix D we
prove that given a bipartite graph G = (A ]B,E) and an
integer α, it is NP-hard to determine whether there exists
a vertex cover C of G with max{|C ∩ A|, |C ∩ B|} ≤ α.
This result facilitates the resolution of our question:
Theorem 3.5. COLOR-FAIR MINECC and COLOR-FAIR
MAXECC are NP-hard even in 2-regular hypergraphs with
k = 2.

We conclude this section by pointing the interested reader
toward a few additional results. In Appendix D, we prove
that an alternative to the 2-approximation implied by Theo-
rem 3.1 can be obtained by reducing to a VERTEX COVER
variant called SPARSE VERTEX COVER and applying a re-
sult of Blum et al. (2022). A natural question is whether
COLOR-FAIR MINECC is approximable below factor 2.
Any such algorithm is likely to require new techniques.
Theorem 3.2 implies that the first of our two strategies can-
not be improved, while any improvement in the existing

2-approximation for SPARSE VERTEX COVER would refute
the unique games conjecture (Blum et al., 2022).

It is also compelling to develop purely combinatorial ap-
proaches, i.e., algorithms which do not rely upon convex
optimization. As a first step, in Appendix D we show how
to analyze an existing linear-time and purely combinato-
rial ECC algorithm of Veldt (2023), proving that it yields a
k-approximation to the COLOR-FAIR MINECC objective.

3.3. Protected-color ECC

COLOR-FAIR MINECC encodes fairness by ensuring that
no single color is heavily “punished” (as measured by unsat-
isfied hyperedges), but what if we are only concerned about
a single color that represents a protected interaction type?
It is always trivially possible to ensure that every edge of
a given color c1 is satisfied by setting λ(v) = c1 for every
vertex v. This strategy, however, completely disregards all
other edges. We might reasonably assume that while we
are constrained by concern for a given protected color, we
still wish to find a high-quality solution as measured by the
traditional clustering objective. This tension is captured in
the following problem definition.

Input: An edge-colored hypergraph H =
(V,E, `), two integers t, b, and a pro-
tected color c1.

Problem: Is it possible to color V such that at
most t edges are unsatisfied, of which
at most b have color c1?

PROTECTED-COLOR MINECC

When t = b we recover the standard ECC problem, so
PROTECTED-COLOR MINECC is NP-hard. However, by
rounding fractional solutions to the following linear program
we recover bicriteria (α, β)-approximations. If optb is the
minimum possible number of unsatisfied edges subject to
the constraint b, then these algorithms guarantee at most
α·optb unsatisfied edges, of which at most β ·b have color c1.

min
∑
e∈E γe

s.t. ∀v ∈ V :

∀c ∈ [k], e ∈ Ec :∑
e∈Ec1

γe ≤ b

dcv, γe ∈ [0, 1]

∑k
c=1 d

c
v ≥ k − 1

dcv ≤ γe ∀v ∈ e

∀c ∈ [k], v ∈ V, e ∈ E

(4)

All variables have the same meaning as in Program (3), but
we have added the third constraint which encodes that at
most b edges of our protected color c1 may be unsatisfied.
Apart from this constraint, LP (4) is identical to the canon-
ical MINECC LP used to obtain state-of-the-art approxima-
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Table 1. We report hypergraph statistics, and compare the standard (ST) MINECC algorithm against the COLOR-FAIR MINECC (CF)
algorithm. Runtimes are given in seconds taken to solve the LP. Objective numbers are an upper bound on the approximation ratio, given
by the objective value for the algorithm divided by the lower bound for the objective determined by the LP relaxation.

Dataset |V | |E| r k
Runtime (s) ECC Obj CFECC Obj

ST CF ST CF ST CF

Brain 638 21180 2 2 0.50 1.57 1.00 1.02 1.26 1.00
Cooking 6714 39774 65 20 46.76 52.88 1.00 1.00 1.66 1.66
DAWN 2109 87104 22 10 4.49 11.60 1.00 1.00 1.39 1.38
MAG-10 80198 51889 25 10 8.40 15.52 1.00 1.20 1.48 1.03
Trivago-Clickout 207974 247362 85 55 116.94 129.55 1.00 1.37 1.68 1.01
Walmart-Trips 88837 65898 25 44 156.71 314.03 1.00 1.05 2.48 1.56

tions (Amburg et al., 2020; Veldt, 2023), and our algorithm
can be seen as an appropriate adaption of those rounding
schemes. In the following, ρ ∈ (0, 12 ] is a parameter which
allows us to tune the approximation guarantees α and β.

Theorem 3.6. For every ρ ∈ (0, 12 ], there exists a
polynomial-time ( 1

ρ ,
1

1−ρ )-approximation for PROTECTED-
COLOR MINECC.

We also give a FPT algorithm.
Theorem 3.7. PROTECTED-COLOR MINECC is FPT with
respect to the total number t of unsatisfied edges.

Given these positive results, a natural question is whether we
may efficiently solve the MINECC objective with multiple
protected colors. We conclude by showing that as soon as
we allow more than one protected color, it becomes hard
even to determine whether any solution exists.
Theorem 3.8. Given a 2-regular H = (V,E, `), two inte-
gers b1, b2, and two colors c1, c2, it is NP-hard to determine
whether it is possible to color V such that at most b1 edges
of color c1 and at most b2 edges of color c2 are unsatisfied.

4. Experiments
While we primarily focus on theoretical results, we also
implemented and evaluated the performance of our al-
ternate objective ECC algorithms on a standard suite of
benchmark hypergraphs. LP-based methods for standard
ECC are known to perform far better in practice than
their theoretical guarantees, often yielding optimal solu-
tions (Amburg et al., 2020). Thus, our MAXECC algo-
rithms should be viewed as theoretical results that help
bridge the theory-practice gap and are thus not the focus of
our experiments. Code for our experiments can be found
at https://github.com/tommy1019/AltECC.

Datasets. We consider edge-colored hypergraphs from Am-
burg et al. (2020) and Veldt (2023). Brain is derived from
brain MRI data (Crossley et al., 2013); nodes represent

brain regions, edges of one color indicate regions with high
fMRI correlation, and edges of the other color indicate re-
gions with similar activation patterns. Cooking is derived
from the What’s Cooking dataset (Kaggle, 2015a); nodes
are food ingredients, hyperedges are ingredients encoding
a recipe, and colors indicate cuisine (e.g., Indian or Ko-
rean). In DAWN, nodes are drugs from the Drug Abuse
Warning Network (Substance Abuse and Mental Health Ser-
vices Administration.), and hyperedges are groups of drugs
ingested by an individual prior to a trip to the emergency
room. Colors indicate patient outcome (e.g., “sent home”
or “surgery”). MAG-10 is derived from publication data
from the Microsoft Academic Graph (Sinha et al., 2015);
nodes are academic authors, hyperedges indicate authors on
a publication, and hyperedge colors indicate the publication
venue. Walmart-Trips is derived from the Kaggle trip type
classification data (Kaggle, 2015b); nodes are products sold
at Walmart, and hyperedges represents sets of products pur-
chased in the same shopping trip. Colors are shopping trip
types. Trivago-Clickout is derived from the 2019 ACM Rec-
Sys Challenge data (Knees et al., 2019); nodes are vacation
rentals on Trivago, hyperedges are sets of rentals that a user
“clicks out” on during the same browsing session. Colors
encode the country location where the browsing session oc-
curred (e.g., Spain if the browsing happened on Trivago.es).
Table 1 provides statistics for each hypergraph.

Implementation. We refer to our LP algorithms for COLOR-
FAIR MINECC and PROTECTED-COLOR MINECC as CF
and PC respectively, and refer the standard MINECC LP
rounding algorithm as ST. These were implemented in the
Julia programming language and run on a research server
running Ubuntu 20.04.1 with two AMD EPYC 7543 32-
Core Processors and 1 TB of RAM. Our implementation
of these algorithms chooses a color that has the lowest LP
distance variable among all colors for each node. This ap-
proach can only improve our approximation guarantees over
the theoretical approach that only assigns a color if there is
an LP variable that is less than 1/2. Our implementation
for PC then performs at least as well as the algorithm from

8

https://github.com/tommy1019/AltECC


Edge-Colored Clustering in Hypergraphs: Beyond Minimizing Unsatisfied Edges

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

m
in

E
C

C
m

in
E

C
C

0

25

50

75

100

0 25 50 75 100
Protected Class Constraint %

P
C

 U
ns

at
is

fie
d 

%

(a) Constraint Violation

0.7

0.8

0.9

1.0

1.1

1.2

0 25 50 75 100
Protected Class Limit %

P
C

E
C

C
 A

pp
ro

x 
B

ou
nd

(b) PROTECTED-COLOR approximation
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(c) MINECC approximation

• Brain N Cooking � DAWN + MAG-10 � Trivago-Clickout ∗ Walmart-Trips
Figure 2. Results for PC while varying the size of the constraint b, given as a percent of the total number of protected edges. The protected
color is always chosen to be the color with the median number of edges among all colors in the hypergraph. Figure (a) shows the percent
of protected edges left unsatisfied by PC, versus the maximum percent of edges that the constraint allows to be unsatisfied. Line y = x
represents the constraint imposed by the problem definition, and y = 2x is the theoretical limit for our bicriteria approximation. Figures
(b) and (c) are upper bounds on the approximation ratio achieved by PC for the protected color objective and for MINECC respectively.

Theorem 3.6 with ρ = 1/2, so it is a (2, 2)-approximation.
We used Gurobi optimization software with default settings
to solve LPs. The bottleneck for all algorithms is solving
the LP, which takes between few seconds and a few min-
utes depending on the dataset. The time to round the LP is
negligible (under 0.3 seconds in the worst case).

COLOR-FAIR MINECC. Table 1 compares CF against ST.
We first observe that in practice, CF achieves approximation
factors that are much better than the theoretical bound of
2, and in several cases are very close to 1. Furthermore,
CF even does well approximating the standard MINECC
objective even though it is not directly designed for it. In
the worst case, it achieves a 1.37-approximation, which is
only 37% worse than ST, which finds an optimal solution
for MINECC. By comparison, ST it is up to 66% worse
than CF for the color-fair objective. In fact, on average
among the datasets we tested, CF is only 10.66% worse
than ST on the standard MINECC objective, while ST is
32.62% worse than CF on the color-fair objective. In other
words, the cost of incorporating fairness into the ECC frame-
work is not too high—CF maintains good performance in
terms of the MINECC objective while showing significant
improvements for the color-fair objective.

PROTECTED-COLOR MINECC. Figure 2(a) shows the
constraint satisfaction for PC as b (the number of unsatisfied
protected edges) varies. Again we see that our algorithm
tends to far exceed theoretical guarantees. In most cases, the
number of protected edges left unsatisfied by PC is below
the constraint b, even though the algorithm can in theory vio-
late this constraint by up to a factor 2. Results are especially
good for Brain, MAG-10, Walmart, and Trivago-Clickout,
where the constraint tends to be satisfied and the objective
value for CF is within a factor 1.007 of the LP lower bound
(Figure 2(b)). PC also tends to satisfy the protected color
constraint for DAWN and Cooking when b is below 50%

of the total number of protected edges, achieving a 1.3-
approximation or better in this case (Figure 2(b)). Once b is
above this 50% threshold, PC satisfies no protected edges
on DAWN and Cooking. This still matches our theory: in
order to guarantee (based on our theory) we do not leave all
protected edges unsatisfied, bmust be less than 50% of these
edges. PC also does a good job of approximating the stan-
dard MINECC objective (factor 2 or better, see Figure 2(c)),
while incorporating this protected color constraint.

We note that the rightmost point in Figure 2(a) corresponds
to standard MINECC as there is no bound on unsatisfied
protected edges. From this, we can examine how badly ST
violates protected color constraints for small b values. On
MAG-10 when b is 10% of the number of protected edges,
ST violates the constraint by a factor of 3.60 whereas PC
only violates the constraint by a factor of 1.01. This gap
is even more pronounced for the DAWN dataset at 10%,
where ST violates the constraint by a factor of 10.3 while
PC satisfies the constraint. Thus, for situations where there
is a need to protect certain edge types, standard MINECC
algorithms do not provide meaningful solutions.

5. Conclusions
We have established the first approximation algorithm for
hypergraph MAXECC and improved the best known ap-
proximation factor for graph MAXECC. We also introduced
two ECC variants that incorporate fairness, designing new
approximation algorithms which in practice far exceed their
theoretical guarantees. One open direction is to try to fur-
ther improve the best approximation ratio for MAXECC.
This may require deviating significantly from previous LP
rounding techniques, since it is currently very challenging
to improve the approximation by even a small amount using
this approach. Another open direction is to improve on the
21/p-approximation for `p-NORM MINECC when p < 1.
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A. Parameterized Complexity
For a complete introduction to parameterized complexity, we refer the reader to the standard text (Cygan et al., 2015). A
parameterized problem is a language L ⊆ Σ∗, where Σ is a fixed, finite alphabet. An instance is a tuple (I, k) ∈ Σ∗ × N,
where k is the parameter. A parameterized problem is called fixed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f : N→ N and a constant c such that for every instance (I, k), A decides whether (I, k) ∈ L in
time bounded by f(k) · |(I, k)|c. This means the algorithm A has polynomial dependence on the instance size, while the
exponential (or worse) part of the running time is dependent only on the parameter k.

The standard ECC problem is FPT with respect to both natural parameters, i.e., the number of unsatisfied edges and the
number of satisfied edges (Cai & Leung, 2018), as well as several structural parameters, notably the slim tree-cut width,
feedback edge number, cutwidth, and treewidth plus maximum degree (Kellerhals et al., 2023). Meanwhile, it is (under
standard complexity assumptions) not FPT with respect to vertex-cover number or treewidth (Kellerhals et al., 2023).

B. MAXECC Proofs
We use the following lemma as a small step in our approximation guarantee for hypergraph MAXECC (Theorem 2.1). The
result was originally used in designing a 1/e2-approximation algorithm for graph MAXECC (Angel et al., 2016). A full
proof can be found in the work of (Angel et al., 2016).
Lemma B.1 (Lemma 4 of Angel et al. (2016)). Let {X1, X2, . . . , Xj} be a set of independent events satisfying∑j
i=1 P[Xi] ≤ 1, then the probability that at most one of them happens is greater than or equal to 2/e.

The remainder of our supporting lemmas are new results that we prove for our approximation algorithm for graph MAXECC.
Lemma B.2. Given an edge e = (u, v) of color c with c ∈Wu, when running Algorithm 2 we have

P [Y cu | Nv ∩Xc
u] ≥ P [Y cu | Xc

u] .

Proof. For a node u and color i we use X
c

u to denote the event that u does not want c.

We first observe that it is sufficient to show positive correlation between Y cu and Nv. To see this, we use Bayes’ Theorem
and the independence of Xc

u and Nv to write

P [Y cu | Nv ∩Xc
u] =

P [Y cu ∩Nv ∩Xc
u]

P [Nv ∩Xc
u]

=
P [Nv ∩Xc

u | Y cu ]P [Y cu ]

P [Nv ∩Xc
u]

=
P [Nv ∩Xc

u | Y cu ]P [Y cu ]

P [Nv] · P [Xc
u]

,

as well as

P [Y cu | Xc
u] =

P [Xc
u ∩ Y cu ]

P [Xc
u]

=
P [Xc

u | Y cu ]P [Y cu ]

P [Xc
u]

=
1 · P [Y cu ]

P [Xc
u]

.

By rearranging terms, we see that our claim is equivalent to

P [Nv ∩Xc
u | Y cu ] = P [Nv | Y cu ] ≥ P [Nv] .

We complete the proof by demonstrating the equivalent inequality P [Y cu | Nv] ≥ P [Y cu ]. Impose an arbitrary order
c1, c2 . . . , ck on the color set, and without loss of generality assume that `(e) = c = ck. In what follows, we always write c
for ck and whenever considering a subscripted color ci we assume that i ∈Wu \ {c}.

If node u has a strong color, then without loss of generality we assume that the strong color is ck−1. The remainder of
the proof is written for the case where Su = ∅, in which case the set of weak colors (other than c) that might want node
u is Wu \ {c} = {c1, c2, . . . , ck−1}. In other words, Wu is the set of colors with indices in [k − 1]. If instead we had
Su = {ck−1} and Wu \ {c} = {c1, c2, . . . , ck−2}, the proof works in exactly the same way if we instead considered the set
of colors associated with indices in [k − 2] instead of indices in [k − 1].

Now, consider all possible subsets of [k − 1] which may define (according to our ordering) those weak colors (besides c)
which are wanted by u. For a particular subset S ⊆ [k − 1], we write XS

u for the event that u wants exactly (not considering
c) the colors in S. In the following, we write w(S) = 1

|S|+1 and call this quantity the weight of S. The events XS
u partition

the sample space, so we may write

P [Y cu ] =
∑

S⊆[k−1]

P
[
Y cu
∣∣ XS

u

]
· P
[
XS
u

]
= P [Xc

u] ·
∑

S⊆[k−1]

w(S) · P
[
XS
u

]
.
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In the above, the second equality follows from the observation that, conditioned on XS
u for any S ⊆ [k − 1], the event Y cu

occurs if and only if (a) u wants c and (b) c preceeds each color in S in the global ordering of colors. The conditions (a) and
(b) are independent, and occur with probabilities P [Xc

u] and w(S), respectively. We will now make use of the independence
of the Xci

u events to write P
[
XS
u

]
as the product of k − 1 probabilities.

P [Y cu ] = P [Xc
u] ·

∑
S⊆[k−1]

w(S) ·

(∏
i∈S

P [Xci
u ]

)
·

∏
j /∈S

P
[
X
cj
u

] . (5)

We want to write a similar expression for P [Y cu |Nv]. We begin by using similar reasoning as above to write

P [Y cu | Nv] =
∑

S⊆[k−1]

P
[
Y cu
∣∣ XS

u ∩Nv
]
· P
[
XS
u

∣∣ Nv]
= P [Xc

u | Nv] ·
∑

S⊆[k−1]

w(S) · P
[
XS
u

∣∣ Nv]
= P [Xc

u] ·
∑

S⊆[k−1]

w(S) · P
[
XS
u

∣∣ Nv] .
Next, we observe that the Xci

u events remain independent even when conditioned on Nv . This allows us to write

P [Y cu | Nv] = P [Xc
u] ·

∑
S⊆[k−1]

w(S) ·

(∏
i∈S

P [Xci
u | Nv]

)
·

∏
j /∈S

P
[
X
cj
u

∣∣∣ Nv]
 .

To simplify this expression further, we claim that for every i ∈ [k − 1], P [Xci
u | Nv] = P

[
Xci
u

∣∣∣ Xci
v

]
. This can be derived

from the observation that
⋂
j 6=iX

cj
v is independent of Xci

u when conditioned on X
ci
v , as well as being unconditionally

independent of Xci
v . We then manipulate the definition of conditional probability to see that

P [Xci
u | Nv] =

P
[
Xci
u ∩

⋂
j 6=iX

cj
v ∩X

ci
v

]
P
[⋂

j 6=iX
cj
v ∩X

ci
v

]
=

P
[
Xci
u ∩

⋂
j 6=iX

cj
v ∩X

ci
v

]
P
[⋂

j 6=iX
cj
v

]
· P
[
X
ci
v

]
=

P
[
Xci
u ∩

⋂
j 6=iX

cj
v

∣∣∣ Xci
v

]
P
[⋂

j 6=iX
cj
v

]
=

P
[
Xci
u

∣∣∣ Xci
v

]
· P
[⋂

j 6=iX
cj
v

∣∣∣ Xci
v

]
P
[⋂

j 6=iX
cj
v

]
=

P
[
Xci
u

∣∣∣ Xci
v

]
· P
[⋂

j 6=iX
cj
v

]
P
[⋂

j 6=iX
cj
v

]
= P

[
Xci
u

∣∣∣ Xci
v

]
.

We can now write a suitable counterpart to Equation (5):

P [Y cu | Nv] = P [Xc
u] ·

∑
S⊆[k−1]

w(S) ·

(∏
i∈S

P
[
Xci
u

∣∣∣ Xci
v

])
·

∏
j /∈S

P
[
X
cj
u

∣∣∣ Xcj
v

] . (6)
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We will complete the proof by showing that the RHS of Equation (5) is a lower bound for the RHS of Equation (6). We
accomplish this in k−1 steps, one for each color besides c. In the first step, we begin by rearranging the terms of Equation (6)
to isolate P

[
Xc1
u

∣∣∣ Xc1
v

]
and P

[
X
c1
u

∣∣∣ Xc1
v

]
:

P [Y cu | Nv] = P [Xc
u] ·
[
P
[
Xc1
u

∣∣∣ Xc1
v

]
·
∑
S31

w(S) ·

 ∏
16=i∈S

P
[
Xci
u

∣∣∣ Xci
v

] ·
∏
j /∈S

P
[
X
cj
u

∣∣∣ Xcj
v

]
+ P

[
X
c1
u

∣∣∣ Xc1
v

]
·
∑
S 631

w(S) ·

(∏
i∈S

P
[
Xci
u

∣∣∣ Xci
v

])
·

 ∏
1 6=j /∈S

P
[
X
cj
u

∣∣∣ Xcj
v

]].
In the above, we refer to the first and second sums as the c1-wanted coefficient and the c1-not-wanted coefficient, respectively.
Observe that there exists a natural bijection between the summands in these two coefficients. Specifically, we map the
summand in the c1-wanted coefficient corresponding to set S to the summand in the c1-not-wanted coefficient corresponding
to the set S \ {1}. These two summands are identical up to the difference between w(S) and w(S \ {1}). By definition, the
former weight is smaller. Hence, the c1-wanted coefficient is smaller than the c1-not-wanted coefficient.

Next, we claim that P
[
Xc1
u

∣∣∣ Xc1
v

]
≤ P [Xc1

u ], and (equivalently) P
[
X
c1
u

∣∣∣ Xc1
v

]
≥ P

[
X
c1
u

]
. To prove this claim, we

consider two cases. If xc1u ≤ xc1v , then P
[
Xc1
u

∣∣∣ Xc1
v

]
= 0 ≤ xc1u = P [Xc1

u ]. Otherwise, xc1u > xc1v , and we have

P
[
Xc1
u

∣∣∣ Xc1
v

]
=

xc1
u −x

c1
v

1−xc1
v

= xc1u
1−xc1

v /xc1
u

1−xc1
v
≤ xc1u = P [Xc1

u ].

We now rewrite our expression for P [Y cu | Nv] in terms of unconditional probabilities of u (not) wanting color c1. In the
following, let 0 ≤ d = P [Xc1

u ]− P
[
Xc1
u

∣∣∣ Xc1
v

]
.

P [Y cu | Nv] = P [Xc
u] ·
[
(P [Xc1

u ]− d) ·
∑
S31

w(S) ·

 ∏
16=i∈S

P
[
Xci
u

∣∣∣ Xci
v

] ·
∏
j /∈S

P
[
X
cj
u

∣∣∣ Xcj
v

]
+ (P

[
X
c1
u

]
+ d) ·

∑
S 631

w(S) ·

(∏
i∈S

P
[
Xci
u

∣∣∣ Xci
v

])
·

 ∏
16=j /∈S

P
[
X
cj
u

∣∣∣ Xcj
v

]].
Our observation that the c1-wanted coefficient is smaller than the c1-not-wanted coefficient yields the bound we desire:

P [Y cu | Nv] ≥ P [Xc
u] ·
[
P [Xc1

u ] ·
∑
S31

w(S) ·

 ∏
16=i∈S

P
[
Xci
u

∣∣∣ Xci
v

] ·
∏
j /∈S

P
[
X
cj
u

∣∣∣ Xcj
v

]
+ P

[
X
c1
u

]
·
∑
S 631

w(S) ·

(∏
i∈S

P
[
Xci
u

∣∣∣ Xci
v

])
·

 ∏
1 6=j /∈S

P
[
X
cj
u

∣∣∣ Xcj
v

]].
This completes the first of k − 1 steps. In the next step, we begin by rearranging terms in the inequality above to isolate
P
[
Xc2
u

∣∣∣ Xc2
v

]
and P

[
X
c2
u

∣∣∣ Xc2
v

]
. We then apply the same analysis, yielding another lower bound on P [Y cu | Nv], this

time written in terms of unconditional probabilities of u (not) wanting colors c1 and c2, and conditional probabilities of u
(not) wanting colors c3, c4, . . . ck−1. After k − 1 steps, our lower bound becomes identical (up to rearranging terms) to the
RHS of Equation 5, as desired.
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Lemma B.3. Let β ∈ [0, 1] be a constant and x ∈ Rm≥0 be a length m nonnegative vector satisfying
∑m
t=1 xt ≤ β, then we

have
∏m
t=1(1− xt) ≥ 1− β.

Proof. Observe that the claim is trivially true when m = 1. We proceed via induction on m. For m > 1, we have∑m−1
t=1 ≤ β − xm, so by the inductive hypothesis

m∏
t=1

(1− xt) = (1− xm) ·
m−1∏
t=1

(1− xt) ≥ (1− xm)(1− β + xm) = 1− β + xm(β − xm) ≥ 1− β.

Before presenting our next lemma we first require the following definition.

Definition B.4. Let m be a nonnegative integer and t be an integer. Given a vector x ∈ Rm, if m ≥ t > 0, we define the
function P (x, t) as follows:

P (x, t) =
∑

I∈([m]
t )

∏
i∈I

xi
∏

j∈[m]\I

(1− xj)

 ,

and for other choices of t and m we define

P (x, t) =


0 if m < t or t < 0

1 if 0 = m = t∏m
i=1(1− xi) if 0 = t < m.

To provide intuition, P (x, t) is defined to encode the probability that t events from a set of m independent events happen. In
more detail, consider a set of m mutually independent events X = {X1, X2, · · · , Xm}, where the probability that the ith
event happens is xi = P[Xi], the ith entry of x. The function P in Definition B.4 is the probability that exactly t of the
events in X happen. In our proofs for MAXECC, we will apply this with X representing a subset of colors in the ECC
instance, while the vector x encodes LP variables {xiu} for some node u and that set of colors (which by Observation 2 are
probabilities for wanting those colors). Lemmas B.5 and B.6 will aid in bounding the probability that a node is assigned a
certain color, conditioned on how many other colors it wants.

Lemma B.5. Let m ≥ 2 be an integer and a0, a1, . . . , am be values such that for every t ∈ [0,m− 2]

at+1 ≤ at
2at+1 ≤ at + at+2.

Let D = {x ∈ [0, 2/3]m :
∑m
i=1 xi ≤ 1} be the domain of a function f : D → R defined as

f(x) =

m∑
t=0

atP (x, t).

Then f is minimized (over domain D) by any vector x∗ with one entry set to 2/3, one entry set to 1/3, and every other entry
set to 0. Furthermore we have

f(x∗) =
2

9
(a0 + a2) +

5

9
a1. (7)

Proof. Let S = {x ∈ [0, 2/3]m :
∑m
i=1 xi = 1} ( D be the set of input vectors for f whose entries sum exactly to 1. Let

I ( S be the set of vectors in S with one entry equal to 2/3, one entry equal to 1/3, and all other entries equal to 0. More
formally, if x ∈ I, this means there exists two distinct indices {i, j} such that xi = 2/3, xj = 1/3, and xk = 0 for every
k /∈ {i, j}. Our goal is to prove there exists some x ∈ I that minimizes f . We prove this in two steps: (1) we show that
there exists a minimizer of f in S , and then (2) we show how to convert an arbitrary vector x ∈ S into a new vector x∗ ∈ I
satisfying f(x∗) ≤ f(x). Given x∗ ∈ I, the value f(x∗) in Eq. (7) amounts to a simple function evaluation, realizing that
P (x∗, t) = 0 for t ≥ 3.
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Step 1: Proving minimizers exist in S.

Let x ∈ D \ S, and let y ∈ [m] be an entry such that xy < 2/3. Set δ = min{1−
∑m
i=1 xi, 2/3− xy} > 0 and define a

new vector x′ ∈ D by

x′i = x′(i) =

{
xi if i 6= y

xi + δ otherwise.
(8)

By our choice of δ we know that x′ ∈ D, and we will prove this satisfies f(x′) ≤ f(x). To do so, we re-write f(x) in a way
that isolates terms involving xy. Let My = [m] \ {y}. Recall that f is a linear combination of terms P (x, t), where P (x, t)
represents the probability that exactly t events out of a set of m independent events occur. Entry xi of x is the probability
that ith event occurs. We can therefore re-write:

P (x, t) = P (x[My], t)(1− xy) + P (x[My], t− 1)xy. (9)

To explain this in more detail, we use a slight abuse of terminology and refer to [m] as a set of events. The first term in
Eq. (9) is the probability that exactly t events in My occur and that event y does not occur. The second term is the probability
that y does occur and exactly t− 1 events in My occur. We therefore re-write f(x) as

f(x) =

m∑
t=0

atP (x, t) (definition of f) (10)

=

m∑
t=0

at (P (x[My], t)(1− xy) + P (x[My], t− 1)xy) (from Eq. (9)) (11)

=

m∑
t=0

atP (x[My], t)(1− xy) +

m∑
t=0

atP (x[My], t− 1)xy (separating terms) (12)

=

m∑
t=0

atP (x[My], t)(1− xy) +

m−1∑
t=−1

at+1P (x[My], t)xy (change of variables) (13)

=

m−1∑
t=0

atP (x[My], t)(1− xy) +

m−1∑
t=0

at+1P (x[My], t)xy (P (x[My],m) = P (x[My],−1) = 0) (14)

=

m−1∑
t=0

P (x[My], t) (at(1− xy) + at+1xy) (recombining) (15)

Observe that if we replace the value of xy with xy + δ in Eq. (15) this gives the value of f(x′). We can then see that

f(x′) =

m−1∑
t=0

P (x[My], t) (at(1− xy − δ) + at+1(xy + δ))

=

m−1∑
t=0

P (x[My], t) (at(1− xy) + at+1xy + δ(at+1 − at))

= f(x) + δ

m−1∑
t=0

(at+1 − at).

Using the constraint at+1 ≤ at we notice that the last term is always less that or equal to zero. Hence we have f(x′) ≤ f(x).
Recall that δ = min{1−

∑m
i=1 xi, 2/3−xy}. If δ = 1−

∑m
i=1 xi, then we can see that x′ ∈ S and we are done. Otherwise,

δ = 2/3− xy , and x′y = 2/3. We can then apply the same exact procedure again, by increasing the value of some index xz
(where z 6= y), which we know satisfies xz ≤ 1/3. The second application of this procedure is guaranteed to produce a
vector in S.
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Step 2: Editing a vector from S to I. The proof structure for Step 2 is very similar as Step 1, but is more involved as it
requires working with two entries of x rather than one. Let x ∈ S \ I , which means we can identify two entries xy and xz in
the vector (with y 6= z) satisfying the inequality

0 < xy ≤ xz < 2/3. (16)

Given these entries, set δ = min{xy, 2/3− xz} and define a new vector x′ by

x′i = x′(i) =


xi if i /∈ {y, z}
xi − δ if i = y

xi + δ if i = z.
(17)

Observe that x′ ∈ S and that either x′y = 0 or x′z = 2/3. We will show that f(x′) ≤ f(x), by re-writing f(x) in a way that
isolates terms involving xy and xz . Let Myz = [m]\{y, z}. Similar to the proof of Step 1, we can re-write P (x, t) as

P (x, t) = P (x[Myz], t)(1− xy)(1− xz) (18)
+ P (x[Myz], t− 1) [xy(1− xz) + (1− xy)xz] (19)
+ P (x[Myz], t− 2)xyxz. (20)

Line (18) captures the probability that exactly t events from the set Myz happen, and that neither of the events y or z happen.
Line (19) is the probability that t − 1 events from Myz happen, and exactly one of the events {y, z} happens. Finally,
line (20) is the probability that both y and z happen, and t− 2 of the events in Myz happen. For simplicity we now define

α = (1− xy)(1− xz)
β = xy(1− xz) + (1− xy)xz

γ = xyxz,

so that we can re-write f(x) as follows:

f(x) =

m∑
t=0

atP (x, t) (definition of f) (21)

=

m∑
t=0

at (P (x[Myz], t)α+ P (x[Myz], t− 1)β + P (x[Myz], t− 2)γ) (expanding P (x, t)) (22)

=

m∑
t=0

atP (x[Myz], t)α+

m∑
t=0

atP (x[Myz], t− 1)β +

m∑
t=0

atP (x[Myz], t− 2)γ (separating three terms) (23)

=

m∑
i=0

aiP (x[Myz], i)α+

m−1∑
j=−1

aj+1P (x[Myz], j)β +

m−2∑
k=−2

ak+2P (x[Myz], k)γ (change of variables) (24)

=

m∑
i=0

aiP (x[Myz], i)α+

m−1∑
j=0

aj+1P (x[Myz], j)β +

m−2∑
k=0

ak+2P (x[Myz], k)γ (25)

=

m−2∑
i=0

aiP (x[Myz], i)α+

m−2∑
j=0

aj+1P (x[Myz], j)β +

m−2∑
k=0

ak+2P (x[Myz], k)γ (26)

=

m−2∑
t=0

P (x[Myz], t) (atα+ at+1β + at+2γ) (recombining sums). (27)

In Eq. (25) and Eq. (26) we have used the fact that P (x[Myz], `) = 0 if ` < 0 or ` > m− 2. Consider now the vector x′
obtained by perturbing entries xy and xz , and define

α′ = (1− x′y)(1− x′z) = (1− (xy − δ))(1− (xz + δ)) = α+ δ(xy − xz)− δ2
β′ = x′y(1− x′z) + (1− x′y)x′z = (xy − δ)(1− (xz + δ)) + (1− (xy − δ))(xz + δ) = β + 2δ(xz − xy) + 2δ2

γ′ = x′yx
′
z = (xy − δ)(xz + δ) = γ + δ(xy − xz)− δ2.

17
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In the expression for f(x) given in Eq. (27), the entries xy and xz appear only in the terms α, β, and γ. Therefore, if we
replace {α, β, γ} with {α′, β′, γ′}, we obtain a similar expression for f(x′). We can then see that

f(x′)− f(x) =

m−2∑
t=0

P (x[Myz], t) (at(α
′ − α) + at+1(β′ − β) + at+2(γ′ − γ))

=

m−2∑
t=0

P (x[Myz], t)
(
at(δ(xy − xz)− δ2) + at+1(2δ(xz − xy) + 2δ2) + at+2(δ(xy − xz)− δ2)

)
=

m−2∑
t=0

P (x[Myz], t)
(
at(δ(xy − xz)− δ2)− 2at+1(δ(xy − xz)− δ2) + at+2(δ(xy − xz)− δ2)

)
=

m−2∑
t=0

P (x[Myz], t)
(
(at − 2at+1 + at+2)(δ(xy − xz)− δ2)

)
≤ 0,

where in the last line we have used the fact that at − 2at+1 + at+2 ≥ 0 and (xy − xz)− δ < 0.

If we start with an arbitrary vector x ∈ S , applying one iteration of the above procedure will ensure that at least one entry of
x will move to one of the endpoints {0, 2/3} of the interval [0, 2/3]. Therefore, applying this procedure m (or fewer) times
to an arbitrary vector x ∈ S will produce a vector x∗ ∈ I that satisfies f(x∗) ≤ f(x).

Lemma B.6. The inequalities at ≥ at+1 and at+at+2 ≥ 2at+1 hold for sequence at = 1
1+g+t where g ≥ 0 is an arbitrary

fixed integer. These inequalities also hold for the sequence

at =
2

9

(
1

t+ 1
+

1

t+ 3

)
+

5

9

(
1

t+ 2

)
. (28)

Proof. The first inequality (monotonicity) is easy to check for both sequences. The most involved step is checking that the
second inequality holds for the sequence in (28). To show it holds, we note that the inequality at + at+2 ≥ 2at+1 effectively
corresponds to a discrete version of convexity. We first extend the definition of the sequence in (28) to all positive reals by
defining the function

h(x) =
2

9

(
1

x+ 1
+

1

x+ 3

)
+

5

9

(
1

x+ 2

)
,

which we can easily prove is convex over the interval [0,∞) by noting that its second derivative is

h′′(x) =
1

9

(
10

(x+ 2)3
+

4

(x+ 3)3
+

4

(x+ 1)3

)
,

which is greater than 0 for all x ≥ 0. From the definition of convexity for any β ∈ [0, 1] and any x, y ≥ 0 we have

h(xβ + (1− β)y) ≤ βh(x) + (1− β)h(y).

Now if we consider the specific values x = t, y = t+ 2, and β = 1/2 we get

h

(
t
1

2
+

1

2
(t+ 2)

)
≤ 1

2
h(t) +

1

2
h(t+ 2)

=⇒ h(t+ 1) ≤ 1

2
h(t) +

1

2
h(t+ 2)

=⇒ 2h(t+ 1) ≤ h(t) + h(t+ 2)

=⇒ 2at+1 ≤ at + at+2.

One can use a similar approach to show (even more easily) that the sequence at = 1/(1 + g + t) also satisfies the second
inequality.

18



Edge-Colored Clustering in Hypergraphs: Beyond Minimizing Unsatisfied Edges

Proof of main approximation guarantee. Given the above supporting lemmas, we are now ready to prove the approximation
guarantee for graph MAXECC satisfied by Algorithm 2.

Theorem 2.2. For every e ∈ E, P[e is satisfied] ≥ pze where p = 154/405 > 0.3802 when running Algorithm 2.

Proof of Theorem 2.2. Fix e = (u, v) ∈ Ec and set C = [k]\{c}. As before, Xi
v is the event that v wants color i. Let Y iv be

the event that v is assigned color i by Algorithm 2, and Nv be the event that v wants no colors in C. If c is strong for v,
event Nv is equivalent to event Y cv . Define Xi

u, Y iu , and Nu analogously for u.

We break the proof up into three cases, which depend on whether 2, 1, or neither of the nodes in e = (u, v) have c = `(e) as
a strong color.

Case 1: c is strong for both u and v, i.e., Su = Sv = {c}.
Let W ′v denote colors in Wv that want v, and define W ′u analogously for u. Since c is the strong color for both u and v, e is
satisfied if and only if W ′u = W ′v = ∅. Additionally, because nodes can only have a single strong color and we know c is
strong for both u and v we know that all other colors must be weak for both u and v. Using the property that probabilities
regarding separate colors are independent we have

P [e is satisfied] = P [W ′u = W ′v = ∅] =
∏
i∈C

P [i /∈W ′u ∪W ′v] .

Consider a color i ∈ Cv , which by definition means xiv ≥ xiu. There are three options for the random threshold αi:

• αi < xiu ≤ xiv , which happens with probability xiu and implies that i ∈W ′u ∩W ′v ,

• xiu < αi ≤ xiv , which happens with probability xiv − xiu and implies i ∈W ′v , i /∈W ′u, and

• xiu ≤ xiv < αi, which happens with probability 1− xiv and implies i /∈W ′u ∪W ′v .

Thus, for i ∈ Cv we have P [i /∈W ′u ∪W ′v] = (1 − xiv) and similarly for i ∈ Cu we have P [i /∈W ′u ∪W ′v] = (1 − xiu).
This gives ∏

i∈C
P [i /∈W ′u ∪W ′v] =

∏
i∈Cv

(1− xiv)
∏
i∈Cu

(1− xiu).

The fact that c is strong for both u and v means xiv ≥ 2/3 and xiu ≥ 2/3. From the equality constraint in the LP we see that
for w ∈ {u, v} we have

∑
i∈C x

i
w ≤ 1− 2/3 = 1/3. Applying Lemma B.3 gives∏

i∈Cv

(1− xiv)
∏
i∈Cu

(1− xiu) ≥ 2

3

2

3
=

4

9
≥ 4

9
ze.

Case 2: c is strong for one of u or v.
Without loss of generality we say Sv = {c} and c ∈ Wu. Edge e is satisfied if and only if Y cu ∩ Y cv holds. Because c is
strong for v, event Y cv holds if and only if Nv holds. Using the fact that Y cu = Y cu ∩Xc

u, we can write

P [e is satisfied] = P [Y cu ∩Xc
u ∩Nv] .

Using Bayes’ Theorm, the fact that Xc
u and Nv are independent2, Observation 2 (P[Xc

u] = xcu), and Lemma B.2, we see that

P [Y cu ∩Xc
u ∩Nv] = P [Y cu | Nv ∩Xc

u]P [Nv ∩Xc
u] (Bayes’ Theorem)

= P [Y cu | Nv ∩Xc
u]P [Nv]P [Xc

u] (Xc
u and Nv are indepdendent)

= P [Y cu | Nv ∩Xc
u]P [Nv]x

c
u (Observation 1)

≥ P [Y cu | Nv ∩Xc
u]P [Nv] ze (LP constraint xcu ≥ ze)

≥ P [Y cu | Xc
u]P [Nv] ze (Lemma B.2).

2Independence follows from the fact that Xc
u is concerned with color c, while Nv is concerned with a disjoint color set C = [k]\{c}.
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Using X
i

v to indicate that v does not want i, we get

P [Nv] = P

[⋂
i∈C

X
i

v

]
=
∏
i∈C

(1− xiv).

As in Case 1, because c is strong for v, we know that
∑
i∈C x

i
v ≤ 1/3 and applying Lemma B.3 gives us that P [Nv] ≥ 2/3.

Finally we must bound P [Y cu | Xc
u]. Since c is weak for u (i.e., c ∈Wu), it will be convenient to consider all weak colors

for u other than c, which we will denote by Ŵu = Wu\{c}. We will then use Ŵ ′u = {i ∈ Ŵu : αi < xiu} to denote the set
of colors in Ŵu that u wants. Note that Xc

u is independent of the number of colors in Ŵu that u wants.

Because of the global ordering of colors, conditioned on u wanting c and wanting exactly t colors in Ŵu, there is a 1/(t+ 1)
chance that c is chosen first by the permutation π, and is therefore assigned to u. Formally:

P
[
Y cu | Xc

u ∩ (|Ŵ ′u| = t)
]

=
1

t+ 1
.

Define pt = P[|Ŵ ′u| = t] to be the probability that exactly t colors from Ŵu are wanted by u. Using the vector xu[Ŵu] to
encode LP variables {xiu : i ∈ Ŵu} for node u and the colors in Ŵu, we see that pt = P (xv[Ŵu], t). Therefore, the law of
total probability (combined with the fact that Xc

u is independent from |Ŵ ′u|) gives

P [Y cu | Xc
u] =

|Ŵu|∑
t=0

P
[
Y cu | Xc

u ∩ (|Ŵ ′u| = t)
]
P[|Ŵ ′u| = t] =

|Ŵu|∑
t=0

1

1 + t
pt. (29)

Eq. (29) is exactly of the form in Lemma B.5 with at = 1/(t+ 1). From Lemma B.6, we know this sequence {at} satisfies
the constraints needed by Lemma B.5, and applying Lemma B.5 shows P [Y cu | Xc

u] ≥ 31/54. Combining this with the
previously established bound P [Nv] ≥ 2/3 gives

P [e is satisfied] ≥ P [Y cu | Xc
u]P [Nv] ze ≥

31

54
· 2

3
ze =

31

81
ze >

154

405
ze.

Case 3: c is weak for both u and v, i.e., c ∈Wu ∩Wv .
First we condition the probability of satisfying e on the event Xc

u ∩Xc
v . If one of Xc

u or Xc
v does not happen, then e cannot

be satisfied, so we have

P [e is satisfied] = P [e is satisfied | Xc
u ∩Xc

v ]P [Xc
v ∩Xc

u] = P [e is satisfied | Xc
u ∩Xc

v ] ze.

Define D = (Wu ∪Wv)\{c} to be the set of weak colors (excluding c) that want at least one of {u, v}. If we condition on
u and v both wanting c, it is still possible that e will not be satisfied. This will happen if a weak color i ∈ D wants either
u or v, and the permutation π prioritizes color i over c. We bound the probability of satisfying e by conditioning on the
number of colors in D that want one or both of {u, v}.

Using the same logic as in Observation 4, we can present a simpler way to characterize whether a color i ∈ D wants at least
one of {u, v}. Formally, we partition D into the sets:

Du = {i ∈ D : xiu ≥ xiv}
Dv = D −Dv.

Note that a color i ∈ Du wants one or both nodes in e if and only if i wants u, and color i ∈ Dv wants one or both nodes in
e if and only if i wants v. Mirroring our previous notation, let D′u denote the set of colors in Du that want node u (based on
the random color thresholds) and define D′v analogously. The set D′u ∪D′v is then the set of weak colors that want one or
more node in e. Thus, conditioned on |D′u ∪D′v| = t and conditioned on u and v wanting c, in order for e to be satisfied c
must come before all t colors in |D′u ∪D′v| in the random permutation π. Formally, this means

P [e is satisfied | Xc
u ∩Xc

v ∩ (|D′u ∪D′v| = t)] =
1

1 + t
.
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Again using the law of total probability and the fact that Xc
u ∩Xc

v is independent from |D′u ∪D′v|, we see

P[e is satisfied | Xc
u ∩Xc

v ] =

|D|∑
t=0

1

1 + t
P [|D′u ∪D′v| = t] . (30)

Observe now that Du and Dv are disjoint color sets, which implies that |D′u| and |D′v| are independent random variables.
This allows us to decouple D′u and D′v in the above expression since P [|D′u ∪D′v| = t] = P [|D′u|+ |D′v| = t]. We define

pi = P [|D′u| = i] and qi = P [|D′v| = i] ,

so that we can write

P [|D′u|+ |D′v| = t] =
∑

i,j∈[0,t]
i+j=t

piqj =

|Du|∑
i=0

piqt−i.

This allows us to re-write Eq. (30) as

P[e is satisfied | Xc
u ∩Xc

v ] =

|Du|∑
i=0

|Dv|∑
j=0

1

1 + i+ j
piqj . (31)

Without loss of generality we now assume |Du| ≤ |Dv|, and proceed case by case depending on the sizes of Du and Dv.
Our goal is to show that for all cases P[e is satisfied | Xc

u ∩Xc
v ] ≥ 154/405. In the cases below, we use the vector xu[Du]

to encode LP variables for node u and colors in Du so that pi = P (xu[Du], i), and likewise qi = P (xv[Dv], i), to match
with notation in Definition B.4 and Lemma B.5.

Case 3a. |Du| = |Dv| = 0.
No weak colors other than c want u or v, so P[e is satisfied | Xc

u ∩Xc
v ] = 1.

Case 3b. |Du| = 0 and |Dv| = 1.
Letting a be the single color in Dv ,

P[e is satisfied | Xc
u ∩Xc

v ] = p0q0 +
1

2
p0q1 = q0 +

1

2
q1 = (1− xav) +

1

2
xav .

Because a is a weak color for v, we know xav ∈ [0, 23 ], and the minimum value the probability can obtain is 2
3 >

154
405 .

Case 3c. |Du| = |Dv| = 1.
Letting a be the color in Dv and b be the color in Du,

P[e is satisfied | Xc
u ∩Xc

v ] = p0q0 +
1

2
(p0q1 + p1q0) +

1

3
p1q1

= (1− xbu)(1− xav) +
1

2
((1− xbu)xav + xbu(1− xav)) +

1

3
xbux

a
v .

Because a is weak for v and b is weak for u, we know xav , x
b
u ∈ [0, 23 ]. This gives a minimum value for the probability of

13
27 >

154
405 .

Case 3d. |Du| = 0 and |Dv| > 1.
In this case p0 = 1, and Eq. (31) simplifies to

P[e is satisfied | Xc
u ∩Xc

v ] =

|Dv|∑
j=0

1

j + 1
qj ≥

31

54
,

where we have applied Lemma B.5 with aj = 1
j+1 .

Case 3e. |Du| = 1 and |Dv| > 1.
Eq. (31) simplifies to

P[e is satisfied | Xc
u ∩Xc

v ] = p0

|Dv|∑
j=0

qj
j + 1

+ p1

|Dv|∑
j=0

qj
j + 2

≥ p0
31

54
+ p1

19

54
,
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where we applied Lemma B.5 twice, once with aj = 1
j+1 and once with aj = 1

j+2 . The right hand side of the above bound
has a minium value of 23

54 .

Case 3f. |Du| > 1 and |Dv| > 1. From Eq. (31) we know

P[e is satisfied | Xc
u ∩Xc

v ] =

|Du|∑
i=0

pi

|Dv|∑
j=0

1

1 + i+ j
qj

 .

We then apply Lemma B.5 |Du|+ 1 times, once for each choice of i ∈ {0, 1, . . . , |Du|}. The ith time we apply it, we use
the sequence aj = 1

1+i+j to get

|Dv|∑
j=0

1

1 + i+ j
qj ≥

2

9

(
1

i+ 1
+

1

i+ 3

)
+

5

9

(
1

i+ 2

)
. (32)

The right hand of (32) defines a new sequence

ai =

(
1

i+ 1
+

1

i+ 3

)
+

5

9

(
1

i+ 2

)
. (33)

We know from Lemma B.6 that this sequence {ai} in Eq. (33) satisfies the conditions from Lemma B.5, so applying
Lemma B.5 one more time and combining all steps gives

P[e is satisfied | Xc
u ∩Xc

v ] =

|Du|∑
i=0

pi

|Dv|∑
j=0

1

1 + i+ j
qj

 ≥ |Du|∑
i=0

pi

(
2

9

(
1

i+ 1
+

1

i+ 3

)
+

5

9

(
1

i+ 2

))
≥ 154

405
.

Therefore, we have shown in all possible subcases of Case 3 that P [e is satisfied | Xc
u ∩Xc

v ] ≥ 154
405 .

Cases 1,2, and 3 all together show that for every e ∈ E we have

P [e is satisfied] ≥ 154

405
ze.

C. Omitted proofs from Section 3.1
Theorem 3.1. `p-NORM MINECC is approximable within factor 2 when p ≥ 1, and factor 21/p when 0 < p < 1.

Proof. We begin with the case where p ≥ 1. It is well known that the `p-norm is convex, and we observe that all of the
constraints in Program (3) are linear. Thus, we may in polynomial time obtain optimal fractional variables {dcv}, {γe}, {mc}
for the relaxation of Program (3).

We observe that for each vertex v, there is at most one color c with the property that dcv <
1
2 . Otherwise, there are two colors

c1, c2 with dc1v , d
c2
v < 1

2 , but then
k∑
c=1

dcv < 2 · 1

2
+ (k − 2) = k − 1,

contradicting the first constraint of Program (3).

We now propose a coloring λ as follows. For each color c and vertex v, we assign λ(v) = c if dcv <
1
2 . By the preceding

observation, this procedure assigns at most one color to each vertex. If for any v we have that dcv ≥ 1
2 for all colors c, then

we set λ(v) arbitrarily.

Now, for each hyperedge e let γ̂e be equal to 0 if λ(v) = `(e) for all v ∈ e, or 1 otherwise. We claim that if γ̂e = 1, then
γe ≥ 1

2 . Otherwise, letting c = `(e), the second constraint of Program (3) implies that dcv <
1
2 for all v ∈ e. Then λ(v) = c

for all v ∈ e, implying that γ̂e = 0, a contradiction. We conclude that for every hyperedge e, γ̂e ≤ 2γe.
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For each color c, we write m̂c for the number of hyperedges of color c which are unsatisfied by λ. Equivalently,

m̂c =
∑
e∈Ec

γ̂e ≤ 2
∑
e∈Ec

γe = 2mc,

where the last equality comes from the third constraint of Program 3.

It follows that for every c, m̂p
c ≤ 2pmp

c , and thus

k∑
c=1

m̂p
c ≤ 2p ·

k∑
c=1

mp
c ,

which in turn implies that

(
k∑
c=1

m̂p
c

)1/p

≤ 2 ·

(
k∑
c=1

mp
c

)1/p

,

so λ is 2-approximate.

We now consider the case where 0 < p < 1. We begin by defining, for each c ∈ [k], a non-negative, monotone, and
submodular function fc : 2E → Z given by fc(S) = |Ec ∩ S|. If λ is a vertex coloring of H and Sλ ⊆ E is the set of
edges unsatisfied by λ, then fc(Sλ) measures the number of edges of color c unsatisfied by λ. Because the composition
of a concave function with a submodular function results in a submodular function and 0 < p < 1, fpc is non-negative,
monotone, and submodular. Then the function f : 2E → R given by the sum

f(S) =

k∑
c=1

fpc (S)

has these same properties.

Now, let λ∗ be an optimal vertex coloring of H and let Sλ∗ be the set of hyperedges unsatisfied by λ∗. Our goal will be to
compute a coloring λ with f(Sλ) ≤ 2f(Sλ∗). This would complete the proof, since then we have

(f(Sλ))1/p ≤ (2f(Sλ∗))
1/p = 21/pf1/p(Sλ∗),

and f1/p(Sλ), f1/p(Sλ∗) are precisely the objective values attained by λ and λ∗, respectively, according to Program (3).

We give a classic analysis based on the Lovász extension (Lovász, 1983). Some readers may find it helpful to observe that
the following is conceptually equivalent to the textbook 2-approximation for SUBMODULAR VERTEX COVER3, where the
graph in question is the conflict graph G of our edge-colored hypergraph H . The conflict graph G is obtained by replacing
each hyperedge in H with a node in G, and adding an edge between two nodes in G if they correspond to overlapping
hyperedges of different colors inH . The connection between vertex colorings of edge-colored hypergraphs and vertex covers
of their associated conflict graphs has been observed several times in the literature (Angel et al., 2016; Cai & Leung, 2018;
Kellerhals et al., 2023; Veldt, 2023), and also appears elsewhere in the present work, e.g., in the proofs of Theorems 3.8, D.2
and D.3.

Impose an arbitrary order on the edges of E and for each vector γ ∈ [0, 1]|E| map edges to components of γ according to
this order. Henceforth, for a hyperedge e we write γe for the component of γ corresponding to e. Moreover, for a value ρ
selected uniformly at random from [0, 1], we write Tρ(γ) = {e : γe ≥ ρ}. Then the Lovász extension f̂ : [0, 1]|E| → R of f
is given by

f̂(γ) = E[f(Tρ(γ))].

This f̂ is convex (Lovász, 1983), so we may efficiently optimize the following program:

min f̂(γ)

s.t. γe + γf ≥ 1

γe ≥ 0

for all e, f ∈ E such that e ∩ f 6= ∅ and `(e) 6= `(f)

for all e ∈ E.
(34)

3Given a graph G and a submodular function f , find a vertex cover C minimizing f(C).
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Consider the binary vector given by γe = 1 if e ∈ Sλ∗ or 0 otherwise; note that this vector satisfies the constraints of
Program (34). Hence, we can see that the minimum value for Program (34) provides a lower bound on f(Sλ∗).

Let γ be a minimizer of Program (34), and let

S =

{
e ∈ E : γe ≥

1

2

}
.

The first constraint of Program (34) ensures that S contains at least one member of every pair of overlapping and distinctly
colored hyperedges. Thus, it is trivial to compute a coloring λwith Sλ ⊆ S. It follows from monotonicity that f(Sλ) ≤ f(S),
and that for each ρ ≤ 1

2 , f(S) ≤ f(Tρ(γ)). Putting it all together, we have

f(Sλ)

2
≤ f(S)

2
=

∫ 1
2

0

f(S) dρ ≤
∫ 1

2

0

f(Tρ(γ)) dρ ≤
∫ 1

0

f(Tρ(γ)) dρ = f̂(γ) ≤ f(Sλ∗),

which completes the proof.

Theorem 3.2. As p→∞, the integrality gap of Program (3) converges to 2.

Proof. Consider a triangle on three vertices v1, v2, v3 with distinct edge colors c12, c23, c13. It is not possible to satisfy more
than one edge, so the optimal objective value is (1p+ 1p+ 0p)1/p = 21/p. Meanwhile, a fractional relaxation of Program (3)
can set dc12v1 = dc13v1 = dc12v2 = dc23v1 = dc13v3 = dc23v3 = 1

2 , thus achieving (fractional) objective value ( 1
2p + 1

2p + 1
2p )1/p = 31/p

2 .
Thus, the ratio of the optimal integral objective to the optimal fractional objective is 2 · ( 2

3 )1/p, which converges to 2 as p
approaches∞.

D. Omitted proofs from Section 3.2
Theorem 3.3. COLOR-FAIR MINECC is NP-hard even when restricted to subcubic trees with cutwidth 2, exactly 3 edges
of each color, and τ = 2. COLOR-FAIR MAXECC is NP-hard even when restricted to paths with τ = 1.

Proof. We reduce from BOOLEAN SATISFIABILITY, for which the input is a formula written in conjunctive normal form,
consisting of m clauses C1, C2, . . . Cm over n variables x1, x2, . . . xn. For each variable xi, we write xi and ¬xi for the
corresponding positive and negative literals. We make the standard assumptions that no clause contains both literals of
any variable, and that every literal appears at least once. We also assume that each clause has size 2 or 3, and that each
variable appears in at most three clauses (implying that each literal appears in at most two clauses); hardness is retained
under these assumptions (Tovey, 1984). Given an instance of this problem, we construct an instance (G = (V,E), τ = 2)
of COLOR-FAIR MINECC. See Figure 3 for a visual aid.

For each clause Cj , we create a unique color cj . Also, if Cj has size two, we create a second unique color c′j , and five
vertices vaj , v

b
j , v

c
j , v

d
j , and vej . We call these the spare vertices associated with Cj . The reason for creating these vertices and

the second color c′j will become apparent later. Next, for each variable xi, we create a vertex vij1,j2 for each (ordered) pair
of clauses Cj1 , Cj2 with Cj1 containing the positive literal xi and Cj2 containing the negative literal ¬xi. We call vij1,j2 a
conflict vertex for the variable xi and the variable-clause pairs (xi, Cj1) and (xi, Cj2). Observe that each variable has either
one or two associated conflict vertices, as does each variable-clause pair. For each variable-clause pair (xi, Cj) with a single
associated conflict vertex, we create an additional vertex vij and call this the free vertex for the variable-clause pair (xi, Cj).

Now we create edges. For each clause Cj , we begin by creating one edge eij of color cj for each variable xi contained in Cj .
This edge contains either the two (xi, Cj) conflict vertices, or the single (xi, Cj) conflict vertex and the (xi, Cj) free vertex.
We call the edge eij a conflict edge associated both with clause Cj , and with the literal of xi which appears in Cj . Observe
that every free vertex has degree one, and every conflict vertex has degree two. For clauses Cj of size 3, there are exactly
three edges of color cj . For clauses Cj of size 2, we have thus far created two edges of color cj . For each such clause, we
use the associated spare vertices to create a third edge {vaj , vbj} of color cj , which we call the spare edge associated with Cj ,
and three edges {vaj , vcj}, {vaj , vdj }, and {vbj , vej}, each of color c′j . Observe that our constructed graph still has maximum
degree three, and that there are now exactly 3 edges of every color. Finally, we set τ = 2.
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(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2)

v11

v11,3 v12,3

v12

b11,2 b21,2

v22

v21,2 v21,3

v23

b12,3 b22,3

v31

v31,2

v32

b13,4 b23,4

ve3 vb3 va3 vc3 vd3

Color Key:
c1

c2

c3

c′3
cb1,2
cb2,3
cb3,4

Figure 3. The construction given by Theorem 3.3 for the CNF formula on three clauses C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ ¬x2 ∨ ¬x3),
and C3 = (¬x1 ∨ ¬x2). Notice that the vertices are partitioned visually into four horizontal layers. The top layer contains conflict
vertices, the second from top contains free vertices, the second from bottom bridge vertices, and the bottom spare vertices. Every edge
containing a conflict vertex is a conflict edge, every edge containing a bridge vertex is a bridge edge, and all other edges are spare edges.
The colors c1, c2 and c3 correspond to the clauses C1, C2, and C3. The color c′3 is the spare color associated with C3. The remaining
colors are bridge colors. We refer to the proof of Theorem 3.3 for a formal description of the construction and the accompanying analysis.

Since free vertices have degree one, they do not participate in cycles. It is also clear from the construction that spare vertices
do not participate in cycles. Thus, any cycle contains only conflict vertices. Note that if two conflict vertices share an
edge, then they are associated with the same variable-clause pair. It follows that every vertex in a cycle is associated with
some single variable-clause pair. However, a variable-clause pair has at most two associated conflict vertices, so we have
constructed a forest.

Now we will add some gadgets to turn our forest into a tree. Suppose that the graph we have constructed so far has q
connected components. Impose an arbitrary order on these components, and label them G1, G2, . . . , Gq . Observe that every
connected component contains either only spare vertices or two free vertices. In both cases, it is possible to add two edges
each with one (distinct) endpoint in Gi without raising the maximum degree above three. That the endpoints are distinct
will be important when we analyze the cutwidth. For each consecutive pair Gi, Gi+1 of connected components, we add
two bridge vertices b1i,i+1, b

2
i,i+1 and a bridge color cbi,i+1. We add bridge edges (chosen so as not to violate our maximum

degree constraint) from Gi to b1i,i+1, from b1i,i+1 to b2i,i+1, and from b2i,i+1 to Gi+1. We color each of these three edges with
cbi,i+1. Observe that the graph is now connected, but it is still acyclic since there is exactly one path between any pair of
vertices which were in different connected components before the addition of our bridge gadgets.

We now claim that the constructed graph G has cutwidth 2. To this end, we will construct a ordering σ : V → N of the
vertices of G, where σ is injective, σ(v) = 1 indicates that v is the first vertex in the ordering, σ(u) = |V | indicates that
u is the last vertex in the ordering, and σ(v) < σ(u) if and only if v precedes u in the ordering. We will show that for
every i, there exist at most two edges uv ∈ E with the property that σ(u) ≤ i and σ(v) > i. We refer to this number
of edges as the width of the cut between vertices i and i + 1 in σ. We begin by guaranteeing that, for every i, if u is
the last vertex of Gi in σ, v is the first vertex of Gi+1 in σ, and b1i,i+1, b

2
i,i+1 are the associated bridge vertices, then

σ(u) = σ(b1i,i+1)− 1 = σ(b2i,i+1)− 2 = σ(v)− 3. A consequence is that for every i, if u, v are vertices of Gi then every
vertex w with the property that σ(u) < σ(w) < σ(v) is also a vertex of Gi. Observe that every cut between two bridge
vertices has width 1, as does every cut between a bridge vertex and a non-bridge vertex. We therefore need only consider
cuts between pairs of vertices in the same Gi. If Gi contains a conflict vertex, then Gi is either a P3 or a P4. The former
case arises when a variable appears in exactly two clauses, so there is one associated conflict vertex adjacent to two free
vertices. The latter case arises when a variable appears in exactly three clauses, so there are two associated conflict vertices.
These are adjacent. Additionally, each conflict vertex is adjacent to a distinct free vertex, so we have a P4. Both the P3

and P4 have cutwidth 1, as evidenced by ordering the vertices as they appear along the path. Moreover, we may assume
that the relevant bridge edges are incident on the appropriate endpoints of the path, and so any cut between vertices of Gi
has width 1. Otherwise, Gi contains no conflict vertices. In this case, Gi contains only the five spare vertices vaj , v

b
j , v

c
j , v

d
j ,

and vej associated with some clause Cj , and the four edges are vaj v
b
j , v

a
j v
c
j , v

a
j v
d
j , and vbjv

e
j . It is simple to check that this
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construction has cutwidth 2, as evidenced by the ordering σ(vej ) < σ(vbj) < σ(vaj ) < σ(vcj) < σ(vdj ). Once again, we may
assume that the relevant bridge edges are incident on vej and vdj . Moreover, we can assume that at least one such Gi exists,
since BOOLEAN SATISFIABILITY instances in which every clause has size three and every variable appears at most three
times are polynomial-time solvable (Tovey, 1984). Thus, G has cutwidth 2.

It remains to show that the reduction is correct. For the first direction, assume that there exists an assignment φ of boolean
values to the variables x1, x2, . . . , xn which satisfies every clause. We say that the assignment φ agrees with a variable-
clause pair (xi, Cj) if Cj contains the positive literal xi and φ(xi) = True or if Cj contains the negative literal ¬xi and
φ(xi) = False. We color the vertices of our constructed graph as follows. To every free vertex associated with clause Cj
we assign color cj . The free vertex was only in edges of color cj , so this results in zero unsatisfied edges. Next, to each
bridge vertex we assign the associated bridge color. The bridge vertices were only in edges of this color, so once again this
results in zero unsatisfied edges. Moreover, we have now guaranteed that at least one bridge edge of every bridge color
is satisfied, meaning that at most two can be dissatisfied. Henceforth, we will not consider the remaining bridge edges.
Next, for each clause Cj of size 2, we assign color c′j to every spare vertex associated with Cj . This results in exactly one
unsatisfied edge of color cj , and ensures that every edge of color c′j is satisfied. Finally, for each conflict vertex vij1,j2 , if φ
agrees with (xi, Cj1) we assign color cj1 to vij1,j2 , and otherwise we assign color cj2 . Observe that this coloring satisfies
an edge eij if and only if φ agrees with (xi, Cj). Moreover, because φ is satisfying, every clause Cj contains at least one
variable xi such that φ agrees with (xi, Cj). Hence, at least one edge of every color is satisfied. Because there are exactly
three edges of every color, there are at most two unsatisfied edges of any color.

For the other direction, assume that we have a coloring which leaves at most two edges of any color unsatisfied. We will
create a satisfying assignment φ. For each variable xi, we set φ(xi) = True if any conflict edge associated with the positive
literal xi is satisfied, and φ(xi) = False otherwise. We now show that φ is satisfying. Consider any clause Cj . There are
exactly three edges with color cj , and at least one of them is satisfied. We may assume that the spare edge associated with
Cj (if such an edge exists) is unsatisfied, since satisfying this edge would require three unsatisfied edges of color c′j . Thus,
at least one conflict edge associated with Cj is satisfied. Let xi be the corresponding variable, so the satisfied conflict edge
is eij . If Cj contains the positive literal xi, then φ(xi) = True so Cj is satisfied by φ. Otherwise Cj contains the negative
literal ¬xi. In this case, we observe that every conflict edge associated with the positive literal xi intersects with eij at a
conflict vertex, and none of these edges has color cj since Cj does not contain both literals. Hence, the satisfaction of eij
implies that every conflict edge associated with the positive literal xi is unsatisfied. It follows that φ(xi) = False, meaning
Cj is satisfied by φ.

To show the claim for COLOR-FAIR MAXECC, we repeat the same construction, except that we omit all spare colors,
vertices, and edges. The effect is that the constructed graph is a path. The proof of correctness is conceptually unchanged.
Given a satisfying assignment φ we color vertices in the same way as before, and given a vertex coloring which satisfies at
least one edge of every color, it remains the case that at least one conflict edge associated with every clause must be satisfied.
The remaining analysis is similar.

Theorem 3.4. COLOR-FAIR MINECC is solvable in O(2tr|E|)-time.

Proof. We give a branching algorithm. Given an instance (H = (V,E), τ) of COLOR-FAIR MINECC, a conflict is a triple
(v, e1, e2) consisting of a single vertex v and a pair of distinctly colored hyperedges e1, e2 which both contain v. If H
contains no conflicts, then it is possible to satisfy every edge. Otherwise, we identify a conflict in O(r|E|) time by scanning
the set of hyperedges incident on each node. Once a conflict (v, e1, e2) has been found, we branch on the two possible
ways to resolve this conflict: deleting e1 or deleting e2. Here, deleting a hyperedge has the same effect as “marking” it as
unsatisfied and no longer considering it for the duration of the algorithm. We note that it is simple to check in constant
time whether a possible branch violates the constraint given by τ ; these branches can be pruned. Because each branch
increases the number of unsatisfied hyperedges by 1, the search tree has depth at most t. Thus, by computing the search tree
in level-order, the algorithm runs in time O(2tr|E|).

Input: A bipartite graph G = (V = A ]B,E) and an integer α.
Problem: Does there exist a vertex cover C of G with max{|C ∩A|, |C ∩B|} ≤ α?

FAIR BIPARTITE VERTEX COVER
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Theorem D.1. FAIR BIPARTITE VERTEX COVER is NP-hard.

Proof. We reduce from CONSTRAINED BIPARTITE VERTEX COVER, for which the input is a bipartite graphG = (A]B,E)
along with two integers αa, αb, and the question is whether there exists a vertex coverC with |C∩A| ≤ αa and |C∩B| ≤ αb.
This problem was shown to be NP-complete by Kuo & Fuchs (1987).

Given an instance (G = (A ] B,E), αa, αb) of CONSTRAINED BIPARTITE VERTEX COVER, we construct an instance
(G′ = (A′ ]B′, E′), α) of FAIR BIPARTITE VERTEX COVER as follows. First, we observe that if αa = αb then (G,αa, αb)
is already an instance of FAIR BIPARTITE VERTEX COVER, in which case there is nothing to do. We therefore set
β = αb − αa and assume without loss of generality that β > 0. We begin by copying G′. That is, for each vertex a ∈ A
we create a vertex a′ ∈ A′, for each vertex b ∈ B we create a vertex b′ ∈ B′, and for each edge ab ∈ E we create an edge
a′b′ ∈ E′. We call the vertices (and edges) that we have created thus far original vertices (and edges). Next, we create
β auxiliary vertices {ai | 1 ≤ i ≤ β} ⊂ A′, and β(αb + 1) auxiliary vertices {bij | 1 ≤ i ≤ β, 1 ≤ j ≤ αb + 1} ⊂ B′.
We also add auxiliary edges {aibij | 1 ≤ i ≤ β, 1 ≤ j ≤ αb + 1} ⊂ E′. Finally, we set α = αb. This concludes the
construction.

It remains to show that the reduction is correct. For the first direction, assume that C ⊆ V is a vertex cover of G with
|C ∩A| ≤ αa and |C ∩B| ≤ αb. We construct a vertex cover C ′ of G′ as follows. For each vertex a ∈ C ∩A, we add a′

to C, and for each vertex b ∈ C ∩B, we add b′ to C. We also add the auxiliary vertex ai to C, for each 1 ≤ i ≤ β. Because
C is a vertex cover of E, C ′ covers every original edge in E′. Because every auxiliary edge in E′ is incident on some
auxiliary vertex ai, C ′ also covers all auxiliary edges in E′. Hence, C ′ is a vertex cover of G′. Moreover, by construction
|C ′ ∩B′| ≤ αb = α, and |C ′ ∩A′| ≤ αa + β = α.

For the other direction, assume that there exists a vertex cover C ′ of G′ with |C ′ ∩A′|, |C ′ ∩B′| ≤ α. We will construct a
vertex cover C of G. We begin by observing that C ′ contains every auxiliary vertex ai, for 1 ≤ i ≤ β. Suppose otherwise,
i.e., that for some fixed i we have ai /∈ C ′. Then each of the αb + 1 auxiliary vertices bij , for 1 ≤ j ≤ αb + 1, is contained
in C ′. Since α = αb, this contradicts that |C ′ ∩B′| ≤ α. So, we conclude that ai ∈ C ′ for each 1 ≤ i ≤ β. We now also
assume that C ′ ∩ B′ consists entirely of original vertices, since the vertex set resulting from the removal of an auxiliary
vertex bij is still a cover, as it contains ai. Now, for each b′ ∈ C ′, we add b to C, and for each original a′ ∈ C ′, we add a to
C. Because the auxiliary vertices of G′ are not incident to any original edges, the original vertices of C ′ must cover all
original edges. Hence, C is a vertex cover of G. Since |C ′ ∩A′| ≤ α = αa + β and C ′ ∩A′ contains β auxiliary vertices,
C ′ ∩A′ must contain no more than αa original vertices. Similarly, C ′ ∩B′ contains at most α = αb original vertices. These
properties allow us to conclude that |C ∩A| ≤ αa and |C ∩B| ≤ αb, as desired.

Theorem 3.5. COLOR-FAIR MINECC and COLOR-FAIR MAXECC are NP-hard even in 2-regular hypergraphs with
k = 2.

Proof. Given an instance (G = (A ] B,E), α) of FAIR BIPARTITE VERTEX COVER, we construct an instance (H =
(V,Ea ]Eb), τ = α) of COLOR-FAIR MINECC with two colors (cA and cB) as follows. For each edge ab ∈ E, we create
a vertex vab ∈ V . We call this vertex a conflict vertex, and we say that it is associated with a ∈ A and with b ∈ B. Next, for
each vertex a ∈ A, we create a hyperedge ea which contains every conflict vertex associated with a. We color this edge cA.
Similarly, for each vertex b ∈ B we create a hyperedge eb of color cB which contains every conflict vertex associated with
b. Observe that every hyperedge is nonempty, as we may assume that G has no isolated vertices. Observe also that every
vertex has degree 2. We set τ = α.

To see that the reduction is correct, consider first a vertex cover C of G with |C ∩ A|, |C ∩ B| ≤ α. For each vertex
a ∈ A \ C, we assign color cA to every conflict vertex associated with a. Similarly, for every b ∈ B \ C, we assign cB to
every conflict vertex associated with b. We color remaining vertices arbitrarily. We claim that this is a valid coloring, i.e.,
every vertex has received exactly one color. To see this, observe that every vertex vab in V is a conflict vertex associated
with exactly two vertices a, b in A ]B. Since C is a vertex cover, at least one of a, b is in C. Hence, vab is assigned exactly
one color. We next claim that our assignment of colors leaves at most τ = α hyperedges of any single color unsatisfied. Due
to our coloring scheme, if a hyperedge ea (resp. eb) associated with a vertex a ∈ A (resp. b ∈ B) is unsatisfied, then a (resp.
b) is contained in C. Since |C ∩A|, |C ∩B| ≤ α, we conclude that at most τ = α hyperedges of color cA (resp. cB) are
unsatisfied.
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For the other direction, suppose that we have a coloring λ : V → {cA, cB} which leaves at most τ = α hyperedges of
any single color unsatisfied. We construct a vertex cover C of G which contains a ∈ A (resp. b ∈ B) if and only if the
hyperedge associated with a (resp. b) is unsatisfied by λ. It is immediate that |C ∩A|, |C ∩B| ≤ α. Now we claim that C
is a vertex cover of G. Consider any edge ab ∈ E. The conflict vertex vab is contained in both ea, which has color cA, and
eb, which has color cB . Thus, at least one of ea, eb is unsatisfied by λ, and so C contains at least one of a, b. Then C is a
vertex cover, as desired.

A simple adjustment to our construction yields the claimed hardness result for COLOR-FAIR MAXECC. Let β = |A| − |B|,
and assume without loss of generality that β ≥ 0. If β = 0, then there are already an equal number of edges of colors cA
and cB , so we make no adjustment to the construction. If β ≥ 3, we add an additional β vertices v1, v2, . . . vβ , and an
additional β hyperedges e1 = {v1, v2}, e2 = {v2, v3}, . . . , eβ = {vβ , v1}, constructing a cycle with β vertices and edges (a
Cβ). We assign color cB to each of these hyperedges. We now observe that in the constructed hypergraph, there are an equal
number of hyperedges of colors cA and cB , and every vertex has degree 2. Finally, if β ∈ {1, 2}, we add β + 6 vertices
v1, v2 . . . vβ+6. With three of these vertices we form a triangle with each edge having color cA, and with the remaining
β + 3 vertices we form a Cβ+3 with each edge having color cB . Once again, we observe that there are now an equal number
of edges of colors cA and cB in the constructed hypergraph, and every vertex has degree 2. We set τ = |A| − α if β ≥ 3, or
τ = |A|+ 3− α otherwise. Correctness follows from a substantively identical analysis.

Input: A graph G = (V = V1 ∪ V2 ∪ . . . ∪ Vk, E).
Task: Find a vertex cover C ⊆ V of G which minimizes maxi∈[k]{|C ∩ Vi|}.

SPARSE VERTEX COVER

Theorem D.2. COLOR-FAIR MINECC admits a 2-approximation via reduction to SPARSE VERTEX COVER.

Proof. Let H = (V,E = E1 ] E2 ] . . . ] Ek) be an edge-colored hypergraph with k colors. We construct an instance
G = (V ′ = V ′1 ∪ V ′2 . . . V ′k, E′) of SPARSE VERTEX COVER. For each hyperedge e of color i, we create a vertex ve in V ′i .
Next, for every pair of distinctly colored hyperedges e1, e2 with e1 ∩ e2 6= ∅ (a bad hyperedge pair), we create an edge
ve1ve2 . This completes the construction of G.

Now, let optG and optH be the optimal objective values for G and H , respectively. We claim that optG ≤ optH . Suppose
that S is the set of hyperedges unsatisfied by some optimal coloring λ, so maxi∈[k] |S ∩Ei| = optH . Because λ satisfies all
edges in E \ S, S must contain at least one member of every bad hyperedge pair. Hence, the set C = {ve ∈ V ′ : e ∈ S} of
vertices in G corresponding to hyperedges in S is a vertex cover in G, and has the property that maxi∈[k] |C ∩ V ′i | = optH .
It follows that optG ≤ optH .

Finally, we show how to lift a solution. Let C ⊆ V ′ be a vertex cover in G which is 2-approximate; such a cover can be
computed in polynomial time (Blum et al., 2022). Let S = {e ∈ E : ve ∈ C} be the hyperedges of H corresponding to the
vertices in C. Because C is a vertex cover and the edges of G correspond exactly to the bad hyperedge pairs of H , it is
trivial to compute a coloring λ which satisfies every edge in E \ S. The objective value of λ is at worst

max
i∈[k]
|S ∩ Ei| = max

i∈[k]
|S ∩ V ′i | ≤ 2 · optG ≤ 2 · optH .

Theorem D.3. COLOR-FAIR MINECC admits a linear-time combinatorial k-approximation.

Proof. We begin by proving that SPARSE VERTEX COVER admits a polynomial-time combinatorial k-approximation
when the vertex classes V1, V2, . . . , Vk are disjoint and every edge has endpoints in distinct vertex classes. Let G = (V =
V1 ] V2 ] . . .] Vk, E) be an instance of SPARSE VERTEX COVER which satisfies these conditions. Let optG be the optimal
objective value for SPARSE VERTEX COVER on G, M ⊆ E be a maximal matching in G, and C ⊆ V be

⋃
e∈M e. We

claim that C is a k-approximate solution.
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Since M is maximal, C is a vertex cover of G. Because every edge has endpoints in distinct vertex classes, for each i ∈ [k]
we have that

|C ∩ Vi| ≤
|C|
2
≤ |M |.

To obtain a lower bound, we observe that because M is a matching, every vertex cover of G has cardinality at least |M |. It
follows from the pigeon-hole principle that optG ≥ |M |/k. Thus, for each i ∈ [k] we have that |C ∩ Vi| ≤ k · optG, as
desired.

The result for COLOR-FAIR MINECC now follows from the reduction of Theorem D.2. This algorithm is the same as
the vertex-cover based 2-approximation for standard MINECC previously shown by Veldt (2023), with a new analysis to
prove the approximation guarantee for COLOR-FAIR MINECC. The linear runtime is obtained by applying the implicit
construction process of Veldt (2023).

E. Omitted proofs from Section 3.3
Theorem 3.6. For every ρ ∈ (0, 12 ], there exists a polynomial-time ( 1

ρ ,
1

1−ρ )-approximation for PROTECTED-COLOR
MINECC.

Proof. We begin by computing optimal fractional values {γe}, {dcv} for LP (4).

We claim that for every pair of distinctly colored overlapping hyperedges e, f , γe + γf ≥ 1. Otherwise, let v ∈ e ∩ f ,
ce = `(e), and cf = `(f). Since γe + γf < 1, it follows from the second constraint of LP (4) that dcev + d

cf
v < 1. Then

k∑
c=1

dcv < 1 + k − 2 = k − 1,

contradicting the first constraint of LP (4).

Now we show how to color the nodes of our hypergraph H = (V,E) with protected color E1. For each hyperedge e, we set

γ̂e =


1 if e ∈ E1 and γe ≥ 1− ρ
1 if e /∈ E1 and γe ≥ ρ
0 otherwise,

and we construct the set S = {e ∈ E : γ̂e = 1}.

First we observe that since ρ ∈ (0, 12 ], 1
1−ρ ≤

1
ρ , and so

|S| =
∑
e∈E

γ̂e ≤
1

ρ

∑
e∈E\E1

γe +
1

1− ρ
∑
e∈E1

γe ≤
1

ρ

∑
e∈E

γe,

and
|S ∩ E1| ≤

1

1− ρ
∑
e∈E1

γe ≤
b

1− ρ
.

All that remains is to compute a coloring λ which satisfies every hyperedge in E \ S. If S contains at least one member
of every pair of distinctly colored overlapping hyperedges, then computing such a λ is trivial. We conclude the proof by
showing that S has this characteristic. Let e, f ∈ E with with e ∩ f 6= ∅ and `(e) 6= `(f). Assume toward a contradiction
that e, f /∈ S. Because e and f are distinctly colored, at least one is in E \ E1. If both e, f /∈ E1, then

γe + γf < 2ρ ≤ 1,

but we have already shown that γe + γf ≥ 1, so exactly one of e or f must be in E1. Assume without loss of generality that
e ∈ E1 and f ∈ E \ E1. Then

γe + γf < 1− ρ+ ρ = 1,

so we have contradicted that S ∩ {e, f} = ∅, as desired.
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Edge-Colored Clustering in Hypergraphs: Beyond Minimizing Unsatisfied Edges

Theorem 3.7. PROTECTED-COLOR MINECC is FPT with respect to the total number t of unsatisfied edges.

Proof. We give a branching algorithm which is essentially identical to that of Theorem 3.4. For completeness, we repeat the
details. Given an instance (H = (V,E), t, b) of PROTECTED-COLOR MINECC, a conflict is a triple (v, e1, e2) consisting
of a single vertex v and a pair of distinctly colored hyperedges e1, e2 which both contain v. If H contains no conflicts, then
it is possible to satisfy every edge. Otherwise, we identify a conflict in O(r|E|) time by scanning the set of hyperedges
incident on each node. Once a conflict (v, e1, e2) has been found, we branch on the two possible ways to resolve this
conflict: deleting e1 or deleting e2. Here, deleting a hyperedge has the same effect as “marking” it as unsatisfied and no
longer considering it for the duration of the algorithm. We note that it is simple to check in constant time whether a possible
branch violates the constraints given by t or b; these branches can be pruned. Because each branch increases the number
of unsatisfied hyperedges by 1 and WLOG t > b, the search tree has depth at most t. Thus, the algorithm runs in time
O(2tr|E|).

Theorem 3.8. Given a 2-regular H = (V,E, `), two integers b1, b2, and two colors c1, c2, it is NP-hard to determine
whether it is possible to color V such that at most b1 edges of color c1 and at most b2 edges of color c2 are unsatisfied.

Proof. We once again reduce from CONSTRAINED BIPARTITE VERTEX COVER, for which the input is a bipartite graph
G = (A]B,E) along with two integers αa, αb, and the question is whether there exists a vertex cover C with |C∩A| ≤ αa
and |C ∩B| ≤ αb. We will construct the edge-colored hypergraph for which G is the associated conflict graph. Formally,
we construct an edge-colored hypergraph H = (V,Ea ] Eb, `) with two colors ca and cb as follows. For each edge e ∈ E,
we create a vertex ve ∈ V . For each vertex a ∈ A, we create a hyperedge ea ∈ Ea such that ea = {ve : a ∈ e}. Similarly,
for each vertex b ∈ B, we create a hyperedge eb ∈ Eb such that eb = {ve : b ∈ e}. For each ea ∈ Ea we set `(ea) = ca, and
for each eb ∈ Eb we set `(eb) = cb. Note that H is 2-regular, since each e ∈ E has cardinality 2 and thus the corresponding
vertex ve is contained in 2 hyperedges. We say that our protected colors are Ea and Eb, and we set the associated constraints
b1 = αa and b2 = αb.

Thus, if λ is a vertex coloring of H , Sλ is the set of hyperedges unsatisfied by λ, and we have that |S ∩Ea| ≤ b1 = αa and
|S ∩Eb| ≤ b2 = αb, then the set C = {a : ea ∈ C} ∪ {b : eb ∈ C} has the properties that |C ∩A| ≤ αa and |C ∩B| ≤ αb.
Moreover, if ab = e is an edge in e, then ea and eb are distinctly colored, with ea ∩ eb = {ve}. Hence, S contains at least
one of ea, eb, meaning that C contains at least one of a, b, so C is a vertex cover.

For the other direction, assume that C is a vertex cover of G with the properties that |C ∩ A| ≤ αa = b1 and |C ∩ B| ≤
αb = b2, so the set S = {ea : a ∈ C} ∪ {eb : b ∈ C} has the properties that |S ∩ Ea| ≤ b1 and |S ∩ Eb| ≤ b2. Observe
that, if ea and eb are distinctly colored hyperedges which overlap, then ab ∈ E. Thus, at least one of a, b is contained in
C, and so at least one of ea, eb is contained in S. Then there are no pairs of distinctly colored overlapping hyperedges
in (Ea ] Eb) \ S. Consequently, it is trivial to compute a coloring λ which satisfies every hyperedge not contained in S,
meaning that it leaves at most b1 hyperedges of color ca unsatisfied, and at most b2 hyperedges of color cb unsatisfied.
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