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ABSTRACT

Most synthesized crystalline inorganic materials are compositionally disordered,
meaning that multiple atoms occupy the same lattice site with partial occupancy.
Moreover, the computed physical properties of disordered inorganic crystals are
configuration dependent, because of this partial occupancy, making it extremely
challenging to solve purely by computational methods: this makes property-
oriented search impractical. Crystal structure prediction (CSP), for such crystals
is crucial for the eventual development of highly efficient and stable functional
materials. However, existing generative models cannot handle the complexities
of disordered inorganic crystals. To address this gap, we introduce an equivari-
ant representation, based on theoretical crystallography, along with a generative
model capable of generating valid structures that allow for compositional disorder
and vacancies, which we call Dis-CSP. We train Dis-CSP on experimental inor-
ganic structures from the Inorganic Crystal Structure Database (ICSD), which is
the world’s largest database of identified inorganic crystal structures. We show
that Dis-CSP can effectively generate disordered inorganic crystal materials while
preserving the inherent symmetry of the crystals throughout the generation pro-
cess.

1 INTRODUCTION

The discovery of new materials plays a vital role in numerous fields of science and is crucial to
developing the next generation of materials. As crystals are the foundation of various materials,
crystal structure prediction (CSP) greatly influences future discovery of new materials. Traditionally,
the idea of CSP is to return a 3D structure of a compound based on its composition Desiraju (2002).
The ability to accurately and efficiently generate these structures paves the way for new materials
discovery and design, thereby having considerable impact in many scientific fields Oganov et al.
(2019). Recent advances in CSP within the inorganic crystal domain has encouraged the use of
generative models for exploring this vast material space. Various strategies have been utilized such
as Variational auto-encoders (VAE) Xie et al. (2022), diffusion models Jiao et al. (2023; 2024); Zeni
et al. (2025); Cornet et al. (2025), transformer models Antunes et al. (2024); Kazeev et al., flow-
based crystal generative models Miller et al. (2024); Sriram et al. (2024), and generative adversarial
networks (GAN) Kim et al. (2020). All of these have shown promising results in the inverse design
of inorganic crystalline materials.

Despite the relative success of these models, they all rely on either graph-based, or invertible feature
representations of atoms occupying symmetry-defined sites in the unit cell (the repeating periodic
unit) of a crystalline solid. Such representations are unfeasible when describing inorganic crys-
tal structures with site disorder, where (1) either certain sites are occupied randomly by different
types of atoms, or (2) some atomic sites are unoccupied (vacancies) causing imperfections in the
crystal. Such disordered inorganic crystals are a crucial consideration, as they are very common in
functional materials, with ion-mixing or doping strategies being widely applied to obtain different
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properties, high-performance and stability in materials. Examples include solid solutions like the
famous Mas/Oregon blue pigment YIn1 – x MnxO3 Smith et al. (2009), many perovskite-structured
materials with cation substitutionsNing et al. (2023); Chu et al. (2023), fast-ion conductors like
α-AgI where the mobile ions occupy multiple sites within the lattice Funke et al. (2015), doped
thermoelectric materials like (PbTe)1 – x (PbSe)x Wang et al. (2013) as well as electrodes for batteries
Zhong et al. (2024); Wang et al. (2024).

To describe such ubiquitous disordered inorganic crystals computationally, it is often necessary to
use multiple repetitions of the unit cell, called ”supercells”. This approach enables the partial oc-
cupation of atoms to be distributed among the corresponding symmetrical sites. However, due to
inherent randomness of assigning the partial occupancy to the symmetrical sites, this method fails
to accurately capture the true nature of the disorder in the crystal structure. Traditionally, disordered
inorganic crystals are modeled with linear clustering methods, along with Monte-Carlo methods
Chang et al. (2019); Su et al. (2024). This approach aims to sample the entire configurational space
of the supercell, generating a representative set of supercells with various assignments of the par-
tial occupancy to the symmetrical sites. These sampled configurations approximately describe the
nature of the disordered crystal structure.

Two primary challenges associated with using this method, especially when aligned with generative
models, are: (1) the need to generate thousands of supercells to describe the disordered crystal struc-
ture, and (2) the assignment of partial occupancy to specific sites inherently breaking the symmetry
of the crystal structure, complicating the representation. For smaller cases, it is possible to train a
generative model on a sample set of supercells, as demonstrated in Yong et al. (2024) and Zeni et al.
(2025). However, generalizing such models to encompass the diverse range of inorganic disordered
crystals is impractical.

A more appropriate approach is to cluster all symmetry-equivalent atomic sites in the crystal struc-
ture together, and treat each group of sites independently. This allows for the consideration of
partial occupancy while preserving the site-symmetry of each group of equivalent points. These
groups are referred to as Wyckoff sites. In this work, we present Dis-CSP, a framework for repre-
senting disordered inorganic crystals based on Wyckoff sites. Our framework enabling the training
of a VAE model to achieve CSP on disordered crystals. This representation explicitly incorporates
partial atomic occupancies by encoding both space group symmetries and Wyckoff site symmetries.
In our framework, equivariance is defined empirically: any spatial operation—such as rotation or
translation—that alters the Wyckoff-based encoding is effectively captured by the symmetry and re-
flected in model’s reconstruction behavior. Additionally, the model exhibits invariance in predictive
tasks, as global spatial operations do not change the physical properties or symmetry information of
the crystal structure. In this paper we start by introducing the representation of disordered crystal
structures, then the VAE used for generating the structures and in the reconstruction and evaluation
error.

2 CRYSTAL REPRESENTATION

2.1 CRYSTAL DESCRIPTION

Crystals are highly structured solid materials defined by a repeated arrangement of atoms in space
AI4Science et al. (2023). The atomic pattern that periodically repeats itself is called a motif. The
parallelepiped containing the motif, which defines each periodicity in the 3D space of the motif, is
called a unit cell. A (u × v × w)|u, v, w ∈ N repetition of the unit cell is called a supercell. Theo-
retical crystallography has developed methods to systemically describe the endless combinations of
crystals using lattice parameters, space groups and Wyckoff sites.

A lattice Λ is an infinite set of points defined by the sum of a set of linearly independent primitive
lattice vectors, ai ∈ Rn: Λ = {Rn

[mi]
=

∑n
i miai}, where mi ∈ Z. In 3D, the lattice can be

described by the repeated motif and 6 parameters: a, b, c determines the length of each dimension
and α, β, γ determines the angle between each dimension Simon (2013).

Space groups describe the symmetry operations that the crystal can undergo while preserving the
motif within the crystal lattice. In 3D, all space groups are numbered into 230 types, with the first
group considered the unsymmetrical group.
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Crystallographic information file

Figure 1: Structural representation of crystals. A Crystallographic information file of a crystal is
transformed into a matrix A describing the atomic representation and a vector c describing the crys-
tal representation. The bold numbers and letters represents One-hot encoding in the representation.
The highlighted colors in the representations denote the labels for each rows.

For a space group G acting on three-dimensional space, E3 the (infinite) set:

O = G(X) := {g(X)|g ∈ G} (1)

is called the orbit of X under G. The orbit of point X is the smallest subset of E3 that contains
X and is closed under the action of G. Every point in E3 belongs to exactly one orbit within
the space group. The orbit partitions the direct space into disjoint subsets, meaning that an orbit
is completely defined by its point in the unit cell, as translating the unit cell by the space group
symmetry covers E3. To account for the case where two symmetry operations map X into the same
point, we define subsets within the space group, termed site-symmetry groups S ∈ G, which define
symmetry operations for X within the space group. The site-symmetry group of a point X is a
finite subset of the space group, which is isomorphic to a subset of the point group P of the space
group. The relation between site-symmetry groups of points in the same orbit is the definition of the
Wyckoff site Souvignier (2015). Note that it is the definition of Wyckoff sites that any points related
by symmetry operations of the space group belong to the same site. The Wyckoff sites themselves
are defined using three parameters:

• Wyckoff letter, which defines the site-symmetry group for a Wyckoff site. It is labeled in
alphabetical order, starting with ’a’ for a position with a site-symmetry group of highest
site-symmetry.

• Wyckoff multiplicity, which defines the number of points in an orbit for a Wyckoff site.
• Fractional coordinates, which define the real position in the crystal lattice for which sym-

metry operations can be acted upon.

Each Wyckoff site is occupied with a number of atoms equal to the Wyckoff multiplicity. If a
Wyckoff site is occupied with one type of atom, it is considered ordered, and if the Wyckoff site is
occupied with several types of atoms, it is disordered. In this work, an inorganic material is termed
disordered if one or more Wyckoff sites are disordered and we do not consider amorphous materials
in this work.

2.2 REPRESENTATION OF DISORDERED INORGANIC CRYSTALS

From the crystallography description provided in a Crystallographic Information File (CIF), a dis-
ordered inorganic crystal is represented by a matrix A and a vector c, as illustrated in Figure 1. The
atomic configuration is represented by A, while the crystal itself is represented by c.

Each column in A represents the different Wyckoff sites in the crystal, while the rows describe dif-
ferent properties within the Wyckoff sites. The first set of rows describes the partial occupancy; the
second set describes the Wyckoff multiplicity; the third set describes (1) an indicator for a disordered
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Figure 2: Data distribution of the 138,692 structures from the Inorganic Crystal Structure Database
(ICSD), with 72,855 structures having partial occupied Wyckoff sites and 65,837 structures having
no partial occupied Wyckoff sites. a) Number of unique atoms per structure. b) Space group per
structure. c) Number of Wyckoff sites per structure. d) All Wyckoff letters. e) All Wyckoff multi-
plicities. f) Partial occupancy of disordered Wyckoff sites. g) Number of disordered Wyckoff sites
per structure. h) Number of atoms per Wyckoff site. i) The atoms partial occupying the disordered
Wyckoff sites. j) All atoms presented in the Wyckoff sites.

sites and (2) the fractional coordinates; the last set of rows describes the Wyckoff letter. The partial
occupancy, Wyckoff multiplicity and Wyckoff letter are all One-hot encoded with the row number
equal to their respect value, while the fractional coordinates are divided into the x, y and z compo-
nents for each row. The disordered site indicator is a binary term; 1 if a Wyckoff site is disordered
and 0 if not. Zero padding is added as additional columns to allow matching of crystals with fewer
Wyckoff sites to those with the highest number of Wyckoff sites, such that A is the same size for
all crystals. A corresponding zero padding indicator is added to the representation for the partial
occupancy, the Wyckoff multiplicity and the Wyckoff letter, such that it can identify whenever a
Wyckoff site exists. The first 6 entries in c consist of the 6 lattice parameters a, b, c and α, β, γ,
while the last 230 entries consist of the One-hot encoded space group.

The use of Wyckoff sites and space groups to represent materials for CSP has previously been done
for VAE Zhu et al. (2024) and transformer models Antunes et al. (2024); Kazeev et al.. However, to
the best of our knowledge, no generalized representation has been developed to account for disor-
dered Wyckoff sites with partial occupancy. Recently, Zeni et al. (2025) demonstrated an approach
for disordered structures, but it is restricted to a specific type of disorder where two atoms swap
positions during the generation of the crystal structure. Their representation does not incorporate
partial occupancy of atoms, rendering an incomplete investigation of important ion-mixing and dop-
ing practices. In contrast, our representation, combined with the VAE model, provides a novel and
previously unexplored framework for CSP, enabling a more comprehensive analysis of disordered
crystals.

3 DISORDERED VAE

3.1 DATA

The Inorganic Crystal Structure Database (ICSD) Hellenbrandt (2004) consists of around 229,487
precise experimental inorganic crystal structure entries, all of which are human expert inputs and
verified, with 106,970 (45.6%) of the entries as disordered inorganic crystals, 122,517 (52.2%) of
the entries as ordered inorganic crystals and 4966 (2.2%) of the entries having structural errors,
like having the atoms to close it each other. To date, the disordered crystals of ICSD have not
been utilized as training data in any generative model, instead only being used to validate generated
structures as the ground truth Zhu et al. (2023); Zeni et al. (2025). Given this extensive collec-
tion of synthesized disordered inorganic crystals, the ICSD represents an ideal dataset for training
generative models aimed at disordered Wyckoff sites, even in the absence of computed physical or
chemical properties. To ensure smooth CSP, we reduce the complexity, common considerations for
experimental crystal formation. We exclude all structures belonging to the first symmetry group
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Figure 3: Schematic of the Variational auto-encoder (VAE) used in this work. All the materials
gathered from ICSD are represented using the representation from Figure 1. This representation
is encoded in batches and a Gaussian-based latent space is created, from which the decoding is
based upon. The decoding returns a structural representation, from which the disordered structure is
reconstructed.

(P1) (536 structures), since they are only assigned a unit cell without further symmetry operation
check, making space group assignment incomplete. When this is the case for experimental verifica-
tion of the crystal structure, we doubt that the structure itself is relaible. We also exclude structures
containing rare atoms with a periodic number higher than 100 (7,515), as well as those containing
more than nine Wyckoff sites (53,586 structures), more than 50 in Wyckoff multiplicity (2,756 struc-
tures), more than six disordered Wyckoff sites (25,671 structures), instances where a Wyckoff site
is occupied by more than six distinct atom types (82 structures) and structures with atomic charge
state as the partial occupancy (649 structures). All of these are excluded to make a dataset compa-
rable to simpler experimental synthesis. The data distribution (138,692 structures), after filtering, is
explored in Figure 2, where we see a bias towards ordered Wyckoff sites and fewer total Wyckoff
sites, as expected due to the higher number of simpler crystals in the data set. In this subset, 72,855
of the crystal structures contain one or more Wyckoff sites with partial occupancy, while 65,837 of
the crystal structures have no Wyckoff sites with partial disorder.

The bias toward crystals with fewer total Wyckoff sites justifies our decision to reduce the data
set based on the total number of Wyckoff sites. Additionally, the use of extra zero padding would
increase the complexity of the representation, which is not worthwhile since it would only accom-
modate a minor subset of crystals - this argument also holds for most of the other choices.

ICSD is the highest quality inorganic crystal structure database (experimental) up to date, with all
information being human expert input and verified. The dataset enabled us to generate structures
closer to experimental observations since we train on unit cell parameters and site occupancies ex-
perimentally measured instead of density functional theory (A) generated. All existing generative
models Zeni et al. (2025); Xie et al. (2022); Jiao et al. (2023; 2024) to date assume site occupancy
= 1 (which is false in many Materials Project ? entries), using DFT unit cell parameters (which
deviates from experiment). Duplicated ICSD entries, may skew representation toward certain crys-
tal structures, but removing them would introduce a different bias by favoring one experimental
verification over another, which is the reason for not excluding them.

3.2 MODEL

The main objective of the VAE is to learn the distribution of disordered inorganic crystals from
the dataset, to eventually enable CSP. This procedure is illustrated in Figure 3. Firstly, the VAE
needs to encode the representation from Figure 1 into the latent space. This is done through a
convolution neural network (CNN) with three convolution layers for the atomic representation, and
an Multilayer Perceptron (MLP) with two linear layers for the crystal representation. The output
of the two networks are combined into Zmean ∈ Rn and Zvar ∈ Rn, which parameterize the
multivariate Gaussian distribution in the latent space. Secondly, the decoder is trained to generate
samples from the latent space and reconstruct them into the structural representation. This is done
through another CNN for the atomic representation and an MLP for the crystal representation. At the
end layer of the CNN, the output is divided into the parameters, partial occupation of atoms, Wyckoff
multiplicity, disordered site indicator, fractional coordinates and Wyckoff letter, all of which have
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their own loss function. At the end layer of the MLP for the crystal representation, the output is
divided into the lattice parameters and the space group, which similarly have their own loss function.

In total, 7 loss functions are used for the reconstruction of the inorganic crystal, representing the 7
properties constructed during decoding (lattice parameters, space group, disordered site indicator,
Wyckoff letter, Wyckoff multiplier, fractional coordinates and partial occupancy at each atomic site).
This loss along with a Kullback-Leiber (KL) divergence loss LKL constructs the total reconstruction
loss. The total reconstruction loss encourages the model to generate the output data as close as
possible to the input data. Detailed description of the loss function are presented in Appendix A

To illustrate the capability of Dis-CSP, the filtered ICSD, represented as in Figure 1, is used to train
a VAE model. The dataset (138,692 structures) is randomly split into a validation set (10%) and test
set (20%). The specifics of the VAE model can be considered in Appendix A.

4 GENERATION OF DISORDERED INORGANIC CRYSTALS

4.1 RECONSTRUCTION ERROR

From the test set, we assess the reconstruction errors associated with the encoding and decoding of
Dis-CSP. As shown in Table 1, the reconstruction error of the lattice parameters, in mean absolute
error (MAE), is small, as are the errors related to the space group and the disordered site indicator.
Regarding the Wyckoff site parameters presented in Table 2, we achieve high accuracy for both the
Wyckoff letter and Wyckoff multiplicity, for both the ordered and disordered Wyckoff sites. Simi-
larly, the reconstruction error of the fractional coordinates remains small. For the partial occupancy,
we use two different error metrics for the ordered and disordered cases. For the ordered structures,
we can report an accuracy score, as a single type of atom occupies any Wyckoff site, making it
a classification problem (correctly or wrongly occupied). However, for the disordered structures,
several atoms can occupy the same Wyckoff sites, making it a regression problem and hence we
report an MAE. We achieve a satisfactory result considering that the majority of inorganic structures
exhibit occupancies greater than 5% , as illustrated in Figure 2. In future training of the model,
a higher accuracy will be a valuable improvement, as experimental studies have demonstrated that
even incorporating low concentrations of elements can enhance the functional properties of materi-
alsAhaliabadeh et al. (2022); Chen et al. (2019b). Remarkably, the model does not overfit to either
disordered or ordered Wyckoff sites, despite the bias present in the dataset, as shown in Figure 2.
This is a significant achievement, as it demonstrates that the model is not biased towards any spe-
cific group of Wyckoff sites. Instead, it maintains a balanced representation, allowing for accurate
predictions across the entire range of Wyckoff site configurations.

The Wyckoff site is determined by the site-symmetry and space group. Consequently, for a given
Wyckoff letter and space group, the corresponding Wyckoff multiplicity is uniquely defined. Lever-
aging this, we evaluate the representations throughout the VAE by comparing the predicted Wyck-
off multiplicity with the reference values determined by the space group and Wyckoff letter. The
symmetry-matching accuracy (SMA) was found for the test set to be 99.5% and remains similar to
the reconstructed accuracy of the Wyckoff multiplicity value in Table 2, implying the symmetry is
preserved throughout the VAE.

A visualized representation of the reconstruction error can be considered in Appendix B.

Table 1: Reconstruction error of the test set for the lattice parameters (MAE), space group (Accu-
racy) and disordered site indicator (Accuracy).

Parameters Dis-CSP

(a,b,c) [Å] (0.06, 0.05, 0.10)
(α,β,γ) [°] (0.02, 0.05, 0.28)
Space group 99.6%
Disordered site 99.8%
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Table 2: Reconstruction errors of the test set for the parameters directly related to the disordered
and ordered Wyckoff sites. The partial occupancy is presented with a MAE for the disordered sites,
and an accuracy for the ordered sites. Accuracy is also used for the Wyckoff letter and Wyckoff
multiplicity, while MAE is used for the fractional coordinate.

Parameters Disordered Wyckoff sites Ordered Wyckoff sites

Partial occupancy 0.05 (MAE) 99.1%
Wyckoff multiplicity 99.6% 99.8%
Wyckoff letter 99.3% 99.6%
Frac. coordinate [Å] 0.07 0.08

Figure 4: The latent space of the test set compared to a multivariate Gaussian sampling, along with
a Kernel Density Estimation (KDE) Chen (2017) sampling and a Gaussian Mixture Model (GMM)
Reynolds et al. (2009) sampling, both of which are trained on the latent space of the training set.
The sample set for all models are of the same size as the test set.

4.2 CRYSTAL STRUCTURE PREDICTION

Crystal structure prediction inherently carries the risk of generating physically meaningless struc-
tures. However, our representation is grounded in both crystal and site-symmetry, which allows
us to minimize this issue during the reconstruction process. Specifically, by leveraging symmetry
constraints, we can effectively avoid the formation of unreasonable inorganic crystal structures. The
reconstruction process begins by generating the crystal cell from the predicted lattice parameters,
thereby establishing the structural framework. Next, fractional coordinates and partially occupied
atoms are incorporated, where the latter are assigned based on the partial occupancy if the disordered
site indicator does not classify them as ordered sites. Once the structural framework and occupancy
is established, we enforce symmetry constraints based on the predicted space group, Wyckoff letters,
and Wyckoff multiplicity. This is done using Symmertrized structure group along with its symmet-
rical operations in Pymatgen Ong et al. (2013). If the reconstructed structure fails to satisfy these
symmetry constraints, it is discarded, and the next candidate is considered.

Mg0.38Ti0.64Nb0.88Pb2O6

Space Group: 6

Na7.92 Mg8 H3.76 F10.88

Space Group: 62

Zr2 Nb3.96 Zn2 O8

Space Group: 13

Li36Ti30.96Sn4.68P36O72

Space Group: 167

Figure 5: Four generated disordered inorganic crystal structures, using Dis-CSP. All crystals are
viewed along the b-axis of the crystal.
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Table 3: The generation error, defined as the percentage of sampled structures discarded during the
reconstruction process, the symmetry matching accuracy (SMA), between the reconstructed and the
symmetry required Wyckoff multiplicity for the three latent space estimators, and the validity, as the
percentage of generated structures containing atomic sites closer than 0.5Å, are evaluated for the
three latent space estimators using the test set as a reference.

Latent space Generation error SMA validity

KDE 0% 99.6% 15.7%
GMM 2.64% 47.5% 16.4%
Gaussian 9.0% 23.0% 14-0%
Test set 0% 99.5% 14.0%

To perform CSP from the latent space of Dis-CSP, it is vital to accurately characterize its posterior
distribution. The KL divergence loss encourages the formation of a smooth multivariate Gaussian
distribution; however, this comes at the cost of an increased reconstruction loss. Given the com-
plexity of representing disordered crystals, achieving a perfectly Gaussian latent space is inherently
challenging. To further analyze the latent space, we use t-SNEVan der Maaten & Hinton (2008) to
reduce the dimensionality of the latent space to two dimensions, facilitating visual comparisons of
the test set latent space. To sample beyond the train set and test set, it is crucial to estimate parts
of the latent space using different estimators. Beyond the conventional Multiveriate Gaussian sam-
ple, the Kernel Density Estimation (KDE) Chen (2017) and the Gaussian Mixture Model (GMM)
Reynolds et al. (2009) are trained on the training datset to etsimate the overall latent space. These
are vizualized along with the latent space in Figure 4. Visually, the KDE model offers the most
accurate approximation of the latent space, providing a reasonable representation of its diverse dis-
tribution, whereas the GMM Reynolds et al. (2009) and the multivariate Gaussian distribution show
less satisfactory results. This observation is further supported in Table 3, where the generation error,
defined as the percentage of sampled structures discarded during reconstruction process, highlights
differences between the three models.

While the reconstruction process eliminates most symmetrically invalid structures, it does not
fully guarantee that the reconstructed structure obey the exact symmetries of the crystal. Specif-
ically, discrepancies may arise where the predicted Wyckoff multiplicity differs from the symmetry-
constrained values determined by the space group and the Wyckoff letter. To evaluate this, we
analyze the SMA presented in Table 3. These results clearly indicate that sampling from the KDE-
estimated latent space ensure a symmetrical equivariance. Another important aspect to consider
during the reconstruction process is that symmetrical sites must be positioned based on their frac-
tional coordinates. This can introduce errors when two sites are too close to each other. The position
error (PE), as presented in Table 3, clearly indicates that such filtering is necessory to the latent space
estimators. All of this underscores the superior performance of KDE in capturing the complexity of
the latent space, while maintaining equivarient representation.

Using the KDE estimation of the latent space, we can generate disordered structures, with four
representative generations illustrated in Figure 5. Given the stochastic nature of our sampling pro-
cess, the generated structures appear reasonable. The leftmost crystal, Mg0.38Ti0.64Nb0.88Pb2O6,
suggests a doping strategy involving Mg, Ti, and Nb, elements commonly used to enhance func-
tional materials for catalysis and biomedical applications Cui et al. (2014); Li et al. (2021). The
generated Na7.92Mg8H3.76F10.88 and Li36Ti30.96Sn4.68P36O72 structures resemble electrode materials
for batteries. The latter, in particular, closely aligns with known lithium-ion battery anode or cathode
materials, featuring doping at the metallic (Ti) site, although Sn may not be an appropriate dopant
Weng et al. (2017). Additionally, the generated Zr2Nb3.96Zn2O8 structure is structurally related to
the ZrNbO4 alloy Peyret et al. (2023), with Zn partially occupying the Zr site, suggesting a po-
tential doping strategy for this material. Despite the promising nature of the generated structures,
certain compositions, such as Na7.92Mg8H3.76F10.88, appear chemically unreasonable. This indicates
the necessity of incoporating chemically intuitive filtering into the CSP process to eliminate unre-
alistic structures. Currently, no established chemical intuition filters exist for disordered crystals.
However, we are actively developing such methods, which will assess the likelihood of partial occu-
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pations of atoms at symmetrical sites based on factors such as atomic charge and chemical bonding
characteristics.

A limitation of using a VAE model for CSP is that the latent space is constrained by the distribution
of the training set. While KDE is highly effective at interpolating within known distributions, it
struggles with extrapolation, which could be addressed by using diffusion models or transformers.
This explains why the generated structures in Figure 5 closely resemble battery electrodes and al-
loys, since they are among the most investigated materials, particularly in the context of disordered
inorganic crystals.

Despite this, the ICSD dataset encompasses a vast and diverse range of experimentally verified in-
organic crystals. This extensive coverage suggests that numerous potential crystal structures remain
unexplored in the ICSD distribution, presenting significant opportunities for the discovery of novel
functional materials. This is particularly true for disordered crystals, where possible doping con-
figurations are virtually limitless. However, blindly searching through this vast chemical space is
inefficient. To guide the search towards promising candidates, a property-oriented approach incor-
porating physical and chemical constraints is necessary.

However, computing physical or chemical properties for disordered materials has its own challenges.
Finite structure sizes are needed to computationally calculate the properties, but crystal symmetry
breaks down when assigning partial occupancy to the symmetrical sites. To create a property distri-
bution and compare it to experimental data, one needs to sample enough configurations of the atoms
at large enough supercell sizes; and even then, the comparison may be off as shown in Appendix C.
Such property distributions, dependent on a large sample size of the disordered crystals, are rarely
accounted for in theoretical databases like the Materials Project database ?. Even using machine
learning force fields for property predictions are not feasible and external methods are needed to
accurately map the properties Xie et al. (2024). For these reasons, property-oriented searches have
been unexplored for for disordered inorganic crystal structures.

In our approach, the latent space of the VAE model allows an opportunity to bypass this issue and
condition our search on specific compositions, space groups or even target certain partial occupations
of atoms. By defining specific terms for the desired configurations, we employ gradient descent to
optimize the latent sampling z, with respect to the target configuration, as illustrated in Appendix D
. This is feasible because Dis-CSP reconstructs multiple parameters related to both crystal symmetry
and atomic representation.

5 CONCLUSION

In this work we introduce Dis-CSP: Disordered crystal structure prediction, the world’s first gen-
erative model designed for disordered inorganic crystal structures, leveraging a novel representation
for disordered crystals, incorporating partial occupancy at symmetrical sites. To demonstrate the
capabilities of Dis-CSP, we utilize the Inorganic Crystal Structure Database (ICSD) - the largest
collection of experimentally inorganic crystals - to train a generative model, enabling crystal struc-
ture prediction for disordered crystals. Due to the equivariant representation of crystal structures,
Dis-CSP inherently filters out symmetry-violating structures, ensuring a symmetry-consistent ap-
proach to generating valid structures. Moreover, Dis-CSP offers a promising alternative framework
to the practically-infeasible property-oriented search, instead targeting compositional similarity for
latent space exploration of disordered inorganic structures. With Dis-CSP, we initiate the system-
atic exploration of disordered inorganic crystals, aiming to discover novel structures with potential
applications across various scientific fields.
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A VAE MODEL SPECIFICS
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Figure 6: The architecture of the VAE model used for Dis-CSP with a batch size of 64. In the
schematic representation, green blocks denote individual layers within the VAE, while blue blocks
represent groups of layers. The model accepts two inputs: (1) matrix A, which encodes the atomic
representation and (2) a vector c , which encodes the crystal representation. These inputs are pro-
cessed separately by the encoder, then concatenated in the latent space and then separated in the
decoder. The atomic representation produces five outputs, while the crystal representation yields
two two outputs. The Relu activation function is utilized for the CNN, while the sigmoid activation
function is utilized for the disordered site indicator and the softmax activation function is utilized
for the partial occupancy, Wyckoff multiplicity, Wyckoff letter and Space group.

Figure 7: The variational auto-encoder (VAE) training curves, with curves color-coded uniformly
across the plots.

The total reconstruction loss function consists of 7 loss functions Lrecon, along with a Kullback-
Leiber (KL) divergence loss LKL.

For the reconstruction loss, two different loss functions are used:
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Table 4: Loss coefficients used for training the VAE model used in this paper.

Coefficients Optimal value

λKL 1.0
λspg 10.0
λlattice 3.0
λocc 2000
λmult 1.0
λletter 1.0
λdisorder 0.1
λcoord 1.0

The cross entropy loss function, which calculates the likelihood of getting the reconstructed distri-
bution Q̂, given the input distribution Q:

H(Q̂|Q) = −
∑
i

Q(i) log(Q̂(i)) (2)

The mean square error (MSE) loss function compares the difference between the input values Y and
the reconstructed values Ŷ :

MSE(Y, Ŷ ) =
1

n

n∑
i=1

(Yi − Ŷ )2 (3)

For the parameters in the atomic representation, the loss functions are taken per Wyckoff site and the
total loss is a sum of all individual losses. The Wyckoff letter loss Lletter, the Wyckoff multiplicity
loss Lmult and disordered site indicator loss Ldisorder use the cross entropy loss function, while the
fractional coordinates loss Lcoord and the partial occupancy loss Locc use the MSE loss function.
Note that for partial occupancy, the loss is defined by the difference between the distributions of
atoms at a Wyckoff site.

For the parameters in the crystal representation, the loss functions are used directly on the represen-
tation. The lattice parameter loss Llattice uses the MAE loss function, while the space group loss
Lspg uses the cross entropy loss function.

The KL divergence loss LKL is used to shape the latent space into a Gaussian distribution. The KL
divergence loss calculates the difference between q(z|X), the learned distribution of latent points z
given input data X , and p(z), the desired Gaussian distribution for the latent points, Kingma (2013);
Kullback & Leibler (1951):

LKL = KL(q(z|X)||p(z)) (4)

During the optimization step of the VAE model the total loss function

L =λKLLKL + λspgLspg + λlatticeLlattice + λoccLocc

+ λmultLmult + λletterLletter + λdisorderLdisorder + λcoordLcoord
(5)

is optimized, with λi as the coefficient for each loss contribution.

Figure 6 illustrates the architecture of the VAE model used for generating disordered inorganic crys-
tals. The VAE takes two inputs: (1) a matrix A describing the atomic representation and (2) a vector
c describing the crystal representation. The model produce seven output: partial occupancy, Wyck-
off multiplicity, disordered site indicator, fractional coordinates, Wyckoff letter, lattice parameters
and space group. To optimize the model architecture, hyperparameter tuning was conducted for the
CNN to determine the optimal number of layers, channel dimensions and signal dimensions. Sim-
ilarly, for the MLP, hyperparameter tuning was performed to optimize the number of hidden layers
and nodes.

For the training, the coefficients in the total loss function. in Equation (5), were optimized to ensure
robust performance on the test set while preventing overfitting, as assessed by validation loss. The
final coefficients, presented in Table 4, were determined to provide the most effective balance. No-
tably, partial occupancy was the most challenging parameter to optimize, resulting in a higher loss
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coefficient to improve accuracy. In contrast the difference between the other coefficients are relative
small. The disordered site was the easiest parameter to predict, which justify assigning it the lowest
coefficient.

Training was conducted using Adam optimizer Kingma (2014) with a learning rate of 5× 10−6 and
a batch size of 64. The model was trained fro 2500 epochs, with the final VAE model selected based
on lowest validation loss, which occurred at epoch 2349.

Figure 7 visualizes the training process, where it is evident that the KL loss dominates among the
eight loss function. This behavior is anticipated, as the KL loss must balance the combined effect of
all reconstruction-related loss term. Some variations are observed in specific loss functions, which
could potentially be avoided by using a lower learning rate. However, these variations are minimal
and can be considered negligible.

B VISUALIZATION OF THE RECONSTRUCTION ERROR

Figure 8: The lattice parameter prediction along with the disordered site prediction. Note the perfect
ROC curve stems from the fact that only 1% of the Wyckoff sites were misclassified.

By plotting the reconstructed representation against the target representation for the test set, obvious
outliers can be identified, providing insight into the quantitative results presented in Table 1 and
Table 2.

In Figure 8, the reconstructed lattice parameters, space group and disordered site indicator are com-
pared to their target values. No obvious outliers are detected in the lattice parameters or space group,
and the ROC curve for the disordered site indicator does not indicate significant errors.

In Figure 9, the partial occupancy, Wyckoff letter, Wyckoff multiplicity and fractional coordinates
are compared to the target values, with a distinction between disordered and ordered Wyckoff sites.
For the Wyckoff letter and Wyckoff multiplicity, no obvious outliers are detected. The fractional
coordinates exhibit noise around the 1:1 line, consistent with the error rate in Table 2, and this
noise does not differ significantly between the disordered and ordered Wyckoff sites. The partial
occupancy also displays noise around the 1:1 line in both cases, though it is more pronounced
for the disordered Wyckoff sites. This observation aligns with the quantitative results in Table 2
and suggests that higher accuracy may be required in future training of the VAE model. However,
achieving this improvement is challenging due to the high diversity in partial occupancy per Wyckoff
site within the dataset. To enhance accuracy, additional filtering strategies may be necessary to refine
the dataset, or other training strategies may be needed.
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Figure 9: The ordered and disordered Wyckoff site predictions along the respected color bars. Top:
The disordered Wyckoff sites, with partial occupation of atoms along with its other characteristics.
Bottom: The ordered Wyckoff sites with an occupation of a single atom along with its other char-
acteristics.

Figure 10: Comparison between the reconstructed and the symmetry required Wyckoff multiplicity,
showing an symmetry matching accuracy (SMA) of 99.5%.

Moreover, the symmetry matching accuracy (SMA) can be visualized by plotting the recontructed
Wyckoff mulitpliers, but the one defined from the reconstructed Wyckoff letter and space group as
illustrated in Figure 10
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C DISTRIBUTION OF PROPERTIES

2×2×2 supercell              3×3×3 supercell

**

Figure 11: Statistical distributions of selected properties of 1000 virtual cells of site-disordered
AgSbTe2. The effect of supercell size (doubled vs. tripled) is compared. In cases where the dis-
tribution is approximately normal, the mean (mu) and standard deviation (sigma) are specified. For
comparison, the experimental band gap of AgSbTe2 is 0.71 eV Abdelghany et al. (1996) and the
experimental density of AgSbTe2 is 7.012 g/cm3 (marked with asterisk) Wu et al. (2012).

Computed properties of disordered inorganic crystals with partial occupancy are not directly acces-
sible by current first-principles methods or machine-learned force fields. Rather, we estimate these
properties by generating a set of virtual cells, based on the crystal representation. A sufficiently large
size of the virtual cell, measured in terms of supercell size, along with a sufficiently large number
of virtual cells used to sample the configurational space, can approximate the physical properties of
the disordered inorganic crystal. Specifically, given a temperature T and using Maxwell-Boltzmann
statistics, we can recover the expectation value ⟨P ⟩ of a certain property P from the calculated or
predicted values pi of each virtual cell (of energy Ei) in the sample set.

⟨P ⟩ =
∑
i

pie
−Ei
kBT∑

j e
−Ej
kBT

(6)

Ignoring the effects of temperature, the properties are better represented as distributions, rather than
as single number figures. We give an example of the properties of disordered AgSbTe2 (Figure 11)
with Ag and Sb being partially occupied at the same Wyckoff site. Total energies and densities are
calculated using CHGNET Deng et al. (2023), and the band gaps are predicted using the GLLB-SC
model in MEGNet Chen et al. (2019a). We note that generating virtual cells from the doubled cell
creates skewed or bimodal distributions of density and band gap deviating from those of the tripled
supercell, indicating the role of interference from the periodic boundary.

17



Published as a conference paper at ICLR 2025

Li4O17.12P8Cu1.04Ge1.84Rh0.72I0.8

Space Group: 62

Li8P8O10.24Tl1.12Fe0.88Au0.48F0.4

Space Group: 62
Li8P8O27.68I0.48F0.48

Space Group: 62

Figure 12: Three generated disordered inorganic crystal structures with the space group 62, 1 dis-
ordered Wyckoff site and the elements Li, P and O. All crystals are viewed along the b-axis of the
crystal.

D CONDITIONED CRYSTAL STRUCTURE GENERATION

It is possible to condition crystal structure generation based on the framework of Dis-CSP. So in
reality it is possible to choose any target value within our representation of the crystal structure.
For example, we utilize gradient descent to explore the latent space, enabling the generation of
structures with a space group of 62, a single disordered site, and with the elements Li, P, and O
positioned at one of the Wyckoff sites. This is achieved by defining representing and defining loss
function for each condition, and the Adam optimizer to optimize the latent space according to the
specified criteria. Generation based on area of the latent space following this condition is illustrated
in Figure 12 . If we want to further condition, we use the representation and the loss described in
Section 3.2.
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