Probing Position-Aware Attention Mechanism in Long Document
Understanding

Anonymous ACL submission

Abstract

Long document understanding is a challeng-
ing problem in natural language understand-
ing. Most current transformer-based models
only employ textual information for attention
calculation due to high computation limit. To
address those issues for long document un-
derstanding, we explore new approaches us-
ing different position-aware attention masks
and investigate their performance on different
benchmarks. Experimental results show that
our models have the advantages on long doc-
ument understanding based on various eval-
uation metrics. Furthermore, our approach
makes changes only to the attention module
in the transformer and thus can be flexibly de-
tached and plugged into any other transformer-
based solutions with ease.

1 Introduction

Despite the rapid advancements in deep learning,
particularly in the fields of computer vision and
natural language processing, the tasks of under-
standing multimodal data, e.g. vision-language
tasks incorporating scene text or multimodal na-
ture language understanding, have not been fully
developed with the same pace. It is due to several
inherent challenges (Baltrusaitis et al., 2018). First,
efficient feature encoding and extraction for each
modality is difficult. Second, data always contain
both text and visual information and the alignment
between them is not easy, for example between text
and audio or video. And the final challenge is the
intricate obstacle of how to fuse all modalities of
different formats for the tasks’ objective.

Sharing the same challenges with multimodal
data, however, recent years have witnessed many
developments in the new task of document under-
standing (or in some contexts known as document
intelligence). Most of them are largely benefited
from the fast development of transformer architec-
tures (Tay et al., 2020). Nonetheless, transformer

175
1504

documents
N 9 o o
QS A S G\

=)

0 1K 2K 3K 4K 5K 6K 7K 8K
words

Figure 1: Distribution of document lengths in RVL-
CDIP dataset (Harley et al.), a subset of II'T-CDIP used
predominantly in the document understanding pretrain
task—and in all of our models. While most current mod-
els limit the document lengths to maximum 512 tokens
because of memory and computational issues, most of
documents in this datasets have a much longer lengths,
posing the necessity for a model capable of processing
longer documents.

suffers from quadratic computation of attention
mechanism, the heart of its architecture, in the face
of its well-proven power across diverse tasks.

Apart from computation issues, dealing with
long documents in the context of document un-
derstanding requires a linking mechanism between
information across pages/segments in terms of both
text and spatial information. Given the lengths
of long documents as illustrated in Figure 1, it
is reasonable to assume that useful information
is spanned across their lengths. Likewise, most
current document understanding models are short
models, such as LayoutLM (Xu et al., 2020b,a),
which limit the document length to only 512 words
and thus discard lots of useful information.

In natural language processing, there have been
some recent work to reduce this cost by sparsifying
the attention matrix with predefined sliding win-
dows, such as Longformer (Beltagy et al., 2020),
BigBird (Zaheer et al., 2020) or ETC (Ainslie
et al., 2020). These models push the limit of doc-

ument length from 512 to 4096 words with opti-
mized memory and computation costs. Further-
more, some other recent attempts, e.g. in Nguyen
etal. (2021), have not been successful in processing
long documents that are longer than 2048, partly
because they add another small transformer mod-
ule, which consumes many resources on top of the
current transformer infrastructure.

In this paper, we explore new approaches us-
ing different position-aware attention masks and
investigate their performances on long document
understanding. Unlike those attempts to introduce
new pretraining tasks to enforce better representa-
tion learning, or new complicated infrastructures
into the already-heavy transformer architectures,
e.g. (Appalaraju et al., 2021), our motivation is
to firstly retain most of the simplistic architecture
of LayoutLM (Xu et al., 2020b) and then flexibly
bring textual and/or spatial information into atten-
tion module in efficient ways that do not affect
any other module. By doing so, we could enhance
the practicality of transformer-based models while
achieving the needed power of handling long docu-
ments.

In summary, our contributions are as follows. 1)
We motivate the new use of spatial information into
transformer’s attention in a simplistic way, making
it as a plug-able module to any transformer archi-
tectures. 2) We are able to tackle the document un-
derstanding task with input data having up to 4096
words. 3) Experimental results prove the advan-
tages of our approaches on various long-document
datasets in comparison to short models. And finally,
our implementation and pretrained models will be
open to public .

2 Related Work

Transformer Architecture In 2017, Trans-
former was first proposed to replace Seq2Seq
model (Sutskever et al., 2014) in natural language
processing (NLP) (Vaswani et al., 2017). Since
then, transformer has increasingly become a vital
part of deep learning solutions (Tay et al., 2020)
in NLP (Beltagy et al., 2020; Tay et al., 2020; Ki-
taev et al., 2020; Zaheer et al., 2020; Zhang et al.,
2021), computer vision (Parmar et al., 2018; Tay
et al., 2020; Katharopoulos et al., 2020), speech
processing (Katharopoulos et al., 2020), and ge-
nomics (Zaheer et al., 2020). Recently, many new

'Our code is submitted along with this paper in the supple-
mental material and will be made publicly available.

work on transformer focus on addressing its main
drawback of high computational expense, in which
the attention operation takes quadratic time O(n?),
where n is the sequence length.

For example, Longformer (Beltagy et al., 2020)
uses sliding-window or dilated sliding window to
capture only small context of each word and re-
serves only some sparse global connections. Hav-
ing similar high-level idea, ETC (Ainslie et al.,
2020) also embeds relative position to input se-
quences and adds contrastive predictive encoding.
With the same key idea of limiting the global, fully-
connected attentions, BigBird (Zaheer et al., 2020)
optimizes sliding window mode with random con-
nections to make it sparser while not harming the
performance. Likewise, less global and more lo-
cal attentions are learned for higher dimensions to
achieve good results (Parmar et al., 2018). Another
orthogonal approach is to approximate attention
kernels such as substituting softmax with low-rank
kernels (Katharopoulos et al., 2020) or extracting
random, orthogonal features (Choromanski et al.,
2020). Different from the aforementioned methods,
our approach not only reduces the memory con-
sumption by narrowing the attention’s context win-
dow for each single token, but also exploits layout
information flexibly and complements its benefits
with the typical text information when needed.

Multimodal Document Pretraining Docu-
ment understanding largely inherits from the de-
velopment of multimodal pretraining, in which
features of text and vision are learned and fused
together for downstream tasks (Li et al., 2020;
Chen et al., 2020; Luo et al., 2020). In 2020, Lay-
outLM (Xu et al., 2020b) was proposed, which is
the first work to pre-train document layouts along
with other features. Later, LayoutLMv2 (Xu et al.,
2020a) motivated the use of spatial information
into attention by introducing learnable relative bias
terms, which have limited power due to the small
number of parameters added and the shallow level
of attention intervention. On the opposite, our work
brings spatial information to the granular attention
level where the main learnable parameters, namely
query, key and value matrices can all be altered.

Recently, Docformer (Appalaraju et al., 2021)
and StrucuturalLM (Li et al., 2021) were proposed
to address the document learning problem with a
two-pronged approach: introducing new pretrain
tasks as well as make suitable changes to the pro-
cessing or embedding layers. By introducing more

processing layers and do not tackle attention parts,
however, they still suffer from high computational
cost of the attention, the heart of transformer. Prob-
ably Skim-Attention (Nguyen et al., 2021) has the
most related motivation to ours, although we have a
more memory-efficient and faster way of handling
layout information directly from input and not from
after the embedding like theirs.

3 Our Model

In this section, we introduce new components into
the pretrain model to enable it with the capacity of
dealing with long documents effectively and subse-
quently describe those components in the following
subsections.

3.1 Pretrain Model Architecture

Inspired by LayoutLMv1 model (Xu et al., 2020b),
we use the similar Masked Language Modeling
(MLM) pretrain task, in which 80% tokens are
masked with the same [MASK] token, 10% to-
kens are masked randomly and the rest 10% is
unchanged. For embedding layer, we use the same
word embedding, word 1D position embedding
based on words’ positions in the documents and the
2D position embedding based on word-bounding
box alignment.

Different from LayoutLMv1 model, our model
has two targeted designs to deal with long doc-
uments. First, we extend the model capability of
dealing with documents from maximum 512 tokens
to 4096 and beyond. We choose the sliding-window
method, inspired from Beltagy et al. (2020), given
its lightweight and elegance in limiting the con-
text window many times, making it significantly
more memory friendly without sacrificing the per-
formances. The second design is introducing new
spatial-based distance masks in our model. These
new distance masks are different from sliding-
window-based ones, in which the context is strictly
based on neighboring words and therefore cannot
be changed. The following section 3.2 will elab-
orate the establishment and usage of these new
distance masks and comparison with other masks.

It is also worth mentioning that the post-OCR
processing is also important for long documents.
To our best knowledge, all available OCR engines
only produce the bounding box coordinates on
page-level basis, meaning that there is no connec-
tion among the pages in the documents in the OCR-
generated results. For short documents, it is reason-

able to assume that each page typically contains
512 words or less, and hence there is no need to
alter the bounding boxes (except for normalization).
On the contrary in long documents, it is crucially
important to take into account the page sizes and
indices of all pages per document to adjust the
bounding boxes accordingly.

3.2 Different Attention Masks

We observe that the relationship of words follows
not only in the consecutive nature of texts, but also
in the sections organized in the layout organization.
In addition, document understanding largely replies
on the quality of OCR engines. To compensate the
inaccuracies of OCR results, spatial layout infor-
mation is an important complementary information
to the normal textual information. As shown in
Figure 2, spatial information based on bounding
boxes’ coordinates offer a different angle in terms
of relationship, in that many neighbors are different
and beyond the coverage of the fixed-width sliding
window mechanism.

Original Attention Masks In the Trans-
former (Vaswani et al., 2017)-based architecture, in
each single layer, the attention score is calculated
by two main steps, as in Equations (1) and (2):

T
score(Q, K) = softmax (?/I(%) (1)
attn_score(Q, K, V) = score(Q,K) - V, 2)

where Q, K,V stand for the learnable Query,
Key, and Value matrices respectively. Given the
lengths of these three matrices are all N, which is
also the input length, the complexity of each step
is O(NN?). In practice, each transformer model has
many layers. Each layer has a number of heads to
increase the model’s learning capacity with more
parameters. Nonetheless, all of these factors do
not change the given complexity of the attention
computation—the major cost of the whole trans-
former architecture.

Sliding-Window Masks (Figure 2a) We usu-
ally call the aforementioned original attention
mechanism as full attention since each input token
attends to all IV available tokens including itself. In
the sliding-window approach as inspired from Belt-
agy et al. (2020), we limit the context for each
token from the full length of N to M including
M /2 tokens before and M /2 after it (not including
itself) with the assumption that reasonable short
context is sufficient comparable with the full at-
tention while reducing the computational cost. By

doing so, the complexity of Equation (1) and (2) is
reduced to O (N (M + 1)), which significantly de-
creases memory and computation cost, especially
when M << N as we usually choose in practice,
e.g. N =4096, M = 512.

K., = extract_window(K) 3)
QK;,)
score(Q, K) = softmax (4)
Q1 Vi
V., = extract_window(V) Q)
attn_score(Q, K, V) = score(Q, K) - V, (6)

Using that intuition, the calculations are now
changed to Equations (3-6), with the added
extract_window steps in Equations (3) and (5).
The extract_window step essentially reduces
the context for each token from N down to the
window size M, leading to the complexity of Equa-
tions (4) and (6) reduced to O(N (M + 1)) each?.

Sliding-Window plus Random Token Masks
(Figure 2b) Inspired from Zaheer et al. (2020), on
top of sliding windows, we add some more random
tokens with the hope that they will enhance the
power of attention.

K., = extract_blocked_rand_window (K) @)
V., = extract_blocked_rand_window(V) ®)

We make a change to the aforementioned
extract_window procedure. We divide the
original sequence length to blocks (e.g. 512 to
8 equal blocks of length 64), to facilitate grouping
and chunking, as well as to lessen the computa-
tional steps (have much less sliding windows). As
a result, Equations (3) and (4) are now replaced
by (7) and (8). What is more, in these new proce-
dures, some random blocks are also marked on top
of sliding blocked windows.

Spatial-based Distance Masks (Figure 2c) For
each document in our model, we generate a
distance-based attention mask, which shares the
same shape with sliding window (if having the
same number of neighbors). Here, we call the to-
kens within the context for each token as its neigh-
bors. This process comprises of a couple of steps.
First, we identify the center point of all bounding
boxes. Second, we fit the kNN algorithm to the
sequence of those points based on the L2 distance,
which correspond to the sequence of the aligned
words, resulting in a 2D distance matrix. Finally,

2To enable fast calculations in Equations (4) and (6) with
now-changed matrix shapes, one has to extract and chunk the
contexts for all tokens in a way that can exploit fast matrix
multiplication (e.g. by using einsumin pytorch).

we record the neighbor indices for each node and
end up having a N x M matrix, where N is the
number of tokens and M is the number of neigh-
bors.

K., = extract_neighbors(K))
V., = extract_neighbors(V) (10)

These steps are summarized in the same
function extract_neighbors, as shown in
Equations (9) and (10), which replace the
extract_window in Equations (3) and (5). The
rest steps stay the same. Intuitively, equations (9)
and (10) return the identically shaped matrices as
equations (3) and (5). But they use kNN-based spa-
tial contexts based on layout information instead
of textual contexts.

Implementation of Distance Masks In terms
of implementation, there are certain considerations
to enable the use of distance masks, which con-
sumes more memory compared to the normal slid-
ing window mechanism as detailed below.

First, identifying spatial neighbors for each to-
ken usually takes quadratic time, which is a great
deterrent to our solution. So we choose to use
scikit-learn’s kNN library 3 for its well-
regarded efficiency and speed.

Second, "where to create distance masks: in
dataset loader or in model computation” is a key
problem. We choose to create distance masks in
dataset loader for the following reasons. First, the
main obstacle of applying long-document attention
methods to LayoutLM or other document under-
standing models is that these models are inherently
heavy in terms of memory consumption. If place
the quadratic computation for distance mask in the
model phase, the model will be significantly slower
(in proportionate to the document limit length) and
the risk of out-of-memory will be much higher
(given the limitation of GPU memory nowadays).
Second, by preemptively computing the distance
mask in the dataset loader, e.g. using Pytorch Dat-
aloader # and exploiting its data buffering mecha-
nism, the data loading will not be slower by running
multiple loader processes simultaneously.

Finally, for the sliding-window attention mask,
we inherit a well-regarded implementation from
Huggingface 3, considering our base model Lay-
outLMv1 model is based on this framework. Then

3
https://scikit-learn.org/stable/modules/generated/
sklearn.neighbors.KNeighborsClassifier.html

https://pytorch.org/docs/stable/_modules/torch/utils/
data/dataloader.html#DataLoader

5
https://huggingface.co/transformers/model_doc/longformer.
html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader
https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader
https://huggingface.co/transformers/model_doc/longformer.html
https://huggingface.co/transformers/model_doc/longformer.html

(a) SW (b) SW+RAND

Stage 1 Stage 2

(c) DISTANCE (d) DISTANCE+SW

Figure 2: Visualization of our models’ different types of attention mask for real samples from RVL-CDIP
dataset (Harley et al.) with limit length of 2048 and context size 512 (for both textual and spatial cases). Fig 2a
is sliding window (SW), Fig 2b is sliding window in blocks with 1-per-block random blocks(SW+RAND), Fig 2¢
is spatial-based distance mask, and Fig 2d is the combination of sliding window and distance modes (applied to
stage 1 and stage 2 of attention respectively). Legend: Attention mask may only have values of 0 and 1, which are
represented as the light-yellow background and dark-blue foreground colors, respectively.

we implement our distance-based solution on top
of it.

3.3 Pretrain Model Variants

We probe the above four position-aware attention
mechanisms in our new long-document models, as
demonstrated in Figure 2. These attention vari-
ants are used directly for the MLM pretraining
tasks, and subsequently used as the backbone for
downstream tasks (see Section 4). As explained in
Section 3.2, the changes are only made to the atten-
tion module, thus the rest of the MLM architecture
stays the same as in Xu et al. (2020b). Therefore
our approach can be used as an off-the-shelf so-
lution to any transformer architecture, whenever
layout information is available.

SW Model. This model directly uses sliding
window (SW) mode for attention masks, which sig-
nificantly reduces the computation and is shown to
be effective for long documents. Detailed compu-
tation is illustrated in Equations (3-6).

SW+RAND Model. This model uses blocked
sliding windows and some random blocks on top®.
These changes to sliding window appear in Equa-
tions (7) and (8).

DISTANCE Model. In this model, we com-
pletely replace the normal sliding-window attention
mask with our distance-base mask as elaborated in
Equations (3—6), with the notable change that the
spatial neighbors are preemptively computed using
the kNN algorithm in the dataset processing phase.

DISTANCE+SW Model. In this model, we
combine the distance-based and textual attention
masks together in the attention operations. In de-
tail, in the sequential steps in Equations (3-6), we

We use 3 random blocks in our implementation before splitting and
chunking the blocked chunks

replace Equation (3) with Equation (9), making
the first attention step use the distance-based mask
while retaining the second step. These two steps
are independent of each other and both preserve the
logic and matrices’ shapes of the attention module.
Our intuition is to combine both spatial and textual
masks in one single attention pass.

4 Experiments

4.1 Tasks and Datasets

We present the tasks and the associated datasets
used in our experiments, starting from IIT-CDIP
for the model pretraining to the other datasets used
in different downstream tasks and ablation studies.

Pretraining We use IIT-CDIP Test Collection
1.0 7 dataset for our MLM pretraining task. This is
a large scale dataset that has over 6 million multi-
page documents and around 11 million pages in
total (each page is stored as an image). We use the
same OCR engine used in LayoutLM model (Xu
et al., 2020b) to extract the bounding boxes coordi-
nates and other metadata such as page sizes, lines,
etc.

For the MLLM task, we retain most of the settings
of the LayoutLM model with 12-layer Transformer
with 12 attention heads and hidden sizes of 768. In
terms of spatial embedding for bounding boxes, we
scale the bounding boxes for all pages to [0, 1023].
We pretrain the model with four attention mecha-
nisms described in Section 3 using 8 parallel Tesla
V100 GPUs with a combined batch size of 64 and
learning rate 5e-5.

Document Classification For this task, we use
RVL-CDIP (Harley et al.) dataset, which is a sub-
set of the pretraining dataset IIT-CDIP and is de-

7
https://ir.nist.gov/cdip/

https://ir.nist.gov/cdip/

signed for the document classification task. It com-
prises of 16 classes and each class equally has 25K
grayscale images. These total 400K images are
split into 320K images for training and 40K im-
ages each for validation and testing. The document
length distribution of this dataset is shown in Fig-
ure 1.

For this fine-tuning classification model, we
concatenate the output from the pretrained model
before applying the typical softmax-crossentropy
layer. We only finetune for 30 epochs with the
learning rate le-5 and batch size of 32.

Sequence Labeling There are two different
datasets that we use for this task, namely Kleister-
NDA and FunSD.

Kleister-NDA (Gralinski et al, 2020;
Stanistawek et al., 2021)® This dataset is
presented with a task aiming to extract long doc-
uments that contain layout information, which is
closely related to our models. The task associated
with this dataset is to extract values for four given
classes. Kleister-NDA has 540 documents in total
(254 training, 83 validation, and 203 testing) with
2,160 entities annotated and average of 2,540
words per document. Unfortunately, the evaluation
of this dataset provided by the authors requires
post-processing, which is not published yet. We
have to cast this task as an entity-labeling task
in FunSD below and evaluate it with F1 score
for reproducibility purpose. As a result, for this
dataset we report all reproduced results using the
same preprocessing and metric calculation. Finally,
we employ the same OCR engine used in IIT-CDIP
and RVL-CDIP datasets.

FunSD (Guillaume Jaume, 2019)° This is a
lightweight dataset that consists of noisy scanned
documents and is designed for form understanding
task with 7 different classes. It has 199 scanned
forms that contain more than 31K words and 9.7K
entities and 5.3K relations in combination. Al-
though FunSD can hardly be considered as a long-
document dataset (each single document only has
less than 512 words), it is still useful for our abla-
tion studies to compare state-of-the-art models that
employed this dataset (see Section 4.4).

4.2 Baselines

As usual, we use downstream tasks to evaluate and
compare our 4 model variants (see Figure 2) with
the following baselines:

8
https://github.com/applicaai/kleister-nda
9https://guillaumejaume.github.io/FUNSD

Type Model SeqLen Acc (%) 1
BERT-base 512 89.81
RoBERTa-base 512 90.06
BERT-large 512 89.92

Text RoBERTa-large 512 90.11
Bigbird-base 4096 93.48
Longformer-base 4096 93.85
Bigbird-large 4096 93.34
Longformer-large 4096 93.73
LayoutLM-base 512 91.88
LayoutLM-large 512 91.90

Text+Layout Ours SW 4096 94.50
Ours SW+RAND 4096 95.25
Ours DISTANCE 4096 94.79
Ours DISTANCE+SW 4096 94.69

Table 1: Classification accuracy for RVL-CDIP. For

this long-document dataset, the models capable of us-
ing 4096 words uniformly beat other models and layout
information helps with the task compared with using
Text input. All our long models show their advantages
on this long dataset.

Text: This group consists of the traditional mod-
els which only accept text input with maximum
length of 512 including BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), and other long mod-
els including Bigbird (Zaheer et al., 2020) and
Longformer (Beltagy et al., 2020), which can sup-
port longer documents (we pretrain them up to the
length 4096).

Text+Layout: This group contains models that
accept both text and layout information, including
LayoutLM (Xu et al., 2020b) that accepts only 512
words per document.

An important note is that our target is to tackle
long documents, in which computational cost of
processing and memory is the main obstacle, even
for the “base” versions (typically the “large” coun-
terparts would have at least about 2X-3X number of
parameters, and hence much more memory inten-
sive). To make fair comparisons and make our mod-
els more practical, we only compare with the large
models (i.e. the ones capable of dealing documents
with length 4096) using only “base” versions.

4.3 Results and Discussions

Document Classification As shown in Table 1,
for this long-document dataset, long models (ones
that accept long input to 4096 tokens) clearly out-
perform short models in both baseline groups and
our models, with or without layout information
added to the input.

From these results, We find two meaningful ob-
servations. First, long documents have useful in-
formation spanned across document. Second, our

https://github.com/applicaai/kleister-nda
https://guillaumejaume.github.io/FUNSD

Type Model Seqlen F1 1
BERT-base 512 47.06
Text BERT-large 512 52.66
Longformer-base 4096 61.78
Bigbird-base 4096 46.98
LayoutLM-base 512 55.69
LayoutL.M-large 512 61.95

Text+Layout Ours SW 4096 64.06
Ours SW+RAND 4096 58.92

Ours DISTANCE 4096 57.01

Ours DISTANCE+SW 4096 44.70

Table 2: Results on Kleister-NDA dataset (validation
split) with entity-labeling performance. Although this
dataset is very challenging, the long models still show
the advantages over the short ones.

models show advantages over others with the capa-
bility of absorbing and processing long documents.
Therefore, our models are more practical in dealing
with real-world data, which usually have more text
than only 512 words.

Sequence Labeling The results are shown in
Table 2, which is based on the validation split since
there is no annotation for the test split. Compared
with other reported results (e.g in (Xu et al., 2020a;
Appalaraju et al., 2021)), our reproduced results are
much lower, posing this task is a challenging one
(it has decoyed texts that have no associated labels).
Comparing the “base” versions, our models still
clearly show advantages over the baselines. In par-
ticular, our SW model achieves the highest scores
by employing 4096 tokens as well as combining
text and layout information.

Furthermore, we find that our DISTANCE+SW
are outperformed by other models. One possible
reason is that the OCR engine couldn’t understand
the decoying annotation. Consequently, it gener-
ates the normal OCR results that do not correlate
with the text.

4.4 Ablation: Long Models on Short Dataset

Table 3 shows that on FunSD (a small and short doc-
ument dataset), long models do not perform well
compared to short models. However, we still ob-
serve that layout information generally helps with
the task. The main reason is that long models es-
sentially have much more parameters. 1000-step
fine-tuning with only 199 samples can hardly tune
parameters well.

Especially, when long models are forced to have
most input as padding (e.g. 512 words + 3584 pad
tokens), it makes fine-tuning more difficult. Even
if we reduce the maximum input length to 512, the

Type Model Seqlen F1 7
BERT-base 512 60.3
RoBERTa-base 512 66.5
BERT-large 512 65.6

Text RoBERTa-large 512 70.7
Bigbird-base 4096 45.8
Longformer-base 4096 T71.4
Bigbird-large 4096 46.8
Longformer-large 4096 73.5
LayoutLM-base 512 78.7
LayoutL.M-large 512 79.0
Ours SW 4096 69.9

Text+Layout Ours SW+RAND 4096 77.1
Ours DISTANCE 4096 64.0

Ours DISTANCE+SW 4096 61.8

Table 3: Comparison on FunSD dataset. As usual, lay-
out information is helpful in boosting the performance
given text. However, long models do not perform well
compared with short models on this short-document
dataset.

final results for long models do not change much.
One of the main reasons is that long models have
their embedding trained for 4096 tokens, and hence
making it to be fine-tuned for only 512 tokens for
a few steps generally does not work well.

In the next ablation studies, we explore the im-
plications of the newly added spatial information
into attention in our models as compared with some
baselines.

4.5 Ablation: Different-Length Documents

In this study, we keep all documents intact and
categorize them based on their original lengths.
The purpose is to explore how the models work
if we do not cut any information from document
based on the capacity limit of the models and take
all possible available information in each document.
This analysis offers a different perspective from the
setting in Section 4.6, where we do not respect the
input and have to purge the excesses to make them
compatible with the model. As a result, for 40K test
samples in RVL-CDIP dataset, we only have 9268
samples having lengths > 512, and 2312 samples
with lengths > 1024, and only 106 samples with
lengths > 2048. Note that by this grouping method,
the latter group is a subset of the immediate former
one, e.g. the group with 106 samples is a subset of
the group with 2312 samples.

As shown in Figure 3, the consistent observa-
tion is that our models perform worse when the
original document length increases, although the
differences are not significant. There could be sev-
eral possible reasons for this behavior: the mod-
els are not well pretrained and/or fine-tuned; the

SeqLen: &> 512

LayoutLM-Large Ours DISTANCE Ours DISTANCE+SW

>1024 ®=>2048

ACCURACY (%) _
[\ N N [e] o
(=) (=) S (=)

(=}

S

Figure 3: RVL-CDIP performance on different doc-
uments types based on their original lengths (i.e.
without purging) using LayoutLM (with the best
“large” version) and our models (DISTANCE and Dis-
TANCE+SW). Our models clearly outperform Lay-
outLM models in all categories.

long documents have lots of contents and many
of which confuse the classifier; or there are many
noises from OCR results.

4.6 Ablation: Different Max Input Lengths

Given the pretrained models that can accept input
up to 4096 tokens, we finetune them with input
of different maximum lengths (max_1len) . Like-
wise, if a document has the content longer than
max_len, the extended part will be purged. As a
result, in RVL-CDIP dataset, all 40K test samples
stay the same for each test case.

As shown in Figure 4, our models show big-
ger power if we allow it to absorb more and more
tokens from input. It matches with our intuition
that for long documents, all parts contain useful
information. We should not limit document lengths
to 512 tokens, which unfortunately is a standard
setting in many current document understanding
models.

4.7 Further Discussion on Distance Masks

As seen in the above experimental results, direct
usage of 2D layout context information into the
transformer’s attention has some advantages over
the baselines. However, its performance does not
match with the typical usage of 1D textual infor-
mation. This might be discouraging at first since
introducing spatial information brings two compli-
cations: heavy computation of 2D data preprocess-
ing with kNN process and its obstacle to speed up.
Consequently, for the accuracy-speed tradeoff, we
limit the distance-based context to 128 (compared
with 512 in textual contexts), which also makes the
distance-based models suffer.

We hypothesize the drawbacks are due to some

96
—@®— Ours DISTANCE+SW
,?95— Ours DISTANCE 94.79
S 469
794 93.81
= 9314
893'
O
<ﬂ92,
of.
Msin 1024 2048 4096
MAX LENGTH
Figure 4: RVL-CDIP performances on different

maximum lengths using our DISTANCE and Dis-
TANCE+SW models. For each case of lengths 512,
1024, 2048 and 4096, the test set contains the same 40K
samples. Longer maximum length gives better results.

objective limitations. First, the performance of the
whole pipeline heavily depends on the quality of
the OCR pre-processing. In all datasets being used,
texts/words are the ground-truth but the bounding
boxes and their alignments with the text are made
possible by those OCR engines. Second, we trade
the accuracy of kNN sometimes for speed of pro-
cessing 2D data. Finally, with a decoying design
as in Kleister-NDA (Section 4.3), in particular, the
OCR results are even less aligned with text. Conse-
quently, we also conjecture that with further devel-
opment in OCR technologies, the use of distance
masks and layout information in general would be
much more helpful in practice.

5 Conclusion and Discussion

We propose a versatile solution for document un-
derstanding task, in which the layout information
can either replace or incorporate with the textual
information for attention modules in a flexibly plug-
gable manner. Our solution has shown promising
results on long document understanding tasks.

In our future work, we will further reduce mem-
ory consumption of these transformer-based mod-
els with heavy multimodal input. We will also
spend effort to improve the speed of pretraining.
Similar to LayoutLM (Xu et al., 2020b), pretrain-
ing of these models usually takes 80 hours to finish
1 epoch using 8 parallel V100 expensive GPUs,
each of which has 32GB of memory. There are
still a lot of room for improvement to make these
models more efficient and practical.

References

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. Etc: Encoding long and structured inputs
in transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 268-284.

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala
Kota, Yusheng Xie, and R Manmatha. 2021. Doc-
former: End-to-end transformer for document under-
standing. arXiv preprint arXiv:2106.11539.

Tadas BaltruSaitis, Chaitanya Ahuja, and Louis-
Philippe Morency. 2018. Multimodal machine learn-
ing: A survey and taxonomy. [EEE transac-
tions on pattern analysis and machine intelligence,

41(2):423-443.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. Uniter: Universal image-text
representation learning. In European Conference on
Computer Vision, pages 104—120. Springer.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jonathan Frankle and Michael Carbin. 2018. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks. arXiv preprint arXiv:1803.03635.

Filip Graliniski, Tomasz Stanistawek, Anna
Wréblewska, Dawid Lipiriski, Agnieszka Kaliska,
Paulina Rosalska, Bartosz Topolski, and Prze-
mystaw Biecek. 2020. Kleister: A novel task
for information extraction involving long doc-
uments with complex layout. arXiv preprint
arXiv:2003.02356.

Jean-Philippe Thiran Guillaume Jaume, Hazim Ke-
mal Ekenel. 2019. Funsd: A dataset for form under-
standing in noisy scanned documents. In Accepted
to ICDAR-OST.

Adam W Harley, Alex Ufkes, and Konstantinos G Der-
panis. Evaluation of deep convolutional nets for doc-
ument image classification and retrieval. In Interna-

tional Conference on Document Analysis and Recog-
nition (ICDAR).

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International Conference on Machine

Learning, pages 5156-5165. PMLR.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Song-
fang Huang, Fei Huang, and Luo Si. 2021. Struc-
turallm: Structural pre-training for form understand-
ing. arXiv preprint arXiv:2105.11210.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xi-
aowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision,
pages 121-137. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan
Duan, Tianrui Li, Xilin Chen, and Ming Zhou. 2020.
Univilm: A unified video and language pre-training
model for multimodal understanding and generation.
arXiv preprint arXiv:2002.06353.

Laura Nguyen, Thomas Scialom, Jacopo Staiano,
and Benjamin Piwowarski. 2021. Skim-attention:
Learning to focus via document layout. arXiv
preprint arXiv:2109.01078.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. In International
Conference on Machine Learning, pages 4055-4064.
PMLR.

Tomasz Stanistawek, Filip Gralinski, Anna
Wréblewska, Dawid Lipifiski, Agnieszka Kaliska,
Paulina Rosalska, Bartosz Topolski, and Prze-
mystaw Biecek. 2021. Kleister: Key information
extraction datasets involving long documents with
complex layouts. arXiv preprint arXiv:2105.05796.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
arXiv preprint arXiv:1409.3215.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. 2021. Training data-efficient image trans-
formers & distillation through attention. In Infer-
national Conference on Machine Learning, pages

10347-10357. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, et al. 2020a. Layoutlmv2:
Multi-modal pre-training for visually-rich document
understanding. arXiv preprint arXiv:2012.14740.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang,
Furu Wei, and Ming Zhou. 2020b. Layoutlm: Pre-
training of text and layout for document image
understanding. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1192—-1200.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big bird: Transformers for longer se-
quences. arXiv preprint arXiv:2007.14062.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li,
Jiancheng Lv, Nan Duan, and Weizhu Chen. 2021.
Poolingformer: Long document modeling with pool-
ing attention. arXiv preprint arXiv:2105.04371.

10

Parameter Name Value
do_lower_case true
fp16 true
fp16_backend amp
gradient_accumulation_steps 4
max_seq_length 4096
max_2d_position_embeddings 1024
max_steps 1000000

model_name_or_path

dataloader_num_workers 64

tasks mask_Im
optimizer transformers_AdamW
learning_rate Se-5
warmup_ratio 0.1
weight_decay 0.01
whole_word_masking false
add_prefix_space true
attention_window 512

allenai/longformer-base-4096

Table 4: Main pretrain hyperpameters on the MLM
pretraining task for the ITT-CDIP large-scale dataset.
There are 3 variants share this set of parameters that are
Ours SW, Ours DISTANCE and Ours DISTANCE+SW
models. All of them use the pretrained weights from
Longformer-base (Beltagy et al., 2020) model.

A More Information on the Pretrain
Task

Pretrain Data Preprocessing As described, for
pretrain model we retain the same OCR engine for
generating and aligning layout and text information
from LayoutLM (Xu et al., 2020b). The task is also
the same, which is Masked Language Modeling
(MLM). To deal with long documents, we have to
implement the additional sliding-window, random-
block and distance-based masks.

Pretrain Model Implementation Our solution
only makes changes to the attention module, in
which uses can choose to use any types of attention
masks from the 4 variants illustrated in Figure 2.

For the SW and SW+RAND models which are
also our new pretrain models, we implement the
layout-related part on top of the original BigBird '°
and Longformer !! implementations from Hugging-
face’s transformers, respectively. Otherwise the
distance-based masks, which are employed in DISs-
TANCE and DISTANCE+SW models, are newly
implemented as a pluggable module.

Training MLM We pre-train the task on the
IIT-CDIP datasets, using a single-node multi-GPU
mode. Each job was run on a server with 8§ V100

lohttps://huggingface.co/transformers/modelfdoc/bigbird.

html

11
https://huggingface.co/transformers/model_doc/longformer.

html

11

Nvidia GPUs, each of which has 32GB memory
and fast processors. For text-only models, please
refer to LayoutLM’s github 2.

For SW model, we use the public pretrained
weights from Lomgformer (Beltagy et al., 2020).
Other of our models employ the same set of pa-
rameters, except for the pretrained weights, in
which SW+RAND model uses the weights from
Bigbird (Zaheer et al., 2020) and the last two
models having distance masks (DISTANCE and
DISTANCE+SW models) use the same pretrained
weights as SW model, as demonstrated in Table 4.

It is also worth noting that the pretrained weights
from Longformer and Bigbird models are useful
even for the models using distance masks because
those two model families support documents with
length 4096, so the position embeddings are help-
ful. For speed and memory tradeoff, we limit the
context for distance masks to only 128 (vs. 512 in
textual contexts), without sacrificing much perfor-
mances, as reported in Section 4.3.

Training Notes Although not reported in the
main content, we note some lessons learned from
the pretraining task. As we observe, the Ours SW
model consistently achieves the best results, while
consuming the least GPU memory. For the base
model, it only consumes about 7 GB GPU mem-
ory and Ours DISTANCE+SW that uses sliding-
window attention on its half processing also con-
sumes about 9 GB memory. Both models, as a
result, can be deployed well on a broad range of
GPUs in the market.

Unlike those conveniences, Ours SW+RAND
and Ours DISTANCE do not share the same ad-
vantages. In fact, they consumes about more than
30GB GPU memory each, limiting their practi-
cality. We hypothesize the main reason for such
drawbacks is that they have random, inconsistent
patterns, and hence there is no efficient way to take
advantage of fast memory-efficient and fast matrix
operations.

Finally, although showing promising practical
behaviors, all baselines and our models, and al-
most any transformer-based ones are certainly not
lightweight models. And although there are ad-
vancements in compressing those heavy models
(e.g. (Touvron et al., 2021; Frankle and Carbin,
2018), there seems to be a considerable way to go
for making these model run on mobile devices in
the near future.

12
https://github.com/microsoft/unilm

https://huggingface.co/transformers/model_doc/bigbird.html
https://huggingface.co/transformers/model_doc/bigbird.html
https://huggingface.co/transformers/model_doc/longformer.html
https://huggingface.co/transformers/model_doc/longformer.html
https://github.com/microsoft/unilm

B More information on Finetuning Tasks

As described in the main content, after pretraining,
the saved models are the backbone for the respec-
tive fine-tuning model types. For that reason, the
parameters are mostly shared with their pretrain
counter-part models, e.g. Table 4 for Ours SW
models. Generally, we keep the same optimizer
and batch size of 32 (combined across all used
parallel GPUs).

For RVL-CDIP in the document classification
task, we use the SequenceClassification
model type. On top of the pretrain skeleton, we
add a small classifier with 2 fully-connected layers
and a drop-out layer in between. The final output is
the single class for the whole sequence/document.

For FunSD and Kleister-NDA datasets, we in-
stead use the TokenClassification model
type, which is designed to classify all-document
entities. The similar classifier is added to the pre-
trained skeleton, now with a different usage in
which each token/entity is to be classified into 1 of
the number of given classes.

What’s more, to preprocess these two datasets,
we have to ingest all available document tokens.
Likewise, with documents longer than the maxi-
mum lengths, we need to cut those documents, and
recursively treat the overflowing parts in the same
way. In terms of implementation, unlike FunSD
that is lightweight, we always want to avoid loading
the whole dataset into the memory but rather take
advantage of the data buffering in feeding to the
models. As a result, we pre-process all data first,
save them to disks and only load the respective
parts when needed.

Additional Information for Kleister-NDA It
is worth recalling that the evaluation of it is tricky
if using the provided official GEval evaluation
script (Gralifiski et al., 2020)'3. In detail, given
the predited tokens, one has to retrieve the associ-
ated texts in a group. For example, the beginning
of an entity group usually starts with a class begin-
ning with "B-", followed by a series of "I-" tokens.
However, there is no guarantee that the prediction
will always return a group having this meaningful
pattern, let alone many other complicated cases
that can happen. Such complications make the
post-processing of the prediction— before feeding
to GEval—very difficult and importantly, not easily
reproducible. In fact, amongst recent papers that
report performance on this dataset (e.g. in Xu

13
https://github.com/applicaai/kleister-nda

12

Figure 5: More distance masks from RVL-CDIP sam-
ples with the limit length of 2048 and 512 neighbors
each.

et al. (2020a); Appalaraju et al. (2021)), there is no
published code provided.

Consequently, we treat this dataset the same as
FunSD, given their similarity in annotations. In
addition, because this dataset is larger and much
more difficult (due to decoying texts) compared to
FunSD, we analyze the train dataset and employ the
weighted loss based on the distribution the given
labels. As a result, our method is more transparent
and reproducible.

C Additional Samples on Distance Masks

Complementary to Figures 2¢ and 2d, we present
some more distance masks based on real samples
taken from RVL-CDIP with the same setting in
Figure 5.

https://github.com/applicaai/kleister-nda

