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Abstract

Long document understanding is a challeng-001
ing problem in natural language understand-002
ing. Most current transformer-based models003
only employ textual information for attention004
calculation due to high computation limit. To005
address those issues for long document un-006
derstanding, we explore new approaches us-007
ing different position-aware attention masks008
and investigate their performance on different009
benchmarks. Experimental results show that010
our models have the advantages on long doc-011
ument understanding based on various eval-012
uation metrics. Furthermore, our approach013
makes changes only to the attention module014
in the transformer and thus can be flexibly de-015
tached and plugged into any other transformer-016
based solutions with ease.017

1 Introduction018

Despite the rapid advancements in deep learning,019

particularly in the fields of computer vision and020

natural language processing, the tasks of under-021

standing multimodal data, e.g. vision-language022

tasks incorporating scene text or multimodal na-023

ture language understanding, have not been fully024

developed with the same pace. It is due to several025

inherent challenges (Baltrušaitis et al., 2018). First,026

efficient feature encoding and extraction for each027

modality is difficult. Second, data always contain028

both text and visual information and the alignment029

between them is not easy, for example between text030

and audio or video. And the final challenge is the031

intricate obstacle of how to fuse all modalities of032

different formats for the tasks’ objective.033

Sharing the same challenges with multimodal034

data, however, recent years have witnessed many035

developments in the new task of document under-036

standing (or in some contexts known as document037

intelligence). Most of them are largely benefited038

from the fast development of transformer architec-039

tures (Tay et al., 2020). Nonetheless, transformer040

Figure 1: Distribution of document lengths in RVL-
CDIP dataset (Harley et al.), a subset of IIT-CDIP used
predominantly in the document understanding pretrain
task–and in all of our models. While most current mod-
els limit the document lengths to maximum 512 tokens
because of memory and computational issues, most of
documents in this datasets have a much longer lengths,
posing the necessity for a model capable of processing
longer documents.

suffers from quadratic computation of attention 041

mechanism, the heart of its architecture, in the face 042

of its well-proven power across diverse tasks. 043

Apart from computation issues, dealing with 044

long documents in the context of document un- 045

derstanding requires a linking mechanism between 046

information across pages/segments in terms of both 047

text and spatial information. Given the lengths 048

of long documents as illustrated in Figure 1, it 049

is reasonable to assume that useful information 050

is spanned across their lengths. Likewise, most 051

current document understanding models are short 052

models, such as LayoutLM (Xu et al., 2020b,a), 053

which limit the document length to only 512 words 054

and thus discard lots of useful information. 055

In natural language processing, there have been 056

some recent work to reduce this cost by sparsifying 057

the attention matrix with predefined sliding win- 058

dows, such as Longformer (Beltagy et al., 2020), 059

BigBird (Zaheer et al., 2020) or ETC (Ainslie 060

et al., 2020). These models push the limit of doc- 061
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ument length from 512 to 4096 words with opti-062

mized memory and computation costs. Further-063

more, some other recent attempts, e.g. in Nguyen064

et al. (2021), have not been successful in processing065

long documents that are longer than 2048, partly066

because they add another small transformer mod-067

ule, which consumes many resources on top of the068

current transformer infrastructure.069

In this paper, we explore new approaches us-070

ing different position-aware attention masks and071

investigate their performances on long document072

understanding. Unlike those attempts to introduce073

new pretraining tasks to enforce better representa-074

tion learning, or new complicated infrastructures075

into the already-heavy transformer architectures,076

e.g. (Appalaraju et al., 2021), our motivation is077

to firstly retain most of the simplistic architecture078

of LayoutLM (Xu et al., 2020b) and then flexibly079

bring textual and/or spatial information into atten-080

tion module in efficient ways that do not affect081

any other module. By doing so, we could enhance082

the practicality of transformer-based models while083

achieving the needed power of handling long docu-084

ments.085

In summary, our contributions are as follows. 1)086

We motivate the new use of spatial information into087

transformer’s attention in a simplistic way, making088

it as a plug-able module to any transformer archi-089

tectures. 2) We are able to tackle the document un-090

derstanding task with input data having up to 4096091

words. 3) Experimental results prove the advan-092

tages of our approaches on various long-document093

datasets in comparison to short models. And finally,094

our implementation and pretrained models will be095

open to public 1.096

2 Related Work097

Transformer Architecture In 2017, Trans-098

former was first proposed to replace Seq2Seq099

model (Sutskever et al., 2014) in natural language100

processing (NLP) (Vaswani et al., 2017). Since101

then, transformer has increasingly become a vital102

part of deep learning solutions (Tay et al., 2020)103

in NLP (Beltagy et al., 2020; Tay et al., 2020; Ki-104

taev et al., 2020; Zaheer et al., 2020; Zhang et al.,105

2021), computer vision (Parmar et al., 2018; Tay106

et al., 2020; Katharopoulos et al., 2020), speech107

processing (Katharopoulos et al., 2020), and ge-108

nomics (Zaheer et al., 2020). Recently, many new109

1Our code is submitted along with this paper in the supple-
mental material and will be made publicly available.

work on transformer focus on addressing its main 110

drawback of high computational expense, in which 111

the attention operation takes quadratic time O(n2), 112

where n is the sequence length. 113

For example, Longformer (Beltagy et al., 2020) 114

uses sliding-window or dilated sliding window to 115

capture only small context of each word and re- 116

serves only some sparse global connections. Hav- 117

ing similar high-level idea, ETC (Ainslie et al., 118

2020) also embeds relative position to input se- 119

quences and adds contrastive predictive encoding. 120

With the same key idea of limiting the global, fully- 121

connected attentions, BigBird (Zaheer et al., 2020) 122

optimizes sliding window mode with random con- 123

nections to make it sparser while not harming the 124

performance. Likewise, less global and more lo- 125

cal attentions are learned for higher dimensions to 126

achieve good results (Parmar et al., 2018). Another 127

orthogonal approach is to approximate attention 128

kernels such as substituting softmax with low-rank 129

kernels (Katharopoulos et al., 2020) or extracting 130

random, orthogonal features (Choromanski et al., 131

2020). Different from the aforementioned methods, 132

our approach not only reduces the memory con- 133

sumption by narrowing the attention’s context win- 134

dow for each single token, but also exploits layout 135

information flexibly and complements its benefits 136

with the typical text information when needed. 137

Multimodal Document Pretraining Docu- 138

ment understanding largely inherits from the de- 139

velopment of multimodal pretraining, in which 140

features of text and vision are learned and fused 141

together for downstream tasks (Li et al., 2020; 142

Chen et al., 2020; Luo et al., 2020). In 2020, Lay- 143

outLM (Xu et al., 2020b) was proposed, which is 144

the first work to pre-train document layouts along 145

with other features. Later, LayoutLMv2 (Xu et al., 146

2020a) motivated the use of spatial information 147

into attention by introducing learnable relative bias 148

terms, which have limited power due to the small 149

number of parameters added and the shallow level 150

of attention intervention. On the opposite, our work 151

brings spatial information to the granular attention 152

level where the main learnable parameters, namely 153

query, key and value matrices can all be altered. 154

Recently, Docformer (Appalaraju et al., 2021) 155

and StrucuturalLM (Li et al., 2021) were proposed 156

to address the document learning problem with a 157

two-pronged approach: introducing new pretrain 158

tasks as well as make suitable changes to the pro- 159

cessing or embedding layers. By introducing more 160
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processing layers and do not tackle attention parts,161

however, they still suffer from high computational162

cost of the attention, the heart of transformer. Prob-163

ably Skim-Attention (Nguyen et al., 2021) has the164

most related motivation to ours, although we have a165

more memory-efficient and faster way of handling166

layout information directly from input and not from167

after the embedding like theirs.168

3 Our Model169

In this section, we introduce new components into170

the pretrain model to enable it with the capacity of171

dealing with long documents effectively and subse-172

quently describe those components in the following173

subsections.174

3.1 Pretrain Model Architecture175

Inspired by LayoutLMv1 model (Xu et al., 2020b),176

we use the similar Masked Language Modeling177

(MLM) pretrain task, in which 80% tokens are178

masked with the same [MASK] token, 10% to-179

kens are masked randomly and the rest 10% is180

unchanged. For embedding layer, we use the same181

word embedding, word 1D position embedding182

based on words’ positions in the documents and the183

2D position embedding based on word-bounding184

box alignment.185

Different from LayoutLMv1 model, our model186

has two targeted designs to deal with long doc-187

uments. First, we extend the model capability of188

dealing with documents from maximum 512 tokens189

to 4096 and beyond. We choose the sliding-window190

method, inspired from Beltagy et al. (2020), given191

its lightweight and elegance in limiting the con-192

text window many times, making it significantly193

more memory friendly without sacrificing the per-194

formances. The second design is introducing new195

spatial-based distance masks in our model. These196

new distance masks are different from sliding-197

window-based ones, in which the context is strictly198

based on neighboring words and therefore cannot199

be changed. The following section 3.2 will elab-200

orate the establishment and usage of these new201

distance masks and comparison with other masks.202

It is also worth mentioning that the post-OCR203

processing is also important for long documents.204

To our best knowledge, all available OCR engines205

only produce the bounding box coordinates on206

page-level basis, meaning that there is no connec-207

tion among the pages in the documents in the OCR-208

generated results. For short documents, it is reason-209

able to assume that each page typically contains 210

512 words or less, and hence there is no need to 211

alter the bounding boxes (except for normalization). 212

On the contrary in long documents, it is crucially 213

important to take into account the page sizes and 214

indices of all pages per document to adjust the 215

bounding boxes accordingly. 216

3.2 Different Attention Masks 217

We observe that the relationship of words follows 218

not only in the consecutive nature of texts, but also 219

in the sections organized in the layout organization. 220

In addition, document understanding largely replies 221

on the quality of OCR engines. To compensate the 222

inaccuracies of OCR results, spatial layout infor- 223

mation is an important complementary information 224

to the normal textual information. As shown in 225

Figure 2, spatial information based on bounding 226

boxes’ coordinates offer a different angle in terms 227

of relationship, in that many neighbors are different 228

and beyond the coverage of the fixed-width sliding 229

window mechanism. 230

Original Attention Masks In the Trans- 231

former (Vaswani et al., 2017)-based architecture, in 232

each single layer, the attention score is calculated 233

by two main steps, as in Equations (1) and (2): 234

score(Q,K) = softmax
(
QKT

√
dk

)
(1) 235

attn_score(Q,K,V) = score(Q,K) ·V, (2) 236

where Q,K,V stand for the learnable Query, 237

Key, and Value matrices respectively. Given the 238

lengths of these three matrices are all N , which is 239

also the input length, the complexity of each step 240

is O(N2). In practice, each transformer model has 241

many layers. Each layer has a number of heads to 242

increase the model’s learning capacity with more 243

parameters. Nonetheless, all of these factors do 244

not change the given complexity of the attention 245

computation–the major cost of the whole trans- 246

former architecture. 247

Sliding-Window Masks (Figure 2a) We usu- 248

ally call the aforementioned original attention 249

mechanism as full attention since each input token 250

attends to all N available tokens including itself. In 251

the sliding-window approach as inspired from Belt- 252

agy et al. (2020), we limit the context for each 253

token from the full length of N to M including 254

M/2 tokens before and M/2 after it (not including 255

itself) with the assumption that reasonable short 256

context is sufficient comparable with the full at- 257

tention while reducing the computational cost. By 258
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doing so, the complexity of Equation (1) and (2) is259

reduced to O (N(M + 1)), which significantly de-260

creases memory and computation cost, especially261

when M << N as we usually choose in practice,262

e.g. N = 4096,M = 512.263

Kw = extract_window(K) (3)264

score(Q,K) = softmax
(
QKT

w√
dk

)
(4)265

Vw = extract_window(V) (5)266

attn_score(Q,K,V) = score(Q,K) ·Vw (6)267

Using that intuition, the calculations are now268

changed to Equations (3–6), with the added269

extract_window steps in Equations (3) and (5).270

The extract_window step essentially reduces271

the context for each token from N down to the272

window size M , leading to the complexity of Equa-273

tions (4) and (6) reduced to O(N(M + 1)) each2.274

Sliding-Window plus Random Token Masks275

(Figure 2b) Inspired from Zaheer et al. (2020), on276

top of sliding windows, we add some more random277

tokens with the hope that they will enhance the278

power of attention.279

Kw = extract_blocked_rand_window(K) (7)280

Vw = extract_blocked_rand_window(V) (8)281

We make a change to the aforementioned282

extract_window procedure. We divide the283

original sequence length to blocks (e.g. 512 to284

8 equal blocks of length 64), to facilitate grouping285

and chunking, as well as to lessen the computa-286

tional steps (have much less sliding windows). As287

a result, Equations (3) and (4) are now replaced288

by (7) and (8). What is more, in these new proce-289

dures, some random blocks are also marked on top290

of sliding blocked windows.291

Spatial-based Distance Masks (Figure 2c) For292

each document in our model, we generate a293

distance-based attention mask, which shares the294

same shape with sliding window (if having the295

same number of neighbors). Here, we call the to-296

kens within the context for each token as its neigh-297

bors. This process comprises of a couple of steps.298

First, we identify the center point of all bounding299

boxes. Second, we fit the kNN algorithm to the300

sequence of those points based on the L2 distance,301

which correspond to the sequence of the aligned302

words, resulting in a 2D distance matrix. Finally,303

2To enable fast calculations in Equations (4) and (6) with
now-changed matrix shapes, one has to extract and chunk the
contexts for all tokens in a way that can exploit fast matrix
multiplication (e.g. by using einsum in pytorch).

we record the neighbor indices for each node and 304

end up having a N ×M matrix, where N is the 305

number of tokens and M is the number of neigh- 306

bors. 307

Kw = extract_neighbors(K) (9) 308

Vw = extract_neighbors(V) (10) 309

These steps are summarized in the same 310

function extract_neighbors, as shown in 311

Equations (9) and (10), which replace the 312

extract_window in Equations (3) and (5). The 313

rest steps stay the same. Intuitively, equations (9) 314

and (10) return the identically shaped matrices as 315

equations (3) and (5). But they use kNN-based spa- 316

tial contexts based on layout information instead 317

of textual contexts. 318

Implementation of Distance Masks In terms 319

of implementation, there are certain considerations 320

to enable the use of distance masks, which con- 321

sumes more memory compared to the normal slid- 322

ing window mechanism as detailed below. 323

First, identifying spatial neighbors for each to- 324

ken usually takes quadratic time, which is a great 325

deterrent to our solution. So we choose to use 326

scikit-learn’s kNN library 3 for its well- 327

regarded efficiency and speed. 328

Second, "where to create distance masks: in 329

dataset loader or in model computation" is a key 330

problem. We choose to create distance masks in 331

dataset loader for the following reasons. First, the 332

main obstacle of applying long-document attention 333

methods to LayoutLM or other document under- 334

standing models is that these models are inherently 335

heavy in terms of memory consumption. If place 336

the quadratic computation for distance mask in the 337

model phase, the model will be significantly slower 338

(in proportionate to the document limit length) and 339

the risk of out-of-memory will be much higher 340

(given the limitation of GPU memory nowadays). 341

Second, by preemptively computing the distance 342

mask in the dataset loader, e.g. using Pytorch Dat- 343

aloader 4 and exploiting its data buffering mecha- 344

nism, the data loading will not be slower by running 345

multiple loader processes simultaneously. 346

Finally, for the sliding-window attention mask, 347

we inherit a well-regarded implementation from 348

Huggingface 5, considering our base model Lay- 349

outLMv1 model is based on this framework. Then 350
3
https://scikit-learn.org/stable/modules/generated/

sklearn.neighbors.KNeighborsClassifier.html
4
https://pytorch.org/docs/stable/_modules/torch/utils/

data/dataloader.html#DataLoader
5
https://huggingface.co/transformers/model_doc/longformer.

html

4

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader
https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader
https://huggingface.co/transformers/model_doc/longformer.html
https://huggingface.co/transformers/model_doc/longformer.html


(a) SW (b) SW+RAND (c) DISTANCE (d) DISTANCE+SW

Figure 2: Visualization of our models’ different types of attention mask for real samples from RVL-CDIP
dataset (Harley et al.) with limit length of 2048 and context size 512 (for both textual and spatial cases). Fig 2a
is sliding window (SW), Fig 2b is sliding window in blocks with 1-per-block random blocks(SW+RAND), Fig 2c
is spatial-based distance mask, and Fig 2d is the combination of sliding window and distance modes (applied to
stage 1 and stage 2 of attention respectively). Legend: Attention mask may only have values of 0 and 1, which are
represented as the light-yellow background and dark-blue foreground colors, respectively.

we implement our distance-based solution on top351

of it.352

3.3 Pretrain Model Variants353

We probe the above four position-aware attention354

mechanisms in our new long-document models, as355

demonstrated in Figure 2. These attention vari-356

ants are used directly for the MLM pretraining357

tasks, and subsequently used as the backbone for358

downstream tasks (see Section 4). As explained in359

Section 3.2, the changes are only made to the atten-360

tion module, thus the rest of the MLM architecture361

stays the same as in Xu et al. (2020b). Therefore362

our approach can be used as an off-the-shelf so-363

lution to any transformer architecture, whenever364

layout information is available.365

SW Model. This model directly uses sliding366

window (SW) mode for attention masks, which sig-367

nificantly reduces the computation and is shown to368

be effective for long documents. Detailed compu-369

tation is illustrated in Equations (3–6).370

SW+RAND Model. This model uses blocked371

sliding windows and some random blocks on top6.372

These changes to sliding window appear in Equa-373

tions (7) and (8).374

DISTANCE Model. In this model, we com-375

pletely replace the normal sliding-window attention376

mask with our distance-base mask as elaborated in377

Equations (3–6), with the notable change that the378

spatial neighbors are preemptively computed using379

the kNN algorithm in the dataset processing phase.380

DISTANCE+SW Model. In this model, we381

combine the distance-based and textual attention382

masks together in the attention operations. In de-383

tail, in the sequential steps in Equations (3–6), we384

6We use 3 random blocks in our implementation before splitting and
chunking the blocked chunks

replace Equation (3) with Equation (9), making 385

the first attention step use the distance-based mask 386

while retaining the second step. These two steps 387

are independent of each other and both preserve the 388

logic and matrices’ shapes of the attention module. 389

Our intuition is to combine both spatial and textual 390

masks in one single attention pass. 391

4 Experiments 392

4.1 Tasks and Datasets 393

We present the tasks and the associated datasets 394

used in our experiments, starting from IIT-CDIP 395

for the model pretraining to the other datasets used 396

in different downstream tasks and ablation studies. 397

Pretraining We use IIT-CDIP Test Collection 398

1.0 7 dataset for our MLM pretraining task. This is 399

a large scale dataset that has over 6 million multi- 400

page documents and around 11 million pages in 401

total (each page is stored as an image). We use the 402

same OCR engine used in LayoutLM model (Xu 403

et al., 2020b) to extract the bounding boxes coordi- 404

nates and other metadata such as page sizes, lines, 405

etc. 406

For the MLM task, we retain most of the settings 407

of the LayoutLM model with 12-layer Transformer 408

with 12 attention heads and hidden sizes of 768. In 409

terms of spatial embedding for bounding boxes, we 410

scale the bounding boxes for all pages to [0, 1023]. 411

We pretrain the model with four attention mecha- 412

nisms described in Section 3 using 8 parallel Tesla 413

V100 GPUs with a combined batch size of 64 and 414

learning rate 5e-5. 415

Document Classification For this task, we use 416

RVL-CDIP (Harley et al.) dataset, which is a sub- 417

set of the pretraining dataset IIT-CDIP and is de- 418

7
https://ir.nist.gov/cdip/

5

https://ir.nist.gov/cdip/


signed for the document classification task. It com-419

prises of 16 classes and each class equally has 25K420

grayscale images. These total 400K images are421

split into 320K images for training and 40K im-422

ages each for validation and testing. The document423

length distribution of this dataset is shown in Fig-424

ure 1.425

For this fine-tuning classification model, we426

concatenate the output from the pretrained model427

before applying the typical softmax-crossentropy428

layer. We only finetune for 30 epochs with the429

learning rate 1e-5 and batch size of 32.430

Sequence Labeling There are two different431

datasets that we use for this task, namely Kleister-432

NDA and FunSD.433

Kleister-NDA (Graliński et al., 2020;434

Stanisławek et al., 2021)8 This dataset is435

presented with a task aiming to extract long doc-436

uments that contain layout information, which is437

closely related to our models. The task associated438

with this dataset is to extract values for four given439

classes. Kleister-NDA has 540 documents in total440

(254 training, 83 validation, and 203 testing) with441

2,160 entities annotated and average of 2,540442

words per document. Unfortunately, the evaluation443

of this dataset provided by the authors requires444

post-processing, which is not published yet. We445

have to cast this task as an entity-labeling task446

in FunSD below and evaluate it with F1 score447

for reproducibility purpose. As a result, for this448

dataset we report all reproduced results using the449

same preprocessing and metric calculation. Finally,450

we employ the same OCR engine used in IIT-CDIP451

and RVL-CDIP datasets.452

FunSD (Guillaume Jaume, 2019)9 This is a453

lightweight dataset that consists of noisy scanned454

documents and is designed for form understanding455

task with 7 different classes. It has 199 scanned456

forms that contain more than 31K words and 9.7K457

entities and 5.3K relations in combination. Al-458

though FunSD can hardly be considered as a long-459

document dataset (each single document only has460

less than 512 words), it is still useful for our abla-461

tion studies to compare state-of-the-art models that462

employed this dataset (see Section 4.4).463

4.2 Baselines464

As usual, we use downstream tasks to evaluate and465

compare our 4 model variants (see Figure 2) with466

the following baselines:467

8
https://github.com/applicaai/kleister-nda

9
https://guillaumejaume.github.io/FUNSD

Type Model SeqLen Acc (%) ↑

Text

BERT-base 512 89.81
RoBERTa-base 512 90.06
BERT-large 512 89.92
RoBERTa-large 512 90.11
Bigbird-base 4096 93.48
Longformer-base 4096 93.85
Bigbird-large 4096 93.34
Longformer-large 4096 93.73

Text+Layout

LayoutLM-base 512 91.88
LayoutLM-large 512 91.90
Ours SW 4096 94.50
Ours SW+RAND 4096 95.25
Ours DISTANCE 4096 94.79
Ours DISTANCE+SW 4096 94.69

Table 1: Classification accuracy for RVL-CDIP. For
this long-document dataset, the models capable of us-
ing 4096 words uniformly beat other models and layout
information helps with the task compared with using
Text input. All our long models show their advantages
on this long dataset.

Text: This group consists of the traditional mod- 468

els which only accept text input with maximum 469

length of 512 including BERT (Devlin et al., 2018), 470

RoBERTa (Liu et al., 2019), and other long mod- 471

els including Bigbird (Zaheer et al., 2020) and 472

Longformer (Beltagy et al., 2020), which can sup- 473

port longer documents (we pretrain them up to the 474

length 4096). 475

Text+Layout: This group contains models that 476

accept both text and layout information, including 477

LayoutLM (Xu et al., 2020b) that accepts only 512 478

words per document. 479

An important note is that our target is to tackle 480

long documents, in which computational cost of 481

processing and memory is the main obstacle, even 482

for the “base” versions (typically the “large” coun- 483

terparts would have at least about 2X-3X number of 484

parameters, and hence much more memory inten- 485

sive). To make fair comparisons and make our mod- 486

els more practical, we only compare with the large 487

models (i.e. the ones capable of dealing documents 488

with length 4096) using only “base” versions. 489

4.3 Results and Discussions 490

Document Classification As shown in Table 1, 491

for this long-document dataset, long models (ones 492

that accept long input to 4096 tokens) clearly out- 493

perform short models in both baseline groups and 494

our models, with or without layout information 495

added to the input. 496

From these results, We find two meaningful ob- 497

servations. First, long documents have useful in- 498

formation spanned across document. Second, our 499

6

https://github.com/applicaai/kleister-nda
https://guillaumejaume.github.io/FUNSD


Type Model SeqLen F1 ↑

Text

BERT-base 512 47.06
BERT-large 512 52.66
Longformer-base 4096 61.78
Bigbird-base 4096 46.98

Text+Layout

LayoutLM-base 512 55.69
LayoutLM-large 512 61.95
Ours SW 4096 64.06
Ours SW+RAND 4096 58.92
Ours DISTANCE 4096 57.01
Ours DISTANCE+SW 4096 44.70

Table 2: Results on Kleister-NDA dataset (validation
split) with entity-labeling performance. Although this
dataset is very challenging, the long models still show
the advantages over the short ones.

models show advantages over others with the capa-500

bility of absorbing and processing long documents.501

Therefore, our models are more practical in dealing502

with real-world data, which usually have more text503

than only 512 words.504

Sequence Labeling The results are shown in505

Table 2, which is based on the validation split since506

there is no annotation for the test split. Compared507

with other reported results (e.g in (Xu et al., 2020a;508

Appalaraju et al., 2021)), our reproduced results are509

much lower, posing this task is a challenging one510

(it has decoyed texts that have no associated labels).511

Comparing the “base” versions, our models still512

clearly show advantages over the baselines. In par-513

ticular, our SW model achieves the highest scores514

by employing 4096 tokens as well as combining515

text and layout information.516

Furthermore, we find that our DISTANCE+SW517

are outperformed by other models. One possible518

reason is that the OCR engine couldn’t understand519

the decoying annotation. Consequently, it gener-520

ates the normal OCR results that do not correlate521

with the text.522

4.4 Ablation: Long Models on Short Dataset523

Table 3 shows that on FunSD (a small and short doc-524

ument dataset), long models do not perform well525

compared to short models. However, we still ob-526

serve that layout information generally helps with527

the task. The main reason is that long models es-528

sentially have much more parameters. 1000-step529

fine-tuning with only 199 samples can hardly tune530

parameters well.531

Especially, when long models are forced to have532

most input as padding (e.g. 512 words + 3584 pad533

tokens), it makes fine-tuning more difficult. Even534

if we reduce the maximum input length to 512, the535

Type Model SeqLen F1 ↑

Text

BERT-base 512 60.3
RoBERTa-base 512 66.5
BERT-large 512 65.6
RoBERTa-large 512 70.7
Bigbird-base 4096 45.8
Longformer-base 4096 71.4
Bigbird-large 4096 46.8
Longformer-large 4096 73.5

Text+Layout

LayoutLM-base 512 78.7
LayoutLM-large 512 79.0
Ours SW 4096 69.9
Ours SW+RAND 4096 77.1
Ours DISTANCE 4096 64.0
Ours DISTANCE+SW 4096 61.8

Table 3: Comparison on FunSD dataset. As usual, lay-
out information is helpful in boosting the performance
given text. However, long models do not perform well
compared with short models on this short-document
dataset.

final results for long models do not change much. 536

One of the main reasons is that long models have 537

their embedding trained for 4096 tokens, and hence 538

making it to be fine-tuned for only 512 tokens for 539

a few steps generally does not work well. 540

In the next ablation studies, we explore the im- 541

plications of the newly added spatial information 542

into attention in our models as compared with some 543

baselines. 544

4.5 Ablation: Different-Length Documents 545

In this study, we keep all documents intact and 546

categorize them based on their original lengths. 547

The purpose is to explore how the models work 548

if we do not cut any information from document 549

based on the capacity limit of the models and take 550

all possible available information in each document. 551

This analysis offers a different perspective from the 552

setting in Section 4.6, where we do not respect the 553

input and have to purge the excesses to make them 554

compatible with the model. As a result, for 40K test 555

samples in RVL-CDIP dataset, we only have 9268 556

samples having lengths ≥ 512, and 2312 samples 557

with lengths ≥ 1024, and only 106 samples with 558

lengths≥ 2048. Note that by this grouping method, 559

the latter group is a subset of the immediate former 560

one, e.g. the group with 106 samples is a subset of 561

the group with 2312 samples. 562

As shown in Figure 3, the consistent observa- 563

tion is that our models perform worse when the 564

original document length increases, although the 565

differences are not significant. There could be sev- 566

eral possible reasons for this behavior: the mod- 567

els are not well pretrained and/or fine-tuned; the 568
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Figure 3: RVL-CDIP performance on different doc-
uments types based on their original lengths (i.e.
without purging) using LayoutLM (with the best
“large” version) and our models (DISTANCE and DIS-
TANCE+SW). Our models clearly outperform Lay-
outLM models in all categories.

long documents have lots of contents and many569

of which confuse the classifier; or there are many570

noises from OCR results.571

4.6 Ablation: Different Max Input Lengths572

Given the pretrained models that can accept input573

up to 4096 tokens, we finetune them with input574

of different maximum lengths (max_len) . Like-575

wise, if a document has the content longer than576

max_len, the extended part will be purged. As a577

result, in RVL-CDIP dataset, all 40K test samples578

stay the same for each test case.579

As shown in Figure 4, our models show big-580

ger power if we allow it to absorb more and more581

tokens from input. It matches with our intuition582

that for long documents, all parts contain useful583

information. We should not limit document lengths584

to 512 tokens, which unfortunately is a standard585

setting in many current document understanding586

models.587

4.7 Further Discussion on Distance Masks588

As seen in the above experimental results, direct589

usage of 2D layout context information into the590

transformer’s attention has some advantages over591

the baselines. However, its performance does not592

match with the typical usage of 1D textual infor-593

mation. This might be discouraging at first since594

introducing spatial information brings two compli-595

cations: heavy computation of 2D data preprocess-596

ing with kNN process and its obstacle to speed up.597

Consequently, for the accuracy-speed tradeoff, we598

limit the distance-based context to 128 (compared599

with 512 in textual contexts), which also makes the600

distance-based models suffer.601

We hypothesize the drawbacks are due to some602

512 1024 2048 4096
MAX   LENGTH

91

92

93

94

95

96

A
C

C
U

R
A

C
Y

 (%
)

91.85

92.89
93.29

94.69

93.14
93.81 94.04

94.79
Ours DISTANCE+SW
Ours DISTANCE

Figure 4: RVL-CDIP performances on different
maximum lengths using our DISTANCE and DIS-
TANCE+SW models. For each case of lengths 512,
1024, 2048 and 4096, the test set contains the same 40K
samples. Longer maximum length gives better results.

objective limitations. First, the performance of the 603

whole pipeline heavily depends on the quality of 604

the OCR pre-processing. In all datasets being used, 605

texts/words are the ground-truth but the bounding 606

boxes and their alignments with the text are made 607

possible by those OCR engines. Second, we trade 608

the accuracy of kNN sometimes for speed of pro- 609

cessing 2D data. Finally, with a decoying design 610

as in Kleister-NDA (Section 4.3), in particular, the 611

OCR results are even less aligned with text. Conse- 612

quently, we also conjecture that with further devel- 613

opment in OCR technologies, the use of distance 614

masks and layout information in general would be 615

much more helpful in practice. 616

5 Conclusion and Discussion 617

We propose a versatile solution for document un- 618

derstanding task, in which the layout information 619

can either replace or incorporate with the textual 620

information for attention modules in a flexibly plug- 621

gable manner. Our solution has shown promising 622

results on long document understanding tasks. 623

In our future work, we will further reduce mem- 624

ory consumption of these transformer-based mod- 625

els with heavy multimodal input. We will also 626

spend effort to improve the speed of pretraining. 627

Similar to LayoutLM (Xu et al., 2020b), pretrain- 628

ing of these models usually takes 80 hours to finish 629

1 epoch using 8 parallel V100 expensive GPUs, 630

each of which has 32GB of memory. There are 631

still a lot of room for improvement to make these 632

models more efficient and practical. 633
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Parameter Name Value
do_lower_case true
fp16 true
fp16_backend amp
gradient_accumulation_steps 4
max_seq_length 4096
max_2d_position_embeddings 1024
max_steps 1000000
model_name_or_path allenai/longformer-base-4096
dataloader_num_workers 64
tasks mask_lm
optimizer transformers_AdamW
learning_rate 5e-5
warmup_ratio 0.1
weight_decay 0.01
whole_word_masking false
add_prefix_space true
attention_window 512

Table 4: Main pretrain hyperpameters on the MLM
pretraining task for the ITT-CDIP large-scale dataset.
There are 3 variants share this set of parameters that are
Ours SW, Ours DISTANCE and Ours DISTANCE+SW
models. All of them use the pretrained weights from
Longformer-base (Beltagy et al., 2020) model.

767

A More Information on the Pretrain768

Task769

Pretrain Data Preprocessing As described, for770

pretrain model we retain the same OCR engine for771

generating and aligning layout and text information772

from LayoutLM (Xu et al., 2020b). The task is also773

the same, which is Masked Language Modeling774

(MLM). To deal with long documents, we have to775

implement the additional sliding-window, random-776

block and distance-based masks.777

Pretrain Model Implementation Our solution778

only makes changes to the attention module, in779

which uses can choose to use any types of attention780

masks from the 4 variants illustrated in Figure 2.781

For the SW and SW+RAND models which are782

also our new pretrain models, we implement the783

layout-related part on top of the original BigBird 10784

and Longformer 11 implementations from Hugging-785

face’s transformers, respectively. Otherwise the786

distance-based masks, which are employed in DIS-787

TANCE and DISTANCE+SW models, are newly788

implemented as a pluggable module.789

Training MLM We pre-train the task on the790

IIT-CDIP datasets, using a single-node multi-GPU791

mode. Each job was run on a server with 8 V100792

10
https://huggingface.co/transformers/model_doc/bigbird.

html
11
https://huggingface.co/transformers/model_doc/longformer.

html

Nvidia GPUs, each of which has 32GB memory 793

and fast processors. For text-only models, please 794

refer to LayoutLM’s github 12. 795

For SW model, we use the public pretrained 796

weights from Lomgformer (Beltagy et al., 2020). 797

Other of our models employ the same set of pa- 798

rameters, except for the pretrained weights, in 799

which SW+RAND model uses the weights from 800

Bigbird (Zaheer et al., 2020) and the last two 801

models having distance masks (DISTANCE and 802

DISTANCE+SW models) use the same pretrained 803

weights as SW model, as demonstrated in Table 4. 804

It is also worth noting that the pretrained weights 805

from Longformer and Bigbird models are useful 806

even for the models using distance masks because 807

those two model families support documents with 808

length 4096, so the position embeddings are help- 809

ful. For speed and memory tradeoff, we limit the 810

context for distance masks to only 128 (vs. 512 in 811

textual contexts), without sacrificing much perfor- 812

mances, as reported in Section 4.3. 813

Training Notes Although not reported in the 814

main content, we note some lessons learned from 815

the pretraining task. As we observe, the Ours SW 816

model consistently achieves the best results, while 817

consuming the least GPU memory. For the base 818

model, it only consumes about 7 GB GPU mem- 819

ory and Ours DISTANCE+SW that uses sliding- 820

window attention on its half processing also con- 821

sumes about 9 GB memory. Both models, as a 822

result, can be deployed well on a broad range of 823

GPUs in the market. 824

Unlike those conveniences, Ours SW+RAND 825

and Ours DISTANCE do not share the same ad- 826

vantages. In fact, they consumes about more than 827

30GB GPU memory each, limiting their practi- 828

cality. We hypothesize the main reason for such 829

drawbacks is that they have random, inconsistent 830

patterns, and hence there is no efficient way to take 831

advantage of fast memory-efficient and fast matrix 832

operations. 833

Finally, although showing promising practical 834

behaviors, all baselines and our models, and al- 835

most any transformer-based ones are certainly not 836

lightweight models. And although there are ad- 837

vancements in compressing those heavy models 838

(e.g. (Touvron et al., 2021; Frankle and Carbin, 839

2018), there seems to be a considerable way to go 840

for making these model run on mobile devices in 841

the near future. 842

12
https://github.com/microsoft/unilm

11

https://huggingface.co/transformers/model_doc/bigbird.html
https://huggingface.co/transformers/model_doc/bigbird.html
https://huggingface.co/transformers/model_doc/longformer.html
https://huggingface.co/transformers/model_doc/longformer.html
https://github.com/microsoft/unilm


B More information on Finetuning Tasks843

As described in the main content, after pretraining,844

the saved models are the backbone for the respec-845

tive fine-tuning model types. For that reason, the846

parameters are mostly shared with their pretrain847

counter-part models, e.g. Table 4 for Ours SW848

models. Generally, we keep the same optimizer849

and batch size of 32 (combined across all used850

parallel GPUs).851

For RVL-CDIP in the document classification852

task, we use the SequenceClassification853

model type. On top of the pretrain skeleton, we854

add a small classifier with 2 fully-connected layers855

and a drop-out layer in between. The final output is856

the single class for the whole sequence/document.857

For FunSD and Kleister-NDA datasets, we in-858

stead use the TokenClassification model859

type, which is designed to classify all-document860

entities. The similar classifier is added to the pre-861

trained skeleton, now with a different usage in862

which each token/entity is to be classified into 1 of863

the number of given classes.864

What’s more, to preprocess these two datasets,865

we have to ingest all available document tokens.866

Likewise, with documents longer than the maxi-867

mum lengths, we need to cut those documents, and868

recursively treat the overflowing parts in the same869

way. In terms of implementation, unlike FunSD870

that is lightweight, we always want to avoid loading871

the whole dataset into the memory but rather take872

advantage of the data buffering in feeding to the873

models. As a result, we pre-process all data first,874

save them to disks and only load the respective875

parts when needed.876

Additional Information for Kleister-NDA It877

is worth recalling that the evaluation of it is tricky878

if using the provided official GEval evaluation879

script (Graliński et al., 2020)13. In detail, given880

the predited tokens, one has to retrieve the associ-881

ated texts in a group. For example, the beginning882

of an entity group usually starts with a class begin-883

ning with "B-", followed by a series of "I-" tokens.884

However, there is no guarantee that the prediction885

will always return a group having this meaningful886

pattern, let alone many other complicated cases887

that can happen. Such complications make the888

post-processing of the prediction– before feeding889

to GEval–very difficult and importantly, not easily890

reproducible. In fact, amongst recent papers that891

report performance on this dataset (e.g. in Xu892

13
https://github.com/applicaai/kleister-nda

Figure 5: More distance masks from RVL-CDIP sam-
ples with the limit length of 2048 and 512 neighbors
each.

et al. (2020a); Appalaraju et al. (2021)), there is no 893

published code provided. 894

Consequently, we treat this dataset the same as 895

FunSD, given their similarity in annotations. In 896

addition, because this dataset is larger and much 897

more difficult (due to decoying texts) compared to 898

FunSD, we analyze the train dataset and employ the 899

weighted loss based on the distribution the given 900

labels. As a result, our method is more transparent 901

and reproducible. 902

C Additional Samples on Distance Masks 903

Complementary to Figures 2c and 2d, we present 904

some more distance masks based on real samples 905

taken from RVL-CDIP with the same setting in 906

Figure 5. 907

12

https://github.com/applicaai/kleister-nda

