Improving Factuality and Reasoning in Language Models through Multiagent Debate

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs) have demonstrated remarkable capabilities in language generation, understanding, and few-shot learning in recent years. An extensive body of work has explored how their performance may be further improved through the tools of prompting, ranging from verification, self-consistency, or intermediate scratchpads. In this paper, we present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer. Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks. We also demonstrate that our approach improves the factual validity of generated content, reducing fallacious answers and hallucinations that contemporary models are prone to. Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate. Overall, our findings suggest that such "society of minds" approach has the potential to significantly advance the capabilities of LLMs and pave the way for further breakthroughs in language generation and understanding.

1 Introduction

Large language models (LLMs) have demonstrated remarkable language generation, understanding, and few-shot learning capabilities in recent years. These methods are trained on a massive corpus of text on the internet, where the quality and accuracy of extracted natural language may not be ensured. Thus, current models may suffer from confidently hallucinating facts or making implausible jumps in chains of reasoning. An extensive body of recent work has focused on improving factual accuracy and reasoning in language models. These range from prompting models with few or zero-shot chain-of-thought demonstrations, use of verification, self-consistency, or intermediate scratchpads.
We note that these techniques are applied over a single model instance. Instead, we propose a complementary approach inspired by The Society of Mind (Minsky, 1988) and multiagent settings, where multiple language model instances (or agents) individually propose and jointly debate their responses and reasoning processes to arrive at a common answer. More specifically, given a query, multiple instances of a language model first generate individual candidate answers to a query. Then each individual model instance reads and critiques the responses of all other models and uses this content to update its own answer. This step is then repeated over several rounds. This process induces models to construct answers that are consistent with both their internal critic as well as sensible in light of the responses of other agents. The resulting quorum of models can hold and maintain multiple chains of reasoning and possible answers simultaneously before proposing the final answer.
We find that our debate approach outperforms single model baselines such as zero-shot chain of thought (Kojima et al., 2022) and reflection (Shinn et al., 2023; Madaan et al., 2023) on a variety of six reasoning, factuality, and question-answering tasks. Using both multiple model agents and multiple rounds of debate are important to achieve the best performance. Given an initial query, we find that individual model instances propose a diverse range of answers despite being the same model class (although we also investigate the case of mixing different model types, such as chatGPT (OpenAI, 2022) and Bard (Pichai, 2023)). After debating and examining the responses of other model instances, we find that the population almost always converges on a single and more accurate common answer. Debate results are also less likely to include false facts that models are internally uncertain of. This is because as the debate progresses, individual model instances tend to disagree

Figure 1: Multiagent Debate Improves Reasoning and Factual Accuracy. Accuracy of traditional inference and our multiagent debate over six benchmarks (chess move optimality reported as a normalized score)
on uncertain facts and omit them from the answer (Figure 7). Lastly, we find that debate does not just act to amplify one correct answer in a model quorum - we find many cases where all the models initially make incorrect predictions, but then arrive at the correct answer as the debate progresses (Figure 4,11).
We use the same methodology and prompt templates for all our tasks and require only black-box access to language model generations - no model-internal information such as likelihoods or gradients is needed. This allows our method to be used with common public models serving interfaces. The method is also orthogonal to other model generation improvements such as retrieval or prompt engineering (in fact, we combine our debate method with zero-shot chain of thought). While the debate process is more costly, requiring multiple model instances and rounds, it arrives at significantly improved answers and may be used to generate additional model training data, effectively creating a model self-improvement loop.

To help evaluate the effect of our approach on factual accuracy, we introduce a new benchmark and dataset evaluating the factual accuracy of famous computer scientist biographies. We find that contemporary language models have an especially high tendency to hallucinate factually incorrect biographies, often misrepresenting the relevant institutions and dates. Moreover, these facts are often inconsistent across different language model instances. By asking models to come to a consensus across their answers, such inconsistent facts may be either removed or corrected.
In summary, our work contributes the following. First, we present a novel approach to improving factual correctness and reasoning accuracy in language models, leveraging a multiagent debate process between models. Second, we introduce a new benchmark of factual correctness which language models struggle with. Finally, we evaluate the performance of our debate procedure in language generation, both in terms of the number of agents, the underlying rounds of debate, and the prompts that elicit such behavior across a set of six different reasoning and factual accuracy tasks.

2 Language Generation through Multiagent Debate

We present an approach to generate language responses through multiagent debate. We provide an overview of our approach in Section 2.1. We further discuss convergence to consensus in the debate process in Section 2.2. The overall overview of our approach is shown in Figure 2.

2.1 Multiagent Language Generation

Consider your work process when solving the following math question on an exam: "What is the area of a triangle with side lengths of $3,4,5$?". In one thread of work, you may recognize that the triangle side-lengths directly correspond to a right triangle, and thus directly compute the area as $0.5 \times 3 \times 4=64$. To make sure that you have the right answer, you may then try to solve the problem differently by estimating an angle θ in the triangle using the Law of Cosines, and then obtain the area by using the formula $0.5 \times 3 \times 4 \times \sin (\theta)$, arriving at another answer to the given exam problem.
When these lines of work give the same answer, your confidence about the answer increases. In contrast, when these answers are different, individual lines of work may engage in a mental "debate" procedure, where you closely cross-examine the reasoning and assumptions of each line of work and refine solutions until a consistent answer.

User Input: A treasure hunter found a buried treasure chest filled with gems. There were 175 diamonds, 35 fewer rubies than diamonds, and twice the number of emeralds than the rubies. How many of the gems were there in the chest?

Round 1	
Agent 1: Let x be the number of rubies. Then the number of diamonds is 175. And the number of emeralds is $2(x-35)$, since there are twice as many emeralds as rubies and there are 35 fewer rubies than diamonds.	Agent 2: If there were 175 diamonds, then the number of rubies is 35 fewer, or 175-35=140 rubies.
To find the total number of gems, we add the number of diamonds, rubies, and emeralds: Total gems $=175+x+2(x-35)=3 x+105$.	And since there were twice as many emeralds as rubies, we can represent the number of emeralds as $2 * 140=280$
We don't know the exact value of x, but we do know that it represents the number of rubies, which is less than 175 (since there are 35 fewer rubies than diamonds). Let's try some values of x : If $x=50$, then the total gems $=3(50)+$ $105=255$. If $x=100$, then the total gems $=3(100)+105=405$.	emeralds. To find the total number of gems in the chest, we can add up the number of diamonds, rubies, and emeralds:
Since we know there were fewer rubies than diamonds, the answer must be closer to 255 than to 405 . After some trial and error, we can find that $x=40$ gives us: Total gems $=3(40)+105=225$.	$175+140+280=595$. Therefore, there were 595 gems in the chest.

User Input: Using the solutions from other agents as additional information, can you give an updated response....
(Copy Agent 2’s reply)
(Copy Agent 1's reply)

Round 2

Agent 1: Given the information provided in other agents' solutions, we have two answers: One agent found that the number of rubies is 40 and the total number of gems is 225 . Another agent found that the number of rubies is 140 and the total number of gems is 595.

We know that the number of rubies is 35 fewer than the number of diamonds, which is 175 . So the number of rubies should be $175-35=140$, as the second agent found. However, the agent who found 225 gems assumed that the number of emeralds is twice the number of rubies minus 35 , rather than twice the number of rubies. If we use this assumption, we get: Number of rubies $=140$. Number of emeralds $=2 * 140-35=245$. Total number of gems $=175+140+245=560$. Our final answer is 560 .

Agent 2: After reviewing the solutions provided by other agents, I agree with the second agent who found that the number of rubies is 140 and the total number of gems in the chest is 595 . Therefore, my answer to the math problem is 595 .

User Input: Using the solutions from other agents as additional information, can you give an updated response....

(Copy Agent 2's reply)

(Copy Agent l's reply)

Round 3

Agent 1: After reviewing the solutions provided by other agents, I agree with the second agent who found that the number of rubies is 140 and the total number of gems in the chest is 595 . Therefore, my answer to the math problem is 595

[^0]Figure 2: Illustration of Debate. Illustration of the debate procedure. Prompts to language models are shorten by brevity, see Table XVI for full prompts.

Similarly, consider writing a biography of a historical figure. To ensure the factuality of the biography, you may consult multiple different sources on each fact. Facts that are consistent in each source increase your confidence about the facts. In contrast, facts that are inconsistent require careful cross-examination between sources to determine the final consistent data.
To mimic the above multi-threaded reasoning process and multi-source factuality checking processes, we propose to generate answers subject to a multiagent debate procedure between multiple instances of large language models. Given a question, multiple agents represented as copies of a large language model, generate answers to the question. Each response serves as a possible thought process or source of information which agents may re-examine to find consistent final answers.

After initial responses are generated from different agents, we initiate a round of debate between agents. Individual responses from other agents are concatenated and given as context to each agent, with each agent instructed to construct a new response based on such responses. Each language agent is thus responsible for both verifying the collection of responses given by other agents, and refining its own response based on other agents' responses. We iteratively repeat this debate procedure over multiple rounds for improved performance. Such a procedure enables each language model to

Debate Type	Prompt
Short Debate	"These are the solutions to the problem from other agents: [other answers]
Based off the opinion of other agents, can you give an updated response . ."	

Figure 3: Prompts to induce long and short form debate. Responses of other agents to questions are inserted in the middle of the prompt (indicated with [other answers])

Figure 4: Illustration of Solving Math. Reasoning between agents is omitted.
leverage both its opinions and the opinions of other agents to reflect and improve responses, enabling models to recover even if answers are incorrect (Figure XXXI, XXXII).
Concretely, we first prompt each agent to independently solve the given problem or task. After each agent generates a response, we feed each agent a consensus prompt, illustrated in Figure 3, where each agent is instructed to update their responses based on the responses of other agents. This resultant consensus prompt may then be repeatedly given, using the updated responses of each agent. We illustrate an overview of this multiagent debate procedure in Figure 2.
Note that our proposed approach operates in an orthogonal manner to existing approaches to prompt language models. Given a question, we may apply additional techniques for prompting language models to further improve our debate procedure by eliciting additional more detailed responses from language models. We illustrate the synergy of our approach with existing approaches to prompting language models in Figure 6 and apply zero-shot chain-of-thought reasoning in our evaluations.

2.2 Consensus in Debates

Given multiple rounds of debate, how can we ensure that a set of language model agents will converge to a final consensus answer? In general, debate can be seen as a multiagent game, where convergence is not guaranteed. Empirically, however, we find that language models are able to converge on a single shared answer after multiple rounds of debate (Figure 4).

We found that we could control the duration of debates by changing how much a language model trusts its own outputs over those generated by other models through different prompts. We illustrate two prompts below in Figure 3, which we use to induce different debate durations between language models, and illustrate the effect of such prompts in Figure 12. In general, we found that prompts that encouraged models to be more "stubborn' based on their own solutions led to longer debates and better final solutions. Overall, we observed that language model agents were relatively "agreeable", perhaps as a result of instruction tuning or reinforcement learning based on human feedback (Ouyang et al., 2022). In cases of disagreement, we took the majority answer across agents at the end of debate.

3 EXPERIMENTS

In our experiments, we evaluate our multiagent debate procedure and answer the following questions: (1) To what extent does multiagent debate improve reasoning? (2) To what extent does multiagent debate improve factual validity? (3) What design choices enable multiagent debate to improve language generation performance?

3.1 Improving Reasoning with Multiagent Debate

We first evaluate the extent to which multiagent debate improves the underlying reasoning process in language models.
Tasks. We evaluate our approach on three reasoning tasks of increasing difficulty:

Figure 5: Illustration of Solving Grade School Math. Reasoning between agents omitted.

Model	Arithmetic (\%) \uparrow	Grade School Math $(\%) \uparrow$	Chess $(\Delta \mathbf{P S}) \uparrow$
Single Agent	67.0 ± 4.7	77.0 ± 4.2	91.4 ± 10.6
Single Agent (Reflection)	72.1 ± 4.5	75.0 ± 4.3	102.1 ± 11.9
Multiagent (Majority)	75.0 ± 3.9	81.0 ± 3.9	105.2 ± 5.9
Multiagent (Debate)	$\mathbf{8 1 . 8} \pm \mathbf{2 . 3}$	$\mathbf{8 5 . 0} \pm \mathbf{3 . 5}$	$\mathbf{1 2 2 . 9} \pm \mathbf{7 . 6}$

Table 1: Multiagent Debate Improves Reasoning Multiagent debate improves the reasoning abilities of language models. Multiagent results in the table are run with 3 agents and two rounds of debate.

- Arithmetic. We first evaluate the ability of models to correctly evaluate an arithmetic expression (containing addition, multiplication, and subtraction) consisting of six different two-digit numbers. For example: What is the result of $12+15 * 21+0-3 * 27$?
- GSM8K. Next, we consider harder mathematical reasoning tasks. Using the GSM8K dataset (Cobbe et al., 2021), the models must correctly solve grade school mathematical reasoning tasks.
- Chess. Finally, we consider the strategic reasoning of the ability of models, and ask models to predict the best next move in a game of chess, given the first 14 moves of a chess game between two chess grand-masters described in PGN notation.
We report the accuracy of final answers in arithmetic and GSM8K tasks and report the pawn score (advantage) of predicted moves, as estimated by Stockfish in the Chess Moves.
Baselines. We compare our approach to three baseline approaches. First, we ask the language model to directly generate responses (single agent). Next, we consider asking language models to generate and then "self-reflect" on the responses generated (Madaan et al., 2023). Finally, we consider generating responses from multiple instances of model and performing majority voting across responses (Wang et al., 2022; Lewkowycz et al., 2022). As the focus of our experiments is to verify the effectiveness of multiagent agent debate, we run both baselines and our approach, using the identical starting prompt and language model across all evaluations. We primarily evaluate models

Figure 6: Synergy with Other Methods. Performance of debate increases with use of Chain of Thought prompting on GSM8K. in a zero-shot setting, with details in Appendix A. 3 and additional few-shot results in Appendix A.1. We primarily use chatGPT-3.5 language model (OpenAI, 2022) in our experiments except those in Figure 11 where we compare multiple language models and in Table IV, where we use chatGPT-4.
Due to computational expense, we evaluate our approach across benchmarks mainly using three agents with two rounds of debates, although we found further gains with both more agents and rounds of debate (Figure 10). Additional evaluation details are found in the Appendix A.2.
Quantitative Results. In Table 1, we report the results of each approach on arithmetic, grade school math, and chess reasoning tasks. In each task, we observe that utilizing multiple different agents to generate solutions improves performance over using a single language model agent to generate a solution. Simultaneously, we also see that reflection, where a language model is asked to critique its early generation, generally gives a modest boost in performance. Multiagent debate, which may be seen as a combination of both reflection and multiagent generation, gives a substantial boost in reasoning across each of the tasks.
Qualitative Results. In Figure 4 and 5, we provide qualitative illustrations of the debate procedure between models. Interestingly, we find cases in which all models initially give an incorrect response, yet the result of debate still obtains the correct answer as agents critique each others' reasoning. Thus,

Prompt: Give a bullet point biography of David S. Johnson highlighting their contributions and achievements as a computer scientist, with each fact separated with a new line character.

Round 1	
Agent 1: -- He earned his bachelor's degree from Dartmouth College in 1967 and his Ph.D. from MIT in 1973.	
Agent 2: -- David S. Johnson is an American computer scientist and mathematician.	
-- Johnson has received numerous awards for his	
research and contributions to computer science,	
including the ACM Turing Award in 2013.	

Figure 7: Illustration of Generating Biographies. Illustration of generating bullet biographies of computer scientists. For brevity, only the first 3 generated bullets are shown.

	Question: Six positive integers are written on the faces of a cube. Each vertex is labeled with the product of the three numbers on the faces adjacent to the vertex. If the sum of the numbers on the vertices is equal to 1001 , then what is the sum of the numbers written on the faces? A) 18. B) 13. C) 1001. D) 31.			Question: You suspect that your patient has an enlarged submandibular salivary gland. You expect the enlarged gland: A) to be palpable intraorally. B) to be palpable extraorally. C) to be palpable both intra- and extraorally. D) only to be detectable by radiographical examination.		
Round 1	Agent 1: A \otimes	gent 2: C Q	gent 3: D	Agent 1: C	gent 2: B	Agent 3: C
Round 2	Agent 1: D	Agent 2: D	Agent 3: D	Agent 1: C	Agent 2: C	Agent 3: C

Figure 8: Illustration of MMLU. Illustration of debate when answering factual tasks. Reasoning omitted.
the purpose of our debate isn't just to amplify a correct answer - all models can initially be wrong but arrive at the correct answer through the debate process.
Compatibility with Other Reasoning Methods. Our multiagent generation procedure operates orthogonally approach to other prompting methods which focus on single-agent generation. In Figure 6, we illustrate the performance of multiagent debate with and without zero-shot chain-of-thought prompting (Kojima et al., 2022) on GSM8K. In addition, we report performance with few-shot chain-of-thought prompting in Section A.1. Across settings, multiagent debate is beneficial.

3.2 Extracting Factual Information from Multiagent Debate

We next evaluate how multiagent debate improves the underlying factuality in language models.
Tasks. We evaluate the factuality of language models in three different settings:

- Biographies. To evaluate the factuality of language models, we introduce a new task of accurately generating historical biographies of people, which we found existing language models to have a tendency to hallucinate. We constructed ground truth bullet point biographies of 524 wellknown computer scientists. We then asked language models to generate bullet point biographies for each person, and evaluated answers with language model critic detailed in Appendix A.2.
- MMLU. Next, we assess the factuality of language models in responding to different factual knowledge questions typically learned and assessed in different exams. We utilize the existing MMLU dataset (Hendrycks et al., 2020) to benchmark the accuracy of responses.

Model	Biographies	MMLU	Chess Move Validity
Single Agent	66.0 ± 2.2	63.9 ± 4.8	29.3 ± 2.6
Single Agent (Reflection)	68.3 ± 2.9	57.7 ± 5.0	38.8 ± 2.9
Multiagent (Majority)	-	67.0 ± 4.7	36.0 ± 2.8
Multiagent (Debate)	$\mathbf{7 3 . 8} \pm \mathbf{2 . 3}$	$\mathbf{7 1 . 1} \pm \mathbf{4 . 6}$	$\mathbf{4 5 . 2} \pm \mathbf{2 . 9}$

Table 2: Multiagent Debate Improves Factual Accuracy. Multiagent debate improves the factual accuracy.

| Round 1 | Prompt: What country was the computer scientist Tomas Lozano-Perez born in?
 Round 2
 Agent 1: Tomas Lozano-Perez, a renowned
 computer scientist, was born in Spain.
 Agent 1: I apologize for the confusion. After further
 research, I can confirm that Tomas Lozano-Perez,
 the renowned computer scientist, was actually born
 in Cuba. Thank you for bringing this to my attention.Agent 2: Tomas Lozano-Perez, a renowned
 computer scientist, was born in Havana, Cuba. |
| :--- | :--- | :--- |
| Agent 2: I apologize for the conflicting responses.
 Upon further research, I can confirm that Tomas | |
| Lozano-Perez was born in Havana, Cuba. | |

Figure 9: Debate with Uncertain Answers. For uncertain facts, multiple language agents generate different facts. Debate always causes agents to change opinion and converge to one fact (which is not necessarily correct).

Figure 10: (a) Performance with Increased Agents. Performance improves as the number of underlying agents involved in debate increases. (b) Performance with Increased Rounds. Performance rises as the number of rounds of underlying debate increases. Analysis in both settings on Arithmetic.

- Chess Move Validity. Lastly, we study the hallucinations in language models when planning under to the given rules of an existing environment or game. Specifically, we measure the validity of possible moves in a game of Chess given by BIG-Bench Chess-State Tracking Benchmark (Srivastava et al., 2022) task of chess-move prediction. In this task, an agent is given a set of next moves, and must make a valid next move of a piece on a board.

Baselines. We use the same baselines as in Section 3.1. Multiagent (majority) is omitted for the Biographies task as there is no method to take a majority vote over responses.
Results. We analyze the performance of each method in Table 2. We found that approaches based on reflection led to poor performance in the factuality setting. In contrast, debate gives the best performance in this setting also, and significantly outperforms each baseline. We illustrate a debate between agents on the biography task in Figure 7 and on MMLU in Figure 8. We found that multiagent debate improved and settled on bullets that were more consistent across agents.
We found that language agents tended to give different answers when the language model was uncertain about the question. However, directly asking each agent about their confidence of the answer (Kadavath et al., 2022) led to high confidence assessments on each answer. When these different language agents were asked instead to communicate with each other, each agent would quickly change their opinion to a consensus answer which was more accurate. We illustrate this in Figure 9. Interestingly, we found that on facts that the language model was confident in (i.e. many instances of the same model all gave the same answer), it was very difficult to convince an agent to change their opinion, suggesting that "ease of persuasion" may be a method to assess factual confidence.

3.3 Analysis: Understanding Multiagent Debate

Finally, we analyze how multiagent debate improves performance.

Question: Carla is downloading a 200 GB file. Normally she can download $2 \mathrm{~GB} /$ minute, but 40% of the way through the download, Windows forces a restart to install updates, which takes 20 minutes. Then Carla has to restart the download from the beginning. How load does it take to download the file?

Round 2

ChatGPT : Based on the calculations provided by the other agent, the correct answer is: Before the restart, Carla was able to download 40% of the file, which is $0.4 * 200 \mathrm{~GB}=80 \mathrm{~GB}$. At a rate of $2 \mathrm{~GB} /$ minute, it would take her: time $=$ $80 \mathrm{~GB} \div 2 \mathrm{~GB} /$ minute $=40$ minutes

However, because of the restart, Carla had to start over. This means she had to download the entire 200 GB file. The time it takes to download the entire 200 GB file is: time $=200 \mathrm{~GB} \div 2 \mathrm{~GB} /$ minute $=100$ minutes

And since Carla had to wait 20 minutes for the Windows update to install, the total time it took to download the file is: total time $=40$ minutes +100 minutes +20 minutes $=\mathbf{1 6 0}$ minutes.

Figure 11: Debate Between chatGPT and Bard. Illustration of debate between different models.
Number of Agents. First, we analyze the impact of agent numbers in debate. In Figure 10(a), we increase the number of agents used in debate, while fixing the debate length to be two. On Arithmetic, performance monotonically increases with the increased number of agents.
Rounds of Debate. Next, we analyze the impact of the number of rounds of debate in multiagent debate. In Figure 10(b), we increase the debate length between agents, while fixing the number of agents to three. We find that on the Arithmetic task, the performance also monotonically increases with debate length. However, additional debate rounds above four led to similar final performance.
Effect of Debate Length on Accuracy. As discussed in Section 2.2, the underlying convergence time in the debate between agents can be controlled by the extent to which agents are encouraged to maintain their opinions. In Figure 12, we consider the effect of short and longform prompts discussed in Figure 3 on GSM8K. We find that debates using longer prompts lead to slower convergence to correct answers, but also lead to a better final consensus on the correct answer. We provide an analysis of consensus between agents in Figure XIV.
Using Different Initialization Prompts. In our experiments, we use the same prompts for all agents. We also consider the effect of using different questions, where we first instruct each language model to behave

Figure 12: Performance vs Debate Length. Prompts which induce longer debate improve performance. Analysis on GSM8K. like a different persona (professor, doctor, mathematician) on the MMLU dataset. We found that improved performance on MMLU from 71.1 to 74.2 with different agents, suggesting further gains can be obtained with specialized agents.
Summarization. While in the majority of experiments in the paper we directly concatenate the responses of other agents as context for an agent to generate a new response, this is expensive when the number of agents involved in debate gets large. We may alternatively first summarize the responses from all other agents into a single response that we provide to agent at each round for more efficient debate. In Figure 13, we analyze the effect compared to directly concatenating the responses
of other agents on the Arithmetic. We find this improves the performance of debate, suggesting that summarization is another tool that can further improve multiagent debate.
Using Different Language Models. Our existing debate results are reported using multiple instances of a chatGPT language model. We further assess the impact of using two different language models, where we ask chatGPT and Bard (Pichai, 2023) language models to debate with each other on a set of 20 GSM8K math problems. In this set, we find that multiagent debate improves the performance of both agents, with Bard solving 11 problems, chatGPT solving 14 problems, and joint multiagent debate solving 17 problems. We qualitatively illustrate a debate between agents in Figure 11. While both agents initially provide incorrect answers to the problem, chatGPT is able to use the response by Bard to generate the final correct answer.

4 Related Work

Figure 13: Effect of Summarization. When there are many agents in a debate, responses from other agents may be first summarized and then given as context, reducing context length. This operation improves performance. Analysis on Arithmetic.

Reasoning and Factuality in Language Models. A wide range of work has explored how to enable reasoning and factuality in language models. To improve reasoning, approaches have relied on prompting techniques such as scratchpads (Nye et al., 2021), verification (Cobbe et al., 2021), chain-of-thought demonstrations (Wei et al., 2022; Kojima et al., 2022; Reynolds \& McDonell, 2021), and intermediate self-reflection (Shinn et al., 2023; Madaan et al., 2023) and finetuning (Lewkowycz et al., 2022; Rajani et al., 2019; Zelikman et al., 2022). To improve factuality, approaches have relied on training techniques such as RLHF (Ziegler et al., 2019; Liu et al., 2022a; Christiano et al., 2017), pruning truthful datasets (Lee et al., 2022), external knowledge retrieval (Guu et al., 2020) and training-free methods based off likelihood estimation (Kadavath et al., 2022).
Our work provides an alternative way to obtain reasoning and factuality in language models using multiagent debate, which only requires black-box access to a language generator. Prior work also has explored how to take the majority vote across different models (Li et al., 2022b; Cobbe et al., 2021; Wang et al., 2022; Thoppilan et al., 2022; Lewkowycz et al., 2022) while in this work, we use rounds of debate between language model to combine answers (difference illustrated in Table 3). Most similar to our work, (Irving et al., 2018) also proposes a debate procedure to verify the accuracy and safety of powerful AI agents. In contrast to our approach, in their work, agents are asked to alternatively provide proof of input, and humans are tasked with assessing these debates and determining safety.
Compositional Generation. Our work is also related to existing works that focus on text generation by combining different models (Du et al., 2020; Liu et al., 2022b; Zeng et al., 2022; Alayrac et al., 2022; Du et al.,

Method	Agents	Rounds
Majority	N	1
Debate	N	T

Table 3: In contrast to majority voting, debate uses multiple rounds of discourse between agents.
2023). Most similar to our work, (Li et al., 2022a; Zeng et al., 2022) propose to combine multiple different large pretrained models together for multimodal reasoning. In contrast, in our work, we aim to use communication between different language models to enable more effective reasoning and factuality in language models.

5 Limitations and Conclusion

Limitations. In comparison with other prompting techniques, our approach is more expensive as it requires both multiple agents and a debate procedure - this can be omitted by distilling debate answers to the original base model. In addition, we found that as debates got longer in duration, current language models struggled to fully process the context. Training language models with longer-context or summarizing previous responses may alleviate this difficulty.

Conclusion. In this paper, we presented an orthogonal approach to improve the performance of language models through the ideas of multiagent societies. We believe the perspective of having many modular language agents working in combination to solve different difficult tasks will prove to be a fruitful area of research that is orthogonal to directly improve the performance of language models with larger amounts of computational training.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: A visual language model for few-shot learning. NeurIPS, 2022. URL https://arxiv.org/abs/2204.14198.9

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. In Neural Information Processing Systems, 2017. 9

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021. 5, 9

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models. In Advances in Neural Information Processing Systems, 2020. 9

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce, reuse, recycle: Compositional generation with energy-based diffusion models and mcmc. arXiv preprint arXiv:2302.11552, 2023. 9

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. REALM: Retrievalaugmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020. 9

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020. 6

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874, 2021. 14

Geoffrey Irving, Paul Christiano, and Dario Amodei. Ai safety via debate. arXiv preprint arXiv:1805.00899, 2018. 9

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022. 7, 9

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022. 1, 6, 9

Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale N Fung, Mohammad Shoeybi, and Bryan Catanzaro. Factuality enhanced language models for open-ended text generation. Advances in Neural Information Processing Systems, 35:34586-34599, 2022. 9

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022. 5, 9

Shuang Li, Yilun Du, Joshua B Tenenbaum, Antonio Torralba, and Igor Mordatch. Composing ensembles of pre-trained models via iterative consensus. arXiv preprint arXiv:2210.11522, 2022a. 9

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode. Science, 378(6624):1092-1097, 2022b. 9

Hao Liu, Lisa Lee, Kimin Lee, and Pieter Abbeel. Instruction-following agents with jointly pre-trained vision-language models. arXiv preprint arXiv:2210.13431, 2022a. 9

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual generation with composable diffusion models. arXiv preprint arXiv:2206.01714, 2022b. 9

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651, 2023. 1, 5, 9

Marvin Minsky. Society of mind. Simon and Schuster, 1988. 1
Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work: Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114, 2021. 9

OpenAI. Chatgpt: Optimizing language models for dialogue, Dec 2022. URL https: / / openai. com/blog/chatgpt/. 1,5

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022. 4

Sundar Pichai. An important next step on our ai journey, Feb 2023. URL https://blog. google/technology/ai/bard-google-ai-search-updates/. 1, 9

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself! leveraging language models for commonsense reasoning. arXiv preprint arXiv:1906.02361, 2019. 9

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1-7, 2021. 9

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023. 1, 9

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615, 2022. 7, 13

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239, 2022. 9

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022. 5, 9

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022. 9, 12

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. Advances in Neural Information Processing Systems, 35:15476-15488, 2022. 9

Andy Zeng, Adrian Wong, Stefan Welker, Krzysztof Choromanski, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, et al. Socratic models: Composing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598, 2022. URL https://arxiv.org/abs/2204.00598.9

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019. 9

A Appendix

In this appendix, we provide additional analysis and visualizations of the debates used in the main paper in Section A.1. We further provide detailed experimental details on each dataset in Section A.2. An anonymous repo with the code of the paper can be found in https://anonymous. 40 pen. science/r/llm_multiagent_debate_anonymous-BE27/README.md.

A. 1 Additional Results

Consensus Between Agents. In Figure XIV, we illustrate the consensus between agents using either short or long consensus prompts discussed in Figure 3 on the arithmetic dataset. The use of debate prompts that encourage agents to adapt more to the opinions of other agents improves consensus at the expense of worse performance (Figure 12). In general, we found high rates of consensus at the end of debate among agents across datasets with a consensus rate of 89.3 ± 1.7 on arithmetic, 88.6 ± 1.8 on GSM8K, 89.2 ± 1.0 on MMLU and 96.0 ± 1.1 on Chess Validity
Results with GPT-4. We further report results of our approach on the GPT-4 model in Table IV. Similar to

Figure XIV: Effect of Prompts on Consensus. Using a short debate prompt induces faster consensus between agents. Analysis on GSM8K. the GPT-3 model, our approach also similarly improves the performance of the GPT-4 model.
Results with Few-Shot Chain-of-Thought Prompting On GSM, we further consider applying few-shot chain-of-thought prompting to both our approach on baselines, using 8 -shot reasoning examples from (Wei et al., 2022). In this setting, we find a Single Agent obtains performance 81.0 ± 3.9, Single Agent (Reflection) obtains performance 78.0 ± 4.1, Multiagent (Majority) obtains performance 84.0 ± 3.6 and Multiagent Debate obtains performance 89.0 ± 3.1. We find that multiagent debate similarly improves performance with few-shot prompting.
Replication Across Multiple Splits of Data. To verify the reproducibility of our approach, we evaluate our approach across different splits of data on GSM8K in Table VIII. Across each split, we find that our approach outperforms the performance of baselines.
Sensitivity to Selected Prompts. To evaluate the sensitivity of our approach to selected debate prompts in Table XVI, we paraphrase prompts each domain first using chatGPT-3.5 and report results in Table IX. Our approach is not sensitive to the precise prompts used for the debate procedure and retains good performance.
More Agents. To evaluate the performance of our approach with a large number of agents, we compare using 10 agents across 2 rounds of debate to a majority vote over 50 agents in Table V. Our approach outperforms majority voting even under a very large number of agents.
Open Source LLMs. We further illustrate the applicability of our approach to the chat-Llama 2 7B in Table VI. Our approach can also be applied to existing opensource LLMs.
Summarization. We further evaluate the performance of summarization on 3 agents and 2 rounds of debate on the GSM8K and MMLU tasks. We find that summarization on GSM leads to a performance of 87.0 compared to the original performance of 85.0 . We found that summarization on MMLU leads to a performance boost of 73.0 compared to the original performance of 71.1.
Agreeableness. We analyze the effect of agreeableness on debate on the RLHF-aligned chat-Llama 7B model compared to the unaligned Llama 7B model. On the GSM8K task, we find that LLama 7B model achieves a consensus of 51.3 after debate compared to consensus of 62.7 with aligned chat-LLama 2 model. On the MMLU task, we find that LLama 7B model achieves a consensus of 74.3 after debate compared to consensus of 100.0 with aligned chat-LLama 2 model. Our results indicate that RLHF significantly improves consensus in multiagent debate.
Reflection Ensemble. We further compare our approach to constructing an ensemble of selfreflection agents in Table VII. We find that our approach outperforms this baseline, indicating the efficacy of reflection across the responses of multiple agents.
Additional Qualitative Visualizations. We added additional qualitative visualizations of the debate process. In Figure XVIII, Figure XIX, Figure XX, Figure XXI, Figure XXII, we illustrate debates between agents in the GSM8K dataset which result in the correct answer. In Figure XXIII, Figure XXIV, Figure XXV, we further illustrate debates in GSM8K which lead to the incorrect answer. We further provide an example illustration of debate in arithmetic in Figure XXVI, arithmetic
with summarization of individual responses of agents in Figure XXVII, MMLU in Figure XXVIII, a debate with the full contents biographies in Figure XXIX, and debate in chess in Figure XXX. We show examples where debate is able to correct two incorrectly generated answers in Figure XXXI and Figure XXXII. In general, we found that debate improved the performance of final generated answers, though sometimes answers would converge to the incorrect value.

A. 2 Evaluation Details

We provide detailed evaluation details for each setting in the paper. We run all experiments using the gpt-3.5-turbo-0301 model. We provide a table listing the prompts used to prompt models and initialize debate in Table XVI. All baselines and models were evaluated on the same set of problems. Arithmetic. To evaluate the arithmetic task, we generated six random integers for each task between 0 and 30 . We then evaluated the extent to which the correct integer answer was correctly obtained. We evaluated models on one hundred randomly generated arithmetic tasks.
Grade School Math. To evaluate the GSM8K task, we evaluated the accuracy at which models were able to obtain the final correct answer, as extracted from a box. We evaluated models on one hundred randomly selected grade school math problems.
Chess. To evaluate the chess reasoning task, we used chess games from https://www. pgnmentor.com/players/Adams.zip. We asked chatGPT to predict the next move for white to move at turn 14 and reported the relative Stockfish pawn score with search depth 20 after executing the suggested move from chatGPT. We evaluated models on three hundred randomly selected chess games.
Biographies. To evaluate the biographies task, we use a chatGPT critic to automatically evaluate the accuracy of generated biographies. We first extract a set of ground truth facts about a person from Wikipedia. For each ground truth fact, we ask chatGPT to assess if the fact is consistent with a full generated biography. We prompting chatGPT with the prompt: Consider the following biography of <person>: <generated biography> Is the above biography above consistent with the fact below? <ground truth bullet> Give a single-word answer, yes, no, or uncertain. We then evaluate and report the percentage of ground bullets that chatGPT returns either yes or no on. We provide two example judgements in Figure XVII.
We conducted a human study on a total of 100 judgements in the biograph task using this automated evaluation from chatGPT. We found that chatGPT was very acccurate on this task, and provided the correct judgement in 93 out of the 100 cases. In the 7 incorrect judgements, we found in 6 of them, chatGPT was overly conservative and would assert that a fact was inconsistent with a generated biography when in fact it was consistent (but some part of the fact was missing from the generated biography). In the last incorrect judgement, we found that chatGPT incorrectly assessed that a fact stating a person was dead was consistent with a generated biography that said the person was in a current working occupation. As a result, we believe that this evaluation metric is a fast and relatively accurate way to assess the the accuracy of fact generation.
MMLU. To evaluate MMLU, we measured the accuracy in which models were able to select the correct multiple-choice answer in each problem. We evaluated models on one hundred randomly selected MMLU questions randomly distributed across each of the subject areas.
Chess Validity. To evaluate chess validity, we consider the BIG-Bench Chess-State Tracking Benchmark (Srivastava et al., 2022), where we used the hardest reported task in the benchmark synthetic_short. Each generated answer was deemed correct as long as it was one of the valid answers in the sequence. We evaluated models on one hundred randomly selected chess validity tasks.

A. 3 Baseline Details

Single Agent. For the single agent baseline, we use the same starting prompt as used in debate (illustrated in Figure XVI).
Self-Reflection. For the self-reflection baseline, we use the same starting prompt as used in debate (illustrated in Figure XVI). We then use the self-reflection prompt in Figure XV. We use one round of self-reflection.
Multiagent Majority. For the multiagent majority, we prompt each model with the same starting prompt as used in debate (illustrated in Figure XVI). We then take the majority vote across all generations, where we use a total of 6 agents to match the cost of using 3 agents with 2 rounds of debate for multiagent debate.

A. 4 Computational Cost

We report per method and per dataset generation token costs of single agent, self-reflection, multiagent majority methods to answer a question in Table X. Our reported generated tokens count is summed across generations from all agents and across all rounds of debate.

Model	MMLU	MATH
Single Agent	82.0 ± 3.8	47.0 ± 4.9
Single Agent (Reflection)	83.0 ± 3.7	50.0 ± 5.0
Multiagent (Majority)	84.0 ± 3.7	45.0 ± 4.9
Multiagent (Debate)	$\mathbf{8 8 . 0} \pm \mathbf{3 . 2}$	$\mathbf{5 6 . 0} \pm \mathbf{5 . 0}$

Table IV: Multiagent Debate on GPT-4. Our approach also improves the performance of a GPT-4 model on the MMLU and MATH dataset (Hendrycks et al., 2021).

Model	Arithmetic	GSM8K	MMLU
Majority Vote (50 Agents)	92.0 ± 2.7	85.0 ± 3.6	67.0 ± 4.7
Debate (10 Agents 2 Rounds)	$\mathbf{9 6 . 0} \pm \mathbf{1 . 3}$	$\mathbf{8 9 . 0} \pm \mathbf{3 . 1}$	$\mathbf{7 1 . 0} \pm \mathbf{4 . 5}$

Table V: Multiagent Debate with Many Agents. Our approach also improves the performance with a very large number of agents.

Model	Arithmetic	GSM8K	MMLU
Single Agent	9.0 ± 1.6	20.7 ± 2.3	41.0 ± 2.8
Single Agent (Reflection)	10.7 ± 1.7	21.0 ± 2.3	39.7 ± 2.8
Multiagent (Majority)	11.0 ± 1.8	25.7 ± 2.5	43.3 ± 2.9
Multiagent (Debate)	$\mathbf{1 3 . 3} \pm \mathbf{1 . 9}$	$\mathbf{2 9 . 3} \pm \mathbf{2 . 6}$	$\mathbf{4 7 . 7} \pm \mathbf{2 . 9}$

Table VI: Multiagent Debate on chat-Llama 7B. Our approach also improves the performance of the chatLlama model.

Model	Arithmetic	GSM8K	MMLU
Single Agent	67.0 ± 4.7	77.0 ± 4.2	63.9 ± 4.8
Single Agent (Reflection)	72.1 ± 2.4	75.0 ± 4.3	57.7 ± 5.9
Multiagent (Majority)	75.0 ± 3.9	81.0 ± 3.9	67.0 ± 4.7
Multiagent (Reflection)	76.0 ± 4.3	80.0 ± 4.0	65.0 ± 4.7
Multiagent (Debate)	$\mathbf{8 1 . 8} \pm \mathbf{2 . 3}$	$\mathbf{8 4 . 0} \pm \mathbf{2 . 1}$	$\mathbf{7 1 . 1} \pm \mathbf{4 . 6}$

Table VII: Reflection Ensemble. Our approach also improves over an ensemble of self-reflection models.

Model	GSM8K 1	GSM8K 2	GSM8K 3
Single Agent	77.0 ± 4.2	71.0 ± 4.5	73.0 ± 4.4
Single Agent (Reflection)	75.0 ± 4.3	70.0 ± 4.6	75.0 ± 4.3
Multiagent (Majority)	81.0 ± 3.9	76.0 ± 4.3	76.0 ± 4.3
Multiagent (Debate)	$\mathbf{8 5 . 0} \pm \mathbf{3 . 5}$	$\mathbf{8 1 . 0} \pm \mathbf{3 . 9}$	$\mathbf{8 4 . 0} \pm \mathbf{3 . 6}$

Table VIII: Evaluation on Different Splits of GSM8K. Our approach consistently outperforms each baseline across different splits of GSM8K problems

Model	Biographies	Arithmetic	GSM8K
Single Agent	66.0 ± 2.2	67.0 ± 4.7	77.0 ± 4.2
Single Agent (Reflection)	68.3 ± 2.9	72.1 ± 4.5	75.0 ± 4.3
Multiagent (Majority)	-	74.0 ± 4.3	81.0 ± 3.9
Multiagent (Debate)	$\mathbf{7 3 . 8} \pm \mathbf{2 . 3}$	81.8 ± 2.3	85.0 ± 3.5
Multiagent (Debate/Paraphrase)	72.1 ± 2.4	$\mathbf{8 4 . 0} \pm \mathbf{2 . 1}$	$\mathbf{8 6 . 0} \pm \mathbf{3 . 4}$

Table IX: Debate Performance with Paraphrased Prompts. Our approach performs well even when debate prompts are paraphrased.

Method	Arithmetic	GSM	Chess Reasoning	Biography	MMLU	Chess Validity
Single Agent	95.6 ± 5.1	111.5 ± 5.5	8.3 ± 0.6	220.5 ± 3.6	91.7 ± 5.1	39.0 ± 1.1
Single Agent (Reflection)	170.2 ± 5.7	155.2 ± 10.2	64.6 ± 3.2	297.2 ± 11.8	97.2 ± 5.9	92.8 ± 1.6
Multiagent (Majority)	564 ± 10.7	660.1 ± 16.2	49.2 ± 3.0	1295 ± 7.3	422.31 ± 12.3	331.8 ± 2.9
Multiagent (Debate)	548.1 ± 9.4	524.2 ± 11.7	199.5 ± 5.3	967.1 ± 43.7	527.7 ± 17.1	306.1 ± 1.9

Table X: Generation Token Cost of Methods on Each Dataset. Average number of generated tokens (summed across all rounds of debate / convservation) when answering a query per method per dataset.

Task	Type	Prompt
Arithmetic	Reflection	Can you verify that your answer is correct. Please reiterate your answer, making sure to state your answer at the end of the response.
GSM8K	Reflection	Can you double check that your answer is correct. Please reiterate your answer, with your final answer a single numerical number, in the form Vboxed\{\{answer\}\}.
Chess Reasoning	Reflection	Given the board state and your previous move suggestion, can you confirm your best next chess move? Give a single move suggestion for white following the form 14. <XXX> and make sure the chess move is valid in the current board state.
Biographies	Reflection	Closely examine your biography and provide an updated bullet point biography.
MMLU	Reflection	Can you double check that your answer is correct. Put your final answer in the form (X) at the end of your response.
Chess Validity	Reflection	Can you double check that your answer is valid? State your final answer in a newline with a 2 letter response following the regex [a-h][l-8].

Figure XV: Self Reflection Prompts. List of self-reflection prompts used in each task
$\left.\left.\begin{array}{l|l|l}\text { Task } & \text { Type } & \text { Prompt } \\ \hline \text { Arithmetic } & \text { Starting } & \text { What is the result of }\left\}+\{ \}^{*}\{ \}+\{ \}-\{ \} *\{ \} ? \text { Make sure to state your answer at the end of the response. }\right.\end{array}\right] \begin{array}{l}\text { These are the recent/updated opinions from other agents: <other agent responses }>\text { Use these opinions } \\ \text { carefully as additional advice, can you provide an updated answer? Make sure to state your answer } \\ \text { at the end of the response. }\end{array}\right]$

Figure XVI: Multiagent Debate Prompts. List of prompts used in each task.

Biography: Darrell Long is a computer scientist and professor at the University of California, Santa Cruz. He received his Ph.D. in Computer Science from the University of Maryland in 1985 and has since made significant contributions in the field of storage systems and distributed systems. Long's research focuses on file systems, storage virtualization, and high-performance computing, and he has published over 150 papers in these areas. He has received numerous awards and recognitions for his work, including the prestigious ACM SIGMOD Test-of-Time Award, the IEEE Reynold B. Johnson Information Storage Systems Award, and the USENIX Lifetime Achievement Award. Long has served as Chief Scientist at Panasas, a computational storage company, and has been a consultant for several other tech companies. He is a Fellow of both the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE) and a member of the National Academy of Engineering. Long has played leadership roles in several organizations, including serving as the Chair of the USENIX Association Board of Directors, Editor-in-Chief of the ACM Transactions on Storage, and on the editorial boards of several other major computer science journals.

Fact: Darrell Don Earl Long is a computer scientist and computer engineer.
ChatGPT Judgement: True.
Fact: Darrell Don Earl Long did his undergraduate studies at San Diego State University and received his Ph.D. from the University of California, San Diego.
ChatGPT Judgement: False.

Figure XVII: Example Biography chatGPT Evaluations. To evaluate the accuracy of biographies, we prompt chatGPT with a generated biography and a ground truth fact about the person. We then ask chatGPT to verify if the generated biography is consistent with the ground truth fact.

User Input: Can you solve the following math problem? John arm wrestles 20 people. He beats 80%. How many people did he lose to? Explain your reasoning. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response.

Round 1	
Agent 1: If John beat 80% of the people he arm wrestled, he must have lost to the remaining 20%. To find how many people that is, we can set up a proportion: $\$ \backslash$ frac $\{\backslash$ text $\{$ number of people John beat $\}\}\{\backslash$ text $\{$ total number of people John arm wrestled $\}\}=80 \backslash \%=\backslash \operatorname{frac}\{4\}\{5\} \$$	Agent 2: If John beats 80% of the people he arm wrestles, then he must lose to 20% of them. Since 20% of 20 people is $\$(0.20)(20)=4 \$$, John must have lost to $\$$ boxed $\{4\} \$$ people.
Let x be the number of people John lost to. Then we know:	
$\$ \backslash$ frac $\{\backslash$ text $\{$ number of people John beat $\}\}\{$ text $\{$ total number of people John arm wrestled $\}\}=\backslash$ frac $\{\backslash$ text $\{$ number of people John beat $\}\}\{\backslash$ text $\{$ number of people John beat $\}+\backslash \operatorname{text}\{\mathrm{x}\}\}=\backslash \operatorname{frac}\{4\}\{5\} \$$	
Cross-multiplying yields:	
```$5\text{(number of people John beat)} = 4(\text {number of people John beat} +\text{x})$```	
Simplifying this equation gives:	
\$ $\backslash \operatorname{text}\{\mathrm{x}\}=\backslash$ boxed $\{25\} \$$	
Therefore, John must have lost to 25 people.	

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form lboxed\{answer\}, at the end of your response.

## Round 2

Agent 1: Both solutions are correct in understanding that since John beat $80 \%$ of the people he arm wrestled, he lost to the remaining $20 \%$. However, the first solution made an error in the calculation, where they found that John won against 16 people out of $20(80 \%$ of 20$)$, leading them to think that he lost to 4.
Since John arm-wrestled 20 people in total, and won against $80 \%$ of them, he must have lost to the remaining $20 \%$. Therefore, the number of people John lost to is:
$\$ \backslash$ text $\{$ Number of people John lost to $\}=20 \backslash$ cdot $0.2=\backslash$ boxed $\{4\} \$$
So the correct answer is indeed 4, as the second agent already provided.

Agent 2: I agree with the other agents that John lost to $20 \%$ of the people he arm wrestled, which is equal to 4 people since he arm wrestled a total of 20 people. Therefore the answer is $\$ \backslash$ boxed $\{4\} \$$.

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form lboxed \{answer\}, at the end of your response.

Round 3	
Agent 1: I agree with both previous agents that since John beat $80 \%$ of the people he arm wrestled, he lost to the remaining $20 \%$. Therefore, the number of people John lost to is:   $\$ \backslash$ text $\{$ Number of people John lost to $\}=20 \backslash$ cdot $0.2=\backslash$ boxed $\{4\} \$$   So the answer is indeed 4 , as the first agent incorrectly calculated but the second agent correctly calculated.	Agent 2: I agree with the other agents that John lost to $20 \%$ of the people he arm wrestled, which is equal to 4 people since he arm wrestled a total of 20 people. Therefore the answer is \$lboxed $\{4\}$.

Figure XVIII: Example of a correct GSM8K Debate.

User Input: Can you solve the following math problem? Shondra has 7 fewer plants than Toni. Toni has $60 \%$ more plants than Frederick. If Frederick has 10 plants, how many plants does Shondra have? Explain your reasoning. Your final answer should be a single numerical number, in the form \boxed\{answer\}, at the end of your response.

Round 1
Agent 1: If Frederick has 10 plants, then Toni has $60 \%$ more plants, which is equal to $10+(60 / 100)^{*} 10=16$ more plants than Frederick. Therefore, Toni has a total of $10+16=26$ plants.
Shondra has 7 fewer plants than Toni, which means she has 26-7 $=19$ plants.

Final answer: \boxed $\{19\}$.

Agent 2: First, we need to determine how many plants Toni has. We know that Toni has $60 \%$ more plants than Frederick, who has 10 plants. To find $60 \%$ of 10 , we can multiply 10 by 0.6 , which gives us 6 . Therefore, Toni has $10+6=16$ plants.

Next, we know that Shondra has 7 fewer plants than Toni. So we can subtract 7 from Toni's 16 plants to get Shondra's number of plants: 16-7=9 plants.

Therefore, Shondra has $\backslash$ boxed $\{9\}$ plants.

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form boxed \{answer\}, at the end of your response.

## Round 2

Agent 1: I confirm that the solution provided by the other agent is correct.
Toni has 16 plants, and since Shondra has 7 fewer plants than Toni, she has $16-7=9$ plants.

Final answer: \boxed $\{9\}$.

Agent 2: I agree with the previous agents that Toni has 16 plants and Shondra has 7 fewer plants than Toni, which is 9 plants. Therefore, my final answer is lboxed $\{9\}$.

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form boxed $\{$ answer $\}$, at the end of your response.

Round 3	Agent 2: I concur with the other agents   that Toni has 16 plants and Shondra has 7
Agent 1: I agree with the previous agents that Toni has 16 plants and   Shondra has 7 fewer plants than Toni, which means Shondra has $16-7=9$   plants.	Shondra has $16-7=9$ plants.
Therefore, my final answer is $\backslash$ boxed $\{9\}$.	Therefore, my final answer is $\backslash$ boxed $\{9\}$.

Figure XIX: Example of Correct GSM8K Debate.

User Input: Can you solve the following math problem? Bob is in charge of doing laundry for a large hotel. Each room has two sheets, one comforter, twice as many pillow cases as sheets and twice as many towels as pillow cases. How many pieces of laundry are there in 80 rooms? Explain your reasoning. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response.

Round 1	
Agent 1: For each room, Bob needs to wash:   -2 sheets	Agent 2: In each room, there are:
-1 comforter	
$-2 \times 2=4$ pillow cases	-2 sheets
$-4 \times 2=8$ towels	-1 comforter
So for each room, Bob needs to wash a total of $2+1+4+8=15$	-2 pillow cases (twice as many as sheets)
pieces of laundry.	So in total, each room has $2+1+2+4=9$   pieces of laundry.
For 80 rooms, Bob needs to wash a total of $80 \times 15=1200$ pieces of   laundry.	Therefore, in 80 rooms, there are
Therefore, the answer is $\backslash$ boxed $\{1200\}$.	$80 * 9=$ boxed $\{720\}$ pieces of laundry.

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem?
Please update and respond to other agents. Your final answer should be a single numerical number, in the form
lboxed \{answer\}, at the end of your response.

Round 2	
Agent 1: Based on the given information, each room has:	Agent 2: Based on the information
- 2 sheets	provided, each room has:
- 1 comforter	
$-2 \times 2=4$ pillow cases	- 2 sheets
-4 $\times 2=8$ towels	- 1 comforter
	-2 $\times 2=4$ pillow cases
This gives a total of $2+1+4+8=15$ pieces of laundry per room.	- $4 \times 2=8$ towels
Therefore, in 80 rooms, there are $80 \times 15=\backslash$ boxed $\{1200\}$ pieces of laundry in total.	This gives a total of $2+1+4+8=15$ pieces of laundry per room.
Note: While the other agent's solution is correct in terms of the number of pieces of laundry per room, they made a mistake in their final calculation by multiplying 80 by 9 instead of 15 .	Therefore, in 80 rooms, there are $80 \times 15=$ lboxed $\{1200\}$ pieces of laundry in total.
$\checkmark$	I agree with the other agent's corrected calculation.

User Input: These are the solutions to the problem from other agents: One agent solution:

> (Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem?
Please update and respond to other agents. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response.

Round 3
Agent 1: Based on the information provided, each room has:
-2 sheets
-1 comforter
$-2 \times 2=4$ pillow cases
$-4 \times 2=8$ towels
This gives a total of $2+1+4+8=15$ pieces of laundry per room.
Therefore, in 80 rooms, there are $80 \times 15=$ boxed $\{1200\}$ pieces of
laundry in total.
I agree with the other agent's corrected calculation.

Agent 2: Based on the information provided, each room has:

- 2 sheets
- 1 comforter
$-2 \times 2=4$ pillow cases
$-4 \times 2=8$ towels
This gives a total of $2+1+4+8=15$ pieces of laundry per room.

Therefore, in 80 rooms, there are $80 \times 15=$ lboxed $\{1200\}$ pieces of laundry in total.

I agree with the other agents' answers and calculations.

User Input: Can you solve the following math problem? Lori wants to buy a $\$ 320.00$ pair of shoes and a matching belt that is $\$ 32.00$. Her part-time job pays her $\$ 8.00$ an hour. How many hours will she have to work before she can make her purchase? Explain your reasoning. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response.

Round 1	
Agent 1: To find out how many hours Lori will need to work to make her purchase, we need to first calculate the total cost of both the shoes and belt:	Agent 2: Lori needs to earn a total of $\$ 352.00$ (\$320.00 for shoes $+\$ 32.00$ for belt) to make her purchase. She earns $\$ 8.00$ per hour at her job.
\$320.00 (shoes) $+\$ 32.00$ (belt) $=\$ 352.00$	
Next, we need to figure out how much money Lori will earn from her part-time job. We can set up a proportion:	To find out how many hours she needs to work, we can set up an equation:
	\$8.00/hour \times x hours = \$352.00
\$8.00/hour $=$ X/total hours	
We can solve for X by cross-multiplying:	Solving for x , we can divide both sides by \$8.00/hour:
\$8.00/hour $=$ X/total hours	x hours $=\$ 352.00 / \$ 8.00 /$ hour
\$8.00 * total hours $=\mathrm{X}$	
$\mathrm{X}=\$ 352.00$	$x$ hours $=44$ hours
This means that Lori will need to work a total of:	Therefore, Lori needs to work 44 hours before she can make her purchase.
\$352.00 $\div$ \$8.00/hour $=44$ hours	
	\boxed $\{44\}$
Therefore, Lori will need to work 44 hours before she can make her purchase. Answer: \boxed $\{44\}$.	$\checkmark$

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply) (Copy Agent 1's reply)

Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form lboxed \{answer\}, at the end of your response.

## Round 2

Agent 1: I agree with the other agents that Lori needs to work a total of $\$ 352.00 \div \$ 8.00 /$ hour $=44$ hours to make her purchase. The final answer is: $\operatorname{lboxed}\{44\}$.

Agent 2: I agree with the other agents that Lori needs to work for 44 hours to make her purchase. The final answer is $\backslash$ boxed $\{44\}$.

User Input: These are the solutions to the problem from other agents: One agent solution:
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form lboxed $\{$ answer \}, at the end of your response.

Round 3	Agent 2: After reviewing the solutions   provided by other agents, I agree that Lori
Agent 1: I agree with the other agents that Lori needs to work 44 hours   to make her purchase. Therefore, the final answer is $\backslash$ boxed $\{44\}$.	needs to work 44 hours to make her   purchase, so the final answer is $\backslash$ boxed $\{44\}$.

Figure XXI: Example of Correct GSM8K Debate.

User Input: Can you solve the following math problem? Jennifer bought 12 oranges from the market, she gave her three daughters 2 oranges each, and her only boy got 3 oranges. How many oranges did she remain with? Explain your reasoning. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response.
$\quad$ Round 1

Agent 1: Jennifer gave a total of 2 oranges/daughter $x 3$ daughters +3
oranges/son $=9$ oranges to her children. Thus, she remained with 12
oranges -9 oranges $=3$ oranges.
lboxed $\{3\}$.

Agent 2: Jennifer gave away a total of \$2 \cdot $3+3=9 \$$ oranges. Therefore, she remained with $\$ 12-9=\backslash$ boxed $\{3\} \$$ oranges.
$\sigma$

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form lboxed \{answer\}, at the end of your response.

Round 2	
Agent 1: I agree with the previous solutions provided. Jennifer gave a total of 2 oranges/daughter x 3 daughters +3 oranges/son $=9$ oranges to her children. Thus, she remained with 12 oranges -9 oranges $=3$ oranges.	Agent 2: I agree with the other agents' solutions. Jennifer gave away a total of 2 oranges/daughter x 3 daughters +3 oranges/son $=9$ oranges. Therefore, she remains with 12 oranges -9 oranges $=$
$\backslash \mathrm{boxed}\{3\}$.	\$ booxed $\{3\} \$$ oranges.

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form lboxed \{answer\}, at the end of your response.

## Round 3

Agent 1: I confirm the previous solutions provided. Jennifer gave a total of 2 oranges/daughter $x 3$ daughters +3 oranges/son $=9$ oranges to her children. Therefore, she remains with 12 oranges -9 oranges $=$ $\$$ boxed $\{3\} \$$ oranges.

Agent 2: I agree with the other agents. Jennifer gave away a total of 2 oranges/daughter x 3 daughters +3 oranges/son $=9$ oranges to her children, therefore she remains with 12 oranges - 9 oranges $=\$$ boxed $\{3\} \$$ oranges.

Figure XXII: Example of Correct GSM8K Debate.

User Input: Can you solve the following math problem? A toy manufacturer receives an order for 400 toys. 5 workers are available to work on the order. 2 of the workers produce 6 toys an hour, and another 2 workers produce 4 toys an hour. They all work on the order during their 10 -hour shift, and by the end of their shift the manufacturer still needs another 20 toys to be able to ship the order. How many toys per hour does the fifth worker produce? Explain your reasoning. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response.

## Round 1

Agent 1: Let's first find the total number of toys that the four workers produce in 10 hours.
The two workers who produce 6 toys an hour make a total of $6 \times 2 \times 10=$
120 toys.
The other two workers who produce 4 toys an hour make a total of $4 \times 2 \times 10$
$=80$ toys.
Together, they produce $120+80=200$ toys.
Since the manufacturer still needs another 20 toys to complete the order, we know that all 5 workers together need to produce a total of $400+20=420$ toys.

Subtracting the 200 toys that have already been produced, we're left with 420 $-200=220$ toys that need to be produced by the fifth worker.

Since the workers have worked for 10 hours, we can set up the equation:
Toys per hour for fifth worker x $10=220$
Solving for the toys per hour for the fifth worker, we get:
Toys per hour for fifth worker $=220 / 10=22$
Therefore, the fifth worker must produce $\backslash$ boxed $\{22\}$ toys per hour.

Agent 2: Let the number of hours each group of workers (6-toy producers and 4-toy producers) work be x and y , respectively. Then we have the following system of equations:

$$
\begin{array}{ll}
2(6 x)+2(4 y)=400+20 \\
12 x+8 y=210 & (\text { Equation 1) } \\
x+y=10 & (\text { Equation 2) }
\end{array}
$$

Simplifying Equation 2, we get:
$y=10-x$
Substituting this into Equation 1, we get:
$12 x+8(10-x)=210$
$4 \mathrm{x}=50$
$\mathrm{x}=12.5$
Thus, the first 4 workers produce a total of $2(6)(12.5)+2(4)(10-$ $12.5)=150$ toys. Since they still need another 20 toys to meet the order, the fifth worker must produce $20 / 10=2$ toys per hour.

Therefore, the fifth worker produces \boxed $\{2\}$ toys per hour.

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)

Using the solutions from other agents as additional information, can you provide your answer to the math problem?
Please update and respond to other agents. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response

Round 2	
Agent 1: There is an error in the previous solution provided. The number of toys produced by the four workers in 10 hours is incorrect. The correct calculation should be:	Agent 2: I agree with the updated solution provided by the other agent. The total toys produced by the four workers in 10 hours is 400 , and since the manufacturer still needs to produce another 380 toys, all five workers need to produce 38 toys per
2 (6 toys per hour) x 10 hours $\times 2$ workers $=240$ toys	hour.
$2(4$ toys per hour) x 10 hours $\times 2$ workers $=160$ toys	
Total toys produced by the four workers $=240+160=400$ toys	Setting up the equation, with $x$ being the number of toys produced by the fifth worker per hour, we get:
So, the manufacturer still needs to produce another 400-20=380 toys.	
To produce the remaining 380 toys in 10 hours, all five workers need to produce	$2(6)+2(4)+x=38$
$380 / 10=38$ toys per hour.	$\begin{aligned} & 12+8+x=38 \\ & x=18 \end{aligned}$
Since four workers are already producing 6 and 4 toys per hour, we can set up the equation:	Therefore, the fifth worker must produce $\backslash$ boxed $\{18\}$ toys per hour.
$2(6)+2(4)+x=38$	
Simplifying this, we get: $\mathrm{x}=7$	
Therefore the fifth worker must produce $\backslash$ boxed $\{7\}$ toys per hour.	

User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)

Using the solutions from other agents as additional information, can you provide your answer to the math problem?
Please update and respond to other agents. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response

Round 3	
Agent 1: I believe there is an error in the updated solution provided by the other agents. The total number of toys produced by the four workers in 10 hours is indeed 400, and since the manufacturer still needs to produce another 380 toys, all five workers need to produce 38 toys per hour.	Agent 2: I agree with the latest solution provided by the other agent. The total number of toys produced by the four workers is 400 , and the manufacturer still needs to produce another 380 toys. To produce the remaining 380 toys in 10 hours, all five workers need to produce 38 toys per hour.
Setting up the equation, with x being the number of toys produced by the fifth worker per hour, we get:	Setting up the equation, with $x$ being the number of toys produced by the fifth worker per hour, we get:
$2(6)+2(4)+x=38$	
$12+8+\mathrm{x}=38$	
$\mathrm{x}=18 / 5$	$\begin{aligned} & 12+8+x=38 \\ & x=18 / 5 \end{aligned}$
Therefore, the fifth worker must produce $\backslash$ boxed $\{3.6\}$ toys per hour.	Therefore, the fifth worker must produce $\backslash$ boxed $\{3.6\}$ toys per hour.

Figure XXIII: Example of Incorrect GSM8K Debate.

User Input: Can you solve the following math problem? Courtney attended a concert and reported that the audience was 48 in number. However, Kelly went to the same concert and said that Courtney had made the mistake of overstating the number of people in attendance by $20 \%$. If Kelly was right, how many people really attended the concert? Explain your reasoning. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response.

## Round 1



User Input: These are the solutions to the problem from other agents: One agent solution:
(Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form boxed $\{$ answer \}, at the end of your response.

Round 2	
Agent 1: The other agent's solution assumes that Courtney overstated the number of people by 20 percentage points, not 20 percent of the original number. This means their answer is incorrect.	Agent 2: I agree with the first agent's solution that we need to consider the $20 \%$ decrease from the original number of people. Let $x$ be the actual number of people at the concert, then we have:
Instead, we can use the method in the first solution. Let x be the actual number of people at the concert. Then, we know that:	$\begin{aligned} & x=48-0.20(48) \\ & x=48-9.6 \\ & x=38.4 \end{aligned}$
$x=48 *(100 \%-20 \%)=48 * 0.8=38.4$	
Therefore, the actual number of people at the concert was \$ $\backslash$ boxed $\{38\}$ \$.	Rounding to the nearest whole number, we get that the actual number of people at the concert was $\$$ boxed $\{38\} . \$$
$\nabla$	I also agree with the second agent's point that we should be careful in interpreting the $20 \%$, as it could be presented in percentage points or as a percent of the original number.

User Input: These are the solutions to the problem from other agents: One agent solution: (Copy Agent 2's reply)
(Copy Agent 1's reply)
Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form boxed \{answer\}, at the end of your response.

Round 3	
Agent 1: I agree with the previous agents that we need to consider the $20 \%$ decrease from the original number of people. Let $x$ be the actual number of people at the concert, then we have: $\mathrm{x}=48 * 0.80=38.4$	Agent 2: I agree with the previous agents that the $20 \%$ decrease should be calculated as a percentage of the original number of people. Let $x$ be the actual number of people at the concert, then we have:
Since we cannot have a fraction of a person, we round to the nearest whole number, giving us that the actual number of people at the concert was $\$$ bboxed $\{38\} . \$$   I also agree with the second agent's point that we should be careful in interpreting the $20 \%$, as it could be presented in percentage points or as a percent of the original number. In this case, the wording suggests that it should be interpreted as a percent of the original number.	$\mathrm{x}=48 * 0.80=38.4$   Since we cannot have a fraction of a person, we should round the answer to the nearest whole number. Therefore, the actual number of people at the concert was $\$ 1$ boxed $\{38\} . \$$   I also appreciate the second agent's point about being careful with the interpretation of the percentage, as it could be presented in percentage points or as a percent of the original number. In this case, it seems reasonable to assume that the $20 \%$ decrease refers to a percentage of the original number.

Figure XXIV: Example of Incorrect GSM8K Debate.

User Input: Can you solve the following math problem? Peter has twice as many socks as Jack and half times as many dishes as jack. Jack collected twice as many dishes as socks in the store. If jack collected 60 dishes, calculate the total number of socks and dishes they have together? Explain your reasoning. Your final answer should be a single numerical number, in the form \boxed \{answer\}, at the end of your response.
Round 1

Agent 1: If Jack collected twice as many dishes as socks, then
he collected $60 / 2=\ll 60 / 2=30 \gg 30$
socks.
Peter has half times as many dishes as Jack, meaning he has
$60 / 2=\ll 60 / 2=30 \gg 30$ dishes.
If Peter has twice as many socks as Jack, then he has
$2 * 30=\ll 2 * 30=60 \gg 60$ socks.
Together, Peter and Jack have
$60+30+30=\ll 60+30+30=120 \gg 120$ socks and dishes. Answer:
lboxed $\{120\}$.

Agent 2: If Jack has collected twice as many dishes as socks and he collected 60 dishes, then he has $60 / 2=30$ socks.
Peter has twice as many socks as Jack, which means he has $2 * 30=60$ socks.
Peter also has half as many dishes as Jack, which means he has $60 / 2=30$
dishes.

The total number of dishes and socks they have together is $60+30+30=\backslash \operatorname{boxed}\{120\}$.

User Input: These are the solutions to the problem from other agents: One agent solution:

> (Copy Agent 2's reply) (Copy Agent 1's reply)

Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form lboxed \{answer\}, at the end of your response.

## Round 2

Agent 1: I agree with the solutions provided by the other agents.

If Jack collected 60 dishes and he collected twice as many dishes as socks, then he collected $60 / 2=30$ socks.

Agent 2: I agree with the solutions provided by the other agents. The total number of socks and dishes they have together is 120 . Therefore, my answer is lboxed $\{120\}$.

If Peter has twice as many socks as Jack, then he has $2 * 30=60$ socks.

If Peter has half as many dishes as Jack, then he has $60 / 2=30$ dishes.

Therefore, the total number of dishes and socks they have together is $60+30+30=\backslash \operatorname{boxed}\{120\}$.

User Input: These are the solutions to the problem from other agents: One agent solution:

> (Copy Agent 2's reply) (Copy Agent 1's reply)

Using the solutions from other agents as additional information, can you provide your answer to the math problem? Please update and respond to other agents. Your final answer should be a single numerical number, in the form lboxed \{answer\}, at the end of your response.

## Round 3

Agent 1: I agree with the solutions provided by the other agents.

If Jack collected 60 dishes and he collected twice as many dishes as socks, then he collected $60 / 2=30$ socks.

If Peter has twice as many socks as Jack, then he has $2 * 30=60$ socks.

If Peter has half as many dishes as Jack, then he has $60 / 2=30$ dishes.

Therefore, the total number of dishes and socks they have together is $60+30+30=\backslash$ boxed $\{120\}$.

Agent 2: I agree with the solutions provided by the other agents. Therefore, the total number of socks and dishes they have together is 120 . My final answer is lboxed $\{120\}$.

Figure XXV: Example of Incorrect GSM8K Debate.

Instruction: What is the result of $4+23 * 6+24-24 * 12$ ? Make sure to state your answer at the end of the response.

## Round 1

Agent 1: The result of $4+23 * 6+24-24 * 12$ is -244 .

Instruction: These are the recent/updated opinions from other agents: (Copy Agent 2's reply) Use these opinions carefully as additional advice, can you provide an updated answer? Make sure to state your answer at the end of the response.

Agent 2: Using the order of operations (PEMDAS), we will first multiply 23 by 6 to get 138 . Then we will multiply 24 by 12 to get 288 . Finally, we will add up all the terms: $4+138+24-$ $288=-122$.

Instruction: These are the recent/updated opinions from other agents: (Copy Agent 1's reply) Use these opinions carefully as additional advice, can you provide an updated answer? Make sure to state your answer at the end of the response.

## Round 2

Agent 1: Based on the order of operations (PEMDAS), the correct way to solve the expression $4+23 * 6+24-24 * 12$ is:

$$
4+138+24-288=-122
$$

Therefore, the updated answer is -122 .

Instruction: These are the recent/updated opinions from other agents: (Copy Agent 2's reply) Use these opinions carefully as additional advice, can you provide an updated answer? Make sure to state your answer at the end of the response.

Agent 2: One common way to accurately solve mathematical expressions is by using the order of operations (PEMDAS) which means Parentheses, Exponents, Multiplication and Division, and finally Addition and Subtraction from left to right. To apply this rule in solving the given mathematical expression, we will first multiply 23 by 6 then multiply 24 by 12 before performing any addition or subtraction. Using PEMDAS,
$4+23 * 6+24-24 * 12=4+138+24-288=-$
122 .
Therefore, based on the order of operations, the result of the expression is -122 , contrary to the opinion provided by another agent.
Instruction: These are the recent/updated opinions from other agents: (Copy Agent 1's reply) Use these opinions carefully as additional advice, can you provide an updated answer? Make sure to state your answer at the end of the response.

## Round 3

Agent 1: I agree with the analysis and solution provided by the other agent. Using the order of operations (PEMDAS), we perform multiplication before addition or subtraction. Therefore the expression is calculated as follows:

$$
4+23 * 6+24-24 * 12=4+138+24-288=-122
$$

So, the updated answer is -122 .

Agent 2: Yes, I agree with the other agents that based on the order of operations (PEMDAS), the correct way to solve the expression $4+23 * 6+24$ $-24 * 12$ is:
$4+138+24-288=-122$
Therefore, the updated answer is -122 .

Figure XXVI: Example of Arithmetic Debate.

Instruction: What is the result of $4+23 * 6+24-24 * 12$ ? Make sure to state your answer at the end of the response.

## Round 1

Agent 1: The result of $4+23 * 6+24-24 * 12$ is -244 .

Instruction: These are the recent/updated opinions from other agents: (Copy Agent 2's reply) Use these opinions carefully as additional advice, can you provide an updated answer? Make sure to state your answer at the end of the response.

Agent 2: Using the order of operations (PEMDAS), we will first multiply 23 by 6 to get 138. Then we will multiply 24 by 12 to get 288 . Finally, we will add up all the terms: $4+138+24$ -$288=-122$.

Instruction: These are the recent/updated opinions from other agents: (Copy Agent 1's reply) Use these opinions carefully as additional advice, can you provide an updated answer? Make sure to state your answer at the end of the response.
Rou
Agent 1: Based on the order of operations
(PEMDAS), the correct way to solve the
expression $4+23 * 6+24-24 * 12$ is:
$4+138+24-288=-122$
Therefore, the updated answer is -122 .

Instruction: These are the recent/updated opinions from other agents: (Copy Agent 2's reply) Use these opinions carefully as additional advice, can you provide an updated answer? Make sure to state your answer at the end of the response.

Agent 2: One common way to accurately solve mathematical expressions is by using the order of operations (PEMDAS) which means Parentheses, Exponents, Multiplication and Division, and finally Addition and Subtraction from left to right. To apply this rule in solving the given mathematical expression, we will first multiply 23 by 6 then multiply 24 by 12 before performing any addition or subtraction. Using PEMDAS,
$4+23 * 6+24-24 * 12=4+138+24-288=-$
122.

Therefore, based on the order of operations, the result of the expression is -122 , contrary to the opinion provided by another agent.

Instruction: These are the recent/updated opinions from other agents: (Copy Agent 1's reply) Use these opinions carefully as additional advice, can you provide an updated answer? Make sure to state your answer at the end of the response.

## Round 3

Agent 1: I agree with the analysis and solution provided by the other agent. Using the order of operations (PEMDAS), we perform multiplication before addition or subtraction. Therefore the expression is calculated as follows:

$$
4+23 * 6+24-24 * 12=4+138+24-288=-122
$$

So, the updated answer is -122 .

Agent 2: Yes, I agree with the other agents that based on the order of operations (PEMDAS), the correct way to solve the expression $4+23 * 6+24$ - $24 * 12$ is:
$4+138+24-288=-122$
Therefore, the updated answer is -122 .

Figure XXVII: Example of Arithmetic Debate with Summarization. Four separate agents participate in debate, with two illustrated above. Instruction contains the summarized responses across agents.

Instruction: Can you answer the following question as accurately as possible? You suspect that your patient has an enlarged submandibular salivary gland. You expect the enlarged gland: A) to be palpable intraorally. B) to be palpable extraorally. C) to be palpable both intra- and extraorally. D) only to be detectable by radiographical examination. In Explain your answer, putting the answer in the form (X) at the end of your response.

|  | Round 1 |
| :--- | :--- | | Agent 2: Based on the location of the |
| :--- |
| Agent 1: An enlarged submandibular salivary |
| gland is typically palpable extraorally. This is |
| because the submandibular gland is located |
| underneath the mandible bone, and therefore is |
| more easily palpable from the outside of the |$\quad$| be palpable extraorally than intraorally. This is to |
| :--- |
| because the gland is located beneath the mandible |
| and extends posteriorly, making it more accessible |
| mouth rather than inside. However, in some cases, |$\quad$| for palpation outside of the oral cavity. Therefore, |
| :--- |
| the gland may also be palpable intraorally if it is |
| significantly enlarged. Therefore, the answer is |
| (C) to be palpable both intra- and extraorally. |

Instruction: Here are responses from other agents: (Copy Agent 2's reply) Using the solutions from other agents as additional information, can you give an updated response....
. Here are responses from other agent (Copy Agent 1's reply) Using the solutions from other agents as additional information, can you give an updated response....

## Round 2

Agent 1: After considering the reasoning from other agents, I would update my answer to (C) to be palpable both intra- and extraorally. The submandibular salivary gland is located in the submandibular triangle, extending from the hyoid bone to the mandible. This location allows the gland to be palpable both intra- and extraorally. However, it is primarily palpable extraorally due to its location beneath the mandible, making it more accessible for examination outside of the oral cavity. Additionally, in some cases, if the gland is significantly enlarged, it may also be palpable intraorally.\n\nIt is essential to perform a thorough examination by palpating both intra- and extraorally to assess the gland properly. By combining the inputs from other agents, I conclude that it is crucial to perform a complete examination, including extraoral and intraoral palpation, to evaluate the gland's size and location. Therefore, the updated answer is (C) to be palpable both intra- and extraorally.

Agent 2: After carefully considering the reasoning from other agents, my updated answer would be (C) to be palpable both intra- and extraorally. The submandibular salivary gland is located in the submandibular triangle, extending from the hyoid bone to the mandible. While the gland is primarily palpable extraorally due to its location beneath the mandible, it can also be palpable intraorally in some cases if significantly enlarged. $\operatorname{nn} \backslash n$ Therefore, it is essential to perform a thorough examination by palpating both intra- and extraorally to assess the gland properly, as stated by the other agents. This will allow for a more accurate and comprehensive evaluation of the gland's size and location. Overall, the input from other agents supports the conclusion that the gland can be palpable both intra- and extraorally, and a complete examination is necessary to evaluate its condition.

Figure XXVIII: Example of MMLU Debate.

Instruction: Give a bullet point biography of Stephan R. Bourne highlighting their contributions and achievements as a computer scientist, with each fact separated by a new line character.

Round 1	
Agent 1:   Stephen R. Bourne is a British-born American computer scientist.   - He is best known for creating the Bourne shell (sh) for the Unix operating system in 1979. \n- The Bourne shell was the default Unix shell for many years and is still in use today.   - Bourne also worked on the development of the UNIX System III and IV operating systems.   - He later joined AT\&T Bell Laboratories, where he worked on the UNIX System V operating system and its derivatives.   - Bourne was awarded the ACM Software System Award in 1983 for his work on the Bourne shell.   - He is also a recipient of the USENIX Lifetime Achievement Award (2001) and the IEEE Computer Pioneer Award (2010).   - Bourne is now retired and continues to be involved in the computer science community.	Agent 2:.   Stephen R. Bourne is a computer scientist known for his development of the Unix shell, or command-line interface, known as the Bourne shell.   - He earned a bachelor's degree in mathematics and a doctorate in computer science from Cambridge University.   - Bourne worked at Bell Labs, where he helped to create the Unix operating system and its commandline interface.   - In addition to the Bourne shell, he also created the Bourne-Again shell (bash) and was involved in the creation of the Korn shell.   - Bourne was awarded the USENIX Lifetime Achievement Award in 1999 and was elected as a Fellow of the Association for Computing Machinery in 2013.   - He has authored and co-authored numerous technical papers and books, including "The Unix System," a widely used textbook on Unix programming.

Instruction: Here are some bullet point biographies from other agents: (Copy Agent 2's reply) Using the biographies as additional information, can you give an updated bullet point biography.

Instruction: Here are some bullet point biographies from other agents: (Copy Agent 1's reply) Using the biographies as additional information, can you give an updated bullet point biography.

Round 2	
Agent 1:   Stephen R. Bourne is a computer scientist known for his development of the Unix shell, or command-line interface, known as the Bourne shell.   - He earned a bachelor's degree in mathematics and a doctorate in computer science from Cambridge University.   - Bourne worked at Bell Labs, where he played a key role in the creation of the Unix operating system, and was involved in the development of its command-line interfaces.   - In addition to the Bourne shell, he also created the Bourne-Again shell (bash) and contributed to the development of the Korn shell.   - Bourne was awarded the ACM Software System Award in 1983 for his work on the Bourne shell, and the USENIX Lifetime Achievement Award in 1999 for his contributions to the field of computer science.   - He was also elected as a Fellow of the Association for Computing Machinery in 2013 in recognition of his significant contributions to the field.   - Bourne has authored and co-authored numerous technical papers and books, including "The Unix System," a widely used textbook on Unix programming, and continues to be involved in the computer science community after his retirement.	Agent 2:   - Stephen R. Bourne is a highly respected computer scientist and mathematician who revolutionized the computing field with his development of the Unix shell, popularly known as the Bourne shell.   - He earned his bachelor's degree in mathematics and a doctorate in computer science from Cambridge University, and began his career at Bell Labs where he played an integral role in the creation of the Unix operating system.   - During his tenure, Bourne developed the Bourne shell, which became the foundation for the Unix commandline interface.   - Bourne was not only a prolific developer, but he also contributed to the development of several other command-line interfaces, including the Bourne-Again shell (bash) and the Korn shell.   - As a testament to his significant contributions to the field of computer science, Bourne was honored with the ACM Software System Award in 1983, and later the USENIX Lifetime Achievement Award in 1999.   - In recognition of his substantial contributions, he was elected as a Fellow of the Association for Computing Machinery in 2013.   - Bourne is also an accomplished author and co-author of several technical papers and books, including "The Unix System," a widely used textbook on Unix programming.   - Despite his retirement, Bourne continues to be actively involved in the computer science community, sharing his expertise and experiences with younger generations of aspiring computer scientists.

Figure XXIX: Example of Biography Debate. While we found that generated biographies after debate to be more accurate, many facts remain incorrect.

Instruction: Here is the current sequence of moves in a chess game: 1. e4 c6 2. d4 d5 3. Nd2 Qc7 4. Bd3 dxe4 5. Nxe4 Bf5 6. Nf3 Nd7 7. O-O e6 8. c4 Bg6 9. d5 Bxe4 10. Bxe4 Ndf6 11. Re1 Nxe4 12. Rxe4 Nf6 13. Rel O-O-O. What is the best chess move I should execute next? Give a single move suggestion of the form $14 .<\mathrm{XXX}>$ and make sure the chess move is valid in the current board state.

Round 1	
Agent 1: 14. dxe6	Agent 2: 14. Be3
Instruction: Using the solutions from other agents as additional information. (Copy Agent 2's reply)	Instruction: Using the solutions from other agents as additional information. (Copy Agent l's reply)
Round 2	
Agent 1: Based on the current board state and the suggested moves, I would suggest the move: 14. Qa4. This move attacks the undefended bishop on f5 and puts pressure on black's position.	Agent 2: I would still suggest the move 14. Be3. It develops a piece and prepares to put pressure on black's position. Additionally, it reinforces the e4 pawn and prepares to castle kingside.
Instruction: Using the solutions from other agents as additional information. (Copy Agent 2's reply)	Instruction: Using the solutions from other agents as additional information. (Copy Agent 1's reply)
Round 3	
Agent 1: After considering the suggestions of other agents, I still believe that the move 14. Qa4 is the best move in the current board state. It attacks the bishop on f 5 , prepares to develop the queen, and puts pressure on Black's position.	Agent 2: After considering the suggestions of other agents, I would suggest the move 14 . Qa4. It attacks the bishop on f5, prepares to develop the queen and puts pressure on Black's position.

Figure XXX: Example of Chess Debate.

Instruction: What is the result of $23+19 * 22+22-7 * 9$ ? Make sure to state your answer at the end of the response.

## Round 1

Agent 1: First, we multiply 19 by 22 to get 418.
Then, we multiply 7 by 9 to get 63 .
We can use the order of operations, also known as PEMDAS, to simplify the expression:
$23+418+22-63$
$=460$

Therefore, the result of $23+19 * 22+22-7 * 9$ is 460 .

Instruction: Using the solutions from other agents as additional information. (Copy Agent 2's reply)

Agent 2: Using the order of operations
(PEMDAS), we first multiply 19 and 22, resulting in 418 . Then, we multiply 7 and 9 , resulting in 63 . Next, we subtract 63 from 22, which gives us -41 . Then, we add together 23, 418, -41 , and 22, which results in 422.

Therefore, the answer is 422 .

Instruction: Using the solutions from other agents as additional information. (Copy Agent 1's reply)

## Round 2

Agent 1: It seems that the first agent made an error by subtracting 63 from 22 instead of subtracting 63 from the previous result of the multiplication of 19 and 22.

Using the correct order of operations, the expression should be simplified as follows:
$19 * 22=418$
$7 * 9=63$
$23+418+22-63=400$
Therefore, the updated answer is 400 .

Agent 2: The order of operations (PEMDAS) must be followed to correctly simplify the expression.

First, we multiply 19 and 22 to get 418 .
Next, we multiply 7 and 9 to get 63 .
Then, we add 23 to 418 to get 441 .
After that, we add 22 to get 463 .
Finally, we subtract the product of 7 and 9 (63)
from 463 , resulting in 400 .
Therefore, the updated answer for $23+19 * 22+22-$ $7 * 9$ is 400 .

Figure XXXI: Example of Arithmetic Debate.

Instruction: What is the result of $29+28 * 15+8-2 * 27$ ? Make sure to state your answer at the end of the response.

Round 1	
Agent 1: The answer is 441.	Agent 2: The result of the expression is 447.
Here's how to break it down:   - First, we multiply 28 by 15 to get 420 .   - Then we add 29 to get 449 .   - Next, we multiply 2 by 27 to get 54 , and subtract that from 449 to get 395 .   - Finally, we add 8 to get the final answer of 441 .	To solve it, we need to follow the order of operations (PEMDAS) which tells us to perform the multiplication and division before addition and subtraction.   So, we start by multiplying 28 and 15 , which gives us 420 . Then we multiply 2 and 27 to get 54 .   Next, we add 29 to 420 to get 449 . Then we subtract 54 from 449 to get 395 . Finally, we add 8 to 395 to get the answer of 447 .
Instruction: Using the solutions from other agents as additional information. (Copy Agent 2's reply)	Instruction: Using the solutions from other agents as additional information. (Copy Agent 1's reply)
Round 2	
Agent 1: Thank you for the updated opinions.   Based on the order of operations (PEMDAS), we need to perform the multiplication before addition or subtraction.	Agent 2: Based on the order of operations (PEMDAS), we need to perform the multiplication before the addition and subtraction. Therefore, we can solve the expression as follows:
So, we start by multiplying 28 and 15 , getting 420 . Then, we multiply 2 and 27 getting 54 .	- 28 multiplied by 15 equals 420 .   -2 multiplied by 27 equals 54 .   -420 plus 29 equals 449 .   - 449 minus 54 equals 395.
Next, we add 29 to 420 to get 449 . Then we subtract 54 from 449 , getting 395 . Finally, we add 8 to 395 to get the final answer of 403 .	- 395 plus 8 equals 403 .   Therefore, the result of $29+28 * 15+8-2 * 27$ is 403 .
Therefore, the result of the expression $29+28 * 15+8-2 * 27$ is 403 .	$\checkmark$

Figure XXXII: Example of Arithmetic Debate.


[^0]:    Agent 2: After reviewing the solutions provided by other agents, I also agree that the number of rubies is 140 and the total number of gems in the chest is 595 . Therefore, my answer to the math problem is also 595 .

