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ABSTRACT

Abstraction is a desirable capability for deep learning models, which means to
induce abstract concepts from concrete instances and flexibly apply them beyond
the learning context. At the same time, there is a lack of clear understanding about
both the presence and further characteristics of this capability in deep learning
models. In this paper, we introduce a systematic probing framework to explore the
abstraction capability of deep learning models from a transferability perspective. A
set of controlled experiments are conducted based on this framework, providing
strong evidence that two probed pre-trained language models (PLMs), T5 and
GPT2, have the abstraction capability. We also conduct in-depth analysis, thus
shedding further light: (1) the whole training phase exhibits a "memorize-then-
abstract" two-stage process; (2) the learned abstract concepts are gathered in a few
middle-layer attention heads, rather than evenly distributed throughout the model;
(3) the probed abstraction capabilities exhibit robustness against concept mutations,
and are more robust to low-level/source-side mutations than high-level/target-side
ones; (4) generic pre-training is critical to the emergence of abstraction capability,
and PLMs exhibit better abstraction with larger model sizes and data scales.

1 INTRODUCTION

Whereas concrete concepts are typically concerned only with things in the world, abstract
concepts are about internal events. — Barsalou et al. (1999)

Abstraction means capturing the general patterns (often referred to as abstract concepts) efficiently
in a specific learning context and reusing these patterns flexibly beyond the context (Mitchell, 2021;
Kumar et al., 2022; Giunchiglia & Walsh, 1992; Hull, 1920). For instance, the abstraction on language
means recognizing the underlying syntax and semantics behind concrete sentences. It is thought to
be one of the fundamental faculties in human cognition for effectively learning, understanding and
robustly generalizing, and has been studied for a long time in cognitive psychology and behavioral
sciences (Gentner & Medina, 1998; Barsalou et al., 1999; Shivhare & Kumar, 2016; Konidaris, 2019).

The abstraction capability is also critical for deep learning, but many previous studies suggested that
the surprising success of deep learning may come from the memorization of some surface patterns
(also called superficial correlations or shortcuts) (Geirhos et al., 2020; Du et al., 2022), such as some
special tokens (Niven & Kao, 2020; Gururangan et al., 2018), overlapping contexts (Lai et al., 2021;
Sen & Saffari, 2020), and familiar vocabularies (Aji et al., 2020). It is still unclear whether the
models just memorize these patterns without abstractions, or they do learn abstract concepts (yet
overwhelmed by surface patterns when applied in a similar context as in training). Therefore, this
paper aims to take a step forward to probe the abstraction capability of deep learning models,
keeping the effects of abstract concepts and surface patterns decoupled and controlled individually.

Our key idea is to probe the abstraction capability from a transferability perspective, since surface
patterns are always bounded with task-specific characteristics while abstract concepts can be more
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Figure 1: Motivating example: the abstract concepts learned in task A can be effectively reused in
task B, but surface patterns are useless. Unused patterns or concepts are whitened after the update.

generally reused. We consider designing multiple tasks with shared abstract concepts and totally
different surface patterns, then tracing whether the learning on one task can boost the performance on
another. Figure 1 demonstrates a motivating example.

Motivating Example As shown in Figure 1, suppose we want to examine whether a model can
learn the abstract rule (i.e., the symbolic mapping rule x1x2 → X1X2, in which xi and Xi are
general variable slots) from the task A, or just memorize surface maps (e.g., ab → AB, in which a
and A are task-specific symbols). To reveal the different transferability of two learning mechanisms,
we utilize a probing task B that contains the same underlying abstract rule as task A but does not
overlap with its symbol set. If the model could learn the abstract rule from task A, it would reuse it to
interpret new context, thus effectively solving task B. But if not, memorizing some surface maps that
are bounded with task-specific symbols is less effective to solve task B.

Motivated by this example, we design a systematic framework for probing abstraction capability.
This framework considers a set of probing tasks along with three procedures of experiments based
on the transfer learning paradigm. The use of abstract concepts and task-specific characteristics in
probing tasks are separately controlled. To probe the abstraction capability of language models, this
work mainly considers grammar as the abstract concept1. The grammar of a formal language is
a set of hidden rules behind concrete sentences and determines how terminals are combined into
sentences that are valid to the syntax. We want to explore whether the model can be aware of the
grammar, or simply memorize some specific word combinations. We instantiate our framework
as a grammar probe that is constructed from the designed formal grammar and terminal sets. The
probing results show strong evidence that two probed PLMs (specifically, T5-Base (Raffel et al.,
2020) and GPT2-Medium (Radford et al., 2019)) have the abstraction capability to learn abstract
concepts from concrete instances, rather than just simply memorizing surface patterns.

After probing the existence of abstraction capability, we further explore the following questions.
RQ1: What is the characteristic of the training dynamics on learning abstract concepts? RQ2: How
are these learned abstract concepts distributed in the model? Concentrated in a few modules or evenly
distributed in whole model? RQ3: How robust is the abstraction capability on tasks with mutated
abstract concepts? RQ4: How would generic pre-training and general factors influence abstraction?
Here we outline some interesting findings from our in-depth investigations: (1) the training
phase exhibits a "memorize-then-abstract" two-stage process; (2) the abstract concepts learned in
our probes are gathered in a few middle-layer heads; (3) abstraction capability is more robust to
source-side/low-level mutations than to target-side/high-level ones; (4) generic pre-training is critical
to the emergence of abstraction capability, and larger model size and data scale are beneficial.

Contributions 1) We propose a systematic probing framework for abstraction capability, guiding
the design of controlled tasks and procedures from a transferability perspective. 2) We instan-
tiate this framework with concrete tasks and show strong evidence that two probed PLMs have
the abstraction capability. 3) We further analyze this capability and provide insightful conclu-
sions by investigating the above research questions. Our code and data are publicly available at
https://github.com/microsoft/ContextualSP/tree/master/abstraction_probing.

1We also probed other abstract concepts such as operation semantics in Appendix D.
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2 RELATED WORK

Probing deep learning models. To explore whether deep learning models have certain capabilities,
there has been much work examining these black-box models in some specially designed settings,
called probes (Petroni et al., 2019; Tenney et al., 2018; Warstadt et al., 2019; Lin et al., 2019; Hewitt
& Manning, 2019; Vulić et al., 2020). The key challenge in designing probes is to exclude superficial
correlations. That is, the performance of the model in the probing setting should be highly correlated
with the capability to be probed rather than other influencing factors. For instance, to probe whether
the model encodes some knowledge/information in the representation rather than just over-fit the
data, a standard approach is to freeze the model parameters (Petroni et al., 2019; Tenney et al., 2018);
to probe whether the model have compositionality rather than just memorize the label distribution,
previous work injected statistical bias into the data splits (Lake & Baroni, 2018; Keysers et al., 2019;
Kim & Linzen, 2020). In this work, to explore whether models have abstraction capability rather than
just memorize surface patterns, we leverage the transferability of abstract concepts, which has been
considered as one essential aspect of abstraction (Mitchell, 2021; Kumar et al., 2022) and explored
from a cognitive science perspective on neural networks (Dienes et al., 1999; Geiger et al., 2022).

Abstraction capability. Abstraction has been studied for a long term in cognitive psychology and
behavioral sciences (Hull, 1920; Gentner & Medina, 1998; Barsalou et al., 1999; Burgoon et al.,
2013; Wang, 2015; Shivhare & Kumar, 2016; Lake et al., 2017; Daniel, 2017; Konidaris, 2019) and
has attracted attention in the artificial intelligence field (Giunchiglia & Walsh, 1992; Richardson et al.,
2020; Clark et al., 2020; Talmor et al., 2020; Mitchell, 2021; Zadrozny, 2021; Millhouse et al., 2021;
Kumar et al., 2022). The abstraction capability of DNN models has been explored in many tasks such
as visual reasoning (Johnson et al., 2017; Barrett et al., 2018; Chollet, 2019; Kumar et al., 2022),
grounded language understanding (Ruis et al., 2020), and game playing (Tsividis et al., 2021). As our
work focuses on language models, another closely related topic is compositional generalization (Lake
& Baroni, 2018; Keysers et al., 2019; Kim & Linzen, 2020), which explored whether neural models
could learn high-level grammars from specially designed training examples and apply the learned
grammars through compositions. These works concluded that general-propose neural models (such as
LSTM and Transformer) could not learn the full grammar with biased observations and demonstrated
the importance of symbolic mechanisms for abstraction (Liu et al., 2020; Chen et al., 2020; Liu et al.,
2021a). Some other previous work also explored the abstraction of language models in their specially
designed tasks (Chollet, 2019; Mitchell, 2021; Zadrozny, 2021).

Most previous explorations of DNN abstraction capabilities did not consider to explicitly avoid and
check the influence from task-specific characteristics, thus leaving potential risks that the model
may perform well in terms of surface patterns over-fitted to task-specific designs (e.g., patterns in
candidate answers (Zhang et al., 2019)) rather than abstract concepts. Some implicit strategies have
been leveraged to alleviate such potential influence through indirect ways: some previous work
considered using biased task-specific designs in training and test data separately (Kim & Linzen,
2020; Barrett et al., 2018); some have attempted to fix the observed problems in existing probes on
an ad hoc basis (Hu et al., 2021; Benny et al., 2021); some considered to inject great task diversity,
which implicitly increases difficulty of learning practical shortcut (Chollet, 2019). In this work,
rather than implicitly alleviating this potential risks, we consider to explicitly check whether there is
performance leakage from surface patterns by leveraging the transferability of abstraction capability
and comparing performance among a set of controlled experiments.

3 PROBING FRAMEWORK

As mentioned in Section 1, abstraction is the capability to induce abstract concepts from concrete
instances in a certain learning context and flexibly generalize these concepts beyond the context.
A key difference between a surface pattern and an abstract concept is their different cross-task
transferability, as the former is always bounded with some task-specific characteristics (e.g., a certain
vocabulary) while the latter is transferable across tasks. We define this property as following.

Property: Transferability of Abstract Concepts. Consider two machine learning tasks A and B
that do not share any common instances between their task-specific characteristics spaces, but have
essentially the same set of abstract concepts behind them, the transferability of abstract concepts
means that learning A can help better learn B.
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Figure 2: The illustration of the probing framework.

Notations: We denote two learning paradigms: A ⇒ B as a procedure that the model is first
trained on A and then fine-tuned on B, and ⇑ B as a procedure of directly training on B without the
pre-training on A. The transferability can be evaluated with the performance gain from procedure
A ⇒ B compared to ⇑ B, denoted as ∆(A ⇒ B).

Based on this property, we can verify the learning of abstract concepts by checking whether the
transferability is exhibited (i.e., assessing ∆(A ⇒ B)). In the following, we design a framework
for probing the learning of abstract concepts in a systematic manner and illustrate it in Figure 2.

Aiming

• This framework examines whether a probed model could learn abstract concepts CA from
the aiming task A with a train set A.

Task Design

• Probing task B with the transfer set B̂ and test set B contains the abstract concepts CB

that is required to be the same as CA. The task-specific characteristics used to construct
B̂ ∪B do not overlap with that of A. In addition, the examples in B̂ are restricted to contain
insufficient information for the probed model to learn CB perfectly. Thus, the gain from the
abstraction in task A would be noticeable.

• Contrast task C with the contrast set C aims to further confirm that the performance in
task B is principally correlated with abstractions rather than other factors. The abstract
concepts CC is constructed by greatly breaking (changing) CA, thus compared with task A,
the abstraction on task C is less effective for solving task B. The task-specific characteristics
and other latent factors in constructing C are kept the same with that in A.

Procedures of Experiments (abbreviated as Exp)

• Control Exp ⇑ B: only train the model on B̂ and test on B.

• Main Exp A ⇒ B: train the model on A, then fine-tune on B̂, finally test on B.

• Contrast Exp C ⇒ B: train the model on C, then fine-tune on B̂, finally test on B.

Hypothesis and Expectations

• Hypothesis: the probed model can learn abstract concepts CA from A.
• Expectation 1: ∆(A ⇒ B) is significantly high, i.e., A ⇒ B brings considerable gain

compared with ⇑ B.
• Expectation 2: ∆(C ⇒ B) is significantly lower than ∆(A ⇒ B) (or close to zero), i.e.,

Expectation 1 is highly correlated with the learning of abstract concepts rather than other
factors.

4 PROBING ABSTRACTION CAPABILITY OF LANGUAGE MODELS

The abstract concepts mainly considered in this work is grammar, a set of syntactic rules hidden
behind concrete sentences that determine how terminals are combined into sentences that are valid to
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Table 1: Part of Gs and Gt. Rules in the last row are allowed to iterate up to 12 times.

Source-Side Grammar Gs Target-Side Grammar Gt Type

verb ↠ Sv PREDICATE ↠ SP

sub / direct-obj / indirect-obj ↠ Sn AGENT / THEME / RECIPIENT ↠ SE T-Production Rule
conj ↠ Sc CONCAT ↠ SC

sentence ↠ subj verb CLAUSE ↠ PREDICATE ( AGENT )
sentence ↠ subj verb direct-obj indirect-obj CLAUSE ↠ PREDICATE ( AGENT, THEME, RECIPIENT ) N-Production Rule
sentence ↠ sentence conj sentence CLAUSE ↠ CLAUSE CONCAT CLAUSE

the syntax. To design a grammar probe, we instantiate the framework with formal language translation
(FLT) tasks. We assume that the generative grammar of the source and target languages contain
the abstract concepts of FLT tasks, and that the surface patterns (e.g., familiar bigrams) are bounded
with task-specific terminal sets. We give a more specific definition of abstraction based on FLT tasks:

Definition: Considering an FLT task T : Ls → Lt that translate the source language Ls (with
grammar Gs and terminals Ss) to the target language Lt (with grammar Gt and terminals St), and a
set of concrete pairs T = {(lis → lit)}k in which lis and lit are sentences from Ls and Lt respectively,
the abstraction capability is learning the map from Gs to Gt during training on T rather than just
simply memorizing terminal-specific patterns that are bounded with Ss and St.

Our FLT tasks are majorly derived from the synthetic semantic parsing task COGS (Kim & Linzen,
2020) and the Probabilistic Context-Free Grammar (PCFG) it used. We directly take the source
grammar Gs in COGS which mimics the English natural language grammar, and reconstruct the
target grammar Gt in COGS to be chain-structured (detailed in Appendix K.1). The map from Gs

to Gt is a homomorphism (partly shown in Table 1). Terminals can be divided into three groups:
the verbs Sv in Gs (aand the PREDICATEs SP in Gt), the nouns Sn (the ENTITYs SE) and the
conjunctions Sc (the CONCATs SC ). The production rules can be categorized as T-Production rules
(only containing terminals at the right side) and N-Production rules.

We assign to the tasks A and B the same set of production rules while different terminals. It means
that task A and B share the same abstract concepts while having no overlap between the task-specific
characteristic spaces. For constructing task C, we completely change the production rules for A
while preserving the terminal sets, thus task A and C do not share abstract concepts while could have
similar task-specific characteristics. We describe the instantiation of different sets in detail as follows.
Examples in these sets are contained in Appendix F.1.

Train set A. To generate examples in A, we derive G+
s and G+

t by only one-to-one replacing the
terminals in Gs and Gt with new ones2. New terminals are sampled from the Wordlist Corpora in
NLTK (Bird et al., 2009). Additionally, as the original Sc (also SC) only contains a single terminal,
we add 31 additional terminals into the new Sc (and SC) to increase the diversity. The terminal
diversity will be further discussed in Section G.1.

Transfer set B̂ and Test set B. We take the train set in COGS as B̂, and take the sentential
complement (Com.) set and subject modification (Mod.) set as B for two sub-probes. The B̂ only
contains examples with up to 2 recursions and object modifications, while the B contains up to 12
recursions and subject modifications. It has been proved that training on B̂ is not enough for a DNN
model to learn the full grammars of COGS for handling the test cases in B (Kim & Linzen, 2020).

Contrast set C. Compared with A, C is generated with the same source grammar G+
s , but the target

grammar is totally changed as G−
t : for each rule of G+

t , its right-side word order is reversed3. Except
for the generative grammar, all other factors are kept the same with A during generating C.

5 EXPERIMENTAL SETUP AND MAIN RESULTS

We probe two pre-trained language models: T5-Base and GPT2-Medium. Our experiments are based
on the Huggingface Transformer models (Wolf et al., 2020). For both (continue) pre-training and
fine-tuning, we take Adam (Loshchilov & Hutter, 2018) with 1e-5 learning rate and 0.01 weight

2Some non-semantic terminals are kept the same, such as the period in Lsrc and parentheses in Ltgt.
3Some basic rules are preserved (e.g., the order of the preceding and following parentheses).
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Table 2: The main results of our probe. ∆(A ⇒ B) and ∆(C ⇒ B) are in brackets. The evaluation
metric is exact match accuracy (%). Com. and Mod. represent the sentential complement and subject
modification sets for B. These results are in line with our two expectations.

Model Sub-Probe Control Exp Main Exp Contrast Exp
⇑ B A ⇒ B C ⇒ B

T5
Avg. 18.7 71.9 (+53.2) 16.0 (-2.7)

Com. 23.1 88.2 15.4
Mod. 14.3 55.6 16.5

Model Sub-Probe Control Exp Main Exp Contrast Exp
⇑ B A ⇒ B C ⇒ B

GPT2
Avg. 8.0 47.9 (+39.8) 8.1 (+0.1)

Com. 1.9 48.2 2.6
Mod. 14.1 47.6 13.6

decay. Batch size is 8 and max training step is 100k. We generate 3 groups of new terminals, repeat
the experiments on each group with 2 random seeds, and finally average 6 results. The early-stopping
strategy is applied to avoid catastrophic forgetting. Detailed settings are listed in Appendix K.

Table 2 shows the main results of our probe. For both two sub-probes, the performances of two
probed models are in line with two Expectations set in Section 3. First, the results of ⇑ B are very
low, and A ⇒ B can bring significant improvement, which is in line with Expectation 1. Second,
the results of C ⇒ B are much lower than A ⇒ B (and are even just comparable with ⇑ B), which
is in line with Expectation 2. As two expectations are experimentally examined, we can draw a
preliminary conclusion: our probing results provide strong evidence that two probed PLMs
have the abstraction capability to learn abstract concepts from concrete instances rather than just
memorize surface patterns, and to transfer the learned abstract concepts beyond specific tasks.

6 ANALYSIS

Based on our designed probe and results above, we further analyze the abstraction capability of PLMs
to answer the RQs mentioned in Section 1. All experiments below are derived from Com. sub-probe,
and are mainly conducted with T5-Base model except that are explicitly mentioned.

6.1 LEARNING PROCESS OF ABSTRACT CONCEPTS

To investigate the learning process of abstract concepts, we save checkpoints for every 1,000 steps
during training on A. Each checkpoint is further fine-tuned on B̂ and tested on B. For comparison, we
also investigate the process of memorizing surface patterns by directly examining each checkpoint
on the held-out dev set in task A. Figure 3 shows the performance curves of two learning processes.

The training phase exhibits a "memorize-then-abstract" two-stage process. As shown in
Figure 3, there is an obvious phase difference (48k training steps) between two time points that two
learning processes achieve their 90% relative performance, respectively. Such a phase difference
means that when the model has already performed well on task A in an early training phase, the
learning of desired abstract concepts is still on-going. In other words, the in-task performance in an
early training phase comes mainly from the effects of some task-specific surface patterns rather
than general abstract concepts. With extending the training phase, the abstract concepts can be further
extracted/enhanced. This phase difference also suggests that the pre-training process should be
continued even if the model has already achieved a good in-pre-training performance.

The learning of abstract concepts is accelerated after in-task examples are well learned. After
the model reaches 90% in-task relative performance (i.e. right side of the red dashed line), the
learning curve of abstract concepts (i.e., the blue curve) rises more rapidly.

The learning of abstract concepts is not stable in the early training phase. The curve of in-task
performance is much smoother than the cross-task one. This suggests that the learning and transfer of
abstract concepts is not stable. Nevertheless, the large fluctuations occur mainly in the early phases
of training. With increasing training steps, this instability gradually decreases.

6.2 ABSTRACT ATTENTION HEADS

To investigate how the learned abstract concepts are distributed in the model, we first conduct prelim-
inary experiments by separately freezing parameters in each layer and sub-layer during fine-tuning,
and find that the parameters in attention sub-layers play important roles (detailed in Appendix E). To
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Figure 3: Two learning process. Blue curves represent the learning performance of abstract concepts
and red curves represent the learning performance of in-task examples.
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Figure 4: DPC of each pruned head. The heads sorted from left to right are located from the first to
the last layer in the model.

further determine the contribution of each attention head, we consider measuring the performance
degradation after excluding the effect of each head. Specifically, we evaluate the change in perplexity
(PPL) of examples in B after pruning the normalized wight of each head as follows,

∆θ,B(h) =
1

|B|

∑
i

[PPL(lit|lis; θ−h)− PPL(lit|lis; θ)], (1)

in which h represents a certain head, θ is the full set of parameters in PLM after fine-tuning on B̂, θ−h

means pruning the h head, and (lis, l
i
t) is the input-output pair in B. Note that a higher PPL means a

lower performance. Considering that some heads may store the task-specific knowledge learned from
fine-tuned data B̂, pruning these heads may also lead to performance changes. Therefore, we also
evaluate a baseline PPL change ∆θ,B̂(h) on fine-tuned examples in B̂ and measure the difference in
PPL changes (DPC)= ∆θ,B −∆θ,B̂ . The DPC of each head is shown in Figure 4.

Abstract concepts are largely contained in a few heads, not evenly distributed in all heads.
Note that there are totally 432 attention heads in T5-Base. Figure 4 shows that among hundreds of
heads, only a dozen of them are highly correlated with storing abstract concepts in our probe.

These abstract attention heads are gathered in middle layers in T5. A larger index in Figure 4
means that the corresponding head is more away from the input side and closer to the output side. It
shows that the abstract attention heads (i.e., heads with high DPC) are mainly located in the middle
layers of T5-Base model, i.e., the last encoder layers and first decoder layers.

We further explore whether abstract concepts are modularized in the model. A module is a part
of parameters that can individually perform a specific target functionality (Csordás et al., 2020).
To investigate modularity, we take the method of freezing certain parameters during fine-tuning to
examine whether the update of these parameters can be independent. We consider the top 36 heads
with the highest DPC (which contain some redundant heads) as abstract heads. For comparison, we
separately experiment with freezing 36 random heads. Table 3 shows that freezing abstract heads
takes effect while freezing random heads does not. We further explore the modularity in Appendix E.

Table 3: Freeze abstract heads.

Method A ⇒ B

Baseline 92.8
+Freeze Abstract Heads 96.6 (+3.8)
+Freeze Random Heads 92.9

Table 4: PLMs performance with fuzzy abstract concepts.

Probe Model Control Exp Main Exp Contrast Exp
⇑ B A ⇒ B C ⇒ B

Fuzzy Grammar
T5 24.0 35.1 (+11.1) 26.2 (+2.2)

GPT2 16.4 21.0 (+4.6) 11.6 (-4.8)
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Figure 5: Performance with different derivations of (a) source and (b) target grammar.

6.3 ROBUSTNESS OF ABSTRACTION CAPABILITY

We explore the robustness of the probed abstraction capability when the abstract concepts in our
designed probes are mutated. Different from the contrast task C in which the target grammar is totally
changed, here we consider partially injecting mutations into source/target-side grammar. According to
the formal grammar in Table 1, we consider injecting mutations at different abstract levels: changing
T-Production rules can be regarded as a low-level mutation, since only terminals will be influenced
and the whole sentence structure is kept; changing non-iterative N-Production rules can be regarded
as a mid-level mutation, since the local structure will be mutated but the whole recursive structure is
preserved; changing iterative N-Production rules can be regarded as a high-level mutation, since
the whole recursive structure will be reconstructed. Based on the grammar used in formal language
task A, we design three derivations G∗

t by injecting mutations into the original G+
t in different levels.

Examples of different derivations are contained in Appendix F.4.

Coarse G∗
t (low-level mutation): We omit the non-terminals AGENT, THEME, RECIPIENT, and

their corresponding terminals. In other words, the second T-Production rule in Table 1 is removed.
Compared with G+

t (also Gt), Coarse G∗
t does not contain detailed arguments of PREDICATE.

Local Reverse (LocalR) G∗
t (mid-level mutation): The local word order in a sentence is reversed.

Specifically, we reverse the right-side word orders of the N-Production rules, except for the rule in
the last row of Table 1 which is an iterative one. It means that the order of CLAUSEs (determined by
the last rule) remains the same, while the terminals in each CLAUSE are locally reversed.

Nested G∗
t (high-level mutation): It is obtained by changing the iterative rule (i.e, the last rule

in Table 1) from the chain-structure to be nested. The new N-Production rule is "CLAUSE ↠
PREDICATE ( AGENT, CONCAT CLAUSE )".

We can also construct G∗
s from G+

s with the same technique except for the coarse one, as the source
language must contain enough information to generate targets. Thus, we design a Redundant G∗

s
which contains redundant terminals that are not mapped into targets (detailed in Appendix F.3). We
separately change the source and target grammars to derivations and show results in Figure 5.

PLMs can exhibit robustness against mutations in abstract concepts. Results of these derivations
with mutations are higher than the Control Exp (and Contrast Exp), indicating that even though the
learned abstract concepts are only partially matched with that in downstream tasks, the abstraction
capability of PLMs can still leverage the similar parts in two sets of mutated abstract concepts.

Abstraction capability is more robust to low-level mutations. Among three kinds of derivations,
the low-level mutated ones (Coarse G∗

t and Redundant G∗
s) perform best, while the high-level mutated

ones (Nested G∗
t and G∗

s) perform worst. This trend implies that the robustness of the abstraction
capability decreases as the mutation level of abstract concept rises. This also suggests that matching
of high-level abstract concepts should be prioritized when selecting pre-training tasks.

Abstraction capability is more robust to source-side mutations. Comparing the results in
Figure 5a and 5b, source-side mutations bring less affects to downstream performance than target-side
ones, indicating that PLMs can more robustly reuse source-side abstract concepts.

Redundant information barely affects abstraction. Surprisingly, the performance of Redundant
G∗

s is nearly the same with that of the original G+
s , which means that injecting redundant information

into inputs would hardly affect the learning of abstract concepts. It indicates that the abstract capability
of PLM can naturally exclude the influence of irrelevant information.
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Figure 6: Performance with different model sizes, data scales and data diversity.

Table 5: Probing results for randomly initialized models. ∆(A ⇒ B) and ∆(C ⇒ B) are in brackets.

Model Sub-Probe Control Exp Main Exp Contrast Exp
⇑ B A ⇒ B C ⇒ B

T5
Avg. 4.7 6.7 (+2.0) 5.8 (+1.1)

Com. 0.1 1.0 0.1
Mod. 9.3 12.3 11.6

Model Sub-Probe Control Exp Main Exp Contrast Exp
⇑ B A ⇒ B C ⇒ B

GPT2
Avg. 5.1 6.8 (+1.7) 4.7 (-0.4)

Com. 0.1 1.5 0.4
Mod. 10.1 12.0 9.0

Fuzzy abstract concepts can also be learned and transferred. Compared with the formal gram-
mar discussed above, which can be concretely defined, fuzzy grammar is more free (such as natural
language grammar). To explore how would abstraction capability perform on fuzzy grammar, we
take natural language sentences for experiments and design different sets by mimicking the Com.
sub-probe. Detailed designs are described in Appendix H. We report BLEU score in Table 4. It shows
that the performance of PLMs on learning fuzzy grammar is also in line with our two expectations.

6.4 GENERAL FACTORS & GENERIC PRE-TRAINING

As explored in previous work, there are some general factors that influence the performance of DNN
models (Bommasani et al., 2021; Wei et al., 2022; Henighan et al., 2020), such as model size and data
scale. We investigate how these general factors and the generic pre-training influence the learning of
abstract concepts. More results and analysis can be found in Appendix G.1.

PLMs exhibit better abstraction with larger model sizes. Figure 6a and 6b show that for both T5
and GPT2 architectures, larger pre-trained language models have better abstraction capability than
the smaller ones, as we can observe that the gains from the Control Exp to the Main Exp become
greater with the model sizes increasing.

Larger data scale in pre-training helps better exhibit abstraction. Figure 6c shows T5-Base
performance with different scales of the train set A. It shows that performance increases rapidly from
∼300 to ∼3.4K (with ∼50% absolute accuracy improvement) and improves marginally (and unstably)
from ∼3.4K to ∼680K (with ∼5% absolute accuracy improvement). Overall, the performance trend
is going up with data scale increasing, indicating that the larger data scales benefit abstraction.

Generic pre-training is critical for the emergence of abstraction. We probe the abstraction
capability of randomly initialized T5-Base and GPT2-Medium (i.e., without loading pre-trained
checkpoints) and report the results in Table 5. The poor performance on A ⇒ B reveals that without
generic pre-training, these deep learning models can hardly extract transferable abstract concepts
from task A, even though they can still achieve >98% dev set performance on task A by fitting some
task-specific suffer patterns. The comparison of the results in Table 2 and Table 5 demonstrate that
the broader background pre-training is critical for the emergence of abstraction capability.

7 CONCLUSIONS

In this paper, we introduce a systematic probing framework from a transferability perspective to guide
the design of probes for abstraction capability. We instantiate this framework as a grammar probe
and show strong evidence that two probed PLMs have the abstraction capability. We further analyze
this probed capability by investigating several in-depth questions and provide insightful conclusions.
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ETHICS STATEMENT

A sufficiently robust abstraction capability that can perfectly extract abstract concepts and exclude
concrete information in any situation will help deep learning models avoid many potential risks
of ethical issues such as social bias and privacy breaches. However, as investigated in this work,
the abstraction capability of some commonly used deep learning models may be fragile and can be
affected by their training situation. This suggests that the abstraction capabilities of these models are
still not reliable enough to naturally avoid these potential ethical issues, and calls for future work to
explore ways to strengthen the robustness of the abstraction capabilities of deep learning models.
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This is the Appendix of the paper Does Deep Learning Learn to Abstract? A Systematic Probing
Framework.

A DISCUSSIONS

Below are more discussions about our work.

Potential factors that may hinder our probing. We consider the main factor that could block the
use of our probing framework is the catastrophic forgetting problem in deep learning (Goodfellow
et al., 2013; Kemker et al., 2018). Since our probing framework relies on the transferability property
of abstract concepts, if catastrophic forgetting dominates the learning of downstream tasks, such
transferability will hardly take effect and the probing results will fail to reveal the abstraction
capabilities. Considering this problem, we utilize the early-stopping strategy (detailed in Appendix)
to alleviate catastrophic forgetting. Moreover, our tested pre-trained models are naturally more robust
to catastrophic forgetting (Ramasesh et al., 2021).

Better understanding "why does transfer learning work". Recent success of transfer learning
shows that pre-training (or continue pre-training) with similar source tasks can help better solve
downstream target task (e.g., question answering (Khashabi et al., 2020; Liu et al., 2021b), face veri-
fication (Cao et al., 2013), and general NLU tasks (Pruksachatkun et al., 2020)). Some previous work
in cross-lingual transfer learning empirically observed that the model can transfer some knowledge
beyond vocabulary (Artetxe et al., 2020; Ri & Tsuruoka, 2022), but they did not consider to exclude
the influence from other potential factors. Our results can serve as stronger evidence for the reason to
the success of transfer learning, that in addition to transferring some surface patterns, the better target
performance can also benefit from similar abstract concepts learned from source tasks.

Limitations and future work. The main limitations in this work are 1) we do not quantify the
abstraction capability and 2) we only test two large pre-trained models. We leave these two points to
our future work. Another future direction is to further explore the mechanisms behind abstractions.

B COMPARISONS WITH PREVIOUS FINDINGS ABOUT LEARNING DYNAMIC

Comparison with information bottleneck. Shwartz-Ziv & Tishby (2017) found a two-phase learn-
ing process from the view of information flow in deep neural networks: empirical error minimization
phase and representation compression phase. This process is different from the memorize-then-
abstract process since they measure the training dynamics in quite different perspectives. The former
focuses on the compression of representation (and reduction of mutual information) while the latter
portrays the learning of abstract concepts. The analogy between the two may lie in that the ex-
traction of abstract concepts from concrete instances is in some way have the effect of information
compression.

Comparison with Grokking. Power et al. (2022) revels that the improvement in generalization
(on validation set) can happen well past the point of over-fitting (on train set). Both ’grokking’
and ’memorize-then-abstract’ phenomenon indicate that some general patterns are always learned
in a later training stage. The difference is that the ’grokking’ focuses on generalization beyond
over-fitting training data, while ’memorize-then-abstract’ portrays the transfer of abstract concepts
beyond task-specific characteristics.

C PRINCIPLES FOR DESIGNING PROBING TASKS

To verify whether the model could learn abstract concepts from task A by assessing ∆(A ⇒ B), we
propose the following principles for designing task B:

1) The space of task-specific characteristics of B should be very different from that of A so
that the memorization of surface patterns in A is helpless to B.

2) The abstract concepts of B should be the same as that of A so that the abstraction on A
could be reflected with a better performance on B.

3) The fine-tuning-only approach ⇑ B should be not enough to learn task B perfectly; otherwise,
the gain from the abstraction on A would not be noticeable.
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Furthermore, to verify that the performance gain on B is from the abstraction on A rather than other
factors, we consider a contrast task C of A:

4) The abstract concepts of C should be very different from A (also B), while other latent
factors are kept the same such as data scale and pre-training steps.

The consideration of contrast task is similar to selectivity (Hewitt & Liang, 2019).

D AN OPERATION PROBE

The operations semantics (e.g., conjunction) in the Boolean algebra can be regarded as transition
functions between the given Boolean variables and corresponding outputs. We want to examine
whether the model can learn the meaning of operations from concrete logical expressions, or
just learn superficial correlations from specific sketches in expressions.

In operation probe, we instantiate the framework with logical expression evaluation (LEE) tasks. We
consider operation semantics in logical expressions as abstract concepts, and surface patterns
(e.g., local string matching) are bounded with operation sketches.

Figure 7a shows two kind of sketches: chain sketch and tree sketch. The model trained on chain
sketch may learned the meaning of operations (e.g., conjunction of two Boolean variables) or simply
memorize some head or tail patterns of strings (e.g., if the head of input string is "False AND ( ", the
output is always "False"). Learning operation semantics can more generally help understand other
expressions with different sketches, but memorizing head or tail patterns in chain sketches is helpless
or even harmful to understand tree sketches, since these surface patterns can lead to wrong results in
different sketches. We give a more specific definition of abstraction based on LEE tasks:

Definition 2: Considering an LEE task L : Es → Bt that the source logical expressions Es (with
operation semantics Ps and sketch Ks) are evaluated as Boolean values Bt, and a set of input-
output pairs L = {(eis → bit)}k in which eis is an logical expression sampled from Es and bit ∈
{True, False} is the evaluation result of eis, the abstraction capability is learning the meanings of
operations Ps during training on L rather than memorizing sketch-specific patterns that are bounded
with Ks.

Our LLE tasks probe the learning of four logical operations: P+
s ={Conjunction (Conj.), Discon-

junction (Disc.), Alternative Denial (Alt.), Joint Denial (Joi.)}. Figure 7b illustrates the transition
functions of these operations.. For generating data, each operations in P+

s is constantly aligned with
one operator (i.e., a concrete string) in So. Examples of these sets are contained in Appendix F.2.

Train set A. We synthesize the data in A with P+
s and chain sketch. Each expression contains eight

operators which are sampled from So.

Transfer set B̂ and Test set B. We synthesize the data in B̂ ∪ B with P+
s and tree sketch. Each

expression contains eight operators which sampled from So. When probing a certain operation
ps ∈ P+

s , we limit that the expression in B̂ does not contain ps, while each expression in B must
contain ps. To make the model familiar with operators in So or not forget them during further fine-
tuning, we supplement B̂ with 100 two-operator expressions which cover the full So. Empirically,
as DNN models can be easily influenced by the statistical bias in label distributions, we balance the
’True’ and ’False’ examples during sampling.

Contrast set C. The operators and sketch in C are kept the same with A, but each operator in So

is aligned with another set of logical operations P−
s ={Material Implication, Converse Implication,

Material Non-implication, Converse Non-implication}. The transition functions of these operations
are listed in Appendix F.2.

Results of our operation probe is shown in Table 6.
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Figure 7: Four operations and two sketches in our operation probe. (a) shows the chain sketch used
in task A and C, and the tree sketch used in B̂ ∪B. Each ’OP’ represents one operation. (b) shows
the transition results of four operations with different left and right Boolean variables.

Table 6: Results in our operation probe.

Probe Model Sub-Probe Control Exp Main Exp Contrast Exp
⇑ B A ⇒ B C ⇒ B

Operation

T5

Avg. 70.1 88.9 (+18.8) 71.2 (+1.1)

Conj. 63.3 90.8 65.3
Disc. 58.9 84.8 72.8
Alt. 79.1 90.7 72.6
Joi. 79.2 89.2 74.3

GPT2

Avg. 64.7 76.3 (+11.6) 64.0 (-0.7)

Conj. 61.8 78.6 61.1
Disc. 59.8 72.5 64.1
Alt. 69.0 78.6 65.4
Joi. 68.3 75.3 65.3

E ABSTRACT CONCEPTS ARE MODULARIZED IN PLMS

To supplement our analysis on abstract attention heads, here we provide our detailed explorations to
identify the modulars in PLMs that store abstract concepts in our probes. Our explorations are based
on the following property and assumption.

Property: Forgetting of Abstract Concepts. Consider the Main Exp A ⇒ B that task A and
B share the abstract concepts but do not share task-specific knowledge. After fully fine-tuning on
task B, the model’s parameters will somehow over-fit the task-specific knowledge in task B and the
abstract concepts stored in these parameters will be partially forgotten.

Assumption: Identifying the Modularization of Abstract Concepts by Freezing Parameters.
If a module in the model individually store a part of abstract concepts, these parameters can be
directly reused in new tasks without further fine-tuning. Furthermore, considering the property
above, freezing this abstract module can avoid the forgetting of abstract concepts, resulting in the
performance improvement in Main Exp A ⇒ B.

Based on this assumption, to identify whether abstract concepts are modularized in some parameters,
we partially freeze the model in a coarse-to-fine manner. The following experiments are conducted
on one of the three pre-training terminal sets. First, we freeze each layer in the model, showing in
Figure 8. We find that the last layer in encoder and the first layer in decoder modularize part of
abstract concepts. Furthermore, we freeze these two layers in our Contrast Exp C ⇒ B and find no
improvements in Figure 9a, indicating that the improvement of freezing these two layers comes from
keep abstract concepts.

In next step, we try to identify the abstract concepts are stored in attention layers or FF layers. We
separately freeze the attention sub-layer and FF sub-layer in the last encoder layer and first decoder
layer. Figure 9b shows that attention layers take more responsibility for storing abstract concepts.

Then, we analyze whether these abstract concepts are modularized in some attention heads or averaged
in the whole attention layers. Our investigation in Section 6.2 finds that the abstract concepts are
centralized in some middle-layer attention heads. Based on the results in Figure 4, we freeze the top
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36 heads to further verify that they are responsible for storing abstract concepts. Results in Table 7
indicate that abstract concepts are modularized in this small part of attention heads.

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E1
0

E1
1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10 D11

Frozen Layer
90

91

92

93

94

95

96

Ac
cu

ra
cy

 (%
)

baseline

Figure 8: Freeze 24 layers separately in A ⇒ B.
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(b) Separately freeze attention and FF in A ⇒ B.

Figure 9: Further explore the modularity in the middle two layers.

Table 7: Supplement to Table 3. Freeze a set of abstract heads and fine-tune.

Fine-Tuning

Baseline A ⇒ B 92.8
+Freeze Abstract Heads 96.6 (+3.8)
+Freeze Random Heads 92.9
-Prune Abstract Concepts 13.6

Baseline C ⇒ B 13.9
+Freeze Abstract Heads 14.4

F EXAMPLES IN OUR DESIGNED TASKS

Here, we list some examples in our designed probing tasks. The full sets are contained in our
Supplementary Material.

F.1 GRAMMAR PROBE

Table 8 and 9 shows examples in Com. and Mod. sub-probes in grammar probe, respectively.

F.2 OPERATION PROBE

Table 10 lists the operation behind each symbol, and Table 11 shows examples in Conj. sub-probe in
operation probe. Figure 10 illustrates the transitions of operations used in contrast task in operation
probe.

F.3 REDUNDANT DESIGNS

For Redundant G∗
s , we supplement the second T-Production rule in Table 1 as "sub / direct-obj /

indirect-obj ↠ Sadj Sn". Terminals in Sadj can re regarded as adjectives for Sn. These terminals

18



Published as a conference paper at ICLR 2023

Table 8: Examples in different sets in Com. sub-probe in grammar probe. The terminal NONE in
target side is omitted to more clearly show the structure of the target example.

Set Side Example

Train Set Source Soke incurve huave the soon upon huave a ban bibb huave acetum goladar .
Target INCURVE ( SOKE ) LG UPON ( SOON ) LG BIBB ( BAN ) LG GOLADAR ( ACETUM )

Transfer Set Source Emma liked that a girl saw .
Target LIKE ( EMMA ) CCOMP SEE ( GIRL )

Test Set Source Emma admired that Daniel liked that James meant that a lion froze .
Target ADMIRE ( EMMA ) CCOMP LIKE ( DANIEL ) CCOMP MEAN ( JAMES ) CCOMP FREEZE ( LION )

Contrast Set Source Soke incurve huave the soon upon huave a ban bibb huave acetum goladar .
Target ( ACETUM ) GOLADAR LG ( BAN ) BIBB LG ( SOON ) UPON LG ( SOKE ) INCURVE

Table 9: Examples in different sets in mod. sub-probe in grammar probe.

Set Side Example

Train Set Source Safe above the poddy cord the soon a pial .
Target CORD ( ABOVE ( SAFE , PODDY ) , PIAL , SOON )

Transfer Set Source Emma ate the ring beside a bed .
Target EAT ( EMMA , BESIDE ( RING , BED ) , NONE )

Test Set Source The baby on a tray in the house screamed .
Target SCREAM ( ON ( BABY , IN ( TRAY , HOUSE ) ) , NONE , NONE )

Contrast Set Source Safe above the poddy cord the soon a pial .
Target ( SOON , PIAL , ( PODDY , SAFE ) ABOVE ) CORD

are only contained in the source side and no terminals in target side are aligned with them. Table 13
shows an example in Redundant G∗

s .

F.4 DERIVATIONS

Here we show examples of different derivations of original grammars. Table 12 shows examples in
different G∗

t . The terminal ’NONE’ is omitted.

G MORE EXPERIMENTAL RESULTS

We present additional experimental results to supplement our probing and analysis.

G.1 DATA SCALE AND TERMINAL DIVERSITY

Figure 11a shows the effects from data scale for different model sizes. It shows that the performance
improves marginally and unstably when the data scale increases from 1.7K to 680K instances.
Moreover, it seems that the performance gap between models with different sizes is still considerable
when the data scale is enough large.

Figure 11b shows the effects from data diversity for different model sizes. Here, we consider the
terminal diversity as a perspective of data diversity, i.e., the number of terminals of the grammar.
Following Section 4, we only change the number of terminals in Sc and SC , increasing from 1 to
128. The overall trend is that the performance improves marginally and unstably when the diversity
increases. Interestingly, we observe that for all three models, their performances achieve the peak
before rising to 128 terminals and then keep oscillating. We speculate that their performances are
bounded by the limited data scale, as we control the data scale as 34K instances when increasing
the terminal diversity. To examine our speculation, we conduct another experiment on T5-Base that
pre-training on 680K instances with 128 terminals, achieving an average accuracy rate of 93.5%.
This performance is higher than the result after pre-training on 680K instances with 32 terminals
(89.2%) and higher than the best average accuracy of T5-Base in Figure 11b (88.4%), suggesting that
higher data diversity should be equipped with a larger data scale.
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Table 10: Symbols and operations in different tasks in operation probe.

Symbol Operation in A and B Operation in C

a1 Conjunction Material Non-implication
b2 Alternative Denial Material Implication
c3 Disjunction Converse Non-implication
d4 Joint Denial Converse Implication

Table 11: Examples in different sets in operation probe.

Set Side Example

Train Set Source False c3 ( ( ( False a1 ( ( ( False b2 ( True d4 True ) ) d4 True ) d4 True ) ) d4 False ) b2 False )
Target True

Transfer Set Source ( ( False c3 ( False b2 False ) ) b2 True ) d4 ( True b2 ( ( False b2 ( False b2 False ) ) c3 True ) )
Target True

Test Set Source ( True b2 ( ( False a1 False ) d4 False ) ) a1 ( False c3 ( ( ( True a1 True ) c3 True ) a1 True ) )
Target False

Contrast Set Source False c3 ( ( ( False a1 ( ( ( False b2 ( True d4 True ) ) d4 True ) d4 True ) ) d4 False ) b2 False )
Target False

G.2 MULTI-GRAMMAR PRE-TRAINING

Before this section, we consider the setup in which we only see one pair of input and output grammars
during pre-training. This section explores whether multi-grammar pre-training would influence
the model to exhibit abstraction. Here, we consider two cases: can or can not access the golden
grammar. The golden grammar is the grammar used in the downstream task. For the multi-grammar
pre-training, we assemble different target grammars in Section 6.3 while keep the source grammar.
During generating pre-training data with more than one target grammar, for each instance, we add a
prefix (chosen from original, coarse, localreverse, nest, and reverse) at the beginning of the source
tokens, guiding the model which target grammar it should use. Table 14 shows the results with
different ensemble grammars.

First, consider that we have no access to the golden grammar. We take the target grammar that
performs the best in Section 6.3, Coarse G∗

t , as the single-grammar baseline. Table 14 shows that
augmenting the Coarse G∗

t with other target grammars can always perform better than the single
grammar. Even augmenting with the Reverse G∗

t from the contrast task can bring a slight gain (1.4%
accuracy). It indicates that even though the model has no access to the golden abstract concepts,
increasing the diversity of abstract concepts can make the model better aware of the existence
of abstract concepts. This awareness can be regarded as a higher level of abstraction capibility.

Then, considering that the model has access to the golden grammar, the downstream task performance
is lower than only pre-training on the golden grammar (accuracy 88.2%). Therefore, augmenting
other similar abstract concepts would confuse the model and make it hard to choose which concepts
should be used for the downstream task.

G.3 INCREASE TOTAL NUMBER OF TERMINALS

We increase the total number of terminals to ∼1,500 in our probing tasks and report the results with
T5-Base in Table 15. These results are similar to the original results in Table 2 and are still in line
with our two expectations.

H FUZZY GRAMMAR

The abstract concepts discussed in grammar probe in Section 4 can be concretely defined, but in
many application scenarios, abstract concepts can be fuzzy (e.g., natural language grammar). Here,
we want to examine whether models can learn fuzzy grammar or just can recognize the concrete one.
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Figure 10: Transitions of operations used in contrast task in operation probe.

Table 12: Examples in different G∗
t .

Derivation Target Example

Coarse CLAN ( ) LG INCURVE ( ) LG UPON ( )
LocalR ( BAN ) CLAN LG ( SOKE ) INCURVE LG ( BIBB, GOALDER, SOON ) UPON
Nested CLAN ( BAN, LG INCURVE ( SOKE, LG UPON ( SOON, GOALDER, BIBB ) ) )

We take natural language sentences for experiments and design different sets by mimicking the Com.
sub-probe in our grammar probe.

Data in our fuzzy grammar probe is taken from Europarl v7 Koehn (2005), a large parallel corpus
for machine translation . For the probing on natural language data, we can not guarantee to satisfy
the requirements in our framework perfectly, as the grammar of the natural language is hard to be
controllable as the formal language. We describe the instantiation of different sets as following.

Train set A. We take the German-to-French (De-Fr) sentence paris as A.

Transfer set B̂ and Test set B. We take English-to-Romanian (En-Ro) as the probing task B. As
both German and English are belong to the West Germanic language branch while both French
and Romanian are belong to Italic branch, the abstract grammars used in De-Fr and En-Ro have
some similarities. To satisfy that the ⇑ B performs poorly, we limit the B̂ with only short sentences
(15.7/13.8 words in En/Ro sentences in average) while B with only long sentences (78.0/74.4 words
in En/Ro sentences in average). It means that the model can learn most of the lexicons from B̂ but
can not be aware of the grammars of long sentences.

Contrast set C. Mimicking the construction of C in the formal language task, we also reverse the
word order in the target language of A.

Table 4 shows the performance of two models on natural language data. These results indicate that
fuzzy grammar in natural language data can also be learned and transferred by the two PLMs. In
addition, as this setting can also be regarded as a length generalization problem, the low ∆(C ⇒ B)
further confirm that our probing results benefit from learning abstract concepts rather than
surface patterns (i.e., length distribution).

I TRY TO MEASURE ABSTRACTION CAPABILITY

As mentioned in Section A that one limitation in our probing is the lack of a metric that can quantita-
tively measure the abstraction capibility. Thus, we can not compare the abstraction capibility of two
models with different architectures. Here, we try to design such a metric to compare the abstraction
capibility of T5-Base, with ∼220M parameters, and GPT2-Medium, with 345M parameters.

In the beginning, we want to clarify that this metric is just for primary exploration, as it is based on a
strong assumption that can not be satisfied in all situations.

Assumption: We assume that the performance score of a certain task (such as accuracy and BLEU
score) can linearly reflect the ability of the model to solve this task.

It means that, for instance, improving the accuracy from 90% to 100% is not harder than improving
from 40% to 50%. Apparently, this assumption does not suit all tasks and performance scores (even
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Table 13: Examples in Redundant G∗
s . Gray terminals are redundant that would not be mapped to

targets.

Derivation Source Example

Redundant A angry pial was ozophen to zogo by odd dermestes .
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Figure 11: More results for different data scales and data diversity.

the tasks and scores in our probing). But it does not influence the comparison between T5-Base and
GPT2-Medium. The reason will be discussed later.

Intuitively, we consider the contribution of abstract concepts to overall performance as a measure of
abstraction capibility, that is,

MoA =
scorea
scoref

, (2)

in which the MoA means the Metric of Abstraction, scoref means the full performance score on a
certain task without limiting the training data, and scorea means the part of the score contributed by
the abstract concepts. Following our probing framework, we consider the scorea as the relative gain
from ⇑ B to A ⇒ B. Furthermore, considering the influence of other factors which is reflected by
C ⇒ B, we design the scorea as:

scorea = score(A ⇒ B)−max[score(⇑ B), score(C ⇒ B)], (3)

in which score() represents the performance score of a certain procedure, and max[score(⇑
B), score(C ⇒ B)] means to choose the maximum performance score between ⇑ B and C ⇒ B.
For the full performance score in the denominator in Equation 2, we evaluate the model performance
on B after (only) fine-tuning on the full set B̃, which is sampled in the same distribution of B (rather
than a limited distribution of B̂). We denote this procedure as ˜⇑ B. Thus, the metric in Equation 2
can be formalized as:

MoA =
score(A ⇒ B)−max[score(⇑ B), score(C ⇒ B)]

score( ˜⇑ B)
. (4)

Table 16 shows MoA for two models on grammar probe and fuzzy grammar probe, and lists the scores
required to calculate MoA. On each task, MoA of T5-Base is higher than that of GPT2-Medium.
Furthermore, during calculating MoA, the baseline score max[score(⇑ B), score(C ⇒ B)] of T5-
Base is always higher than that of GPT2-Medium. As it is harder for the model to improve the
accuracy and BLEU scores on these tasks from a relatively higher baseline, MoA can just under-
estimate the abstract ability of T5-Base. Therefore, we can roughly conclude that the abstraction
capibility of T5-Base is higher than GPT2-Medium.

J COMPARISON WITH PREVIOUS NEGATIVE RESULTS

Some previous work demonstrated that neural models could not learn abstract concepts (Liu et al.,
2020; Chen et al., 2020; Liu et al., 2021a; Chollet, 2019; Mitchell, 2021; Zadrozny, 2021). Our
probing results shed some light that neural models, especially PLMs, exhibit abstraction capibility to
some extent. Compared with previous work, two points could lead to different conclusions.
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Table 14: Downstream performance under different multi-grammar settings.

Grammars AccuracyReverse Nest LocalR Coarse

Without Golden Grammar

✓ 41.6
✓ ✓ 43.0

✓ ✓ 46.4
✓ ✓ 54.6

✓ ✓ ✓ ✓ 55.3
With Golden Grammar ✓ ✓ ✓ ✓ 74.0

Table 15: Increase total number of terminals.

Model Sub-Probe Control Exp Main Exp Contrast Exp
⇑ B A ⇒ B C ⇒ B

T5
Avg. 18.1 69.8 (+51.7) 15.9 (-2.2)

Com. 21.9 83.9 15.2
Mod. 14.2 55.7 16.5

The first point is the probing methodology. In all works (including ours), the basic idea of probing
abstraction is to separate it with memorization. To implement this idea, previous work has almost
always involved designing a special probing task in which memorization of the train set is helpless
to solve the test set. However, such an implementation constraints the generation of the train set,
which could bring some biases or limitations in training data. To overcome these biases or limitations,
the model should have some other abilities more than abstraction, such as reasoning and systematic
generalizability. Therefore, the previous disappointing results may have been caused by the lack of
other abilities rather than abstraction.

The second point is the test model. Some previous work probed the vanilla Transformer or LSTM
while we take the pre-trained language models. We suppose that the model may acquire better
abstraction capibility from the pre-training corpus, and can better exhibit this ability with larger
model sizes.

K DETAILS OF EXPERIMENTS

K.1 DATA

We show more details about the sets described in Section 4, including data scales, average input
lengths and average output lengths.

For the target side grammar of our formal language tasks, we mentioned in Section 4 that we change
the original target grammar of COGS to be chain-structured. In Table 18, we list some examples
with the original target grammar and the new chain-structured grammar. First, to distinguish the
input and output tokens, we capitalize all output tokens (e.g., from "rose" to "ROSE"). Second, we
replace the variables (e.g., "x _ 1") in the original grammar with its corresponding terminals (e.g.,
"ROSE"). Then, we group the terminals of AGENT (e.g., "DOG"), THEME (e.g., "ROSE") and
RECIPIENT with their corresponding terminal of PREDICATE (e.g., "HELP") and combine this
group of terminals in a function format, i.e., "PREDICATE ( AGENT, THEME, RECIPIENT )". If the
predicate is not equipped with an agent, theme or recipient in the original grammar, the corresponding
new non-terminals (i.e., AGENT, THEME and RECIPIENT, respectively) in the function format
above will be filled with the terminal NONE (e.g., "HELP ( DOG, ROSE, NONE )"). For simplicity,
we omitted NONE in Table 1, Table 8, and Table 12. Such a function format is the minimum unit of a
CLAUSE. Finally, each CLAUSE is concatenated with another CLAUSE by the terminal CCOMP
(e.g., "HOPE ( LIAM, NONE, NONE ) CCOMP PREFER ( DOG, NONE, NONE )").

K.2 PROCEDURE

Training Each pre-training takes 100,000 steps, and the final-step checkpoint is used for fine-tuning.
Each fine-tuning takes 100,000 steps, and the checkpoints for every 10,000 steps are saved.
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Table 16: MoA of two models on both grammar probe and fuzzy grammar probe and the scores
required to calculate MoA. T5 and GPT2 are T5-Base and GPT2-Medium, respectively.

Probe Score Model Scores of Procedures
MoA

A ⇒ B ⇑ B C ⇒ B ˜⇑ B

Grammar Accuracy (%) T5 88.2 23.1 15.4 95.7 0.68
GPT2 48.2 1.9 2.6 93.2 0.49

Fuzzy Grammar BLEU Score T5 35.1 24.0 26.2 41.9 0.21
GPT2 21.0 16.4 11.6 42.2 0.11

Table 17: Data scales, average input lengths, and average output lengths of different sets in our
probing.

Probe A B̂ B C
Data Scale Avg Input Len Avg Output Len Data Scale Avg Input Len Avg Output Len Data Scale Avg Input Len Avg Output Len Data Scale Avg Input Len Avg Output Len

Grammar 34,175 16.8 29.9 24,155 9.5 10.5 1,002 34.4 76.6 34,175 16.8 29.9
Operation 100,000 16.8 1 20,000 9.5 1 1,000 34.4 1 100,000 16.8 1

Fuzzy Grammar 400,000 38.9 40.8 200,000 15.7 13.8 1,004 78.0 74.4 400,000 38.9 40.8

Evaluation We take an early-stopping strategy in our evaluation to avoid catastrophic forgetting.
First, each checkpoint saved during fine-tuning is evaluated on the held-out dev set. We choose the
first checkpoint that achieves the best dev score for testing. For formal language tasks, we utilize the
constraint decoding strategy that the model can only generate the words in the vocabulary.

Compute and Resources We majorly use Tesla-V100-16GB GPUs for training and evaluation,
except for the experiments on T5-Large or GPT2-Large, which require Tesla-V100-32GB GPUs. On
average, one pre-training takes ∼15 GPU hours, one fine-tuning takes ∼15 GPU hours (including
saving checkpoints), and one testing takes ∼2 GPU hours (as test cases are very long).

K.3 HYPERPARAMETERS

Hyperparameters used for training and testing are listed in Table 19.

K.4 DEFINITION OF PERPLEXITY (PPL)

Th following equation explain how to calculate PPL in Equation 1,

PPL(lit|lis; θ) = exp[− 1

|lit|
∑
j

log pθ(l
i,j
t |lis, l

i,<j
t )]. (5)

K.5 RESULTS

We list the detailed results that are plotted in the figures (i.e., Figure 5 and Figure 6), including
the average scores, minimum scores, maximum scores, and standard deviations for all replicate
experiments.
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Table 18: Examples with the original grammar and the new chain-structured grammar.

Original Target Grammar Chain-Structured Target Grammar

rose ( x _ 1 ) AND help . theme ( x _ 3 , x _ 1 ) AND help . agent ( x _ 3 , x _ 6 ) AND dog ( x _ 6 ) HELP ( DOG, ROSE, NONE )
* captain ( x _ 1 ) ; eat . agent ( x _ 2 , x _ 1 ) EAT ( CAPTION, NONE, NONE )
* dog ( x _ 4 ) ; hope . agent ( x _ 1 , Liam ) AND hope . ccomp ( x _ 1 , x _ 5 ) AND prefer . agent ( x _ 5 , x _ 4 ) HOPE ( LIAM, NONE, NONE ) CCOMP PREFER ( DOG, NONE, NONE )

Table 19: Hyperparameters for training and testing.

Grammar Probe Operation Probe
T5 GPT T5 GPT2

Learning Rate 1e-5 1e-5 1e-4 1e-4
Weight Decay 0.01 0.01 0.01 0.01

Batch Size 8 8 8 8
Label Smooth 0.1 0.1 0.1 0.1
Max Input Len 1024 - 1024 -

Max Output Len 1024 - 1024 -
Max Total Len - 1024 - 1024

Beam Size 5 5 1 1

Table 20: Detailed results for Figure 5.

Input Grammar Output Grammar
Original Redundant LocalR Nest Reverse Original Coarse LocalR Nest Reverse

Avg 88.2 86.0 76.2 55.5 15.0 88.2 41.6 33.5 29.1 15.4
Min 72.8 68.3 70.4 49.1 13.0 72.8 34.5 19.8 27.7 12.1
Max 96.9 95.6 80.6 61.1 20.1 96.9 50.8 38.7 31.7 19.2
Std 8.5 10.2 4.2 4.3 2.5 8.5 4.9 6.7 1.3 2.4

Table 21: Detailed results for Figure 6a and 6b.

Main Exp Control Exp
T5-Small T5-Base T5-Large GPT2 GPT2-Medium GPT2-Large T5-Small T5-Base T5-Large GPT2 GPT2-Medium GPT2-Large

Avg 34.4 88.2 94.0 3.5 48.9 68.7 9.0 23.1 19.5 0.0 2.0 3.4
Min 20.7 72.8 83.2 0.0 23.9 47.2 3.0 22.6 17.8 0.1 1.1 3.1
Max 47.4 96.9 97.2 12.4 63.8 85.7 6.0 23.5 21.1 0.2 2.9 3.6
Std 9.8 8.5 4.9 4.4 14.5 13.7 3.0 0.5 1.7 0.1 0.9 0.3

Table 22: Detailed results for Figure 6c.

(a) T5-Large

Data Scale (T5-Large)
1.7K 3.4K 6.8K 17K 34K 68K 170K 680K

Avg 90.4 96.7 96.7 92.3 94.0 98.8 97.6 98.9
Min 73.5 96.0 94.2 73.6 83.2 98.0 92.4 96.9
Max 97.1 98.1 98.5 98.7 97.2 99.3 99.8 99.7
Std 10.5 0.9 1.7 10.8 4.9 0.5 3.0 1.1

(b) T5-Base

Data Scale (T5-Base)
1.7K 3.4K 6.8K 17K 34K 68K 170K 680K

Avg 75.1 82.8 84.0 85.0 88.2 82.0 87.0 89.2
Min 61.5 74.0 69.2 79.3 72.8 74.8 82.5 76.9
Max 90.8 88.7 94.4 97.2 96.9 92.3 92.7 94.4
Std 10.0 4.9 8.5 6.3 8.5 6.3 3.8 7.6

(c) T5-Small

Data Scale (T5-Small)
1.7K 3.4K 6.8K 17K 34K 68K 170K 680K

Avg 28.3 31.9 26.1 27.3 34.4 40.5 38.7 39.4
Min 27.4 11.5 16.1 21.2 20.7 19.7 23.5 29.7
Max 29.2 50.5 36.2 33.7 47.4 62.9 50.9 56.0
Std 0.9 15.6 9.2 4.1 9.8 19.0 9.9 9.5
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Table 23: Detailed results for Figure 11b.

(a) T5-Large

Terminal Diversity (T5-Large)
1 2 4 8 16 32 64 128

Avg 90.5 93.3 96.4 97.9 98.1 94.0 96.9 94.2
Min 79.7 85.9 95.6 95.9 97.1 83.2 93.2 87.3
Max 97.9 97.4 98.1 98.9 99.1 97.2 98.1 99.0
Std 6.9 3.9 0.9 1.0 0.7 4.9 1.7 4.6

(b) T5-Base

Terminal Diversity (T5-Base)
1 2 4 8 16 32 64 128

Avg 66.5 72.5 76.3 85.3 88.4 88.2 86.4 84.2
Min 53.0 61.4 69.2 71.6 75.7 72.8 54.6 71.1
Max 79.4 86.1 92.2 94.1 96.4 96.9 93.7 97.5
Std 9.8 10.1 7.8 9.4 7.6 8.5 15.2 10.7

(c) T5-Small

Terminal Diversity (T5-Small)
1 2 4 8 16 32 64 128

Avg 23.5 24.2 23.3 26.6 29.3 34.4 26.7 32.8
Min 3.3 12.6 10.2 16.1 21.0 20.7 22.6 24.7
Max 35.8 34.5 38.6 41.0 36.1 47.4 32.4 47.5
Std 10.1 7.5 8.3 9.2 4.9 9.8 4.3 9.6
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