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Abstract

In recent years, significant progress has been made in multi-objective reinforcement
learning (RL) research, which aims to balance multiple objectives by incorporating
preferences for each objective. In most existing studies, specific preferences must
be provided during deployment to indicate the desired policies explicitly. However,
designing these preferences depends heavily on human prior knowledge, which is
typically obtained through extensive observation of high-performing demonstra-
tions with expected behaviors. In this work, we propose a simple yet effective
offline adaptation framework for multi-objective RL problems without assuming
handcrafted target preferences, but only given several demonstrations to implicitly
indicate the preferences of expected policies. Additionally, we demonstrate that
our framework can naturally be extended to meet constraints on safety-critical
objectives by utilizing safe demonstrations, even when the safety thresholds are
unknown. Empirical results on offline multi-objective and safe tasks demonstrate
the capability of our framework to infer policies that align with real preferences
while meeting the constraints implied by the provided demonstrations.

1 Introduction

In the standard reinforcement learning (RL) setting, the primary goal is to obtain a policy that
maximizes a cumulative scalar reward [Sutton and Barto, 2018]. However, in many real-world
applications involving multiple objectives, a desired policy must not only strike a balance among
potentially conflicting objectives but also consider the constraints imposed on specific safety-critical
objectives. Such requirements motivate the research of Multi-objective RL (MORL) [Liu et al., 2014,
Mossalam et al., 2016] and safe RL [Gu et al., 2022, Achiam et al., 2017]. In addition to reward
maximization, the former aims to enable policies that cater to a target preference indicating the
trade-off between competing objectives, while the latter focuses on reducing the cost measures of
learned policies within a given safety threshold.

Despite the development of meticulous and effective mechanisms to achieve these goals, most existing
MORL and safe RL algorithms rely on predefined target preferences or safety thresholds. These ele-
ments need to be carefully designed by human experts with prior knowledge, generalized from a large
number of demonstrations through observation. Taking autonomous driving as an example, defining
aggressive, stable, and conservative strategies through different preferences between minimizing
energy consumption and increasing driving speed may require extensive human participation, which
means that researchers need to categorize driving data into different styles based on human experience
and observe the energy consumption-speed ratio to estimate appropriate preference weights and
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safety thresholds for different strategies. Moreover, it is uncertain whether policies based on manually
designed preferences will exhibit expected behaviors or whether feasible policies exist under given
safety constraints. The challenge of designing appropriate preferences or safety thresholds becomes
more pronounced as the number of objectives increases.

Compared to manually designing target preferences or safety thresholds based on human knowledge,
it is more natural to infer expected behaviors through a few demonstrations that implicitly indicate
the trade-off between multiple objectives and the constraints of safety. For instance, selecting
demonstrations with conservative behaviors from the driving dataset can be easier than inferring
preferences that lead to conservative policies. Therefore, in this work, we formulate a novel offline
adaptation problem for constrained MORL, with the goal to leverage a few demonstrations with
expected behaviors, rather than relying on handcrafted target preferences and safety thresholds, to
generate a target policy that achieves desired trade-offs across various objectives and meets the
constraints on safety-critical objectives under offline settings.

To achieve this, we first focus on unconstrained MORL scenarios and propose a simple yet effective
offline adaptation framework Preference Distribution Offline Adaptation (PDOA), which includes:
1) learning a set of policies that respond to various preferences during training, and 2) adapting a
distribution of target preferences based on a few given demonstrations during deployment. Specifi-
cally, we initialize the first part with existing state-of-the-art offline MORL algorithms, and then in
the second part, we propose to align the adapted policies with expected behaviors by modeling the
posterior preference distribution regarding demonstrations. Moreover, we show that our framework
can be extended to constrained MORL settings by converting a constrained RL problem into an
unconstrained MORL counterpart, and incorporating a conservative estimate of preference weights
on constrained objectives to mitigate the potential constraint violations. Lastly, we conduct several
empirical experiments on classical MORL, safe RL tasks and a novel constrained MORL environment
under offline settings, demonstrating the capability of our framework in generating policies that align
with the real preferences and meet the constraints implied in demonstrations.

2 Related Work

Multi-objective RL Many existing MORL methods explicitly maintain a set of policies tailored
to various given preferences to approximate the Pareto front of optimal policies. These works
either apply a single-policy algorithm individually for each candidate preference [Roijers et al.,
2014, Mossalam et al., 2016], employ evolutionary algorithms to generate a population of diverse
policies [Handa, 2009, Xu et al., 2020] or simultaneously learn a set of policies represented by a single
network [Abels et al., 2019, Basaklar et al., 2022]. Furthermore, due to the potential costs and risks
associated with extensive online exploration, several studies [Zhu et al., 2023, Lin et al., 2024] have
been proposed to leverage only offline datasets for MORL by extending offline return-conditioned
methods [Chen et al., 2021, Emmons et al., 2021] or offline policy-regularized methods [Fujimoto and
Gu, 2021, Wang et al., 2022] to MORL settings. Despite the ability to obtain a set of well-performing
policies for various preferences, most existing MORL methods overlook the process of acquiring
target preferences for identifying appropriate policies during practical deployment. In this work, we
assume no online interactions and no target preferences but several demonstrations generated with
expected behaviors, which are easier to access than meticulously designed target preferences.

Safe RL While maximizing the expected reward, classical safe RL methods restrict the cumulative
cost to stay within a predefined safety threshold through Lagrangian primal-dual methods [Stooke
et al., 2020, Chow et al., 2017] or primal approaches [Xu et al., 2021, Sootla et al., 2022]. Recently,
several studies have focused on learning a set of policies that respond to various safety thresholds
in both online settings [Yao et al., 2024a] and offline settings [Liu et al., 2023a, Lin et al., 2023].
Similar to MORL, these works also assume access to well-designed safety thresholds that ensure safe
behaviors. Unlike prior research, our framework relies solely on safe demonstrations to indicate the
implicit constraints and offers a mechanism to mitigate constraint violations through conservatism.

RL with Offline Adaptation Several studies have applied meta-learning techniques to address
MORL [Chen et al., 2019] or safe RL problems [Guan et al., 2024a], but they require online
interactions for task adaptation and suffer from low sample efficiency. Additionally, other research
endeavors explore offline adaptation methods to mitigate environmental uncertainty by modelling a
posterior distribution over all possible Markov Decision Processes (MDPs) [Ghosh et al., 2022] or
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considering varying confidence levels in conservative value estimates [Hong et al., 2022]. [Mitchell
et al., 2021, Xu et al., 2022a] focus on offline adaptation for multi-task problems, aiming to achieve
fast adaptation to new downstream tasks after offline training on multi-task experience. Among
these methods, offline meta RL [Mitchell et al., 2021] addresses a problem similar to ours, which
aims to train a meta policy that can adapt to a new task with limited data. Prompt-DT [Xu et al.,
2022a] achieves quick adaptation to new tasks by incorporating a few demonstrations as prompts into
the decision transformer [Chen et al., 2021] framework. We present further discussions about the
difference between multi-task RL and our setting in Appendix A.1.

3 Preliminaries

3.1 Constrained Multi-Objective MDP (CMO-MDP)

Both multiple-objective RL and safe RL can be discussed based on a uniform formulation: constrained
multi-objective MDP (CMO-MDP) proposed by LP3 [Huang et al., 2022]. A CMO-MDP is defined
as a tuple (S,A,P, r, c,β, γ) with state space S, action space A, transition distribution P(s′|s, a),
vector reward functions r ∈ RN for N unconstrained objectives, vector cost functions c ∈ RK

+ ,
safety thresholds β ∈ RK

+ for K constrained objectives and discount factor γ ∈ [0, 1]. The goal
is to maximize the rewards on unconstrained objectives while ensuring the costs on constrained
objectives remain within the safety threshold β. Since it is typically infeasible to maximize all
task objectives simultaneously, preferences ω ∈ Ω and preference functions fω(r) which map the
reward r to a scalar utility under a specific preference ω, are introduced to control the trade-off
between unconstrained objectives. Given preferences ω ∈ Ω and safety thresholds β, the goal can be
formulated as follows:

max
πω,β

Eπω,β

[
Rω

]
, s.t. C ⪯ β, (1)

where Rω =
∑

t fω(rt) and C =
∑

t ct represent cumulative utility and vector cost over time t,
respectively. We denote πω,β as a policy conditioned on ω,β. In this paper, we consider the linear
preference setting (i.e., fω(r) = ωTr where ω ∈ RN and ∥ω∥1 = 1), which is widely studied and
applied [Mossalam et al., 2016, Abels et al., 2019] and also serves as a bridge between unconstrained
and constrained MORL, as shown in Section 4.3. A CMO-MDP problem can degenerate to a standard
safe RL problem when N = 1 and to a standard multi-objective problem when K = 0.

3.2 Offline MORL

Under offline MORL settings, an offline dataset D = {(s, a, s′, r, c,ω)} is the only data available for
training, which is generated by a set of behavior policies πb(·|ω) with diverse behavioral preferences
ω. One straightforward yet effective approach to learn a set of policies for various preferences is
to adapt offline single-objective RL methods for MORL settings. An example of this approach
is the multi-objective version of Diffusion-QL (MODF) [Lin et al., 2024], which incorporates
a preference-conditioned policy (i.e., π(a|s,ω)) and a multi-dimensional value function for N
objectives (i.e., Q(s, a,ω) = Q1(s, a,ω), ..., QN (s, a,ω)) into Diffusion-QL [Wang et al., 2022]:

Lπ = −E(s,a,ω)∼D
[
Ea′∼π(·|s,ω)

[
ωTQ(s, a′,ω)

]
−

κEi∼U,ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
αia+

√
1− αiϵ, s, i)∥2

] ]
,

LQ = E(s,a,r,s′,ω)∼D
[
(r + γEa′∼π(·|s,ω)Q(s′, a′,ω)−Q(s, a,ω))2

]
,

(2)

where i is the diffusion timestep, κ is the regularization weight, αi are pre-defined parameters of
diffusion model and ϵθ(·) is a denoiser model. The diffusion policy generates the actions by iteratively
using ϵθ(·) to recover actions from noise. The second term in the actor loss of Eq. (2) is a diffusion
reconstruction loss, which serves as a regularization term to align the actions of diffusion policy with
the behavioral actions in the dataset.

Pareto-Efficient Decision Agents (PEDA) [Zhu et al., 2023] is another MORL method based on
supervised RL, which trains a policy conditioned on both target preferences and vector returns
through a supervised paradigm:

Lπ = −E(τt:T ,ω)∼D [log π(at|st, gt,ω)] , (3)
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where τt:T = {(st, at, rt), ..., (sT , aT , rT )} is a trajectory segment, gt =
∑T

t′=t rt′ is the target
vector return (a.k.a., return-to-go) and ω is the behavioral preference of τt:T . It is worth noting
that despite the significant performance of the above two methods in offline MORL problems, both
require human-provided target preferences during deployment to achieve the desired behavior, and
therefore cannot be directly applied to the setting in this paper.

4 An Offline Adaptation Framework for Constrained Multi-Objective RL

4.1 Problem Formulation of Offline Adaptation for CMO-MDP

In this paper, we focus on a novel offline adaptation problem for constrained MORL, with the
goal to leverage only a few demonstrations to generate the policies that exhibit expected behaviors.
During training, an offline dataset D = {(s, a, s′, r, c,ω)} is provided for policy training. During
deployment, we have access to a demonstration set corresponding to a target G, i.e.,

BG = {xi ∼ π∗
G}Mi=1, (4)

where xi is defined as a tuple (si, ai, s′i, ri, ci) and M is the total number of transition demonstrations.
The target G can be preferences in MORL problems (G = ωg), safety thresholds in safe problems
(G = βg) or a combination of both (G = (ωg,βg)), and π∗

G is the expert policy that achieves the
best utility and meet the constraints under the preference ωg and safety threshold βg of the target
G. In our setting, the real target G is inaccessible, and the goal is to obtain an adapted policy for
the target G that ensures high utility fωg

(r) and meets the constraints with safety threshold βg by
leveraging demonstration set BG during the deployment phase.

4.2 Offline Adaptation for the Unconstrained Case

First, we set aside the constraints in CMO-MDP and focus on the unconstrained version. Our proposed
framework, Preference Distribution Offline Adaptation (PDOA), solves the offline adaptation problem
under unconstrained settings in two steps: 1) learning a set of policies that respond to various
preferences during training; and then 2) adapting a distribution of target preferences based on given
demonstrations during deployment.

In the first part, we directly apply existing offline MORL algorithms on the dataset D to obtain
a set of policies π̂ω that respond to varying preferences ω. In the second phase, we propose to
model the distribution of target preferences and then utilize this distribution to obtain a reliable
estimation of target preference. Specifically, we consider the posterior probability of the target
preference ωg with regard to demonstration set Bωg , i.e., P (ωg|Bωg ,D) =

P (Bωg |ωg,D)P (ωg|D)

P (Bωg |D) .
Here P (Bωg |ωg,D) represents the probability that the optimal π∗

ωg
generates samples Bωg in the real

environment P(s′, r|s, a). Due to the inaccessibility of P and π∗
ω under offline settings, we replace

them with the empirical dynamics P̂ω(s
′|s, a) and its corresponding optimal policy π̂∗

ω, which can
be obtained using offline data D during training. Therefore, the preference posterior distribution can
be approximated by

P (ω|Bωg
,D) =

P (Bωg |ω,D)P (ω|D)

P (Bωg
|D)

≈
P (Bωg |M̂ω, π̂

∗
ω,D)P (ω|D)

P (Bωg
|D)

∝ P (ω|D)

M∏
i=1

Pπ̂∗
ω
(si)π̂

∗
ω(ai|si)P̂ω(s

′
i, ri|si, ai),

(5)

where (si, ai, ri, s
′
i) ∈ Bωg

. One challenge in Eq. (5) is the requirement of explicitly modeling
the state distribution Pπ̂∗

ω
(si) and the transition probability P̂ω(s

′
i, ri|si, ai). Another concern

is that demonstrations Bωg with the target preference ωg can be out-of-distribution samples for
the estimation of π̂∗

ω and M̂ω, leading to considerable discrepancy between estimated Pπ̂∗
ω
(si),

P̂ω(s
′
i, ri|si, ai) and their real-world counterparts. This challenge is pronounced in multi-objective

settings due to significant differences in the trajectory distributions of the optimal policy under various
preferences. Therefore, following previous offline adaptation works [Ghosh et al., 2022, Hong et al.,
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2022], we opt to approximate logPπ̂∗
ω
(si)P̂ω(s

′
i, ri|si, ai) with a surrogate defined by TD error of

value models of π̂∗
ω in M̂ω:

rTD
ω (s, a, r, s′) = −δ∥Q(s, a,ω)− (r + γV (s′,ω))∥22, (6)

where δ is a hyperparameter. This approximation makes sense because rTD
ω (s, a, r, s′) not only

measures how likely the sample (s, a, r, s′) occurred during training for preference ω but also aligns
with the estimated dynamics P̂ω. In other words, rTD

ω (s, a, r, s′) has a high value if (s, a, r, s′) is
an in-distribution sample relative to the training datasets under preference and occurs with a high
probability in M̂ω .

Then, we fit the posterior P (ω|Bωg ,D) with a Gaussian distribution N (µ,σI) with parameters
µ ∈ RK and σ ∈ RK

+ by minimizing their Kullback-Leibler divergence, leading to the following
adaptation loss:

Ladpt(µ,σ) =DKL(pθ(ω)||P (ω|Bωg
,D))/M + η(∥µ∥1 − 1)2

=− Eω∼N (µ,σI)

[
1

M

M∑
i=1

[
rTD
ω (si, ai, ri, s

′
i) + log π̂∗

ω(at|st,ω)
]
+

logP (ω|D)

M

]
− H(pθ)

M
+ η(∥µ∥1 − 1)2,

(7)

where the term η(∥µ∥1−1)2 with hyperparameter η regularizes ∥µ∥1 to be close to 1. We approximate
the prior distribution P (ω|D) with a Gaussian distribution fit to the behavioral preferences of training
data D. Eq. (7) indicates that ω is likely to be the target preference ωg if it corresponds to high
rTD
ω (si, ai, ri, s

′
i), log π̂

∗
ω(at|st,ω) and P (ω|D), which means: 1) the demonstration set Bωg appears

with high probability in both the training set and M̂ω; 2) π̂∗
ω(at|st,ω) is likely to generate the actions

in Bωg
; and 3) ω stays within the prior preference distribution with a high probability. We justify the

effectiveness of this approach with the empirical results in Appendix A.9, where rTD
ω (si, ai, ri, s

′
i)

(called TD reward) and π̂∗
ω(at|st,ω) (called action likelihood reward) shows a strong correlation

with the real target preference.

Implementation The first part of our framework PDOA is instantiated with state-of-the-art MORL
algorithms: MODF and the best algorithm MORvS in PEDA mentioned in Section 3.2, to learn a set
of policies that responds to various preferences. We refer to these two instances as PDOA [MODF]
and PDOA [MORvS]. The well-trained policies and their corresponding value functions obtained
by MORL algorithms during training are utilized to calculate the action likelihood reward π̂∗

ω(·)
and TD reward rTD

ω (·) in Eq. (7). During deployment, the preference distribution pθ(ω) is updated
through the adaptation loss (7) on the demonstration set Bωg

. Finally, we obtain an adapted target
preference ωa = µ/∥µ∥1 and policy π̂∗

ω(·|ωa) that aligns with the real target preference ωg implied
in demonstrations Bωg

. More details about implementation can be found in Appendix A.5.

4.3 Extension to Constrained Settings

Then, we consider a natural extension of our MORL adaptation framework to constrained settings.
Under the linear preference setting, the constrained MORL problem in Eq. (1) can be converted to its
dual form with zero duality gap [Paternain et al., 2019]:

min
λ∈RK

+

max
π

Eπ

[∑
t

ωT
g rt − λT(

∑
t

ct − βg)
]
. (8)

Denoting λ∗ as the solution of this problem, the dual problem 8 can be rewritten as:

max
π

Eπ

[∑
t

[ωT
g ,λ

∗T] · [rTt ,−cTt ]
T
]
. (9)

This formulation means that the constrained MORL problem under safety threshold β is uniquely
equivalent to an unconstrained problem of finding the optimal policy under an extended preference
ω̃g = [ωT

g ,λ
∗T]T/∥[ωT

g ,λ
∗T]T∥1 among extended N + K objectives r̃ = [rTt ,−cTt ]

T. However,
solving for the extended preference is challenging and requires the real safety thresholds, which
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are inaccessible in our setting. Nevertheless, Section 4.2 provides an approach to infer the target
preferences from the demonstration set, helping us circumvent this challenge. Therefore, we can
convert a constrained MORL problem to an unconstrained MORL problem, where the vector reward
is defined as r̃ = [rt,−ct] and dataset D is augmented to D̂. Here, r̃1:N = r corresponds to N
unconstrained objectives, while r̃N+1:N+K = −c associated with K constrained objectives. One
issue with this approach is how to set the behavior preference for augmented dataset D̂. We present
an effective scheme for approximating behavioral preferences in Appendix A.5.

However, one concern about this approach is the estimation error between the adapted preference
ω̃a obtained through Eq. (7) and the real preference ω̃g associated with the problem 9 due to
the insufficiency of demonstrations. This discrepancy can lead to constraint violations when the
preference weight of the adapted preference ω̃a on a constrained objective is less than the one of ω̃g

(i.e., [ω̃a]i < [ω̃g]i for any i ∈ {N + 1, ..., N +K}). Therefore, we propose to apply a conservative
estimate of preference weights on constrained objectives by neglecting the minimum value with
probability 1− α in the adaptation distribution ω̃ ∼ N (µ,σ). Specifically, the preference weights
on the ith objective is estimated as follows:

bi = CVaRα([ω̃]i) =
1

α

∫ 1

1−α

VaRu([ω̃]i)du = µi + σi
φ(Φ−1(1− α))

α
,N < i ≤ N +K, (10)

and bi = µi for 1 ≤ i ≤ N . Here, VaR is the value of risk and CVaR is the conditional one, and
φ(x) = 1√

2π
exp(−x2

2 ) is the standard normal p.d.f., and Φ(x) is the standard normal c.d.f.. The
parameter α in Eq. (10) controls the conservatism of the estimation of preference weights. For
all constrained objectives, α < 1 results in a conservative estimate bi > µi, reducing the risk of
constraint violation. Additionally, as the number of demonstrations increases, the standard deviation
σi decreases, and thus bi will move towards µi, resulting in less conservatism. In the end, we obtain
the adapted target preference ω̃a = b/∥b∥1 and the adapted policy π(s|a, ω̃a).

5 Experiment

In this section, we conduct several experiments on classical MORL environments in Section 5.1
and safe RL tasks in Section 5.2 to evaluate our framework in achieving preference alignment
and approaching constraint satisfaction, respectively. Then, we test our method on a set of new
constrained MORL (denoted as CMORL) tasks in Section 5.3. Finally, we discuss the effectiveness
of the components of our method in Section 5.4.

Environments and Datasets In Section 5.1, we utilize the D4MORL datasets [Zhu et al., 2023]
for MORL experiments, which involve two conflict objectives and a variety of behaviors based
on preferences in multi-objective MuJoCo tasks. In Section 5.2, all algorithms are trained on the
datasets from DSRL benchmark [Liu et al., 2023b], which involve a constrained objective and an
unconstrained objective in BulletSafeGym tasks [Gronauer, 2022]. In Section 5.3, we develop a set
of CMORL tasks by incorporating an additional velocity constraint to the original multi-objective
MuJoCo environments and collect datasets from these tasks. Thus, these environments contain two
unconstrained objectives and one constrained objective. More details about these environments and
datasets can be found in Appendix A.2. We construct training sets and demonstration sets based on
the above datasets and present the details on Appendix A.3.

Evaluation Protocols For evaluation, we define a target set T = {G}, with each target G corre-
sponding to a demonstration set BG that meets the target G. For MORL tasks in Section 5.1, G is a
target preference ωg . All target preferences are selected from the dataset’s preference support set at a
fixed interval 0.01 (i.e., ωg = [0.01k, 1− 0.01k], s.t. min ω̂ ⪯ ωg ⪯ max ω̂ where k = 0, .., 100
and ω̂ is the behavioral preference of the dataset). For safe RL tasks in Section 5.2, G is a safety
threshold βg. All safety thresholds are set to 6 equidistant points within the range of possible
thresholds. The target of CMORL tasks in Section 5.3 is (ωg,βg), the Cartesian product of the target
preference spaced at 0.1 interval and 6 equidistant safety thresholds.

We utilize BG to generate an adapted policy for each target G and gather 5 trajectories from environ-
ments to assess its expected vector return. For tasks without constraints, we present the average utility
and Hypervolume metrics to demonstrate the overall performance across all targets and the diversity
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of adapted policies. For tasks with constraints, we group the adapted policies by safety thresholds
and report the maximum cost return on constrained objectives and average utility and Hypervolume
on unconstrained objectives for each group. We perform 3 runs with various seeds and report average
performance along with 1-sigma error bar. More details about metrics can be found in Appendix A.4.

Comparative Algorithms The algorithms for comparison are divided into two categories. The first
category is preference/threshold-agnostic baselines that have no access to the real target preferences
or safety thresholds implied in the demonstrations, including: 1) BC-Finetune, where the policy
is learned on training dataset via behavior cloning and is fine-tuned on demonstration sets and
2) Prompt-MODT, a multi-objective version of Prompt-DT [Xu et al., 2022a] that transforms a
multi-objective scenario into a multi-task problem via preference-based division and achieves offline
adaptation for various tasks by taking demonstrations as prompts of the transformer. The second
category is preference/threshold-informed baselines that have access to the implied preferences and
thresholds and thus serve as the oracle benchmark, including: 1) original MODF and MORvS for
MORL tasks, 2) CDT [Liu et al., 2023a] for safe RL tasks, which makes decisions based on given
safety thresholds to ensure constraint satisfaction for various thresholds. For CMORL tasks, instead
of adapting the preference through demonstrations, we enumerate all possible augmented preferences
of MODF with a small interval and report the best performance under these preferences as the oracle.
More details about comparative algorithms are placed in Appendix A.4.

5.1 Preference Alignment for MORL Tasks
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Figure 1: Results on D4MORL Amateur datasets. Higher average utility and Hypervolume are
preferable. The dashed lines represent the best performance between the original MODF and
MORvS.

0.0 0.5 1.0 1.5 2.0 2.5
objective 1 1e3

0.0

0.5

1.0

1.5

2.0

2.5

ob
je

ct
iv

e 
2

1e3     Ant-amateur_uniform    

0.0 0.5 1.0 1.5 2.0 2.5
objective 1 1e2

0.4

0.6

0.8

1.0

1.2

1.4

1e2
    Swimmer-amateur_uniform    

0.0 0.5 1.0 1.5 2.0 2.5
objective 1 1e3

0.5

1.0

1.5

2.0

2.5
1e3

    HalfCheetah-amateur_uniform    

0 1 2 3 4
objective 1 1e3

0

1

2

3

4

5

1e3
    Hopper-amateur_uniform    

0.5 1.0 1.5 2.0
objective 1 1e3

0.5

1.0

1.5

2.0

2.5
1e3
    Walker2d-amateur_uniform    

Offline data PDOA [MODF] PDOA [MORvS] Prompt-MODT BC-Finetune

Figure 2: Pareto fronts of different algorithms on D4MORL Amateur datasets. Each point represents
an adapted policy for a specific unknown target preference.

The average utility and Hypervolume of all algorithms are shown in Figure 1. Our method demon-
strates superior overall performance and matches the oracle performance of preference-informed
methods. Moreover, we present the Pareto fronts of different algorithms in Figure 2. Our method
produces a broader and expanding Pareto front compared to BC-Finetune and Prompt-MODT, which
indicates that the adapted policies of our method exhibit higher diversity and better performance.
Meanwhile, we observe that the adapted policies obtained by BC-Finetune cluster around the behavior-
cloned policy, and thus BC-Finetune obtains the narrow Patero fronts and low Hypervolume, which
indicates the difficulty of changing the policy’s preference through simple fine-tune with limited
samples. Besides, Prompt-MODT also yields a restricted Pareto front, which can be attributed to the
difficulty of partitioning tasks based on preferences. Fine-grained divisions result in data insufficiency
for each task, while coarse-grained divisions lead to multiple preference behaviors being grouped into
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a single task, both of which can hurt the policy performance and diversity. In contrast to BC-Finetune
and Prompt-MODT, our method explicitly learns a set of policies with various preferences through
MORL, thereby ensuring policy diversity. Once the target preferences are accurately identified,
we can generate policies with diverse behaviors to meet various target preferences. To verify the
capability of our method in preference alignment, we show the differences between the adapted
preferences obtained by our method and the real target preferences in Figure 3, where we can observe
a strong consistency between the adapted preferences and the real ones, especially on PDOA [MODF].
We additionally present the performance, Pareto fronts and preference comparison on the D4MORL
expert datasets in Appendix A.6.1, which are consistent with the results in this section.
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Figure 3: The comparison between the real target preferences and the adapted preferences.

5.2 Constraint Satisfaction for Safe RL Tasks

0 25 50 75 100 125 150 175 200
0

50

100

150

200

Co
st

    OfflineAntCircle-v0    

0 25 50 75 100 125 150 175 200
Safety Threshold

0.4

0.6

0.8

1.0

Ut
ilit

y

10 20 30 40 50 60 70 80
0

20

40

60

80
    OfflineBallCircle-v0    

10 20 30 40 50 60 70 80
Safety Threshold

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140
0

50

100

150
    OfflineAntRun-v0    

0 20 40 60 80 100 120 140
Safety Threshold

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80

20

40

60

80

    OfflineBallRun-v0    

10 20 30 40 50 60 70 80
Safety Threshold

0.4

0.6

0.8

1.0

PDOA [MODF] PDOA [MORvS] Prompt-MODT BC-Finetune CDT Oracle Normalized Cost=Target Threshold

Figure 4: The adapted policies’ cost and utility of each algorithm under various safety thresholds.
Here, the utility is the normalized reward, since there is only one unconstrained objective in DSRL
tasks. The points above the black dashed line represent the policies that violate the constraints.

Figure 11 in Appendix A.7 presents the Pareto fronts of MODF and MORvS, i.e., the expected costs
and expected rewards under various preferences, for safe RL tasks, which demonstrates that MORL
algorithms can learn a variety of policies that meet various safety thresholds. Then, the reward and cost
of all algorithms are shown in Figure 4. We also present the performance and Pareto fronts on other
tasks in Appendix A.7. These results show that, even though the safety thresholds are inaccessible,
PDOA [MODF] achieves relatively safe performance under various safety thresholds compared
to other baselines, closely matching the oracle performance of the threshold-informed baseline
CDT. Even with very tight safety thresholds, PDOA [MODF] can achieve constraint satisfaction or
experience few constraint violations. Meanwhile, its reward performance is comparable to or even
exceeds that of CDT. However, PDOA [MORvS] performs poorly on the DSRL datasets because
MORvS requires accurate predictions of the target return for each preference, which is challenging
due to the abundance of suboptimal trajectories in the DSRL datasets. Additionally, BC-Finetune and
Prompt-MODT, which align behaviors without considering the constraints on constrained objectives,
exhibit insufficient policy diversity and constraint violations in most environments.

5.3 Evaluation for Constrained MORL Tasks

The results on CMO datasets are shown in Figure 5. The CMO tasks involve more objectives
than previous MORL and safe RL tasks, posing a challenge in identifying and aligning behaviors.
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Figure 5: The maximum cost, the average utility and Hypervolume over all targets with a specific
safety threshold.

This is because behaviors with various preferences increase exponentially as the number of objec-
tives increases. We can observe that in most environments, the performance of BC-Finetune and
Prompt-MODT shows low Hypervolume and a weak correlation with the safety threshold, indicating
that they cannot align with the desired behaviors and exhibit high policy diversity. Nevertheless,
PDOA [MODF] approaches the oracle performance with high average utility, Hypervolume, and few
constraint violations, which is consistent with the results presented in Sections 5.1 and 5.2.

5.4 Ablation Study
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Figure 6: The performance across different demonstration sizes (abbr. DS) in Figure (a)(b) and the
performance under various conservatism parameters (abbr. CVaR) in Figure (c)(d).

In this section, we aim to figure out: 1) the impact of the quantity of demonstrations on adaptation
performance, and 2) the influence of the conservatism parameter α of Eq. (10) on safety performance.
We conduct a set of ablation experiments for PDOA [MODF] on several MORL and safe RL tasks
and present the results in Figure 6. In Figure 6 (a)(b), as the demonstration size (DS) increases, our
method achieves better average utility, Hypervolume for MORL tasks and higher reward for safe RL
tasks. Nevertheless, even with a very small number of demonstrations (DS = 16), the adapted policies
generated by our method still exhibit sufficient diversity and safety. Figure 6 (c)(d) demonstrate that
by increasing the conservatism parameters, we can further reduce constraint violations and ultimately
achieve constraint satisfaction, which validates the effectiveness of our conservatism mechanism in
enhancing safety.
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6 Conclusion

In this paper, we present an offline adaptation framework Preference Distribution Offline Adaptation
(PDOA) for constrained MORL problems where we assume no access to real target preferences
or safety thresholds and only a few demonstrations with expected behaviors are available in our
framework. For unconstrained MORL scenarios, we propose to 1) employ MORL methods to train a
set of preference-varying policies, and then 2) align the preferences of adapted policies with expected
behaviors. Furthermore, we expand our framework to accommodate constraints on specific objectives
by transforming constrained problems into unconstrained counterparts. Additionally, we introduce a
conservatism mechanism for preference estimation on constrained objectives to mitigate potential
constraint violations. Empirical results on MORL and safe RL tasks illustrate the capability of our
framework in generating diverse policies aligning with expected behaviors and approach constraint
satisfaction through conservative preference estimation.

Limitation The PDOA framework involves multiple steps of preference sampling and gradient
updates, which can lead to additional computational burden and latency during deployment. Besides,
although the manual design of preferences and safety thresholds is not necessary, the process of
constructing demonstrations may still involve human expertise.
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A Appendix / supplemental material

A.1 Connections and Differences to Other Fields

Multi-task RL While the constrained MORL setting we focus on can align with the multi-task
framework by treating policy learning under various preferences or thresholds as distinct tasks,
several key differences distinguish our study from previous multi-task RL settings: (1) One primary
motivation of our work is to circumvent the handcrafted design of target preferences, whereas
previous studies [Mitchell et al., 2021, Xu et al., 2022a] on multi-task RL mainly focus on policy
generalization to new tasks. (2) We achieve offline adaptation by updating the target preference
distribution rather than the policies themselves, which distinguishes our framework from offline
meta-RL methods. This adaptation pipeline not only avoids potential performance degradation due to
policy parameter shifts but also allows us to incorporate conservatism to mitigate constraint violations.
(3) Accurately identifying various preferences and constraints implied in demonstrations during
adaptation is challenging as these demonstrations could come from the same dynamics and policies
with similar preferences.

Multi-constraint RL Existing research on multi-constraint RL typically explores the correlation
between multiple constraints from gradient perspectives [Yao et al., 2024b, Kim et al., 2024]. Some
works [Guan et al., 2024b] attempt to meet different types of constraints simultaneously. In contrast,
our approach, from the policy diversity perspective, aims to find appropriate policies for various safety
requirements and thus places less focus on constraint correlation for a specific threshold. Nevertheless,
previous studies on multiple constraint RL will provide important insights into managing potential
correlations between multiple objectives during preference-conditioned policy learning, thereby
improving overall performance.

Inverse RL Existing IRL methods [Arora and Doshi, 2021] typically assume no knowledge about
the reward function and focus on learning reward functions from mere demonstrations through
apprenticeship learning, maximum entropy optimization or adversarial learning. Some of these
methods have been applied in MORL [Takayama and Arai, 2022] or safe RL [Malik et al., 2021].
In contrast to these studies, our work assumes knowledge of the reward information on different
objectives and pays more attention to identifying the preferences of demonstrations during deployment
than learning a specific decisive reward during training.

Bayesian RL Bayesian RL [Ghavamzadeh et al., 2015] is widely used for promoting online
exploration and dealing with uncertainty in model-based RL or offline RL, while it serves as a
cornerstone of our theoretical derivation, allowing us to incorporate prior preference information
from datasets and infer the expected preferences by estimating the preference posterior based on a
few demonstrations. Ghosh’s work [Ghosh et al., 2022] is the most related Bayesian RL study that
inspires our approach. Nevertheless, it aims to reduce the dynamics uncertainty caused by limited
offline samples, while our approach focuses on utilizing Bayesian inference to solve the uncertainty
of the target preference distribution based on a few demonstrations.

Offline Imitation Learning Each adaptation can be viewed as the imitation of a expert policy
with a certain preference. Therefore, offline Imitation Learning (IL) is a potential approach to
solving the problem by applying an off-the-shelf offline IL algorithm [Xu et al., 2022b, Kim et al.,
2022], which enables the combination of sub-optimal trajectories in the offline dataset with expert
demonstrations provided by users to imitate expert behaviors. However, applying offline IL to our
problem presents several challenges. We conduct comparative experiments in Appendix A.8 to further
compare algorithms and illustrate these challenges.

A.2 Environments and Datasets Details

Environments and Datasets for Multi-objective RL We utilize the D4MORL dataset [Zhu
et al., 2023] collected from multi-objective MuJoCo environments by a set of preference-varying
policies [Xu et al., 2020]. We consider 5 MuJoCo tasks including HalfCheetah, Ant, Hopper,
Walker2d, and Swimmer. Among them, the HalfCheetah, Walker2d, and Swimmer tasks involve
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conflicting objectives of running speed and energy saving. The Ant task includes two speed objectives
in both the x and y axes, while the Hopper considers running and jumping objectives. For each task,
we test algorithms on two types of datasets: Expert and Amateur, which are collected by pure expert
policies and noise-injected expert policies, respectively.

Environments and Datasets for Safe RL We utilize the datasets in DSRL benchmark [Liu et al.,
2023b] that are collected by a set of behavior policies trained under various safe thresholds. We select
8 BulletSafetyGym tasks [Gronauer, 2022] for safe RL experiments, which involve 4 agents (Ball,
Car, Drone, Ant) and 2 task goals (Run, Circle). In these tasks, the goal of the reward function is to
navigate to target positions or complete circuits as quickly as possible, while the costs are incurred
when the agent enters risky areas.

Environments and Datasets for Constrained Multi-objective RL We develop a set of CMORL
tasks, namely CMO-Hopper, CMO-HalfCheetah, CMO-Ant and CMO-Swimmer. These tasks are
constructed based on the multi-objective MuJoCo environments [Xu et al., 2020] and augmented
by an additional constraint on robotics’ velocity, which is consistent with the constraint setting
of Safety Gymnasium tasks in the DSRL benchmark. When the agent’s moving velocity exceeds
a specific value, it will receive 1 cost. To gather datasets for these tasks, we create a behavioral
preference set and utilize TRPO+Lagrangian [Liu et al., 2023b] to train individual policies with the
goal of maximizing utility under each preference in this set while accounting for a specified velocity
constraint. The safety threshold of the velocity constraint is adjusted throughout the training process
to encompass a range of potential safety thresholds. The details for each CMO task are shown in
Table 1. The replay buffers collected during the training of these policies constitute the CMO datasets.
We present Pareto fronts of CMO datasets under different cost return intervals in Figure 7, illustrating
that CMO datasets encompass a wide range of behaviors catering for various preferences and safety
thresholds.

Table 1: Details of each CMO task.

Details CMO-Ant CMO-Hopper CMO-HalfCheetah CMO-Swimmer

behavioral preference Set [0.5, 0.5], [0.6, 0.4], [0.7, 0.3], [0.8, 0.2], [0.9, 0.1], [1.0, 0.0]

Cost function Moving Velocity (cost=1 if the velocity exceeds a specific value)

Threshold Range [10, 250] [10, 200]

Objectives
Speed on

X-axis and
Y-axis

Moving speed
and jumping

height

Moving speed
and energy

consumption

A.3 Construction of Training Set and Demonstration Set

(1) For MORL experiments in Section 5.1, each target preference ωg is associated with a demon-
stration set Bωg , which contains M transitions2 randomly sampled from K trajectories in D4MORL
Expert datasets with behavioral preferences closest to the target preference ωg. (2) For safe RL
experiments in Section 5.2, each target safety threshold βg is associated with a demonstration set
Bβg

, which contains M transitions randomly sampled from K trajectories in DSRL datasets with
the highest utility among all safe trajectories (i.e., these trajectories’ cumulative cost return is less
than β). (3) For CMORL experiments in Section 5.3, each combination of target preference ωg and
safety threshold βg is associated with a demonstration set Bωg,βg

, which consists of M transitions
randomly sampled from K trajectories in CMO datasets that (i) have highest utility among all safe
trajectories and (ii) originate from the replay buffer of the behavior policy with preference ωg. The
unselected trajectories in datasets constitute the training set. In our experiments, M = 128 and
K = 2 by default.

2For Prompt-MODT, which required trajectory segments as prompts during adaptation, we sample a trajectory
segment with length=M to constitute the demonstration set.
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Figure 7: The reward vector distribution of CMO datasets under various safety thresholds.

A.4 Evaluation Metrics

We denote R(πG) as the estimated return vector of the policy πG adapted for target G in the target
set T .

Average Utility For unconstrained scenarios, G = ωg and average utility is calculated by:

U =
1

|T |
∑

ωg∈T
ωT

gR(πωg
). (11)

For constrained scenarios, G = (ωg,β). We denote Tβg
= {ωg|(ωg,βg) ∈ T } as subset of T that

groups all target preference ωg by safety threshold βg . The average utility is a function of βg:

U(βg) =
1

|Tβg |
∑

ωg∈Tβg

ωT
gR(πωg,βg ). (12)

This metric reflects the overall performance of the adapted policies across all target preferences.

Hypervolume We first consider the unconstrained settings and introduce the adapted Pareto set P
that contains all adapted policies that are not dominated by any other adapted policy. Hypervolume
measures the volume enclosed by the returns of policies in the adapted Pareto set P :

HV =

∫
Rn

1H(P,r0)(z)dz, (13)

where H(P, r0) = {z ∈ Rn|∃π ∈ P : r0 ⪯ z ⪯ R(π)} and 1H(P,r0) equals 1 if z ∈ H(P ) and 0
otherwise. For constrained scenarios, we group all target preferences by safety threshold and report
Hypervolume on each group. The Hypervolume reflects not only the overall performance across all
target preferences but also the diversity of the policies, as a high diversity of policies corresponds to a
broad Pareto front and consequently a high Hypervolume.

Sparsity, which measures the density of policies in the approximated Pareto set, is also commonly
used for evaluating MORL performance. A lower sparsity indicates a denser Pareto front, which
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Algorithm 1 Preference Distribution Offline Adaptation

1: ### Training Phase
2: Input: Offline dataset D
3: Train policy-conditioned policy π̂∗

ω(a|s,ω) or value Q(s, a,ω) using MODF or PEDA
4: Approximate the prior preference distribution P (ω|D)
5:
6: ### Adaptation Phase
7: Input: Demonstration set B, and conservatism parameter α
8: Initialize N (µ,σI) based on P (ω|D)
9: for each interaction do

10: Sample preference ω from N (µ,σI)
11: Update µ,σ through gradient descent (Eq. (7))
12: end for
13: if no constraint then
14: ω̃a=µ/|µ|
15: else
16: Compute b based on Eq. (10)
17: ω̃a=b/|b|
18: end if
19: Output: Policy π̂∗

ω(·|·, ω̃a) for decision making

is generally more desirable. However, the sparsity metric is not applicable in our setting. This is
because, given that the number of adapted policies is fixed, an increase in utility and Hypervolume
performance can result in a worse sparsity metric. Moreover, better sparsity metrics encourage a
lower diversity of adapted policies, which diverges from our intended goal.

A.5 Implementation Details

The pseudocode for the training and adaptation process is provided in Algorithm 1.

Behavioral Preference Approximation Scheme in Constrained Settings In constrained settings,
the vector reward is defined as r̃ = [rt,−ct] and dataset D is augmented to D̂. For behavioral
preferences in D̃, we utilize ω̃ = U(τ)/∥U(τ)∥1 as behavioral preferences for all transitions in
trajectory τ . Here, U(τ) = [R1, ...,RN ,Cmax

1 −C1, ...,C
max
K −CK ], where Ri and Ci represent

the accumulations of the ith reward and cost of τ , respectively, and Cmax
i is the maximum of Ci

among all trajectories. The formulation of ω̃ aims to approximate the normal vector of the Pareto
front that consists of (R1, ...,RN ,−C1, ...,−CK).

Preference Distribution Offline Adaptation (PDOA) We utilize the policy and value function
obtained by MODF and PEDA to calculate the TD reward and action likelihood reward in Eq. (7). For
MODF, except the state-action value function Q(s, a,ω) = Q1(s, a,ω), ..., QN (s, a,ω) obtained
during training, we additionally train a state value function V (s,ω) = Eπ(a|s,ω)[Q(s, a,ω)] to
derive TD reward. As for the action likelihood reward, the action likelihood of the diffusion policy
model is intractable but can be approximated as log π̂∗

ω(a|s,ω) ≈ Ei∼U,ϵ∼N (0,I)∥a− â0∥22 [Kang
et al., 2024], where â0 is reconstruction of ai and ai is obtained by corrupting a with noise ϵ. For
PEDA, which does not involve value functions, we disregard the TD reward when calculating the
adaptation loss. The prior preference distribution P (ω|D) in Eq. (7) is approximated with a Gaussian
distribution N (µD,σD), where the expectation µD and standard deviation σD are estimated on
behavioral preferences of the training dataset D. The weight η of the regularization term (∥µ∥1 − 1)2

in Eq. (7) is set to 1.0.

During adaptation, we model the preference distribution using a Gaussian model and perform gradient
updates on this distribution according to Eq. (7). For each target, the number of gradient updates is
set to 1000, with 64 preferences sampled from the distribution for each gradient update. All samples
in the demonstration set are used for gradient updates within one batch. We use the Adam optimizer
with a learning rate of 0.05. The conservatism weight α in Eq. (10) is set to 1.0 for MORL tasks
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and 0.7 for safe RL and CMORL tasks. The weight of the TD reward in Eq. (6) is set to 0.01 for
PDOA [MODF].

MORL and Safe RL Algorithms For MODF, we use the original implementation in https:
//github.com/qianlin04/PRMORL. We remove the Regularization Weight Adaptation component
in the original MODF since it requires additional online interactions during evaluation. We follow
the default hyperparameters except for the regularization weight, which is set to 200 for MORL
and CMORL tasks and 20 for safe RL tasks. For PEDA, we use the original implementation in
https://github.com/baitingzbt/PEDA. PEDA utilizes a linear regression model to predict
target vector returns given target preferences. For D4MORL datasets, it fits this model using Expert
datasets. In DSRL and CMO datasets, which contain suboptimal samples, we construct a Pareto
set that consists of all near-undominated trajectories with a small tolerance (5%) and use it to fit
the linear regression model. For Prompt-MODT, we implement it based on the MODT algorithm
in PEDA by incorporating prompts into the decision transformer. The target vectors predicted
by the above linear regression model are used as the initialized return-to-go for Prompt-MODT.
Besides, to apply Prompt-MODT, we need to transform the multi-objective problem into a multi-task
problem, for which we divide trajectories with different behavioral preferences into separate tasks
with a preference interval of 0.05. For example, trajectories with behavior preferences ranging from
[0.00, 1.00] to [0.05, 0.95] are classified as task 1, and trajectories with behavior preferences ranging
from [0.05, 0.95] to [0.10, 0.90] are classified as task 2. For BC-Finetune, we model the policy using
a Gaussian model and employ behavioral cloning through MSE loss. During adaptation, behavior
cloning is performed on the demonstration set with 0.01 learning rate and 1000 gradient update steps.

Computer Resources The training and testing were conducted on 1 NVIDIA GeForce RTX
3090 GPU. The testing utilizes 5 CPU threads to simultaneously collect test data from multiple
environments. The total time for training and testing does not exceed 10 hours. The memory usage
for a single run depends on the size of the dataset used, but generally does not exceed 10 GB.

A.6 Additional Results

A.6.1 Experimental Results on D4MORL Expert Datasets for MORL
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Figure 8: Average utility and Hypervolume performance of all algorithms on D4MORL Expert
datasets.
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Figure 9: Pareto fronts of different algorithms on D4MORL Expert datasets. Each point represents
the expected vector return of an adapted policy for a specific unknown target preference.

We present the average utility and Hypervolume performance, Pareto fronts, and the difference
between real target preferences and adapted preferences on the D4MORL Expert datasets in Figure 8,
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Figure 10: The comparison between real target preferences and adapted preferences on D4MORL
Expert datasets.

9, and 10, respectively. In Figure 8, our method demonstrates overall competitive performance in
terms of average utility and Hypervolume metrics. Figure 9 illustrates that our method achieves a
broader Pareto front, indicating a high diversity of adapted policies. Figure 10 shows that our method
can obtain expected behaviors due to the consistency between our adapted preferences and real target
preferences. These results are consistent with those obtained on the Amateur Datasets in Section 5.1,
which demonstrates that our framework achieves consistent advantages across datasets of varying
quality.

A.7 Experimental Results on Additional DSRL Tasks for Safe RL

Figures 11 and 12 show the performance of MODF and MORvS under various target preferences,
which demonstrate the capability of these MORL algorithms in obtaining policies that satisfy different
safety thresholds. Figure 13 illustrates the normalized cost and reward for additional DSRL tasks,
including CarCircle, DroneCircle, CarRun, and DroneRun. The results are consistent with those
in Section 5.2, demonstrating that MORL methods can effectively learn a set of policies that meet
various safety thresholds, and that PDOA [MODF] can achieve very few constraint violations.
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Figure 11: The normalized cost and normalized reward of policies with various preferences obtained
by our framework.
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Figure 12: The normalized cost and normalized reward of policies with various preferences obtained
by our framework on additional tasks.

A.8 Comparison with Offline Imitation Learning Baseline

Applying offline IL to our problem faces several challenges: 1) Offline IL requires complete policy
training for each adaptation, which is resource-intensive and time-consuming. 2) Our experiments
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Figure 13: The adapted policies’ normalized cost and normalized reward of all algorithms under
various safety thresholds on additional tasks.

involve a limited number of demonstrations (128 transitions per target preference) compared to the
millions of samples in the offline dataset, leading to significant demo sufficiency and data imbalance.

We apply an OIL baseline DWBC [Xu et al., 2022b] in our MORL and safe RL experiments and
present the results in Figure 14 and 15, where we limit the number of tested preferences to 10 in
the D4MORL tasks because the original evaluation involves dozens of target preferences per task,
and training a policy for each target preference using DWBC would be too time-consuming. In both
MORL and safe RL environments, DWBC demonstrates unstable performance. It is competitive in
tasks such as MO-Ant, MO-Swimmer, but performs poorly in other tasks, including MO-Walker2d.
It even struggles to learn effective policies in some cases, such as MO-Hopper and AntCircle. These
issues can be attributed to demo sufficiency and data imbalance. Additionally, DWBC experiences
high constraint violations in most safe RL tasks, as it does not incorporate safety considerations into
its policy learning.
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Figure 14: Comparative results with offline IL baseline on MORL tasks.
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Figure 15: Comparative results with offline IL baseline on safe tasks.
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Figure 16: The relationship between TD reward, action likelihood reward, and preference. Pref1
represents the first dimension of preference.

A.9 Relationship between TD Reward, Action Likelihood Reward and Preference

For each target preference, we traverse all possible adapted preferences with a small interval and
compute the corresponding TD reward and action likelihood reward. The results are presented in
Figure 16, where we observe that the adapted preferences corresponding to the highest TD reward
and action likelihood reward align with the target preferences. Additionally, as constraints are relaxed,
the preference weights allocated to the constrained targets decrease. This demonstrates that the
TD reward and action likelihood reward in our algorithm are strongly consistent with the target
preferences and safety thresholds.

A.10 Licenses

• D4MORL dataset and PEDA code [Zhu et al., 2023]: The MIT License, https://github.
com/baitingzbt/PEDA

• Datasets and codes of DSRL, OSRL and FSRL [Liu et al., 2023b]: All datasets are li-
censed under the Creative Commons Attribution 4.0 License (CC BY 4.0), and code
is licensed under the Apache 2.0 License. https://github.com/liuzuxin/DSRL,
https://github.com/liuzuxin/OSRL, https://github.com/liuzuxin/FSRL

• MuJoCo: Apache 2.0 License, https://github.com/google-deepmind/mujoco
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A.11 Broader Impacts

Our research introduces a novel framework for addressing constrained multi-objective reinforcement
learning (CMORL), which is widely applicable to many real-world scenarios, such as autonomous
driving, healthcare, where behavioral preferences and safety criteria are difficult to define precisely.
These approaches liberate researchers from the labor required to align preferences and safety thresh-
olds. Besides, the offline training paradigm eliminates the expenses and dangers associated with
online exploration. For instance, in autonomous driving, online interactions with the environment
have the risk of accidents and injuries; however, our method can mitigate this risk by learning from a
pre-recorded driving dataset generated by safe and target behavior policies.

Nonetheless, our method may not be suitable for domains requiring rapid responses and frequent
updates due to the additional computational load and latency caused by gradient updates during
adaptation. Besides, providing personalized services with this framework necessitates a certain
amount of user data as demonstrations, raising concerns about privacy breaches and data misuse.
Despite the risks and challenges mentioned, we believe that CMORL holds great promise for
automating and enhancing sequential decision-making in highly impactful domains. Additional work
is required to make this framework robust enough for application in multi-objective and safety-critical
scenarios.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

temp

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: The paper discusses the limitations of the work, which can be found in
Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The derivation of the formula is clearly presented in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

23



Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper. Details of our framework and implementation can be
found in Section 4, 5 and Appendix A.2, A.3, A.4, A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Codes and instructions are provided in supplemental material to generate the
dataset used and reproduce the main results in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and testing details necessary to understand the results can be
found in Section 5 and Appendix A.2, A.3, A.4 and A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars suitably.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: We present the information of compute resources used in this paper in Ap-
pendix A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed, which can be found in Section A.11.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We present the license and URL of assets used in this paper in Appendix A.10.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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