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ABSTRACT

Variational Autoencoders (VAEs) with global priors mirror the training set’s class
frequency in latent space, underrepresenting tail classes and reducing generative
fairness on imbalanced datasets. While *VAE improves robustness via heavy-
tailed Student’s t-distribution priors, it still allocates latent volume proportion-
ally to the class frequency. In this work, we address this issue by explicitly en-
forcing equitable latent space allocation across classes. To this end, we propose
Conditional-t3VAE, which defines a per-class Student’s t joint prior over latent
and output variables, preventing dominance by majority classes. Our model is
optimized using a closed-form objective derived from the y-power divergence.
Moreover, for class-balanced generation, we derive an equal-weight latent mix-
ture of Student’s t-distributions. On SVHN-LT, CIFAR100-LT, and CelebA,
Conditional-t3VAE consistently achieves lower FID scores than both t3VAE and
Gaussian-based VAE baselines, particularly under severe class imbalance. In per-
class F1 evaluations, Conditional-t>VAE also outperforms the conditional Gaus-
sian VAE across all highly imbalanced settings. While Gaussian-based models
remain competitive under mild imbalance ratio (p < 5), our approach substan-
tially improves generative fairness and diversity in more extreme regimes.

1 INTRODUCTION

Class imbalance and long-tail distributions are prevalent in real-world datasets, yet generative mod-
els often fail to represent rare classes accurately. When trained on skewed data, these models tend
to overfit dominant modes and underrepresent minority ones in latent and output spaces, resulting in
biased or unfair generations. This issue is especially critical in sensitive applications such as facial
synthesis (Mehta et al., [2024) and medical imaging (Pinaya et al., 2022), where such biases can
exacerbate social and diagnostic disparities (Naik & Nushi, 2023).

Variational Autoencoders (VAEs) (Kingma & Welling, [2013)) are a widely used class of generative
models, valued for their probabilistic formulation, stable training, and compatibility with latent-
variable modeling frameworks leading in image quality such as Latent Diffusion Models (LDMs)
(Rombach et al.| 2022). Although GANs and diffusion models often achieve lower FID scores,
VAE:s offer unique advantages in class-conditional generation, interpretability, and efficient infer-
ence, making them strong candidates for improving fairness under class imbalance. Standard VAEs
commonly use isotropic Gaussian priors, which inadequately model heavy-tailed structures and rare
phenomena (Tam & Dunson, 2025)). Prior efforts to address this have introduced non-Gaussian pri-
ors, particularly Student’s t-distributions (Takahashi et al.| [2018; [Abiri & Ohlsson 2020} Eguchi,
20215 [Kim et al., 2024)), to enhance robustness. However, these approaches often rely on global
priors, causing the latent space to be dominated by majority classes under skewed distributions.

We address this issue with Conditional-t3VAE (C-t>*VAE), a conditional generative model that im-
poses a per-class Student’s t-distribution prior over the joint latent-output space. This design ensures
allocating an equal latent space volume per class, thereby mitigating majority class dominance,
while the heavy tails of the Student’s t-distribution more effectively capture intra-class variation. To
enable class-balanced sampling, we introduce an equal-weight mixture of Student’s t-distributions
with analytically derived component variances. Together, these components enable balanced class-
conditional generation and mitigate bias present in unconditional models. We summarize our main
theoretical and empirical contributions in the following points :



Under review as a conference paper at ICLR 2026

» We propose the C-t3VAE model with a training objective based on the y-power divergence.

* We develop an equal-weight latent mixture sampling scheme with analytically derived op-
timal variance scaling for each component.

* We outperform relevant baselines in FID on SVHN-LT (Netzer et al.,[2011), CIFAR100-LT
(Cao et al.L|2019), and CelebA (Liu et al.,[2015) under severe imbalance, and show via per-
class evaluation that C-t3VAE better avoids mode collapse, exceeding a conditional VAE
in per class Recall and F1 while remaining competitive on Precision.

* We identify the imbalance ratio threshold p ~ 5, beyond which Gaussian priors become
suboptimal, providing guidance for model selection on skewed datasets.

2 RELATED WORK

Since the introduction of VAEs (Kingma & Welling| 2013), many extensions have sought to im-
prove latent representation by replacing the standard Gaussian prior with more expressive alterna-
tives. These include Gaussian mixtures (Saseendran et al.,|202 1} [Dilokthanakul et al., [2016])), hyper-
spherical priors (Davidson et al 2018)), normalizing flows (Jaini et al.| [2020), Riemannian priors
(Chadebec et al.l |2023), and implicit distributions (Takahashi et al., [2019). While most retain the
ELBO formulation, others adopt alternative objectives or divergence measures for added flexibility.

To address long-tailed or imbalanced data, Student’s t-distributions have been explored for their ro-
bustness and heavy tails (Tam & Dunson,|2025). Methods such as (Takahashi et al.,2018)) and (Abir1
& Ohlsson, 2020) model the latent space of the autoencoder through a t-distributed prior, and rely
on KL-divergence-based ELBO objectives. However, since the KL divergence lacks a closed-form
solution for the Student’s t-distributions, these methods resort to numerical approximation. The
t3VAE (Kim et al.,[2024) improves on this by modeling the joint latent-output distribution and opti-
mizing a closed-form ~y-divergence objective (Eguchil 2021)). Nonetheless, it still employs a global
latent prior, which results in a latent space volume allocation reflecting class frequency and leading
to imbalance present in the generated samples.

Other works address fairness in generative modeling using normalizing flows (Jaini et al.|[2020) and
diffusion models (Qin et al., 2023} |Pandey et al., [2025). However, since leading image generation
models are based on Latent Diffusion Models (Rombach et al.| [2022) and VAEs are a corner-stone
in the design of these models, we deem it crucial to improve VAEs’ ability to handle imbalanced
data. Consequently, as fairness in latent space allocation remains under-explored in VAEs, we intro-
duce a class-conditional, heavy-tailed prior to address this gap and allow for balanced latent space
allocation across classes.

3 BACKGROUND

This section introduces the theoretical background and baseline models relevant to our work. We

assume access to a labeled, imbalanced dataset D = {(z;,y;)}\.,, where z; € R" is a data sample
of dimension n, y; € {1,..., K} its class label and m the latent space dimension.

3.1 VAES AND CONDITIONAL-VAES

VAEs (Kingma & Welling) 2013) are generative models trained via variational inference by max-
imizing the Evidence Lower Bound (ELBO) of the log-likelihood. The standard objective of this
model is

Loy :=Eong,(|ollogpe(z|2)] — Drr(gs(z]2)llp(2)), ()
where the first term is the reconstruction loss with py(x|z) being the decoder model. The second
term is the Kullback-Leibler (KL) divergence between the approximate posterior g,(z|z) and the
prior p(z). The 8-VAE is a weighted variant of the VAE model which introduces a 3 scaling term
for the KL divergence (Higgins et al., 2017):

Ly =E.q,(|oyllogpe(z|2)] — BDKL(qs(2|2)[p(2)), 2

with p(2) ~ N (0, 1), g (-2) ~ Nin(1g(2), Sg()), and pg(z|2) ~ N (pe(2), 0°I). pg(-) and
Y4 (+) are the mean and the covariance matrices inferred through a neural network with parameter ¢
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given the input z. Moreover, pg(-) is the decoder neural network with parameter 6 and o is a
parameter controlling the decoder’s output covariance. This variant of the VAE model allows to
place more weight on disentangling the latent space or on the reconstruction of the data points. To
generate samples from the VAE or the 3-VAE model, we sample a latent vector 2 ~ N, (0, 7).
Then, the generated data point would be & ~ N, (g (2), 021).

Nevertheless, since Eq. and Eq. (2) optimize the ELBO over the data distribution pgate (),
which can be decomposed as paata(®) = >_, P(¥i) Pdata(® | ¥:), this optimization inherently
biases the model toward head classes with larger p(y;). As a result, most generated samples come
from overrepresented classes, while tail classes’ samples are underrepresented and of lower quality,
a phenomenon commonly referred to as mode collapse. Therefore, when labels are available, it is
preferable to define class-conditional posterior and prior distributions: ¢4(z|x,y) and p(z|y). This
yields the Conditional-VAE (CVAE) model trained using the objective (Kingma et al., 2014):

Z E. gy (e logpo(z]2,y)] — BDK (s (2|7, y)lIp(2]y))- 3)
Y

Here, in Eq. (3)) we constrain all p(y;) to be equal and omit them from the loss function in order not
to exacerbate the issue of class imbalance in the latent space. Also, we define p(z|y) ~ Ny, (11y, I)
with learnable class-wise means . To generate a data point &, from class y, we sample z, ~
N (py, I), then we get &, ~ pg(x|zy,y). Nevertheless, despite conditioning, this formulation
remains Gaussian. Unlike Student’s t-distributions, Gaussian priors poorly approximate heavy-tailed
data distributions (Tam & Dunson, 2025)).

3.2 MULTIVARIATE STUDENT’S T-DISTRIBUTION AND v-POWER DIVERGENCE

A d-dimensional Student’s t-distribution with mean p € R, covariance ¥ € R4*9, and degrees of
freedom v > 2 is a heavy-tail, super-Gaussian distribution defined as

Ty =1/, - v+d
(IE p’) )y (l’ lu’)> , Cl/,d — r ( 2 ) <. (4)
v I (%) (vm)?

The power form of this distribution prevents a closed-form KL divergence between two Student’s
t-distributions. Instead, the y-power divergence D.,(¢||p) is used (Eguchil 2021} Kim et al., [2024).
This divergence is defined for ¢ ~ t4(po; Xo;v), p ~ ta(p1;31;v) starting from the ~y-entropy
. (p) and cross-entropy C- (g, p)

%mwz—mer(/mmeﬂﬁﬂ Q@m:—/«w(ﬁﬁjnm

Dy(allp) :== 77" (Cy(a.p) — Ho(p)) )
with v = fl%rd. Then, substituting the definition of a Student’s t-distribution from Eq. into
Eq. (@), the following closed-form formula for the y-power divergence can be derived (See Ap-

pendix [A):

e
Co d \ T - d
Dyalp) = -2 (14 5 ) T [l (1)

Tr (27 %) 4 (o — p1) 27" (o — Ml))] C®)

ta(z) = Cpq4lS|"2 <1 +

B 2
+EHQEWW“G+
v—2 v

3.3 {3-VARIATIONAL AUTOENCODER

3.3.1 DEFINITION

The t3VAE model (Kim et al.,[2024) is a non-ELBO-based autoencoder which models the joint prior
distribution py(x, z) using multivariate Student’s t-distributions

R [1 + (||z||2 + Hﬂc—gg(zw)] _

v+m+4n
2
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From this joint distribution, the marginal latent prior p(z) and decoder distribution pg(x|z) can be
defined. Furthermore, the posterior distribution is defined as :

dot212) = t (o). T2 )

"14+vin
Hence, the data-latent joint distribution would be ¢4(x, 2) = Daa(T)qs(2|x). As a result, relying
on the ~-divergence in Eq. (6) applied to the py(z, z) and gy (x, z) distributions, the following loss
function is derived to optimize the t3VAE’s parameters :

E- [z — (=) [?] vTr(So(@)  vCy e
L, =E, Nl Sl A VA Y |, (7
; . Fllap(@)| + 7T = B R@) T | @)
with y = —~ +f 7 and C1 and C, being theoretically derived constants. We note that the first term

in this loss function represents the standard reconstruction term in VAE models and the rest of the
terms are regularization terms over the latent space. To sample from the latent space of the t3VAE,
Kim et al.[(2024) propose the p%(z) = t,,(0, 721, v + n) distribution with

1 9\ T2
72 (C,,)n N 2) . ¥

:1+1/*1n o v+n-—

Moreover, sampling from a multi-variate Student’s t-distribution 7" ~ ¢4(u, 3, ) both in the learn-
ing (Eq. (7)) and sampling (Eq. (8)) phases is performed through the standard reparameteration trick

for Student’s t-distributions 7" := p + Zv vV =1 where Z ~ N(0,%) and V ~ X2 (v).

3.3.2 B-t3VAE

From Eq. we can also define a 3-t3VAE model by multiplying all the regularization terms by a
[ factor. Similarly to 8-VAE models, this improves the versatility of the model and allows either a
focus on generation or disentangling.

3.3.3 72 IMPROVEMENT

Closely analyzing the proposed derivation of 72 of the t>VAE model, we discovered a subtle issue
in its mathematical formulation. The employed ~-power divergence presents a discrepancy to the
correct formula in Eq. @) We revised the formulation and the corrected 72 is (See Appendix @:

2y 2y

1 c, —_9 \ TFeEm 1 c,, _9 \Tm

T —— |Z¢($)|% n VT2 ~ n Y .
14+v-1n o v4+n—2 1+v-In\ o v4+n—-2

&)

The corrected exact form of 72 is applicable when |X4(x)| is known and when the dimension of
the data is low. However, for high dimensional data, as handled in this work, we get v ~ 0. Hence,
one can use the approximation without any loss in accuracy. We note that the new form of 72 leads
to a similar empirical value of standard deviation compared to the previous form. Nevertheless, for
correctness, in our sampling from the latent space of the *VAE model we use the approximation in

Eq. ().
In summary, although the t3VAE effectively models heavy-tailed distributions through Student’s
t-distributions and y-power divergence, it does not explicitly address class imbalance in the latent

space by not allocating equal volume for each class. In the next section, we introduce a class-
conditional variant of the +3VAE, designed to ensure fair and balanced generation across all classes.

4 CONDITIONAL t3-VARIATIONAL AUTOENCODER

We propose the Conditional #3-Variational Autoencoder (C-t3VAE), present its formulation, train-
ing objective, and sampling strategy. C-t3>VAE models the latent space as a mixture of Student’s
t-distributions, one per class, ensuring equal latent volume allocation and promoting fairness in
generation. Intra-class imbalance is further handled by the heavy-tailed nature of the Student’s t-
distribution prior.
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4.1 MODEL DEFINITION

The C-t3VAE we propose is based on the following class conditional joint prior distribution

_ V+'r;+n
o Oy,m+n
ALY

po(x, 2|y) >

(2 = py) "S5 (2 — py) + (2 — po(2) 55 (2 — Me(z))]

with v, n and m being the degrees of freedom of the Student’s t-distribution, the dimension of the
input data and the dimension of the latent space respectively. i, € R™ is a learnable mean vector
representing class centers in latent space of dimension m. Moreover, X, and X, are the covariance
matrices of the prior distributions over the latent and output variables.

From this joint distribution, we can derive the conditional latent prior p(z|y) = t,,(2|uy, Xy, v) and
decoder distribution (See Appendix B)

(1+v7 1z - My)TEzjl(z — 1iy))
(I1+v=tm)

po(zl2,y) =ty (fv po(2),

Zw,u—i—m).

Furthermore, as in t3VAE, we define the posterior g, (z|z) as a multivariate Student’s t-distribution
capturing heavy-tailed structure in the latent space :

q¢(z|x) =1tm (Z

Y ()
u¢(x), m, v+ n) .

4.2 OBIJECTIVE FUNCTION

Harnessing Eq. and the defined prior and posterior distributions of the proposed C-t3VAE, we
derive in Appendix [C| the following class-wise objective

£0n) = o [E[(@ - 10(2) TE5 (0 — 10()] + (o) — 1) TEy (o) — )
v (3, '8g(2))  vCy S

1 1
am i Y =7\ 1+~
: _ Y n) 2 vi+ntm—2)\1T7 _ Cl min m+n
with Cl = (CV_;'_n,,m (1 + ;) W) and CQ = (|Z |% = ‘27;1 1+ —9 .
x y

By taking 3, = 0% and &, = I, L(,y) objective function simplifies to :

E. [llo — po(2)]?]

B e, VT (Be(x) vCy S
L(v,y) =E; g (2) — | e G |54 (2)| = | (10)

Therefore, we express the final loss function £(7) over the whole dataset as : L(7) = >_, £(7,9).

As in Eq. , here too we consider all p(y;) to be equal and hence rule out their contribution to the
loss function. This is done to avoid emphasizing the imbalance present in the data.

4.3 SAMPLING DISTRIBUTION

Similarly to the objective function of *VAE, L(, y) in Eq. can be decomposed into a recon-
struction term and regularization terms. To sample from the latent space of the C-t>VAE, we focus
on the regularization terms and define the following sampling distribution :

1

K
» = “tm ) 2-[7 ; ’ =7 11
py(2) Zay (ty, "I, v+n), Vy, oy K (11)

y=1

The theoretical derivation of the variance 72 leads to the form expressed in Eq. @I) (Derivation in
Appendix D).
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The mixture-based sampling distribution we define in Eq. (TT) with equal «,, ensures a uniformly
sampled synthetic data across all classes, regardless of their frequency in the original training data.
As a result, C-t3VAE equipped with this sampling distribution mitigates the common problem in
generative models where head-class samples dominate due to their density in latent space. Further-
more, by modifying the mixture weights v, one can prioritize specific classes. This makes our
method flexible for targeted data augmentation or fairness-aware sampling strategies.

4.3.1 pB-C-t3VAE

As with t3VAE, the class-wise objective defined in Eq. can be split into a reconstruction and
regularization terms. By preceding the regularization term with a /3 scalar, we can define a 8-C-
t>*VAE model thereby improving the domain of applicability of the model.

Overall, C-t3VAE provides a principled, flexible, and tractable framework for fair generative mod-
eling, particularly under class-imbalanced conditions. In the following, we study the C-t3VAE’s
performance across multiple datasets with varying imbalance degrees.

5 EXPERIMENTS

This section outlines the generative performance of the proposed C-t3VAE model on labeled datasets
compared to relevant VAE baselines'| We conduct experiments on three datasets notably SVHN-LT
(Netzer et al., 2011)), CIFAR100-LT (Krizhevskyl 2009; |Cao et al., 2019) and CelebA (Liu et al.,
20135)) each chosen to highlight different challenges.

5.1 EVALUATION PROCEDURE

All models are evaluated using Fréchet Inception Distance (FID) (Heusel et al., 2017, computed
against a balanced test set for each dataset. This setup measures how effectively a model overcomes
training set imbalance by assessing its ability to generate high-quality samples across all classes. To
evaluate robustness, we impose varying degrees of imbalance during training.

For SVHN-LT and CIFAR100-LT, we introduce class imbalance by applying an exponential decay
to the number of samples per class after equalizing class sizes in the original train and test sets.
The imbalance ratio p defines the ratio between the most and least frequent classes, with class-wise

sample counts M,, given by: M,, = M - p*%, where M is the original per-class sample count.

For CelebA, we compute FID per attribute, treating each attribute (eg. Mustache) and its negation
(eg. no Mustache) as separate binary classes. The training set uses CelebA’s inherent imbalance,
while the test set is balanced by downsampling to the smaller class size. Multi-attribute generation
is not considered in this work and is left for future exploration.

5.2 RESULTS

We present both quantitative and qualitative results of the C-t>VAE model and the models it directly
improves upon notably the VAE, C-VAE and t*VAE models with their 3 variants. This controlled
comparison helps isolate the contributions of key design choices:

¢ VAE : ELBO trained standard Gaussian-based VAEs.

* C-VAE : VAE supplemented by conditional Gaussian priors to assess the class conditioning
effect without changing the prior family.

 t3VAE : Student’s t-distribution latent prior and y-power divergence objective, does not use
class-conditional priors, nor allows for class conditional generation. Through a compari-
son with this model we assess the role of conditional modeling on Student’s t-distribution
priors.

"We restrict our comparisons to VAE-based generative models, as Latent Diffusion Models (Rombach et al.,
2022)), the state-of-the-art in image generation, depend on VAEs as a core component. Enhancing fairness in
VAEs under class imbalance is therefore a necessary precursor to advancing more complex models.
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In the following, we analyze the latent sampling standard deviation 7 employed in t>*VAE and
C-t3VAE models, varying it to assess alignment between empirical and theoretical values. Then,
we present FID comparisons across baselines with optimized hyper-parameters (The tuning of 3, v
and 7 hyper-parameters is reported in Appendix [F), followed by per-class generative evaluation.

5.2.1 7 PARAMETER STUDY

Figure [T]illustrates the sampling standard deviation’s 7 impact on the FID metric. We observe that
models based on the Student’s t-distribution benefit from higher standard deviation on CIFAR100-LT
compared to SVHN-LT. Specifically, C-t*VAE outperforms the C-VAE for 7 € [0.25;0.55] on
CIFARI100-LT and 7 € [0.19;0.28] on SVHN-LT and for all 7 values on the CelebA dataset. More-
over, it surpasses the t3VAE models’ FID for all 7 values and across all datasets.

— tVAE —- Best CVAE — tVAE —:- Best CVAE
300 CHVAE  --- Theoretical T CHVAE  --- Theoretical T
—-- Best VAE 300 —:- Best VAE 106

200 102 — tVAE —- Best CVAE
o e ) CHVAE  --- Theoretical T
200 —-- Best VAE

100 150 £

N\ /
N 9%

100

01 02 03 04 05 0.6 01 02 03 0.4 05 06 01 02 03 04 05 0.6
T T T

(a) SVHN-LT (b) CIFAR100-LT (c) CelebA

Figure 1: FID score as a function of 7 for the t*VAE and C-t3>VAE models. Results are for the im-
balance ratio p = 100 for the SVHN-LT and CIFAR100-LT, and for the Mustache attribute (p = 25)
in the case of the CelebA dataset. Other imbalance ratios’ results paint a similar picture and are
provided in Appendix [F3] The horizontal dashed lines is the FID value of the best performing VAE
and C-VAE on each dataset and the vertical dashed line is the value of 7 as derived in Eq. (9). We
note that the used models in these figures have optimized 8 and v hyper-parameters.

For both Student’s t-distribution based models, the optimal FID score for the SVHN-LT occurs
near the theoretically derived 7 value. However, for the more complex CIFAR100-LT dataset, the
optimal 7 is higher than the theoretical value 7 = 0.4. We hypothesize that the higher variance
reflects the model’s need during training to accommodate the greater complexity and entropy of the
dataset, which makes it harder to align the learned posterior with the prior and to produce confident
reconstructions. For the CelebA dataset, the standard deviation parameter 7 has minimal to no
impact on model performance likely due to the lower variability in the dataset’s images as they all
represent faces.

5.2.2 OPTIMIZED MODEL RESULTS DISCUSSION

VAE I FVAE

After optimizing the hyperparameters of the
various models tested in this work, we present
their generation FID scores in Table[I] We pro-
vide results for 8 models after optimization and
non 3 models (5 = 1) to underscore the impor-

| EE
tance of this parameter on the resulting perfor-

mance as it was not explored in the ¢>*VAE work Figure 2: Sample synthetic images from the op-

timized VAE and t>*VAE models trained on the
(Kim et al| 2024). CelebA dataset. No class conditioning is possi-

From Table [I, t3VAE consistently improves ble for these models.

over the VAE model. This underlines the gen-

erative advantage of the Student’s t-distribution prior over a Gaussian one, in addition to the recon-
struction advantage highlighted by (2024). Moreover, optimizing the 3 hyper-parameter
improves t>VAE’s FID over the VAE on the CIFAR100-LT and CelebA, while remaining competi-
tive on SVHN-LT. Also, qualitative results of Figure [2|show that the #3VAE model compared to the
VAE model produces significantly sharper synthetic images on the CelebA dataset.
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Table 1: Generation FID results on the SVHN-LT, CIFAR100-LT and CelebA datasets. For the
SVHN-LT and CIFAR100-LT datasets we use different imbalance ratios p € {100, 50, 10, 1}. How-
ever, for the CelebA dataset we use the Mustache, Young, Male and Smiling attributes which have
imbalance ratios of 25, 3.5, 1.4 and 1 respectively. The 8 models undertook an optimization of the
[ hyper-parameter while non-5 models have § = 1. All models have optimized v and 7 hyper-
parameters. The attributes for the CelebA dataset column indicate which attribute is used to condi-
tion the conditional models and balance the test set.

SVHN-LT CIFAR100-LT CelebA
Models p =100 50 10 1 H p =100 50 10 1 H Mustache Young Male  Smiling
VAE 9389 9191 91.66 92.16 || 163.66 16291 16547 166.46 110.58 92.01 110.58  82.05
B-VAE 47.11  49.81 4570 4348 || 122.62 123.07 12372 12443 104.63 92.87 87.96  83.15
C-VAE 7475 7040 7230 74.16 || 15790 163.67 162.09 163.24 96.98 89.17 86.17  78.35
B-C-VAE 4839 4639 4397 43.87 || 114.88 118.89 114.89 118.21 98.35 85.53 79.76  78.46

B-t3VAE 51.62 4955 4893 4537 || 109.11 10793 108.97 111.00 105.86 88.21 83.83  78.89
C-t3VAE 47.09 4629 4743 5132 | 12548 12796 130.28 129.40 101.18 87.07 81.92  80.97

t3VAE 57.07 5430 52.10 51.52 || 136.63 137.24 13892 135.23 105.80 88.07 83.62  78.90
B-C-t3VAE | 44.02  42.60 42.01 4449 || 10325 102.99 10592 11237 95.82 82.61 81.65  80.08

For class-conditional models, [ optimized C.VAE I VAR

&

C-t3VAE yields strong FID improvements
across all imbalance settings, surpassing all
baselines. As per Table [T} it achieves a gain
of up to 4, 5 and 10 FID points over the
B-t*VAE model on the imbalanced settings of
the SHVN-LT, CIFAR100-LT and CelebA, re-
spectively. This underlines the importance of an
equal per-class volume in an imbalanced dataset
setting. Moreover, B-C-t3VAE reduces the FID
by up to 4 and 15 points over C-VAE on SVHN-
LT and CIFARI00-LT respectively as per Ta-
ble[T} For the CelebA dataset, Table[T]shows that
B-C-t3VAE achieves the best results on heav-
ily imbalanced attributes like Mustache, demon-
strating better generation for underrepresented
groups. This gain in performance compared to
the C-VAE goes back to the use of Student’s t-
distribution latent prior and its ability to better
capture intra-class long-tail distributions. Addi-
tionally, qualitative samples of conditional op-
timized models (Figure [3) reveal sharper facial
features in C-t>VAE compared to the C-VAE. These results establish it as the most reliable model
across imbalance ratios and resolutions.

No Mustache

Mustache

Not Smilling

Smiling

20

AR

Figure 3: Sample synthetic images for the opti-
mized C-VAE and C-t3VAE trained on specific
attributes of the CelebA dataset.

In summary, C-t>VAE after optimization of all hyper-parameters notably 3, v and 7 consistently
achieves the lowest FID, validating the use of class-conditional Student’s t-distribution priors and
balanced latent sampling. Improvements on CIFAR100-LT are especially pronounced, highlighting
the model’s robustness to severe imbalance. However, for balanced settings, C-t3VAE remains
competitive.

5.2.3 PER-CLASS EVALUATION

In this section, we evaluate the conditional models on a per-class basis. However, since FID is
biased on small datasets and offers limited insight as a single scalar metric, we rely on Precision,
Recall, and F1 generative metricfl (Kynkiinniemi et al., 2019). Our results on CelebA are shown
in Figure [d] with additional results for SVHN-LT and CIFAR100-LT included in Appendix [G]

?Precision quantifies sample quality (sharpness), Recall reflects mode coverage and F1 is their harmornic
mean. Together they allows us to gain deeper insight into the models’ behavior.
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C-VAE —— C-t’VAE C-VAE —— C-t?VAE C-VAE —— C-t?VAE

Male Male Male

Smiling Smiling Smiling

(a) Recall (b) Precision (c) F1 score

Figure 4: Per-class generative metrics on CelebA after optimization of all hyper-parameters notably
B, v and 7. We note that the imbalance ratio of the Mustache, Young, Male and Smiling factors p
are 25, 3.5, 1.4 and 1 respectively.

On the CelebA dataset (Figure , C-t3VAE improves Recall and F1 on the most imbalanced
attribute (Mustache), but not on more balanced ones (Male, Smiling) which is an expected be-
havior. However, surprisingly, for the attribute Young (imbalance ratio 3.5), C-VAE performs
slightly better this suggests that there is a regime where Gaussian priors may still suffice. To ex-
plore this, we vary the imbalance ratio on SVHN-LT from 100 to 1 and plot the results in Fig-
ure [5] This figure shows there is a threshold p ~ 5 before which C-VAE performs better; be-
yond that, C-t3VAE has the advantage. Also, we notice that when p > 5, the more the imbal-
ance ratio increases, the more FID gap becomes more significant and in favor of the C-t3VAE.

For the SVHN-LT dataset (Figures in Ap- 33 2o
pendix |G), when comparing the C-t3VAE to 22
the C-VAE, the C-t>VAE achieves significantly
higher Recall and competitive Precision. This
indicates a better coverage of data modes
and maintaining images quality which yields
higher F1 scores especially on tail classes.
For the CIFAR100-LT dataset (Figures in Ap-
pendix [G), C-VAE often achieves high Preci- " 38 come o oo
sion but zero Recall, indicating mode collapse. -
In contrast, the C-t3VAE preserves Recall at the 100200100 B0 33 23 20 AT 4 A2 10
cost of slightly lower Precision, also resulting

in improved F1 scores. Consequently, on the Figure 5: Fine-grained comparison of C-t3VAE
SVHN-LT CIFARI00-LT and CelebA datasets, and C-VAE models under varying imbalance ra-
C-t3VAE sets itself as the most reliable method  tios on SVHN-LT.

for fair, high quality image generation.

0.6
0.2

02 0.1

-1.5

A FID = FIDc.t3vae - FIDc.vae

6 CONCLUSION

We introduced C-t3VAE, a class-conditional generative model that leverages Student’s t-
distributions in the latent space with a theoretically derived balanced sampling scheme. This ap-
proach improves fairness and sample quality under class imbalance. Extensive experiments on
SVHN-LT, CIFAR100-LT, and CelebA demonstrate that, after the optimization of the 5, v and 7
hyper-parameters, C-t3VAE consistently outperforms the t3VAE and conditional VAE baselines,
achieving up to a 15-point FID improvement on highly imbalanced datasets. Per-class Precision,
Recall, and F1 evaluations confirm improved mode coverage, particularly in tail classes. More-
over, we identify p > 5 as the regime where C-t>VAE outperforms Gaussian-prior models, with the
performance gap widening as p increases. For p < 5, C-t>VAE remains competitive with C-VAE.

Beyond generative performance, C-t>VAE contributes to fairness-aware modeling by promoting
balanced latent sampling and better mode coverage in underrepresented classes. Future work will
explore extending C-t3VAE to multi-label problems and integration with Latent Diffusion models.
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Appendix for

“Conditional-t> VAE: Equitable Latent Space Allocation
for Fair Generation”

A ~y-POWER DIVERGENCE CORRECTED DERIVATION

In this section, we present our correction of the previously derived form of the y-power divergence
in (Kim et al.| [2024). We start from the integrals derived in (Kim et al.| [2024)) and keep a similar
notation :

~ 1 _ 1 _
/Q(m)P(fﬁ)vdx =Cy %172 <1 R Tr(S; ' %o) + ;(No — ) " (o — Ml))

d
/q(I)1+A{d£ZE = O;Y’d|20|7% (1 + V—2>

5 d
Wide =C7 |27 (14 ——
/p(a:) dr = C) 4|31 ( +1/—2)

Combining these formulas gives a similar enthropy ., to the one derived in (Kim et al., 2024):

e N d T+
Ho(g) = =Cp g 3|27 <1+V_2> '

However, the cross-entropy C takes the following form :

e ~2
Cy(g,p) = —C, 3" [Xo| 207

14

_ 1 _ 1 _
a7z (1 + o Tr(E '$0) + = (o — p1) " S7 (o — Ml)) :

In red, we highlight the main difference to the formula derived in (Kim et al., 2024). H, (¢) and
C,(g,p) combine to give :

e
Cod' d ~Ty . d
D’Y(qu) = - ,_;/ (1 + b 2) - |ZO| 2(1+7) (1 + V2>

T (21 %0) (o — 1) "2 (o m)ﬂ .

v—2 v

+|21|;"202<I’+~«><1+

B PRIORS DERIVATIONS

In this section, we present our derivations of the different prior distributions defining our proposed
C-t3-VAE model. Starting from the proposed joint distribution :

_vtm+n

Cu,'nz-ﬁ-n 1 + (z—uy)TEgl(z—uy)+(w—p9 (Z))ngl(l—p,e (Z))
PREIRE: v

pg(l’,Z’y) =
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To calculate the prior distribution on the latent space we marginalize out x as follows :

p(ely) = / po(, 2ly)dz

14 (z — Ny)TEgjl(Z — Iy)
v

= /Ou7m+n|2w‘_%|zy‘_%

dx

14

L a8 e W))] o

_v+min
2

_1 _1 1 _
= Comin|Za| 7|5y 7> [1 + ;(Z - ﬂy)—rzy 1(Z - :“y)]

g / (1 vt = pe(2) T mu)))_"?" da.

(L0 (1) 2y (2 — 1)) (v + m)
Given that :

TS (g~
/Cy+m,n|2|‘% (H(w p) X (2 u))

v+m

v+m4n

_ Ty —1 _ - 2 .
:»/(H(m w2 (e ’“‘>) dr = Cy L, |52,
v+m

v+m,n

and when setting :

y-1_ 1+v-im)y !
1+v—1(z— ,uy)TZ;l(z — /@)7

We get :

v+m+4n

/ <1 L (v m) e~ ()55 o W))) T

(L v (e — 1) T2y (2 — 1) (v )

1
_ o ( (L+vm)s,! )“
AN +rvi(z _My)—rzzjl(z = y)
1
— o1 1+V71(Z*Uy)TE§1(Z*Ny) ’
v+m,n (l—l—u_lm) x
_ -1 1+V71(Z*ﬂy)TE;1(Z*Ny) B SRE
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Therefore, p(z|y) simplifies to :

_vimdin
2

Sl o1 1 _
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Here and in the following, we use the fact

n

m\ 2
Comtn = CotmnCom (1+2)

Besides, the prior distribution over the output of the decoder model p(x|z,y) can be derived as
follows :

polaz,y) = AT 2

p(zly)
_v+tm+4n
_Cumin _ {1+ (2—py) TS5 1<z—uy>+<xy—ue<z>fzz1<z—ue<z>>] 2
IRCREISHE
|E |2 {1—&- Z;l(z—uy)}

w3

n
2

:Cu+m7n|zw‘_% (1+ I/) |:1+ ( _lj'y)—rzgjl(z_uy>:|

At v m) e — ()T e —pa() ) ¢
O )
=i, (x

14+v1(z— Ty-1(z —
( ( Ny) y ( Ny)) S,v+m|.
C LoOSS FUNCTION DERIVATION

po(2), (14 v~'m)

In this section, we derive the loss function of C-#3-VAE. We start by calculating the different double
integrals [[ po(z, z|y)' TVdzdz, [[ qs(x, z|y)po(z, 2|y)Ydrdz, and [[ q4(z, zly) T dzdz.

Firstly,
/ / po(z, zy) VVdedz = B.opapy)Eampy (a]2y) [Po(7, 2[y)"]

(2 — ﬂy)TEgjl(z - ,Uy)
v

12,735, FE.E, |1+

V ,m4+n

(z — po(2) "85 (@ — po(2))

+

|2, |77\E |*EIE 1+1/71(zf,uy)TZ;1(z—uy)

u ,m—+n

+ v [Te(S5 (o — po(2))(x — po(2)) )] ]

2,728, 2E. L+v Mz = py) '8, (2 — py)

1/ ,m—+n

v+m (1 +v7 (2 Ny)TEyl(quy))> ]
)

1 1
T Tr(Ex Ezy—i—m—Q (I+v-1m

Here, we use the following identities
(k=p)'H '(k—p)=Te(H '(k=p)(k—p)T);  E[Tr()] = Tr(E[)

and the covariance of a multivariate Student’s t-distribution p ~ t(u; X;v) is %5
and after a few simplifications we get
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Then, [[ q(z, z|y)pe(x, z|y)?dzdz simplifies to :

// q¢(x,z|y)p9(at,z\y)7dxdz = Clj,m+n‘293|_%‘zy _%Eﬂi

L+ %Ez [(Z - My)—rzgjl@ - Mu)]
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Finally, the third term [ q(x, z|y)' "7 dadz is
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// qe(w, 2ly) T drdz = C)inm (1 + ;) <1 + V—l—n—2> / \E¢(x)l’%pdam(w)1”dz,

where this last double integral is equal to the one computed for the ¢3-VAE.

Equipped with these formulas we can calculate the entropy ., cross-entropy C, and the -
divergence D(q||p) of our model. Firstly,

H, = — (// q(a;,z)1+mxdz> e

1 1
~ Aam fe= =
T n\ 20+~) m _a
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Which is similar to the one calculated in the t>*VAE model.
Secondly,
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Hence, we can define our divergence as :

Cs
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On that account, the loss function for a class y is :
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and by taking X, = 02 and X, = I, we obtain :
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D SAMPLING DISTRIBUTION VARIANCE DERIVATION

In this section, we present the derivation of 72 used in the sampling of t3VAE and C-t>VAE model.
We present only the derivation for the C-£3-VAE and it is identical to the one for the ¢3-VAE since
the former model is a generalization of the later.

First, we simplify the divergence D(g||p*) :

m
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Here, we use the fact that |aA|® = a®™| A|° where n is the dimension of the square A matrix. Also,
we use Tr(aA) = aTr(A). After simplification and rearranging we get :
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Then, we match the result to the loss function in Eq. (I0) to get :
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which is the form of 72 we report in Eq. (9).

E EXPERIMENTAL SETUP DETAILS

E.1 DATASETS

We conduct experiments on three datasets notably SVHN-LT (Netzer et all

CIFAR100-LT (Krizhevsky, 2009; |Cao et al., 2019) and CelebA (Liu et al., 2015) each chosen
to highlight different challenges related to generative modeling under class imbalance and varying

visual complexity.

e SVHN-LT : This dataset is comprised of colored images of digits from O to 9 of size

32 x 32 x 3. It serves as our controlled experimental setting. While simple enough for
all models to converge, it is rich enough to reflect performance differences. However, as
this dataset is naturally imbalanced, we balance the number of images across classes to
have more control over the imposed imbalance ratio. In Table [2| we provide the number of
images present in the dataset before balancing.

Table 2: The Number of images in the SVHN dataset for the train and test sets before balancing.
The value in bold is the one used to balance the dataset.

Class | 0 1 2 3 4 5 6 7 8 9

Train set | 4948 13861 10585 8497 7458 6882 5727 5595 5045 4656
Testset | 1744 5099 4149 2882 2523 2384 1977 2019 1660 1595

* CIFAR100-LT : This balanced dataset comprised of colored images of 100 classes of
different natural objects. The images are of size 32 x 32 x 3 presents high variability with
100 fine-grained classes. In the most extreme imposed imbalance setting, tail classes may
contain as few as five examples. Though the images remain low-resolution, this setting
stresses the models’ robustness in the face of sparse data and various categories.

* CelebA : This dataset enables evaluation in real-world class-imbalance scenarios using
attribute labels (e.g., Mustache, Young). It also introduces the complexity of higher res-
olution images (178 x 218 x 3), testing the scalability of our models. We select four
binary attributes (Mustache, Young, Male, Smiling) for evaluation, with test sets balanced
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by down-sampling the larger class. In Table[3] we provide the number of images for each
chosen attribute in this dataset.

Table 3: The Number of images in the CelebA dataset for the train and test sets for the Mustache,
Young, Male and Smiling attributes.

\Mustache No Mustache  Young Old Male Female Smiling Not Smiling

Train set 6642 156128 126788 35982 68261 94509 78080 84690
Test set 722 19190 15114 4848 7715 12247 9987 9975

E.2 DATA PREPROCESSING

¢ SVHN-LT Dataset For both training and testing, we crop each class to the minimum num-
ber of samples available across all classes. The only data augmentation applied is a random
horizontal flip with 50% probability.

* CIFAR100-LT Dataset We use the dataset in its entirety without class filtering. As with
SVHN-LT, we apply a random horizontal flip with 50% probability for data augmentation.

* CelebA Dataset We use the full dataset and apply a center crop of 160 x 160 to each image
and then resize to 128 x 128. A random horizontal flip with 50% probability is also applied.

E.3 MODEL ARCHITECTURE

Our encoder-decoder models follow a modular block design. Each encoder block consists of a
convolutional layer, followed by 2D batch normalization and ReLU activation. Decoder blocks
mirror this structure but replace convolutional layers with transposed convolutions.

¢ SVHN-LT and CIFAR100-LT : Encoders consist of four convolutional blocks with chan-
nels {64, 128, 256, 512}, followed by two linear layers for estimating mean and covariance.
The decoder uses three transposed convolutional blocks with channel sizes {128, 64, 32},
ending with a three-channel convolution and Sigmoid activation.

* CelebA : The CelebA encoder includes six convolutional blocks with channels {64, 128,
256, 512,512, 512}, ending with two linear layers. The decoder has six transposed convo-
lutional layers with channels {512, 512, 256, 128, 64, 32}, followed by a final convolutional
layer and Sigmoid activation.

E.4 TRAINING DETAILS

All models are trained using the AdamW optimizer with a learning rate of 103 for 150 epochs. We
use a batch size of 64 for SVHN-LT and CIFAR100-LT, and 128 for CelebA.

F HYPERPARAMETER TUNING

We present the hyperparameter tuning process used across all evaluated models. We first optimize
£, then v, and finally 7, yielding the models’ results reported in Table I}

F.1 [ OPTIMIZATION

We perform a hyperparameter study over [ for all tested models. Unless otherwise noted, we use
the theoretically derived 72 and set v = 10.

F.1.1 ON THE SVHN-LT DATASET

As shown in Figure [6] the optimal § values for Student’s t-distribution based models lies in the
range 5 € [0.4,0.6] whereas it lies in the 8 € [0.05,0.07] range for Gaussian-based models. This
is because the regularization term in the y-power divergence loss is ten times larger than the KL
divergence. Figure [6] also shows that FID performance is highly sensitive to /5 in the Gaussian
setting, requiring careful tuning which is not the case for Student’s t-distribution based models.
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Finally, C-t3VAE achieves the best FID surpassing the t*VAE and the C-VAE for all imbalance
settings.
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Figure 6: Variability of the FID as a function of the 3 hyperparameter for the VAE, C-VAE, t3VAE
and C-t3VAE on the SVHN-LT dataset.

F.1.2 ON THE CIFAR100-LT DATASET

From Figure[7} we observe that Student’s t-distribution based models obtain the best performance
in terms of FID at 3 = 0.2 for CIFARI100-LT dataset. However, for the Gaussian-based models,
the optimal value is much lower with 5 € [0.02,0.05]. The reason for this is that on this dataset
too the KL regularization term is ten times smaller than the regularization terms present in the -
power divergence loss. Additionally, we notice that C-VAE performs slightly better, likely due to the
complexity of the dataset preventing full convergence to the imposed latent distribution. We further
investigate this hypothesis in the 7 analysis below.
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Figure 7: Variability of the FID as a function of the 3 hyperparameter for the VAE, C-VAE, t3VAE
and C-t3VAE on the CIFAR100-LT dataset.

F.1.3 ON THE CELEBA DATASET

For the CelebA dataset, we focus only on 3 optimization for Student’s t-distribution based models.
As for the Gaussian-based models, we set 5 = 0.1, because as shown in Table|l'| the optimization
of the 8 hyperparameter has marginal impact on the FID for the CelebA dataset, which is not the
case for the SVHN-LT and CIFAR100-LT dataset. Hence, we did not deem necessary to perform a
hyper-parameter optimization over /3 for the Gaussian based models. Nevertheless, from Figure [§]
we see that 5 has marginal effect on the Student’s t-distribution based models too, likely due to the
low intra-class variability.
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Figure 8: Variability of the FID as a function of the 3 hyperparameter for the t3VAE and C-t>VAE on
the CelebA dataset. The horizontal lines for the VAE and C-VAE models are for the best performing
model between § = 0.1 and 8 = 1.

F.2 v OPTIMIZATION

Table E] shows results from tuning the degrees of freedom parameter v in C-t3VAE on both
SVHN-LT and CIFAR100-LT across all imbalance ratios, using the optimal $ from the previous
study. On average, v = 10 performs well, consistent with prior work (Kim et al., 2024). However,
performance can be further improved by selecting v within the range [2.5, 20]. Still, no major influ-
ence of hyper-parameter v on the generative FID can be observed similarly to what was observed by
Kim et al.| (2024) for the reconstruction FID.

SVHN-LT CIFAR100-LT
v 100 50 10 1 100 50 10 1

2.1 | 4550 4451 4296 4623 || 121.28 122.03 121.93 123.41
25 | 4576 4396 4581 4540 || 119.15 120.19 120.10 124.83
5 4489 42.60 45.03 46.33 || 120.52 12321 12429 123.71
10 | 4459 4437 4348 4449 || 119.83 120.65 12296 123.95
20 | 44.02 43.89 42.01 4475 || 121.48 11841 12458 126.13
50 | 48.03 4639 4359 4557 || 119.58 12636 12438 127.48
100 | 45.97 44.63 4374 47.52 || 123.26 12290 127.42 125.67

Table 4: Variability of the FID as a function of the standard deviation v for the C-t>VAE model on
the SVHN-LT and CIFAR100-LT datasets.

F.3 7 OPTIMIZATION

In this section, we evaluate the effect of the 7 parameter on the SVHN-LT, CIFAR100-LT and
CelebA datasets for all imbalance ratios while setting 5 and v to their previously optimized values.
As shown in Figure 0] the optimal 7 for SVHN-LT aligns closely with our theoretical prediction.
In contrast, CIFAR100-LT consistently benefits from a larger 7 = 0.4, yielding improved FID
across all imbalance settings and outperforming C-VAE. On CelebA, 7 has minimal impact and the
most likely value is 7 ~ 0.3. This value is between the value observed in for the SVHN-LT and
CIFAR100-LT, as is mostly liked to the complexity and the entropy of the dataset where the more
complex the data is the higher the value of 7 is required.
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Figure 9: Variability of the FID as a function of the standard deviation 72 for the t>*VAE and
C-t3VAE. In horizontal dashed lines is the FID value of the best performing VAE and C-VAE
on each dataset. In vertical dashed lines is the theoretically identified value of .

G PER-CLASS EVALUATION

In this section, we assess the conditional models’ per-class Recall, Precision, and F1 metrics under
all imbalance settings and for all tested datasets after optimization of all hyper-parameters.

From the following figures in Table and|§|, we see that the C-t>VAE consistently improves Recall
and mode coverage in highly imbalanced settings with p = 100 and p = 50. This comes at a minor
Precision cost but results in significantly better F1 scores across most classes. However, on balanced
or mildly imbalanced datasets, its performance remains competitive with Gaussian-based models.
This observation is valid for both the SVHN-LT and CIFAR100-LT but is more pronounced on the
later.
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Table 5: Per-class generative metrics on SVHN-LT after optimization of 3, v and 7 hyper-

parameters.
p Recall Precision F1 score
—— CVAE —— C-tVAE —— CVAE —— C-t3VAE —— CVAE —— C-t3VAE
Class 0 Class 0 Class 0

Class 1 Class 9

Class

Class

Class

Class

Class 1

Class

Class

Class 1 Class 9

100 Class 5 Class 5 Class 5
—— CVAE —— C-tVAE —— CVAE —— C-t3VAE —— CVAE —— C-t?VAE
Class 0 Class 0 Class 0

Class 1

Class

Class

Class

Class

Class 1 Class 9

Class

Class

Class 1 Class 9

50 Class 5 Class 5 Class 5
—— CVAE —— C-t?VAE —— CVAE —— C-t3VAE —— CVAE —— C-t?VAE
Class 0 Class 0 Class 0

Class 1 Class 9

Class

Class

Class

Class

Class 1 Class 9
e

Class

Class

Class1 59

Zlass 7

10 Class 5 Class 5 Class 5
—— CVAE —— C-t?VAE —— CVAE —— C-t3VAE —— CVAE —— C-t?VAE
Class 0 Class 0 Class 0

Class 1 Class 9

Class

Class

Class 5

Class

Class

Class 1 Class 9

Class

Class

Class 5

Class 1 Class 9

Class 5
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Table 6: Per-class generative metrics on CIFAR100-LT after optimization of 3, v and T hyper-
parameters, we focus on the top 5 head and tail classes.

p Recall Precision F1 score
—— CVAE —— C-t3VAE —— CVAE —— C-t?VAE —— CVAE —— C-tVAE
Class 0 Class 0 Class 0

Class 1

Class

Class

Class

Class

Class 1

Class 1

Class

Class

100 Class 95 Class 95 Class 95
—— CVAE —— C-t?VAE —— CVAE —— C-t?VAE —— CVAE —— C-t3VAE
Class 0 Class 0 Class 0

Class 1

Class

Class

Class

Class

Class 1

Class 1

Class

Class

50 Class 95 Class 95 Class 95
—— CVAE —— C-t?VAE —— CVAE —— C-t?VAE —— CVAE —— C-t3VAE
Class 0 Class 0 Class 0

Class 1

Class

Class

Class

Class

Class 1

Class1 2!

Class

Class

1 0 Class 95 Class 95 Class 95
—— CVAE —— C-t?VAE —— CVAE —— C-t?VAE —— CVAE —— C-t?VAE
Class 0 Class 0 Class 0

Class 1

Class

Class

Class 95

Class

Class

Class 1

Class 95

Class 1

Class

Class

Class 95
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