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ABSTRACT

Variational Autoencoders (VAEs) with global priors mirror the training set’s class
frequency in latent space, underrepresenting tail classes and reducing generative
fairness on imbalanced datasets. While t3VAE improves robustness via heavy-
tailed Student’s t-distribution priors, it still allocates latent volume proportion-
ally to the class frequency. In this work, we address this issue by explicitly en-
forcing equitable latent space allocation across classes. To this end, we propose
Conditional-t3VAE, which defines a per-class Student’s t joint prior over latent
and output variables, preventing dominance by majority classes. Our model is
optimized using a closed-form objective derived from the γ-power divergence.
Moreover, for class-balanced generation, we derive an equal-weight latent mix-
ture of Student’s t-distributions. On SVHN-LT, CIFAR100-LT, and CelebA,
Conditional-t3VAE consistently achieves lower FID scores than both t3VAE and
Gaussian-based VAE baselines, particularly under severe class imbalance. In per-
class F1 evaluations, Conditional-t3VAE also outperforms the conditional Gaus-
sian VAE across all highly imbalanced settings. While Gaussian-based models
remain competitive under mild imbalance ratio (ρ < 5), our approach substan-
tially improves generative fairness and diversity in more extreme regimes.

1 INTRODUCTION

Class imbalance and long-tail distributions are prevalent in real-world datasets, yet generative mod-
els often fail to represent rare classes accurately. When trained on skewed data, these models tend
to overfit dominant modes and underrepresent minority ones in latent and output spaces, resulting in
biased or unfair generations. This issue is especially critical in sensitive applications such as facial
synthesis (Mehta et al., 2024) and medical imaging (Pinaya et al., 2022), where such biases can
exacerbate social and diagnostic disparities (Naik & Nushi, 2023).

Variational Autoencoders (VAEs) (Kingma & Welling, 2013) are a widely used class of generative
models, valued for their probabilistic formulation, stable training, and compatibility with latent-
variable modeling frameworks leading in image quality such as Latent Diffusion Models (LDMs)
(Rombach et al., 2022). Although GANs and diffusion models often achieve lower FID scores,
VAEs offer unique advantages in class-conditional generation, interpretability, and efficient infer-
ence, making them strong candidates for improving fairness under class imbalance. Standard VAEs
commonly use isotropic Gaussian priors, which inadequately model heavy-tailed structures and rare
phenomena (Tam & Dunson, 2025). Prior efforts to address this have introduced non-Gaussian pri-
ors, particularly Student’s t-distributions (Takahashi et al., 2018; Abiri & Ohlsson, 2020; Eguchi,
2021; Kim et al., 2024), to enhance robustness. However, these approaches often rely on global
priors, causing the latent space to be dominated by majority classes under skewed distributions.

We address this issue with Conditional-t3VAE (C-t3VAE), a conditional generative model that im-
poses a per-class Student’s t-distribution prior over the joint latent-output space. This design ensures
allocating an equal latent space volume per class, thereby mitigating majority class dominance,
while the heavy tails of the Student’s t-distribution more effectively capture intra-class variation. To
enable class-balanced sampling, we introduce an equal-weight mixture of Student’s t-distributions
with analytically derived component variances. Together, these components enable balanced class-
conditional generation and mitigate bias present in unconditional models. We summarize our main
theoretical and empirical contributions in the following points :
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• We propose the C-t3VAE model with a training objective based on the γ-power divergence.
• We develop an equal-weight latent mixture sampling scheme with analytically derived op-

timal variance scaling for each component.
• We outperform relevant baselines in FID on SVHN-LT (Netzer et al., 2011), CIFAR100-LT

(Cao et al., 2019), and CelebA (Liu et al., 2015) under severe imbalance, and show via per-
class evaluation that C-t3VAE better avoids mode collapse, exceeding a conditional VAE
in per class Recall and F1 while remaining competitive on Precision.

• We identify the imbalance ratio threshold ρ ≈ 5, beyond which Gaussian priors become
suboptimal, providing guidance for model selection on skewed datasets.

2 RELATED WORK

Since the introduction of VAEs (Kingma & Welling, 2013), many extensions have sought to im-
prove latent representation by replacing the standard Gaussian prior with more expressive alterna-
tives. These include Gaussian mixtures (Saseendran et al., 2021; Dilokthanakul et al., 2016), hyper-
spherical priors (Davidson et al., 2018), normalizing flows (Jaini et al., 2020), Riemannian priors
(Chadebec et al., 2023), and implicit distributions (Takahashi et al., 2019). While most retain the
ELBO formulation, others adopt alternative objectives or divergence measures for added flexibility.

To address long-tailed or imbalanced data, Student’s t-distributions have been explored for their ro-
bustness and heavy tails (Tam & Dunson, 2025). Methods such as (Takahashi et al., 2018) and (Abiri
& Ohlsson, 2020) model the latent space of the autoencoder through a t-distributed prior, and rely
on KL-divergence-based ELBO objectives. However, since the KL divergence lacks a closed-form
solution for the Student’s t-distributions, these methods resort to numerical approximation. The
t3VAE (Kim et al., 2024) improves on this by modeling the joint latent-output distribution and opti-
mizing a closed-form γ-divergence objective (Eguchi, 2021). Nonetheless, it still employs a global
latent prior, which results in a latent space volume allocation reflecting class frequency and leading
to imbalance present in the generated samples.

Other works address fairness in generative modeling using normalizing flows (Jaini et al., 2020) and
diffusion models (Qin et al., 2023; Pandey et al., 2025). However, since leading image generation
models are based on Latent Diffusion Models (Rombach et al., 2022) and VAEs are a corner-stone
in the design of these models, we deem it crucial to improve VAEs’ ability to handle imbalanced
data. Consequently, as fairness in latent space allocation remains under-explored in VAEs, we intro-
duce a class-conditional, heavy-tailed prior to address this gap and allow for balanced latent space
allocation across classes.

3 BACKGROUND

This section introduces the theoretical background and baseline models relevant to our work. We
assume access to a labeled, imbalanced dataset D = {(xi, yi)}Ni=1, where xi ∈ Rn is a data sample
of dimension n, yi ∈ {1, . . . ,K} its class label and m the latent space dimension.

3.1 VAES AND CONDITIONAL-VAES

VAEs (Kingma & Welling, 2013) are generative models trained via variational inference by max-
imizing the Evidence Lower Bound (ELBO) of the log-likelihood. The standard objective of this
model is

Lθ,ϕ := Ez∼qϕ(·|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)), (1)

where the first term is the reconstruction loss with pθ(x|z) being the decoder model. The second
term is the Kullback–Leibler (KL) divergence between the approximate posterior qϕ(z|x) and the
prior p(z). The β-VAE is a weighted variant of the VAE model which introduces a β scaling term
for the KL divergence (Higgins et al., 2017):

Lθ,ϕ := Ez∼qϕ(·|x)[log pθ(x|z)]− βDKL(qϕ(z|x)∥p(z)), (2)

with p(z) ∼ Nm(0, I), qϕ(·|x) ∼ Nm(µϕ(x),Σϕ(x)), and pθ(x|z) ∼ Nm(µθ(z), σ
2I). µϕ(·) and

Σϕ(·) are the mean and the covariance matrices inferred through a neural network with parameter ϕ
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given the input x. Moreover, µθ(·) is the decoder neural network with parameter θ and σ is a
parameter controlling the decoder’s output covariance. This variant of the VAE model allows to
place more weight on disentangling the latent space or on the reconstruction of the data points. To
generate samples from the VAE or the β-VAE model, we sample a latent vector z ∼ Nm(0, I).
Then, the generated data point would be x̂ ∼ Nm(µθ(z), σ

2I).

Nevertheless, since Eq. (1) and Eq. (2) optimize the ELBO over the data distribution pdata(x),
which can be decomposed as pdata(x) =

∑
yi
p(yi) pdata(x | yi), this optimization inherently

biases the model toward head classes with larger p(yi). As a result, most generated samples come
from overrepresented classes, while tail classes’ samples are underrepresented and of lower quality,
a phenomenon commonly referred to as mode collapse. Therefore, when labels are available, it is
preferable to define class-conditional posterior and prior distributions: qϕ(z|x, y) and p(z|y). This
yields the Conditional-VAE (CVAE) model trained using the objective (Kingma et al., 2014):∑

y

Ez∼qϕ(·|x,y)[log pθ(x|z, y)]− βDKL(qϕ(z|x, y)∥p(z|y)). (3)

Here, in Eq. (3) we constrain all p(yi) to be equal and omit them from the loss function in order not
to exacerbate the issue of class imbalance in the latent space. Also, we define p(z|y) ∼ Nm(µy, I)
with learnable class-wise means µy . To generate a data point x̂y from class y, we sample zy ∼
Nm(µy, I), then we get x̂y ∼ pθ(x|zy, y). Nevertheless, despite conditioning, this formulation
remains Gaussian. Unlike Student’s t-distributions, Gaussian priors poorly approximate heavy-tailed
data distributions (Tam & Dunson, 2025).

3.2 MULTIVARIATE STUDENT’S T-DISTRIBUTION AND γ-POWER DIVERGENCE

A d-dimensional Student’s t-distribution with mean µ ∈ Rd, covariance Σ ∈ Rd×d, and degrees of
freedom ν > 2 is a heavy-tail, super-Gaussian distribution defined as

td(x) = Cν,d|Σ|−
1
2

(
1 +

(x− µ)⊤Σ−1(x− µ)

ν

)− ν+d
2

, Cν,d =
Γ
(
ν+d
2

)
Γ
(
ν
2

)
(νπ)

d
2

. (4)

The power form of this distribution prevents a closed-form KL divergence between two Student’s
t-distributions. Instead, the γ-power divergence Dγ(q∥p) is used (Eguchi, 2021; Kim et al., 2024).
This divergence is defined for q ∼ td(µ0; Σ0; ν), p ∼ td(µ1; Σ1; ν) starting from the γ-entropy
Hγ(p) and cross-entropy Cγ(q, p)

Hγ(p) := −∥p∥1+γ = −
(∫

p(x)1+γdx

) 1
1+γ

, Cγ(q, p) := −
∫

q(x)

(
p(x)

∥p∥1+γ

)γ

dx.

Dγ(q∥p) := γ−1 (Cγ(q, p)−Hγ(p)) (5)
with γ = − 2

ν+d . Then, substituting the definition of a Student’s t-distribution from Eq. (4) into
Eq. (5), the following closed-form formula for the γ-power divergence can be derived (See Ap-
pendix A):

Dγ(q∥p) = −
C

γ
1+γ

ν,d

γ

(
1 +

d

ν − 2

)− γ
1+γ

[
− |Σ0|−

γ
2(1+γ)

(
1 +

d

ν − 2

)

+ |Σ1|−
γ
2 |Σ0|

γ2

2(1+γ)

(
1 +

Tr
(
Σ−1

1 Σ0

)
ν − 2

+
(µ0 − µ1)

⊤Σ−1
1 (µ0 − µ1)

ν

)]
. (6)

3.3 t3-VARIATIONAL AUTOENCODER

3.3.1 DEFINITION

The t3VAE model (Kim et al., 2024) is a non-ELBO-based autoencoder which models the joint prior
distribution pθ(x, z) using multivariate Student’s t-distributions

pθ(x, z) ∝ σ−n

[
1 +

1

ν

(
∥z∥2 + ∥x− µθ(z)∥2

σ2

)]− ν+m+n
2

.
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From this joint distribution, the marginal latent prior p(z) and decoder distribution pθ(x|z) can be
defined. Furthermore, the posterior distribution is defined as :

qϕ(z|x) = tm

(
x

∣∣∣∣µϕ(x),
Σϕ(x)

1 + ν−1n
, ν + n

)
.

Hence, the data-latent joint distribution would be qϕ(x, z) = pdata(x)qϕ(z|x). As a result, relying
on the γ-divergence in Eq. (6) applied to the pθ(x, z) and qϕ(x, z) distributions, the following loss
function is derived to optimize the t3VAE’s parameters :

Lγ = Ex

[
Ez

[
∥x− µθ(z)∥2

]
σ2

+ ∥µϕ(x)∥2 +
ν Tr (Σϕ(x))

ν + n− 2
− νC1

C2
|Σϕ(x)|−

γ
2(1+γ)

]
, (7)

with γ = − 2
ν+n+m and C1 and C2 being theoretically derived constants. We note that the first term

in this loss function represents the standard reconstruction term in VAE models and the rest of the
terms are regularization terms over the latent space. To sample from the latent space of the t3VAE,
Kim et al. (2024) propose the p⋆ν(z) = tm(0, τ2I, ν + n) distribution with

τ2 =
1

1 + ν−1n

(
Cν,n

σn
· ν − 2

ν + n− 2

) 2
ν+n−2

. (8)

Moreover, sampling from a multi-variate Student’s t-distribution T ∼ td(µ,Σ, ν) both in the learn-
ing (Eq. (7)) and sampling (Eq. (8)) phases is performed through the standard reparameteration trick
for Student’s t-distributions T := µ+ Z

√
νV −1 where Z ∼ N (0,Σ) and V ∼ X 2(ν).

3.3.2 β-t3VAE

From Eq. (7) we can also define a β-t3VAE model by multiplying all the regularization terms by a
β factor. Similarly to β-VAE models, this improves the versatility of the model and allows either a
focus on generation or disentangling.

3.3.3 τ2 IMPROVEMENT

Closely analyzing the proposed derivation of τ2 of the t3VAE model, we discovered a subtle issue
in its mathematical formulation. The employed γ-power divergence presents a discrepancy to the
correct formula in Eq. (6). We revised the formulation and the corrected τ2 is (See Appendix D):

τ2 =
1

1 + ν−1n

(
|Σϕ(x)|

γ
2
Cν,n

σn

ν − 2

ν + n− 2

) 2γ
(1+γ)(2+γm)

≈ 1

1 + ν−1n

(
Cν,n

σn

ν − 2

ν + n− 2

) 2γ
2+γm

.

(9)

The corrected exact form of τ2 is applicable when |Σϕ(x)| is known and when the dimension of
the data is low. However, for high dimensional data, as handled in this work, we get γ ≈ 0. Hence,
one can use the approximation without any loss in accuracy. We note that the new form of τ2 leads
to a similar empirical value of standard deviation compared to the previous form. Nevertheless, for
correctness, in our sampling from the latent space of the t3VAE model we use the approximation in
Eq. (9).

In summary, although the t3VAE effectively models heavy-tailed distributions through Student’s
t-distributions and γ-power divergence, it does not explicitly address class imbalance in the latent
space by not allocating equal volume for each class. In the next section, we introduce a class-
conditional variant of the t3VAE, designed to ensure fair and balanced generation across all classes.

4 CONDITIONAL t3-VARIATIONAL AUTOENCODER

We propose the Conditional t3-Variational Autoencoder (C-t3VAE), present its formulation, train-
ing objective, and sampling strategy. C-t3VAE models the latent space as a mixture of Student’s
t-distributions, one per class, ensuring equal latent volume allocation and promoting fairness in
generation. Intra-class imbalance is further handled by the heavy-tailed nature of the Student’s t-
distribution prior.

4
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4.1 MODEL DEFINITION

The C-t3VAE we propose is based on the following class conditional joint prior distribution

pθ(x, z|y) =
Cν,m+n

|Σx|
1
2 |Σy|

1
2

[
1+

(z − µy)
⊤Σ−1

y (z − µy) + (x− µθ(z))
⊤Σ−1

x (x− µθ(z))

ν

]− ν+m+n
2

with ν, n and m being the degrees of freedom of the Student’s t-distribution, the dimension of the
input data and the dimension of the latent space respectively. µy ∈ Rm is a learnable mean vector
representing class centers in latent space of dimension m. Moreover, Σx and Σy are the covariance
matrices of the prior distributions over the latent and output variables.

From this joint distribution, we can derive the conditional latent prior p(z|y) = tm(z|µy,Σy, ν) and
decoder distribution (See Appendix B)

pθ(x|z, y) = tn

(
x

∣∣∣∣∣µθ(z),

(
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

)
(1 + ν−1m)

Σx, ν +m

)
.

Furthermore, as in t3VAE, we define the posterior qϕ(z|x) as a multivariate Student’s t-distribution
capturing heavy-tailed structure in the latent space :

qϕ(z|x) = tm

(
z

∣∣∣∣µϕ(x),
Σϕ(x)

1 + ν−1n
, ν + n

)
.

4.2 OBJECTIVE FUNCTION

Harnessing Eq. (5) and the defined prior and posterior distributions of the proposed C-t3VAE, we
derive in Appendix C the following class-wise objective

L(γ, y) = Ex

[
Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

]
+ (µϕ(x)− µy)

⊤Σ−1
y (µϕ(x)− µy)

+
ν Tr

(
Σ−1

y Σϕ(x)
)

ν + n− 2
− νC1

C2
|Σϕ(x)|−

γ
2(1+γ)

]
,

with C1 =
(
Cγ

ν+n,m

(
1 + n

ν

) γm
2 ν+n+m−2

ν+n−2

) 1
1+γ

and C2 =

(
Cγ

ν,m+n

|Σx|
γ
2 |Σy|

2γ+1
2

(
1 + m+n

ν−2

)−γ
) 1

1+γ

.

By taking Σx = σ2I and Σy = I , L(γ, y) objective function simplifies to :

L(γ, y) = Ex

[
Ez

[
∥x− µθ(z)∥2

]
σ2

+∥µϕ(x)−µy∥2+
ν Tr (Σϕ(x))

ν + n− 2
− νC1

C2
|Σϕ(x)|−

γ
2(1+γ)

]
. (10)

Therefore, we express the final loss function L(γ) over the whole dataset as : L(γ) =
∑

y L(γ, y).
As in Eq. (3), here too we consider all p(yi) to be equal and hence rule out their contribution to the
loss function. This is done to avoid emphasizing the imbalance present in the data.

4.3 SAMPLING DISTRIBUTION

Similarly to the objective function of t3VAE, L(γ, y) in Eq. (10) can be decomposed into a recon-
struction term and regularization terms. To sample from the latent space of the C-t3VAE, we focus
on the regularization terms and define the following sampling distribution :

p⋆ν(z) =

K∑
y=1

αy · tm(µy, τ
2I, ν + n), ∀y, αy =

1

K
. (11)

The theoretical derivation of the variance τ2 leads to the form expressed in Eq. (9) (Derivation in
Appendix D).

5
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The mixture-based sampling distribution we define in Eq. (11) with equal αy ensures a uniformly
sampled synthetic data across all classes, regardless of their frequency in the original training data.
As a result, C-t3VAE equipped with this sampling distribution mitigates the common problem in
generative models where head-class samples dominate due to their density in latent space. Further-
more, by modifying the mixture weights αy , one can prioritize specific classes. This makes our
method flexible for targeted data augmentation or fairness-aware sampling strategies.

4.3.1 β-C-t3VAE

As with t3VAE, the class-wise objective defined in Eq. (10) can be split into a reconstruction and
regularization terms. By preceding the regularization term with a β scalar, we can define a β-C-
t3VAE model thereby improving the domain of applicability of the model.

Overall, C-t3VAE provides a principled, flexible, and tractable framework for fair generative mod-
eling, particularly under class-imbalanced conditions. In the following, we study the C-t3VAE’s
performance across multiple datasets with varying imbalance degrees.

5 EXPERIMENTS

This section outlines the generative performance of the proposed C-t3VAE model on labeled datasets
compared to relevant VAE baselines1. We conduct experiments on three datasets notably SVHN-LT
(Netzer et al., 2011), CIFAR100-LT (Krizhevsky, 2009; Cao et al., 2019) and CelebA (Liu et al.,
2015) each chosen to highlight different challenges.

5.1 EVALUATION PROCEDURE

All models are evaluated using Fréchet Inception Distance (FID) (Heusel et al., 2017), computed
against a balanced test set for each dataset. This setup measures how effectively a model overcomes
training set imbalance by assessing its ability to generate high-quality samples across all classes. To
evaluate robustness, we impose varying degrees of imbalance during training.

For SVHN-LT and CIFAR100-LT, we introduce class imbalance by applying an exponential decay
to the number of samples per class after equalizing class sizes in the original train and test sets.
The imbalance ratio ρ defines the ratio between the most and least frequent classes, with class-wise
sample counts Myi

given by: Myi
= M · ρ−

yi−1

K−1 , where M is the original per-class sample count.

For CelebA, we compute FID per attribute, treating each attribute (eg. Mustache) and its negation
(eg. no Mustache) as separate binary classes. The training set uses CelebA’s inherent imbalance,
while the test set is balanced by downsampling to the smaller class size. Multi-attribute generation
is not considered in this work and is left for future exploration.

5.2 RESULTS

We present both quantitative and qualitative results of the C-t3VAE model and the models it directly
improves upon notably the VAE, C-VAE and t3VAE models with their β variants. This controlled
comparison helps isolate the contributions of key design choices:

• VAE : ELBO trained standard Gaussian-based VAEs.

• C-VAE : VAE supplemented by conditional Gaussian priors to assess the class conditioning
effect without changing the prior family.

• t3VAE : Student’s t-distribution latent prior and γ-power divergence objective, does not use
class-conditional priors, nor allows for class conditional generation. Through a compari-
son with this model we assess the role of conditional modeling on Student’s t-distribution
priors.

1We restrict our comparisons to VAE-based generative models, as Latent Diffusion Models (Rombach et al.,
2022), the state-of-the-art in image generation, depend on VAEs as a core component. Enhancing fairness in
VAEs under class imbalance is therefore a necessary precursor to advancing more complex models.

6
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In the following, we analyze the latent sampling standard deviation τ employed in t3VAE and
C-t3VAE models, varying it to assess alignment between empirical and theoretical values. Then,
we present FID comparisons across baselines with optimized hyper-parameters (The tuning of β, ν
and τ hyper-parameters is reported in Appendix F), followed by per-class generative evaluation.

5.2.1 τ PARAMETER STUDY

Figure 1 illustrates the sampling standard deviation’s τ impact on the FID metric. We observe that
models based on the Student’s t-distribution benefit from higher standard deviation on CIFAR100-LT
compared to SVHN-LT. Specifically, C-t3VAE outperforms the C-VAE for τ ∈ [0.25; 0.55] on
CIFAR100-LT and τ ∈ [0.19; 0.28] on SVHN-LT and for all τ values on the CelebA dataset. More-
over, it surpasses the t3VAE models’ FID for all τ values and across all datasets.

(a) SVHN-LT (b) CIFAR100-LT (c) CelebA

Figure 1: FID score as a function of τ for the t3VAE and C-t3VAE models. Results are for the im-
balance ratio ρ = 100 for the SVHN-LT and CIFAR100-LT, and for the Mustache attribute (ρ = 25)
in the case of the CelebA dataset. Other imbalance ratios’ results paint a similar picture and are
provided in Appendix F.3. The horizontal dashed lines is the FID value of the best performing VAE
and C-VAE on each dataset and the vertical dashed line is the value of τ as derived in Eq. (9). We
note that the used models in these figures have optimized β and ν hyper-parameters.

For both Student’s t-distribution based models, the optimal FID score for the SVHN-LT occurs
near the theoretically derived τ value. However, for the more complex CIFAR100-LT dataset, the
optimal τ is higher than the theoretical value τ = 0.4. We hypothesize that the higher variance
reflects the model’s need during training to accommodate the greater complexity and entropy of the
dataset, which makes it harder to align the learned posterior with the prior and to produce confident
reconstructions. For the CelebA dataset, the standard deviation parameter τ has minimal to no
impact on model performance likely due to the lower variability in the dataset’s images as they all
represent faces.

5.2.2 OPTIMIZED MODEL RESULTS DISCUSSION

VAE t3VAE

Figure 2: Sample synthetic images from the op-
timized VAE and t3VAE models trained on the
CelebA dataset. No class conditioning is possi-
ble for these models.

After optimizing the hyperparameters of the
various models tested in this work, we present
their generation FID scores in Table 1. We pro-
vide results for β models after optimization and
non β models (β = 1) to underscore the impor-
tance of this parameter on the resulting perfor-
mance as it was not explored in the t3VAE work
(Kim et al., 2024).

From Table 1, t3VAE consistently improves
over the VAE model. This underlines the gen-
erative advantage of the Student’s t-distribution prior over a Gaussian one, in addition to the recon-
struction advantage highlighted by Kim et al. (2024). Moreover, optimizing the β hyper-parameter
improves t3VAE’s FID over the VAE on the CIFAR100-LT and CelebA, while remaining competi-
tive on SVHN-LT. Also, qualitative results of Figure 2 show that the t3VAE model compared to the
VAE model produces significantly sharper synthetic images on the CelebA dataset.
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Table 1: Generation FID results on the SVHN-LT, CIFAR100-LT and CelebA datasets. For the
SVHN-LT and CIFAR100-LT datasets we use different imbalance ratios ρ ∈ {100, 50, 10, 1}. How-
ever, for the CelebA dataset we use the Mustache, Young, Male and Smiling attributes which have
imbalance ratios of 25, 3.5, 1.4 and 1 respectively. The β models undertook an optimization of the
β hyper-parameter while non-β models have β = 1. All models have optimized ν and τ hyper-
parameters. The attributes for the CelebA dataset column indicate which attribute is used to condi-
tion the conditional models and balance the test set.

SVHN-LT CIFAR100-LT CelebA
Models ρ =100 50 10 1 ρ =100 50 10 1 Mustache Young Male Smiling

VAE 93.89 91.91 91.66 92.16 163.66 162.91 165.47 166.46 110.58 92.01 110.58 82.05
β-VAE 47.11 49.81 45.70 43.48 122.62 123.07 123.72 124.43 104.63 92.87 87.96 83.15
C-VAE 74.75 70.40 72.30 74.16 157.90 163.67 162.09 163.24 96.98 89.17 86.17 78.35
β-C-VAE 48.39 46.39 43.97 43.87 114.88 118.89 114.89 118.21 98.35 85.53 79.76 78.46

t3VAE 57.07 54.30 52.10 51.52 136.63 137.24 138.92 135.23 105.80 88.07 83.62 78.90
β-t3VAE 51.62 49.55 48.93 45.37 109.11 107.93 108.97 111.00 105.86 88.21 83.83 78.89
C-t3VAE 47.09 46.29 47.43 51.32 125.48 127.96 130.28 129.40 101.18 87.07 81.92 80.97
β-C-t3VAE 44.02 42.60 42.01 44.49 103.25 102.99 105.92 112.37 95.82 82.61 81.65 80.08

C-VAE C-t3VAE

N
o
M
u
st
ac
h
e

M
u
st
ac
h
e

N
ot

S
m
il
li
n
g

S
m
il
in
g

Figure 3: Sample synthetic images for the opti-
mized C-VAE and C-t3VAE trained on specific
attributes of the CelebA dataset.

For class-conditional models, β optimized
C-t3VAE yields strong FID improvements
across all imbalance settings, surpassing all
baselines. As per Table 1, it achieves a gain
of up to 4, 5 and 10 FID points over the
β-t3VAE model on the imbalanced settings of
the SHVN-LT, CIFAR100-LT and CelebA, re-
spectively. This underlines the importance of an
equal per-class volume in an imbalanced dataset
setting. Moreover, β-C-t3VAE reduces the FID
by up to 4 and 15 points over C-VAE on SVHN-
LT and CIFAR100-LT respectively as per Ta-
ble 1. For the CelebA dataset, Table 1 shows that
β-C-t3VAE achieves the best results on heav-
ily imbalanced attributes like Mustache, demon-
strating better generation for underrepresented
groups. This gain in performance compared to
the C-VAE goes back to the use of Student’s t-
distribution latent prior and its ability to better
capture intra-class long-tail distributions. Addi-
tionally, qualitative samples of conditional op-
timized models (Figure 3) reveal sharper facial
features in C-t3VAE compared to the C-VAE. These results establish it as the most reliable model
across imbalance ratios and resolutions.

In summary, C-t3VAE after optimization of all hyper-parameters notably β, ν and τ consistently
achieves the lowest FID, validating the use of class-conditional Student’s t-distribution priors and
balanced latent sampling. Improvements on CIFAR100-LT are especially pronounced, highlighting
the model’s robustness to severe imbalance. However, for balanced settings, C-t3VAE remains
competitive.

5.2.3 PER-CLASS EVALUATION

In this section, we evaluate the conditional models on a per-class basis. However, since FID is
biased on small datasets and offers limited insight as a single scalar metric, we rely on Precision,
Recall, and F1 generative metrics2 (Kynkäänniemi et al., 2019). Our results on CelebA are shown
in Figure 4, with additional results for SVHN-LT and CIFAR100-LT included in Appendix G.

2Precision quantifies sample quality (sharpness), Recall reflects mode coverage and F1 is their harmornic
mean. Together they allows us to gain deeper insight into the models’ behavior.
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(a) Recall (b) Precision (c) F1 score

Figure 4: Per-class generative metrics on CelebA after optimization of all hyper-parameters notably
β, ν and τ . We note that the imbalance ratio of the Mustache, Young, Male and Smiling factors ρ
are 25, 3.5, 1.4 and 1 respectively.

On the CelebA dataset (Figure 4), C-t3VAE improves Recall and F1 on the most imbalanced
attribute (Mustache), but not on more balanced ones (Male, Smiling) which is an expected be-
havior. However, surprisingly, for the attribute Young (imbalance ratio 3.5), C-VAE performs
slightly better this suggests that there is a regime where Gaussian priors may still suffice. To ex-
plore this, we vary the imbalance ratio on SVHN-LT from 100 to 1 and plot the results in Fig-
ure 5. This figure shows there is a threshold ρ ≈ 5 before which C-VAE performs better; be-
yond that, C-t3VAE has the advantage. Also, we notice that when ρ ≥ 5, the more the imbal-
ance ratio increases, the more FID gap becomes more significant and in favor of the C-t3VAE.

Figure 5: Fine-grained comparison of C-t3VAE
and C-VAE models under varying imbalance ra-
tios on SVHN-LT.

For the SVHN-LT dataset (Figures in Ap-
pendix G), when comparing the C-t3VAE to
the C-VAE, the C-t3VAE achieves significantly
higher Recall and competitive Precision. This
indicates a better coverage of data modes
and maintaining images quality which yields
higher F1 scores especially on tail classes.
For the CIFAR100-LT dataset (Figures in Ap-
pendix G), C-VAE often achieves high Preci-
sion but zero Recall, indicating mode collapse.
In contrast, the C-t3VAE preserves Recall at the
cost of slightly lower Precision, also resulting
in improved F1 scores. Consequently, on the
SVHN-LT CIFAR100-LT and CelebA datasets,
C-t3VAE sets itself as the most reliable method
for fair, high quality image generation.

6 CONCLUSION

We introduced C-t3VAE, a class-conditional generative model that leverages Student’s t-
distributions in the latent space with a theoretically derived balanced sampling scheme. This ap-
proach improves fairness and sample quality under class imbalance. Extensive experiments on
SVHN-LT, CIFAR100-LT, and CelebA demonstrate that, after the optimization of the β, ν and τ
hyper-parameters, C-t3VAE consistently outperforms the t3VAE and conditional VAE baselines,
achieving up to a 15-point FID improvement on highly imbalanced datasets. Per-class Precision,
Recall, and F1 evaluations confirm improved mode coverage, particularly in tail classes. More-
over, we identify ρ ≥ 5 as the regime where C-t3VAE outperforms Gaussian-prior models, with the
performance gap widening as ρ increases. For ρ < 5, C-t3VAE remains competitive with C-VAE.

Beyond generative performance, C-t3VAE contributes to fairness-aware modeling by promoting
balanced latent sampling and better mode coverage in underrepresented classes. Future work will
explore extending C-t3VAE to multi-label problems and integration with Latent Diffusion models.
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Appendix for
”Conditional-t3VAE: Equitable Latent Space Allocation

for Fair Generation”

A γ-POWER DIVERGENCE CORRECTED DERIVATION

In this section, we present our correction of the previously derived form of the γ-power divergence
in (Kim et al., 2024). We start from the integrals derived in (Kim et al., 2024) and keep a similar
notation :

∫
q(x)p(x)γdx = Cγ

ν,d|Σ1|−
γ
2

(
1 +

1

ν − 2
Tr(Σ−1

1 Σ0) +
1

ν
(µ0 − µ1)

⊤Σ−1
1 (µ0 − µ1)

)
∫

q(x)1+γdx = Cγ
ν,d|Σ0|−

γ
2

(
1 +

d

ν − 2

)
∫

p(x)1+γdx = Cγ
ν,d|Σ1|−

γ
2

(
1 +

d

ν − 2

)

Combining these formulas gives a similar enthropy Hγ to the one derived in (Kim et al., 2024):

Hγ(q) = −C
γ

1+γ

ν,d |Σ0|−
γ

2(1+γ)

(
1 +

d

ν − 2

) 1
1+γ

.

However, the cross-entropy Cγ takes the following form :

Cγ(q, p) = −C
γ

1+γ

ν,d |Σ0|
γ2

2(1+γ) |Σ1|−
γ
2

(
1 +

1

ν − 2
Tr(Σ−1

1 Σ0) +
1

ν
(µ0 − µ1)

⊤Σ−1
1 (µ0 − µ1)

)
,

In red, we highlight the main difference to the formula derived in (Kim et al., 2024). Hγ(q) and
Cγ(q, p) combine to give :

Dγ(q∥p) = −
C

γ
1+γ

ν,d

γ

(
1 +

d

ν − 2

)− γ
1+γ

[
− |Σ0|−

γ
2(1+γ)

(
1 +

d

ν − 2

)

+ |Σ1|−
γ
2 |Σ0|

γ2

2(1+γ)

(
1 +

Tr
(
Σ−1

1 Σ0

)
ν − 2

+
(µ0 − µ1)

⊤Σ−1
1 (µ0 − µ1)

ν

)]
.

B PRIORS DERIVATIONS

In this section, we present our derivations of the different prior distributions defining our proposed
C-t3-VAE model. Starting from the proposed joint distribution :

pθ(x, z|y) = Cν,m+n

|Σx|
1
2 |Σy|

1
2

[
1 +

(z−µy)
⊤Σ−1

y (z−µy)+(x−µθ(z))
⊤Σ−1

x (x−µθ(z))

ν

]− ν+m+n
2

.
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To calculate the prior distribution on the latent space we marginalize out x as follows :

p(z|y) =
∫

pθ(x, z|y)dx

=

∫
Cν,m+n|Σx|−

1
2 |Σy|−

1
2

[
1 +

(z − µy)
⊤Σ−1

y (z − µy)

ν

+
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

ν

]− ν+m+n
2

dx

= Cν,m+n|Σx|−
1
2 |Σy|−

1
2

[
1 +

1

ν
(z − µy)

⊤Σ−1
y (z − µy)

]− ν+m+n
2

×
∫ (

1 +
(1 + ν−1m)(x− µθ(z))

⊤Σ−1
x (x− µθ(z))(

1 + ν−1(z − µy)⊤Σ
−1
y (z − µy)

)
(ν +m)

)− ν+m+n
2

dx.

Given that :∫
Cν+m,n|Σ|−

1
2

(
1 +

(x− µ)⊤Σ−1(x− µ)

ν +m

)− ν+m+n
2

dx = 1

⇒
∫ (

1 +
(x− µ)⊤Σ−1(x− µ)

ν +m

)− ν+m+n
2

dx = C−1
ν+m,n|Σ|

1
2 ,

and when setting :

Σ−1 =
(1 + ν−1m)Σ−1

x

1 + ν−1(z − µy)⊤Σ
−1
y (z − µy)

,

We get :∫ (
1 +

(1 + ν−1m)(x− µθ(z))
⊤Σ−1

x (x− µθ(z))(
1 + ν−1(z − µy)⊤Σ

−1
y (z − µy)

)
(ν +m)

)− ν+m+n
2

dx

= C−1
ν+m,n

∣∣∣∣∣
(

(1 + ν−1m)Σ−1
x

1 + ν−1(z − µy)⊤Σ
−1
y (z − µy)

)−1
∣∣∣∣∣
1
2

= C−1
ν+m,n

∣∣∣∣∣1 + ν−1(z − µy)
⊤Σ−1

y (z − µy)

(1 + ν−1m)
Σx

∣∣∣∣∣
1
2

= C−1
ν+m,n

(
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

1 + ν−1m

)n
2

|Σx|
1
2 .

Therefore, p(z|y) simplifies to :

p(z|y) = Cν,m+n|Σx|−
1
2 |Σy|−

1
2

[
1 +

1

ν
(z − µy)

⊤Σ−1
y (z − µy)

]− ν+m+n
2

C−1
ν+m,n |Σx|

1
2

×

(
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

1 + ν−1m

)n
2

= Cν,m+nC
−1
ν+m,n

(
1 +

m

ν

)−n
2 |Σy|−

1
2

[
1 +

1

ν
(z − µy)

⊤Σ−1
y (z − µy)

]− ν+m
2

= Cν,m|Σy|−
1
2

[
1 +

1

ν
(z − µy)

⊤Σ−1
y (z − µy)

]− ν+m
2

= tm(z|µy,Σy, ν).
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Here and in the following, we use the fact

Cν,m+n = Cν+m,nCν,m

(
1 +

m

ν

)n
2

.

Besides, the prior distribution over the output of the decoder model p(x|z, y) can be derived as
follows :

pθ(x|z, y) =
pθ(x, z|y)
p(z|y)

=
Cν,m+n

|Σx|
1
2 |Σy|

1
2

[
1 +

(z−µy)
⊤Σ−1

y (z−µy)+(x−µθ(z))
⊤Σ−1

x (x−µθ(z))

ν

]− ν+m+n
2

× C−1
ν,m|Σy|

1
2

[
1 +

1

ν
(z − µy)

⊤Σ−1
y (z − µy)

] ν+m
2

= Cν+m,n|Σx|−
1
2

(
1 +

m

ν

)n
2

[
1 +

1

ν
(z − µy)

⊤Σ−1
y (z − µy)

]−n
2

×

(
1 +

(1 + ν−1m)(x− µθ(z))
⊤Σ−1

x (x− µθ(z))(
1 + ν−1(z − µy)⊤Σ

−1
y (z − µy)

)
(ν +m)

)− ν+m+n
2

= tn

(
x

∣∣∣∣∣µθ(z),

(
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

)
(1 + ν−1m)

Σx, ν +m

)
.

C LOSS FUNCTION DERIVATION

In this section, we derive the loss function of C-t3-VAE. We start by calculating the different double
integrals

∫∫
pθ(x, z|y)1+γdxdz,

∫∫
qϕ(x, z|y)pθ(x, z|y)γdxdz, and

∫∫
qϕ(x, z|y)1+γdxdz.

Firstly,∫∫
pθ(x, z|y)1+γdxdz = Ez∼p(z|y)Ex∼pθ(x|z,y) [pθ(x, z|y)

γ ]

= Cγ
ν,m+n|Σx|−

γ
2 |Σy|−

γ
2 EzEx

[
1 +

(z − µy)
⊤Σ−1

y (z − µy)

ν

+
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

ν

]

= Cγ
ν,m+n|Σx|−

γ
2 |Σy|−

γ
2 Ez

[
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

+ ν−1Ex

[
Tr(Σ−1

x (x− µθ(z))(x− µθ(z))
⊤)
] ]

= Cγ
ν,m+n|Σx|−

γ
2 |Σy|−

γ
2 Ez

[
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

+ ν−1 Tr

(
Σ−1

x Σx
ν +m

ν +m− 2

(
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

)
(1 + ν−1m)

)]
Here, we use the following identities

(k − p)⊤H−1(k − p) = Tr
(
H−1(k − p)(k − p)⊤

)
; E[Tr(·)] = Tr(E[·])

and the covariance of a multivariate Student’s t-distribution p ∼ t(µ; Σ; ν) is ν
ν−2Σ. Consequently,

and after a few simplifications we get
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∫∫
pθ(x, z|y)1+γdxdz = Cγ

ν,m+n|Σx|−
γ
2 |Σy|−

γ
2 Ez

[
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

+
n

ν +m− 2

(
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

) ]
= Cγ

ν,m+n|Σx|−
γ
2 |Σy|−

γ
2 Ez

[(
1 +

n

ν +m− 2

)

×
(
1 + ν−1(z − µy)

⊤Σ−1
y (z − µy)

)]

= Cγ
ν,m+n|Σx|−

γ
2 |Σy|−

γ
2

(
1 +

n

ν +m− 2

)
×
(
1 + ν−1Ez

[
(z − µy)

⊤Σ−1
y (z − µy)

] )
= Cγ

ν,m+n|Σx|−
γ
2 |Σy|−

γ
2

(
1 +

n

ν +m− 2

)
×
(
1 + ν−1Ez

[
Tr(Σ−1

y (z − µy)(z − µy)
⊤] )

= Cγ
ν,m+n|Σx|−

γ
2 |Σy|−

γ
2

(
1 +

n

ν +m− 2

)(
1 +

m

ν − 2

)
= Cγ

ν,m+n|Σx|−
γ
2 |Σy|−

γ
2

(
1 +

m+ n

ν − 2

)
.

Secondly,

∫∫
qϕ(x, z|y)pθ(x, z|y)γdxdz = Ex∼pdata

Ez∼q(z|x) [pθ(x, z|y)γ ]

= Cγ
ν,m+n|Σx|−

γ
2 |Σy|−

γ
2 ExEz

[
1 +

(z − µy)
⊤Σ−1

y (z − µy)

ν

+
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

ν

]

= Cγ
ν,m+n|Σx|−

γ
2 |Σy|−

γ
2 Ex

[
1 +

1

ν
Ez

[
(z − µy)

⊤Σ−1
y (z − µy)

]
+

1

ν
Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

] ]
.

Simplifying Ez

[
(z − µy)

⊤Σ−1
y (z − µy)

]
:

Ez

[
(z − µy)

⊤Σ−1
y (z − µy)

]
= Ez

[
Tr
(
Σ−1

y (z − µy)(z − µy)
⊤)]

= Ez

[
Tr
(
Σ−1

y (z − µ(x) + µ(x)− µy)(z − µ(x) + µ(x)− µy)
⊤)]

= Ez[Tr(Σ
−1
y ((z − µ(x))(z − µ(x))⊤ + (z − µ(x))(µ(x)− µy)

⊤

+ (µ(x)− µy)(z − µ(x))⊤ + (µ(x)− µy)(µ(x)− µy)
⊤))]

=
ν

ν + n− 2
Tr
(
Σ−1

y Σϕ(x)
)
+ (µ(x)− µy)

⊤Σ−1
y (µ(x)− µy).
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Then,
∫∫

q(x, z|y)pθ(x, z|y)γdxdz simplifies to :

∫∫
qϕ(x, z|y)pθ(x, z|y)γdxdz = Cγ

ν,m+n|Σx|−
γ
2 |Σy|−

γ
2 Ex

[
1 +

1

ν
Ez

[
(z − µy)

⊤Σ−1
y (z − µy)

]
+

1

ν
Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

] ]

∫∫
qϕ(x, z|y)pθ(x, z|y)γdxdz = Cγ

ν,m+n|Σx|−
γ
2 |Σy|−

γ
2 |Σy|−

1
2 Ex

[
1 +

1

ν

ν Tr
(
Σ−1

y Σϕ(x)
)

ν + n− 2

+
(µ(x)− µy)

⊤Σ−1
y (µ(x)− µy)

ν

+
Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

]
ν

]
.

Finally, the third term
∫∫

q(x, z|y)1+γdxdz is

∫∫
qϕ(x, z|y)1+γdxdz = Cγ

ν+n,m

(
1 +

n

ν

) γm
2

(
1 +

m

ν + n− 2

)∫
|Σϕ(x)|−

γ
2 pdata(x)

1+γdx,

where this last double integral is equal to the one computed for the t3-VAE.

Equipped with these formulas we can calculate the entropy Hγ , cross-entropy Cγ and the γ-
divergence D(q||p) of our model. Firstly,

Hγ = −
(∫∫

q(x, z)1+γdxdz

) 1
1+γ

= −C
γ

1+γ

ν+n,m

(
1 +

n

ν

) γm
2(1+γ)

(
1 +

m

ν + n− 2

) 1
1+γ

(∫
|Σϕ(x)|−

γ
2 pdata(x)

1+γdx

) 1
1+γ

,

Which is similar to the one calculated in the t3VAE model.

Secondly,

Cγ = −
(∫∫

q(x, z|y)pθ(x, z|y)γdxdz
)(∫∫

pθ(x, z|y)1+γ

)− γ
1+γ

= −Cγ
ν,m+n|Σx|−

γ
2 |Σy|−

γ
2 −

1
2Ex

[
1 +

1

ν

ν Tr
(
Σ−1

y Σϕ(x)
)

ν + n− 2
+

(µ(x)− µy)
⊤Σ−1

y (µ(x)− µy)

ν

+
1

ν
Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

] ](
Cγ

ν,m+n|Σx|−
γ
2 |Σy|−

γ
2

(
1 +

m+ n

ν − 2

))− γ
1+γ

= −
(
Cγ

ν,m+n|Σx|
−γ
2 |Σy|

−γ
2

) 1
1+γ |Σy|−

1
2

(
1 +

m+ n

ν − 2

) −γ
1+γ

Ex

[
1 +

1

ν

(
ν Tr

(
Σ−1

y Σϕ(x)
)

ν + n− 2

+ (µ(x)− µy)
⊤Σ−1

y (µ(x)− µy) + Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

])]
.
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Hence, we can define our divergence as :

Dγ(q||p) =
C1

γ

(∫
|Σϕ(x)|−

γ
2 pdata(x|y)1+γdx

) 1
1+γ

− C2

γ
Ex

[
1 +

1

ν

(
ν Tr

(
Σ−1

y Σϕ(x)
)

ν + n− 2

+ (µ(x)− µy)(µ(x)− µy)
⊤ + Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

])]

= Ex

[
C1

γ
|Σϕ(x)|−

γ
2(1+γ) − C2

γ

(
1 +

1

ν

(
ν

ν + n− 2
Tr
(
Σ−1

y Σϕ(x)
)

+ (µ(x)− µy)
⊤Σ−1

y (µ(x)− µy) + Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

]))
,

]

with C1 and C2 being :

C1 = C
γ

1+γ

ν+n,m

(
1 +

n

ν

) γm
2(1+γ)

(
1 +

m

ν + n− 2

) 1
1+γ

C2 =
(
Cγ

ν,m+n|Σx|−
γ
2 |Σy|−

2γ+1
2

) 1
1+γ

(
1 +

m+ n

ν − 2

)− γ
1+γ

.

On that account, the loss function for a class y is :

L(γ, y) = −νγ

C2
· Dγ(q||p)

= Ex

[
Ez

[
(x− µθ(z))

⊤Σ−1
x (x− µθ(z))

]
+ (µ(x)− µy)

⊤Σ−1
y (µ(x)− µy)

+
ν

ν + n− 2
Tr
(
Σ−1

y Σϕ(x)
)
− νC1

C2
|Σϕ(x)|−

γ
2(1+γ)

]
,

and by taking Σx = σ2I and Σy = I , we obtain :

L(γ, y) = Ex

[
Ez

[
||x− µθ(z)||2

]
σ2

+ ||µ(x)− µy)||2 +
ν Tr (Σϕ(x))

ν + n− 2
− νC1

C2
|Σϕ(x)|−

γ
2(1+γ)

]
.

D SAMPLING DISTRIBUTION VARIANCE DERIVATION

In this section, we present the derivation of τ2 used in the sampling of t3VAE and C-t3VAE model.
We present only the derivation for the C-t3-VAE and it is identical to the one for the t3-VAE since
the former model is a generalization of the later.

First, we simplify the divergence D(q∥p⋆) :

D(q∥p⋆) = −
C

γ
1+γ

ν+n,m

γ

(
1 +

m

ν + n− 2

)− γ
1+γ

[
−
(
1 + ν−1n

) γm
2(1+γ) |Σϕ(x)|−

γ
2(1+γ)

×
(
1 +

m

ν + n− 2

)
+ |τ2I|−

γ
2 |
(
1 + ν−1n

)−1
Σϕ(x)|

γ2

2(1+γ)

×

1 +
Tr
(
τ−2

(
1 + ν−1n

)−1
Σϕ(x)

)
ν + n− 2

+
τ−2

ν + n
∥µ(x)− µy)∥2

]
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Here, we use the fact that |αA|δ = αδn|A|δ where n is the dimension of the square A matrix. Also,
we use Tr(αA) = αTr(A). After simplification and rearranging we get :

D(q∥p⋆) = − 1

γ
C

γ
1+γ

ν+n,m

(
1 +

m

ν + n− 2

)− γ
1+γ

[
−
(
1 + ν−1n

) γm
2(1+γ) |Σϕ(x)|−

γ
2(1+γ)

×
(
1 +

m

ν + n− 2

)
+ τ−γm

(
1 + ν−1n

)− γ2m
2(1+γ) |Σϕ(x)|

γ2

2(1+γ)(
1 +

τ−2
(
1 + ν−1n

)−1

ν + n− 2
Tr (Σϕ(x)) +

τ−2

ν + n
∥µ(x)− µy)∥2

)]

= − 1

γ
C

γ
1+γ

ν+n,m

(
1 +

m

ν + n− 2

)− γ
1+γ

[
−
(
1 + ν−1n

) γm
2(1+γ) |Σϕ(x)|−

γ
2(1+γ)

×
(
1 +

m

ν + n− 2

)
+ ν−1τ−2−γm

(
1 + ν−1n

)− γ2m
2(1+γ)

−1 |Σϕ(x)|
γ2

2(1+γ)

(
κ+

ν

ν + n− 2
Tr (Σϕ(x)) + ∥µ(x)− µy)∥2

)]

= − 1

γ
C

γ
1+γ

ν+n,m

(
1 +

m

ν + n− 2

)− γ
1+γ τ−2−γm

ν

(
1 + ν−1n

) −γ2m
2(1+γ)

−1 |Σϕ(x)|
γ2

2(1+γ)

×

[
− ντ2+γm

(
1 + ν−1n

) γ2m+γm
2(1+γ)

+1 |Σϕ(x)|
−γ2

2(1+γ) |Σϕ(x)|
−γ

2(1+γ)
ν + n+m− 2

ν + n− 2

+ κ+
ν

ν + n− 2
Tr (Σϕ(x)) + ∥µ(x)− µy)∥2

]
,

with:

κ = ντ2
(
1 + ν−1n

)
.

Then, we match the result to the loss function in Eq. (10) to get :

τ2+γm
(
1 + ν−1n

) γm
2 +1 |Σϕ(x)|−

γ2

2(1+γ)

(
1 +

m

ν + n− 2

)
=

C1

C2
.

Moreover, we have :

C1

C2
= C

γ
1+γ

ν+n,m

(
1 +

n

ν

) γm
2(1+γ)

(
1 +

m

ν + n− 2

) 1
1+γ

C
− γ

1+γ

ν,m+nσ
nγ
1+γ

(
1 +

m+ n

ν − 2

) γ
1+γ

= σ
nγ
1+γ C

γ
1+γ

ν+n,mC
− γ

1+γ

ν,m+n

(
1 +

n

ν

) γm
2(1+γ)

(
1 +

m

ν + n− 2

) 1
1+γ

(
1 +

m+ n

ν − 2

) γ
1+γ

= σ
nγ
1+γ C

−γ
1+γ
ν,n

(
1 +

m

ν + n− 2

) 1
1+γ

(
1 +

m+ n

ν − 2

) γ
1+γ

.

Consequently we obtain :

τ2+γm
(
1 + ν−1n

) γm
2 +1 |Σϕ(x)|−

γ2

2(1+γ)

(
1 +

m

ν + n− 2

)
= σ

nγ
1+γ C

−γ
1+γ
ν,n

(
1 +

m

ν + n− 2

) 1
1+γ

(
1 +

m+ n

ν − 2

) γ
1+γ
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τ2+γm =
σ

nγ
1+γ

C
γ

1+γ
ν,n

(
1 + ν−1n

)−γm
2 −1 |Σϕ(x)|

γ2

2(1+γ)

(
1 +

m

ν + n− 2

)−1(
1 +

m

ν + n− 2

) 1
1+γ

×
(
1 +

m+ n

ν − 2

) γ
1+γ

=
σ

nγ
1+γ

C
γ

1+γ
ν,n

(
1 + ν−1n

)−γm
2 −1 |Σϕ(x)|

γ2

2(1+γ)

(
1 +

m

ν + n− 2

)− γ
1+γ

(
1 +

m+ n

ν − 2

) γ
1+γ

= σ
nγ
1+γ C

−γ
1+γ
ν,n

(
1 + ν−1n

)− γm
2 −1 |Σϕ(x)|

γ2

2(1+γ)

(
ν + n− 2

ν − 2

) γ
1+γ

=
(
1 + ν−1n

)− γm
2 −1

(
σnC−1

ν,n|Σϕ(x)|
γ
2

ν + n− 2

ν − 2

) γ
1+γ

.

Hence, we get :

τ2 =
(
1 + ν−1n

)− γm+2
γm+2

(
σnC−1

ν,n|Σϕ(x)|
γ
2
ν + n− 2

ν − 2

) 2γ
(1+γ)(2+γm)

=
(
1 + ν−1n

)−1
(
σnC−1

ν,n|Σϕ(x)|
γ
2
ν + n− 2

ν − 2

) 2γ
(1+γ)(2+γm)

,

which is the form of τ2 we report in Eq. (9).

E EXPERIMENTAL SETUP DETAILS

E.1 DATASETS

We conduct experiments on three datasets notably SVHN-LT (Netzer et al., 2011),
CIFAR100-LT (Krizhevsky, 2009; Cao et al., 2019) and CelebA (Liu et al., 2015) each chosen
to highlight different challenges related to generative modeling under class imbalance and varying
visual complexity.

• SVHN-LT : This dataset is comprised of colored images of digits from 0 to 9 of size
32 × 32 × 3. It serves as our controlled experimental setting. While simple enough for
all models to converge, it is rich enough to reflect performance differences. However, as
this dataset is naturally imbalanced, we balance the number of images across classes to
have more control over the imposed imbalance ratio. In Table 2 we provide the number of
images present in the dataset before balancing.

Table 2: The Number of images in the SVHN dataset for the train and test sets before balancing.
The value in bold is the one used to balance the dataset.

Class 0 1 2 3 4 5 6 7 8 9

Train set 4948 13861 10585 8497 7458 6882 5727 5595 5045 4656
Test set 1744 5099 4149 2882 2523 2384 1977 2019 1660 1595

• CIFAR100-LT : This balanced dataset comprised of colored images of 100 classes of
different natural objects. The images are of size 32× 32× 3 presents high variability with
100 fine-grained classes. In the most extreme imposed imbalance setting, tail classes may
contain as few as five examples. Though the images remain low-resolution, this setting
stresses the models’ robustness in the face of sparse data and various categories.

• CelebA : This dataset enables evaluation in real-world class-imbalance scenarios using
attribute labels (e.g., Mustache, Young). It also introduces the complexity of higher res-
olution images (178 × 218 × 3), testing the scalability of our models. We select four
binary attributes (Mustache, Young, Male, Smiling) for evaluation, with test sets balanced
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by down-sampling the larger class. In Table 3, we provide the number of images for each
chosen attribute in this dataset.

Table 3: The Number of images in the CelebA dataset for the train and test sets for the Mustache,
Young, Male and Smiling attributes.

Mustache No Mustache Young Old Male Female Smiling Not Smiling

Train set 6642 156128 126788 35982 68261 94509 78080 84690
Test set 722 19190 15114 4848 7715 12247 9987 9975

E.2 DATA PREPROCESSING

• SVHN-LT Dataset For both training and testing, we crop each class to the minimum num-
ber of samples available across all classes. The only data augmentation applied is a random
horizontal flip with 50% probability.

• CIFAR100-LT Dataset We use the dataset in its entirety without class filtering. As with
SVHN-LT, we apply a random horizontal flip with 50% probability for data augmentation.

• CelebA Dataset We use the full dataset and apply a center crop of 160×160 to each image
and then resize to 128×128. A random horizontal flip with 50% probability is also applied.

E.3 MODEL ARCHITECTURE

Our encoder-decoder models follow a modular block design. Each encoder block consists of a
convolutional layer, followed by 2D batch normalization and ReLU activation. Decoder blocks
mirror this structure but replace convolutional layers with transposed convolutions.

• SVHN-LT and CIFAR100-LT : Encoders consist of four convolutional blocks with chan-
nels {64, 128, 256, 512}, followed by two linear layers for estimating mean and covariance.
The decoder uses three transposed convolutional blocks with channel sizes {128, 64, 32},
ending with a three-channel convolution and Sigmoid activation.

• CelebA : The CelebA encoder includes six convolutional blocks with channels {64, 128,
256, 512, 512, 512}, ending with two linear layers. The decoder has six transposed convo-
lutional layers with channels {512, 512, 256, 128, 64, 32}, followed by a final convolutional
layer and Sigmoid activation.

E.4 TRAINING DETAILS

All models are trained using the AdamW optimizer with a learning rate of 10−3 for 150 epochs. We
use a batch size of 64 for SVHN-LT and CIFAR100-LT, and 128 for CelebA.

F HYPERPARAMETER TUNING

We present the hyperparameter tuning process used across all evaluated models. We first optimize
β, then ν, and finally τ , yielding the models’ results reported in Table 1.

F.1 β OPTIMIZATION

We perform a hyperparameter study over β for all tested models. Unless otherwise noted, we use
the theoretically derived τ2 and set ν = 10.

F.1.1 ON THE SVHN-LT DATASET

As shown in Figure 6, the optimal β values for Student’s t-distribution based models lies in the
range β ∈ [0.4, 0.6] whereas it lies in the β ∈ [0.05, 0.07] range for Gaussian-based models. This
is because the regularization term in the γ-power divergence loss is ten times larger than the KL
divergence. Figure 6 also shows that FID performance is highly sensitive to β in the Gaussian
setting, requiring careful tuning which is not the case for Student’s t-distribution based models.
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Finally, C-t3VAE achieves the best FID surpassing the t3VAE and the C-VAE for all imbalance
settings.

(a) SVHN-LT ρ=100 (b) SVHN-LT ρ=50

(c) SVHN-LT ρ=10 (d) SVHN-LT ρ=1

Figure 6: Variability of the FID as a function of the β hyperparameter for the VAE, C-VAE, t3VAE
and C-t3VAE on the SVHN-LT dataset.

F.1.2 ON THE CIFAR100-LT DATASET

From Figure 7, we observe that Student’s t-distribution based models obtain the best performance
in terms of FID at β = 0.2 for CIFAR100-LT dataset. However, for the Gaussian-based models,
the optimal value is much lower with β ∈ [0.02, 0.05]. The reason for this is that on this dataset
too the KL regularization term is ten times smaller than the regularization terms present in the γ-
power divergence loss. Additionally, we notice that C-VAE performs slightly better, likely due to the
complexity of the dataset preventing full convergence to the imposed latent distribution. We further
investigate this hypothesis in the τ analysis below.

(a) CIFAR100-LT ρ=100 (b) CIFAR100-LT ρ=50
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(c) CIFAR100-LT ρ=10 (d) CIFAR100-LT ρ=1

Figure 7: Variability of the FID as a function of the β hyperparameter for the VAE, C-VAE, t3VAE
and C-t3VAE on the CIFAR100-LT dataset.

F.1.3 ON THE CELEBA DATASET

For the CelebA dataset, we focus only on β optimization for Student’s t-distribution based models.
As for the Gaussian-based models, we set β = 0.1, because as shown in Table 1 the optimization
of the β hyperparameter has marginal impact on the FID for the CelebA dataset, which is not the
case for the SVHN-LT and CIFAR100-LT dataset. Hence, we did not deem necessary to perform a
hyper-parameter optimization over β for the Gaussian based models. Nevertheless, from Figure 8
we see that β has marginal effect on the Student’s t-distribution based models too, likely due to the
low intra-class variability.

(a) CelebA - Mustache (b) CelebA - Young
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(c) CelebA - Male (d) CelebA - Smiling

Figure 8: Variability of the FID as a function of the β hyperparameter for the t3VAE and C-t3VAE on
the CelebA dataset. The horizontal lines for the VAE and C-VAE models are for the best performing
model between β = 0.1 and β = 1.

F.2 ν OPTIMIZATION

Table 4 shows results from tuning the degrees of freedom parameter ν in C-t3VAE on both
SVHN-LT and CIFAR100-LT across all imbalance ratios, using the optimal β from the previous
study. On average, ν = 10 performs well, consistent with prior work (Kim et al., 2024). However,
performance can be further improved by selecting ν within the range [2.5, 20]. Still, no major influ-
ence of hyper-parameter ν on the generative FID can be observed similarly to what was observed by
Kim et al. (2024) for the reconstruction FID.

SVHN-LT CIFAR100-LT
ν 100 50 10 1 100 50 10 1

2.1 45.50 44.51 42.96 46.23 121.28 122.03 121.93 123.41
2.5 45.76 43.96 45.81 45.40 119.15 120.19 120.10 124.83
5 44.89 42.60 45.03 46.33 120.52 123.21 124.29 123.71
10 44.59 44.37 43.48 44.49 119.83 120.65 122.96 123.95
20 44.02 43.89 42.01 44.75 121.48 118.41 124.58 126.13
50 48.03 46.39 43.59 45.57 119.58 126.36 124.38 127.48
100 45.97 44.63 43.74 47.52 123.26 122.90 127.42 125.67

Table 4: Variability of the FID as a function of the standard deviation ν for the C-t3VAE model on
the SVHN-LT and CIFAR100-LT datasets.

F.3 τ OPTIMIZATION

In this section, we evaluate the effect of the τ parameter on the SVHN-LT, CIFAR100-LT and
CelebA datasets for all imbalance ratios while setting β and ν to their previously optimized values.
As shown in Figure 9, the optimal τ for SVHN-LT aligns closely with our theoretical prediction.
In contrast, CIFAR100-LT consistently benefits from a larger τ = 0.4, yielding improved FID
across all imbalance settings and outperforming C-VAE. On CelebA, τ has minimal impact and the
most likely value is τ ≈ 0.3. This value is between the value observed in for the SVHN-LT and
CIFAR100-LT, as is mostly liked to the complexity and the entropy of the dataset where the more
complex the data is the higher the value of τ is required.
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(a) SVHN-LT ρ=50 (b) SVHN-LT ρ=10 (c) SVHN-LT ρ=1

(d) CIFAR100-LT ρ=50 (e) CIFAR100-LT ρ=10 (f) CIFAR100-LT ρ=1

(g) CelebA Young (h) CelebA Male (i) CelebA Smiling

Figure 9: Variability of the FID as a function of the standard deviation τ2 for the t3VAE and
C-t3VAE. In horizontal dashed lines is the FID value of the best performing VAE and C-VAE
on each dataset. In vertical dashed lines is the theoretically identified value of τ .

G PER-CLASS EVALUATION

In this section, we assess the conditional models’ per-class Recall, Precision, and F1 metrics under
all imbalance settings and for all tested datasets after optimization of all hyper-parameters.

From the following figures in Table 5 and 6, we see that the C-t3VAE consistently improves Recall
and mode coverage in highly imbalanced settings with ρ = 100 and ρ = 50. This comes at a minor
Precision cost but results in significantly better F1 scores across most classes. However, on balanced
or mildly imbalanced datasets, its performance remains competitive with Gaussian-based models.
This observation is valid for both the SVHN-LT and CIFAR100-LT but is more pronounced on the
later.
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Table 5: Per-class generative metrics on SVHN-LT after optimization of β, ν and τ hyper-
parameters.

ρ Recall Precision F1 score

100

50

10

1
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Table 6: Per-class generative metrics on CIFAR100-LT after optimization of β, ν and τ hyper-
parameters, we focus on the top 5 head and tail classes.

ρ Recall Precision F1 score

100

50

10

1
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