
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFER LEARNING IN SCALABLE GRAPH NEURAL
NETWORK FOR IMPROVED PHYSICAL SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, Graph Neural Network (GNN) based models have shown promis-
ing results in simulating physics of complex systems. However, training dedicated
graph network based physics simulators can be costly, as most models are confined
to fully supervised training, which requires extensive data generated from tradi-
tional physics simulators. To date, how transfer learning could improve the model
performance and training efficiency has remained unexplored. In this work, we
introduce a pre-training and transfer learning paradigm for graph network simula-
tors. We propose the scalable graph U-net (SGUNET). Incorporating an innovative
depth-first search (DFS) pooling, the SGUNET is adaptable to different mesh sizes
and resolutions for various simulation tasks. To enable the transfer learning be-
tween differently configured SGUNETs, we propose a set of mapping functions to
align the parameters between the pre-trained model and the target model. An extra
normalization term is also added into the loss to constrain the difference between
the pre-trained weights and target model weights for better generalization per-
formance. To pre-train our physics simulator we created a dataset which includes
20,000 physical simulations of randomly selected 3D shapes from the open source
A Big CAD (ABC) dataset. We show that our proposed transfer learning meth-
ods allow the model to perform even better when fine-tuned with small amounts
of training data than when it is trained from scratch with full extensive dataset.
On the 2D Deformable Plate benchmark dataset, our pre-trained model fine-tuned
on 1/16 of the training data achieved an 11.05% improvement in position RMSE
compared to the model trained from scratch.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown promising results in simulating physics of complex
systems on unstructured meshes Pfaff et al. (2021); Allen et al. (2022a); Rubanova et al. (2022);
Allen et al. (2022c). Existing works stack message passing (MP) blocks to model propagation of
physical information. Different pooling operations Li et al. (2020); Cao et al. (2023) and U-Net like
architectures Gladstone et al. (2023); Deshpande et al. (2024) have been introduced to better solve
the multi-scale challenges in different simulation tasks. However, despite their potential, current
GNN-based methods rely heavily on supervised training approaches. Collecting extensive annotated
data typically involves using traditional Finite Element Analysis (FEA) solvers Han et al. (2022);
Fortunato et al. (2022); Allen et al. (2022b), 3D engines Greff et al. (2022), and real-life video
clips Lopez-Guevara et al. (2024). The substantial cost of acquiring the training data has constrained
the scalability and practicality of GNN-based simulators.

On the other hand, transfer learning has revolutionized fields like computer vision (CV) Reddy &
Juliet (2019); Rezende et al. (2017) and natural language processing (NLP) Radford et al. (2019);
Mann et al. (2020); Touvron et al. (2023), where models pre-trained on large datasets are fine-
tuned for specific tasks, leading to remarkable improvements in training efficiency and the model’s
performance Zhuang et al. (2020). However, for GNN-based simulators, network architecture hy-
perparameters, such as number of message passing steps and pooling ratios, must be specifically
tailored to the mesh resolution of the target problem Fortunato et al. (2022); Cao et al. (2023). As
a result, pre-trained models are difficult to load and fine-tune directly for downstream GNN-based
simulators. It remains unexplored how to apply transfer learning to GNN-based physics simulators.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we introduce a transfer learning paradigm applied to the proposed scalable graph U-net
(SGUNET) for physical simulations. The SGUNET follows the Encoder-Processor-Decoder design
and incorporates an innovative DFS pooling operation to handle various mesh receptive fields. It
is designed to be modular and configurable, making it adaptable to different mesh sizes and reso-
lutions across various simulation tasks. To enable transfer learning between differently configured
SGUNETs, we propose a set of mapping functions to align the parameters between the pre-trained
model and the target model. An extra normalization term is also added into the loss to constrain the
difference between the pre-trained weights and target model weights for better generalization perfor-
mance. As there is no existing dataset available for pre-training, we created a dataset named ABC
Deformable (ABCD) for pre-training. The dataset includes approximately 20,000 physical simu-
lations of deformable bodies, whose shapes are sampled from the open-source ABC dataset Koch
et al. (2019).

We evaluated our proposed methods over two public datasets, namely the 2D Deformable Plate
Linkerhägner et al. (2023) and a more complex 3D Deforming Plate Pfaff et al. (2021). We set
MESHGRAPHNET (MGN) Pfaff et al. (2021) training from scratch as the baseline. On 2D De-
formable Plate, our model pre-trained by ABCD and fine-tuned on 1/16 of the training data could
achieve an 11.05% improvement in position RMSE compared to the model trained from scratch.
On 3D Deforming Plate, our pre-trained model reached the same level of performance when fine-
tuned with only 1/8 of the training data in 40% of the training time. Applying the transfer learning
approach to MGN also lead to better performance with less training data and shorter training time.

2 RELATED WORK

Graph Neural Networks (GNNs) have emerged as a powerful tool for simulating complex physical
systems, particularly on unstructured meshes Pfaff et al. (2021); Allen et al. (2022a); Rubanova
et al. (2022); Allen et al. (2022c;b). However, these methods predominantly rely on supervised
training, which requires extensive annotated data. Common approaches involve generating data
through analytical solvers like OpenFOAM Weller et al. (1998) and ArcSim Narain et al. (2012).
Additionally, some works use real-world observations to train models Whitney et al. (2023); Allen
et al. (2022c). Early work, such as MGN Pfaff et al. (2021), adapts the Encoder-Process-Decode
architecture Sanchez-Gonzalez et al. (2020) to mesh data, with the Process module implemented as
a GNN for effective message passing. Variants like EA-GNN and M-GNN Gladstone et al. (2023)
introduce enhancements such as virtual edges and multi-resolution graphs to improve efficiency
and handle long-range interactions. Additionally, the transformer architecture has been explored
in mesh-based physical simulations. Hybrid models like the GMR-Transformer-GMUS Han et al.
(2022) and HCMT Yu et al. (2023) combine GNNs to learn local rules and transformers to capture
global context and long-term dependencies over roll-out trajectories. Unlike most methods that
directly predict future states from input data, C-GNS Rubanova et al. (2022) employs a GNN to
model system constraints and computes future states by solving an optimization problem based on
these learned constraints.

Transfer learning, which transfers knowledge from a source domain to a target domain, has gained
prominence in deep learning for improving performance and reducing the need for annotated data
Reddy & Juliet (2019); Rezende et al. (2017); Mann et al. (2020); Touvron et al. (2023). Strategies
typically involve parameter control, either by sharing parameters between models or enforcing sim-
ilarity through techniques like l2-norm penalties Zhuang et al. (2020); Gouk et al. (2020); Xuhong
et al. (2018). These approaches have proven effective in computer vision and natural language pro-
cessing. However, the application of transfer learning to GNN-based physics simulations remains
largely unexplored.

3 METHOD

3.1 OVERVIEW

In this section, we introduce our pre-training and fine-tuning framework. We begin by detailing the
data format used by our model. Following this, we provide an in-depth explanation of the model
architecture, discussing its fundamental networks, operators, and key modules. Finally, we describe

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the transfer learning mechanism, emphasizing two mapping functions that adjust the model size for
optimal performance.

mesh node

element node

𝒱!

𝒱"

mesh-mesh edge ℰ!!

mesh-element edge ℰ"!/ℰ!"

element-element edge ℰ""

(a) (b)

Figure 1: (a) An illustration of the composition of mesh dataM and its representation as a hetero-
geneous graph Ghetero. (b) Example of down-sampled graphs with pooling ratios as 3 and 2.

3.2 PROBLEM STATEMENT

Given the physical state of a system, our task is to predict the subsequent state over a time inter-
val and under specified boundary conditions. The system’s current state at time t is described by a
discretized mesh M t and can be represented in 2D or 3D space. The mesh data M t is comprised
of world coordinates, element connectivity, and physical parameters (stress/strain state and material
properties). We use one-step prediction to find the subsequent mesh state M t+1, but for sake of no-
tational convenience, we will omit the superscript t, which indicates the timestamp in the subsequent
expressions.

To facilitate the learning process, we transform the original mesh data M into a heterogeneous graph
Ghetero = (V, E), where V denotes the set of nodes and E represents the set of edges. The node
set V comprises two types of node: mesh nodes VM and element nodes VE . The mesh vertices
in M are converted to graph nodes in VM , while the mesh faces are represented as nodes in VE .
This heterogeneous graph structure is necessary to describe physical state variables like stress in a
single-valued way when multiple materials are present in a system, as is typical for many physical
simulations. The edge set E includes three groups of edges: (1) bidirectional edges EM,M between
adjacent mesh vertices VM , (2) bidirectional edges EE,E between adjacent faces VE , and (3) direc-
tional edges EE,M and EM,E which connect each mesh face to its vertices. Figure 1a provides a
demonstration of mesh data derived from the Deformable Plate dataset and its corresponding het-
erogeneous graph.

Each type of node and edge has its own feature matrix. For example, the feature matrix of mesh
nodes VM is XM ∈ R|VM |×hM

0 , where the feature vector of node i ∈ VM is the i-th row vector of
XM . We explain the composition of feature matrices in Appendix ??.

3.3 SCALABLE GRAPH U-NET

Our model comprises four main modules, as illustrated in Figure 2a. We adopt an Encoder-Process-
Decoder Sanchez-Gonzalez et al. (2020) style model with several key extensions: (1) the framework
is extended to handle the heterogeneous graph structure with multiple node and edge types, and (2)
we add a staged U-Net with variable DFS pooling and unpooling that greatly expands the model’s
receptive field. In the following paragraphs, we will detail these networks and modules.

Encoder: The Encoder comprises a set of MLP models and three Processors. The MLP models map
raw node and edge features of varying sizes into a unified latent space. The three Processors manage
the message passing flows VM → VM , VE → VE , and VM → VE , respectively. Consequently, the
Encoder transforms the heterogeneous graph Ghetero into a homogeneous graph GE by aggregating
the mesh node representations into their neighboring element nodes.

Processor: The Processor (Pr) consists of m identical Graph-Net blocks (GNBs), with the output of
each block serving as the input to the subsequent block in the sequence. This sequential processing
enables the model to gather and integrate information from nodes located up to m hops away from
the central node.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a)

(b) Uniform mapping (c) First-N mapping

Figure 2: (a) A detailed depiction of our proposed model, SGUNET, which includes four primary
modules: the Processor Pri for information propagation; the Encoder for data transformation, the
GUnet for graph pooling, and the Decoder for downstream tasks. (b) & (c) Mapping functions for
GUNet stages and GNBs for the case where pre-trained model has more stages and per-processor
GNBs than the fine-tuned model.

Each Graph-Net block operates as an independent message passing unit, with no shared parameters
between blocks. We extend the concept of Graph-Net blocks from Sanchez-Gonzalez et al. (2018);
Pfaff et al. (2021) to accommodate graphs with various types of nodes and edges. Specifically,
for message passing flow from V src to V tgt, where src and tgt ∈ {E,M}, the feature of the edge
connecting nodes i and j is updated via

Xsrc,tgt
i,j = f src,tgt (Xsrc

i |X
tgt
j |X

src,tgt
i,j

)
,

where f src,tgt is an MLP model with residual connections, and | represents the concatenation opera-
tion. After updating the edge features, the feature of the end-point node j is updated via

Xtgt
j = f tgt

Xtgt
j |

∑
i∈N src

j

Xsrc,tgt
i,j

 ,

where f tgt is an MLP model with residual connections, andN src
j are the neighborhoods of node j of

type src.

GUnet Stage: The GUnet (GU) is composed of L stages, with each stage containing one pooling
layer and two Processors. During the down-sampling phase, a Processor (PrEi) and a down-sample
operator (Downi) are sequentially applied at stage i. This process allows graphs of varying sizes
to undergo information propagation and aggregation. During the up-sampling phase, the procedure
is reversed: the graph is first restored to its original size by an up-sampling operator (Upi) before
being processed by a Processor (PrDi) at stage i. Unlike traditional graph network models such
as those in Pfaff et al. (2021); Rubanova et al. (2022); Allen et al. (2022a), which require many
message passing steps to capture long-range dependencies, the GUnet is able to process long-range
data with significantly fewer message passing steps. This can also help alleviate the difficulty of
scaling message passing networks to a large number of nodes as the number of message passing
steps needed would become intractable for GPU memory.

We design a Depth First Search style pooling (DFS-pooling) which has two key advantages that
distinguishes it from the existing work Gao & Ji (2019): (1) changeable pooling ratios for different
pooling stages and (2) pooling based on node proximity. We first select an un-visited node from the
element node set as the starting node and initiate a DFS-style random walk to explore adjacent nodes
of the same material. During this walk, nodes are clustered according to the pooling ratio, with nodes
in each cluster pooled into a single node. We use an even-pooling scheme of averaging weights to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

update the node and edge features within each cluster. This process continues until all nodes in
VE have been visited. The pseudo-code for this clustering computation is provided in Algorithm 1.
Additionally, we provide an example of down-sampled graphs in Figure 1b with pooling ratios as 3
and 2, respectively. Here, nodes of different colors have different types of material. Note that this
computation needs to be performed only once during the preprocessing stage, once the pooling ratio
is determined.

Decoder: In line with MGN Pfaff et al. (2021), we use an MLP model to project the latent features
of the element nodes XE into the output space. Additionally, we perform a 1-hop message passing
operation from VE to VM to interpolate the features of the element nodes to those of mesh nodes.
Finally, another MLP model decodes the interpolated latent features of the mesh nodes into the
desired output space.

3.4 UTILIZING THE PRE-TRAINED MODEL

How exactly the knowledge from a pre-trained model is instilled into a target task-specific model,
particularly when their architectures are mismatched, is a non-trivial task. As stated in Section 2, one
of the widely-used approaches in transfer learning operates at the parameter level. We also adopt the
parameter sharing and parameter restriction strategies and discuss these in more detail here. To our
knowledge, this is the first time transfer learning has been adapted and applied to GNNs predicting
physics simulations.

3.4.1 PARAMETER SHARING

The parameter sharing strategy involves initializing the downstream task-specific model with a pre-
trained model. Typically, the pre-trained model is either the same as or more complex than the
task-specific model due to resource constraints Xu et al. (2023). However, this is not the case for
our mesh-based graph network model. This distinction arises because the number of stages and
message passing steps in the GUnet are closely aligned with the data size and simulation settings.
As a result, conventional weight initialization methods are not directly applicable. Therefore, we
design alternative strategies to effectively transfer learned knowledge from the pre-trained model to
the downstream model within our unique framework.

We propose a scaling method at two levels — Processor and GUnet — to align the sizes of the pre-
trained and fine-tuned models. We choose between two mapping functions for both the Processors
and GUnet: Uniform and First-N. The details of these mapping functions are described below. For
the Processors, we employ the mapping function on GNBs, which ensures that the alignment reflects
the stages of message propagation through the blocks. For the GUnet, we employ the mapping
function on the GUNet stages. In general, the mapping function chosen for the Processors and GUnet
need not be the same, but for our present work we used the same mapping (First-N or Uniform) for
both Processors and GUnet for a given experiment.

Note that the Encoder and the Decoder do not contain generalizable knowledge as they are tailored
to specific tasks. In our implementation, we randomly initialize the parameters of the Encoder and
Decoders during fine-tuning.

1) Uniform Mapping: The first method of parameter sharing between pre-trained and fine-tuned
models is the Uniform method. The goal of this mapping method is to achieve uniform division and
alignment of weights. To align the weights of two Processors, we consider cases where the number
of GNBs in the pre-trained model mpt is less than, greater than, or equal to that in the fine-tuned
model mft. Formally, let g1(Prpt) be a function that maps a Processor Prpt in the pre-trained model
to a Processor Prft in the fine-tuned model. This mapping function uses uniform division to achieve
the alignment:

Prift = guni
1 (i;Prpt) =

Pr

⌊i/upN⌋,
pt , if mpt < mft

MEANst(i)+d(i)
j=st(i) {Prjpt}, if mpt > mft

Pript, if mpt == mft,

where,

st(i) =

{
(dwN + 1)× i, if i < r,
dwN× i+ r, if i ≥ r,

d(i) =

{
dwN + 1, if i < r,
dwN, if i ≥ r

,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

upN = ⌈mft/mpt⌉, dwN = ⌊mpt/mft⌋, r = mpt mod mft.

Pri represents the i-th Graph-Net block in the Processor, and MEAN{·} represents the averag-
ing operation. We can define the mapping function for the GUnet g2(GUpt) in a similar fashion.
We leave the detailed discussion to Appendix B.2. An example of the Uniform mapping for both
Processor and GUnet is shown in Figure 2b.

2) First-N Mapping: The second method for parameter sharing between pre-trained and fine-tuned
models is the First-N method. For Processor, the goal of this mapping method is to selectively share
weights for the first set of Graph-Net blocks that are common between the pre-trained and fine-tuned
models. Formally,

Prift = gFirst-N
1 (i;Prpt) =

{
Pript, if i ≤ mpt

Randomly Initialized, if i > mpt.

We can also define the First-N mapping from a pre-trained GUnet GUpt to a fine-tuned GUnet GUft.
An example of the First-N mapping of both pooling and message passing is shown in Figure 2c.

Regardless of the mapping methods, the stages from the GUnet must first be mapped from the pre-
trained model to the fine-tuned model, then within each GUNet stage the GNBs for the Processor
must be mapped to the fine-tuned model as well. In this way there is a hierarchical approach to the
shared parameters.

In summary, the key difference between the Uniform and First-N mapping functions lies in the
extent to which parameters from the GUnet modules are used by the fine-tuned model. The Uniform
strategy may allow for more comprehensive parameter use, whereas the First-N approach might be
more selective. The effectiveness of these mapping functions will be assessed in Section 4.

3.4.2 PARAMETER RESTRICTION

Beyond parameter sharing, we implement a parameter restriction technique to enhance the gen-
eralization capabilities of the downstream models. Following Gouk et al. Gouk et al. (2020), we
calculate the Frobenius distance between the pre-trained and fine-tuned model weights to apply a
regularization term that penalizes discrepancies between them. Let Wpt denote the weights of the
pre-trained model, and Wft represent the weights of the fine-tuned model. Then the Frobenius norm
of the difference between these two sets of weights can be expressed as:

∥Wpt −Wft∥F =

√√√√ m∑
i=1

n∑
j=1

(
W

(i,j)
pt −W

(i,j)
ft

)2

.

To incorporate Frobenius distance into the training process, the regularization term is added to the
loss function. The regularized loss function Lreg can be written as:

Lreg = Ltask + λ∥Wpt −Wft∥2F ,

where λ is a hyperparameter that controls the strength of the regularization term, and Ltask repre-
sents the original task-related loss.

4 EXPERIMENTS

We present an evaluation of our proposed pre-training and fine-tuning framework for mesh-based
simulations. We begin by detailing the datasets used in our experiments, highlighting both the gen-
eralized dataset constructed for pre-training and the benchmark datasets employed for fine-tuning.
Following this, we introduce the baseline models against which our approach is compared. We then
present the results of our pre-training phase and evaluate the transfer learning performance.

4.1 DATASETS

1) For pre-training: Since there is currently no existing work on pre-training for mesh-based phys-
ical simulations, and popular benchmark datasets contain at best a few thousands training samples,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Randomized FEA simulation dataset using geometry from ABC dataset.

we constructed a larger and more-generalized pre-training dataset. The goal of this dataset was to
have a wide variety of geometric shapes that are deformed after coming into contact with each other.
We used the ABC dataset Koch et al. (2019), which is a CAD model dataset used for geometric
deep learning, to get a wide sample of parts and shapes to deform. To generate a simulation in our
pre-training dataset, we first randomly select two CAD geometries, then auto-mesh them with the
meshing tool Shabaka Hafez & Rashid (2023). We then align the two meshed parts in 3D space
and apply compressive boundary conditions to simulate the parts coming into contact. Figure 3
illustrates the workflow of the pre-training dataset construction process.

In total, we generated a pre-training dataset of 20,000 simulations by drawing pairs of geometries
from a set of 400 geometry samples. Figure 4 shows several example simulations and the modes of
deformation achieved through contact. Here we can see examples of mechanical contact and stress
around a hole.

Figure 4: The FEA simulation results using ABC CAD dataset highlight various deformation modes,
including compression with associated tension around a hole, as well as plate and beam bending.

2) For Transfer Learning: We selected two representative datasets for quasi-static mechanical
simulations as benchmarks to evaluate model performance on downstream tasks: 2D Deformable
Plate Linkerhägner et al. (2023) and 3D Deforming Plate Pfaff et al. (2021). These downstream
task datasets represent a subspace of simulations relative to our generalized pre-training dataset, and
thought to be good candidates to evaluate our fine-tuning framework. For more detailed information
about the datasets, please refer to Table 2.

4.2 BASELINE AND METRIC

To demonstrate the generalization and effectiveness of our pre-training and fine-tuning paradigm,
we used MGN Pfaff et al. (2021), a state-of-the-art model in the field of physics simulation, as the
baseline for comparison. The model configurations are shown in Table 1 and more explanations can
be found in Appendix C.1. We used the RMSE loss on the positions of mesh nodes VM as the metric
to evaluate model performance. We show the calculation of receptive field size in Appendix ??.

4.3 PRE-TRAINING RESULTS

We trained both the MGN and SGUNET models on ABCD for 1 million training steps. The RMSE
losses for MGN on the training and validation datasets are 8.3205×10−4 and 5.8018×10−4, re-
spectively. In comparison, SGUNET achieves RMSE losses of 4.2041×10−4 on the training set and
4.2657×10−4 on the validation set. These results demonstrate that SGUNET outperforms MGN,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Hyperparameter configurations for the models.

Model Dataset # Message Passing
(Encoder)

Message Passing
(Processor)

Mesh Receptive
Field Size # Parameters Batch Size

MGN
ABCD 5 13 18 1053766 2
Deforming Plate 2 15 17 891462 8
Deformable Plate 2 6 8 553156 16

Model Dataset Pooling Ratio # Message Passing
(Encoder)

Message Passing
(GUnet)

Mesh Receptive
Field Size # Parameters Batch Size

SGUNET

ABCD [4, 2, 2] 3 1 35 719686 4
Deforming Plate [4, 2] 4 2 29 894918 16
Deformable Plate [2] 2 2 9 569540 16

reducing the training loss by nearly 50%. Moreover, the validation loss shows that SGUNET gener-
alizes better to unseen data while converging more effectively during training.

4.4 TRANSFER LEARNING PERFORMANCE

To evaluate the effectiveness of our pre-training and fine-tuning framework, we performed experi-
ments using the ABCD dataset for pre-training. Both the MGN and SGUNET models are trained for
a defined number of epochs. Subsequently, we fine-tuned these models on downstream tasks. For
the Deformable Plate dataset, the models were fine-tuned for 20k steps. For the Deforming Plate
dataset, the models were fine-tuned for 500k steps. We applied two parameter sharing strategies —
Uniform and First-N — when loading the checkpoint of the pre-trained model. Additionally, we
reduced the size of the training dataset to investigate whether our framework can decrease reliance
on large volume of data. During this process, we recorded the minimum validation loss and saved
the corresponding model checkpoint, which was later used to assess performance on the test dataset.
All experiments are repeated 5 times with different random seeds.

Deformable Plate: We reduced the training set to 1
8 , and 1

16 of its original size. The animations
in Figure 5 provide an intuitive qualitative assessment. This figure presents an example from the
test dataset. From these visualizations, we can observe a clear improvement in the handling of
deformations at the contact area between the ball and the plate after fine-tuning. Specifically, the
ball and plate no longer overlap, the plate’s deformation curve conforms more closely to the ball’s
contour, and the deformation in areas farther from the contact point aligns more accurately with the
ground truth.

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

(g) GROUND TRUTH

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.581012

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980249

(a) MGN (b) MGN-FT (Uniform) (d) SGUNET (e) SGUNET-FT (Uniform)(c) MGN-FT (First-N) (f) SGUNET-FT (First-N)

Figure 5: Simulated meshes at various stages (t=30 at the top row, t=50 at the bottom row) for differ-
ent models: MGN, MGN-FT (fine-tuned with Uniform and First-N strategies), SGUNET, SGUNET-
FT (fine-tuned with Uniform and First-N strategies), and the ground truth. All models are trained on
1/8 of the original training size. The colors indicate displacement magnitude.

Figures 6 and 7 compare the roll-out validation RMSE for different models across three data scales,
offering insights from various perspectives. The results demonstrate that SGUNET consistently out-
performs MGN across all data scales, with lower RMSE values and faster convergence, particularly
when fine-tuned. These observations are corroborated by the test dataset performance shown in Ta-
ble 3. Notably, the RMSE of SGUNET fine-tuned with the Uniform strategy on 1

16 of the training
data is comparable to that of the model fine-tuned on the full dataset, achieving an 11.05% improve-
ment compared to the model trained from scratch.

These results reveal that fine-tuning with the Uniform strategy further reduces the RMSE compared
to the First-N strategy, demonstrating the effectiveness of this approach. Notably, SGUNET-FT with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the Uniform strategy achieves the lowest RMSE even with significantly reduced datasets, highlight-
ing the model’s robustness and efficiency in generalizing from limited data.

MGN MGN FT (uniform) MGN FT (first-N) Ours Ours FT (uniform) Ours FT (first-N)
4 × 10 2

5 × 10 2

6 × 10 2

Ro
llo

ut
 V

al
id

 R
M

SE
All Data
1/8 Data
1/16 Data

Figure 6: The best validation loss of the two models on the Deformable Plate dataset when trained
from scratch and when fine-tuned.

0 5000 10000 15000 20000 25000
step

4 × 10 2

5 × 10 2

6 × 10 2

7 × 10 2

8 × 10 2

be
st

_r
m

se

MGN_all
MGN_1/8
MGN_1/16
Ours_all
Ours_1/8
Ours_1/16

(a)

0 5000 10000 15000 20000 25000
step

4 × 10 2

5 × 10 2

6 × 10 2

7 × 10 2

8 × 10 2

be
st

_r
m

se

MGN_all
MGN_1/8
MGN_1/16
MGN_FT_all
MGN_FT_1/8
MGN_FT_1/16

(b)

0 5000 10000 15000 20000 25000
step

4 × 10 2

5 × 10 2

6 × 10 2

7 × 10 2

8 × 10 2

be
st

_r
m

se

Ours_all
Ours_1/8
Ours_1/16
Ours_FT_all
Ours_FT_1/8
Ours_FT_1/16

(c)

Figure 7: Comparison of the best validation loss tendencies on the Deformable Plate. (a) Two
models both trained from scratch. (b) MGN trained from scratch and fine-tuned with the Uniform
strategy. (c) SGUNET trained from scratch and fine-tuned with the Uniform strategy.

Deforming Plate: We reduced the training set to 1
4 and 1

8 of its original size. The images in Fig-
ure 8 offer a qualitative assessment by showing an example from the test dataset. The visualizations
reveal that MGN performs poorly when trained from scratch as the displacement of the plate was
concentrated tightly around the ball. Although fine-tuning improved MGN’s predictions, the dis-
placement area it predicts is still much smaller than the ground truth. In contrast, SGUNET, espe-
cially SGUNET-FT, delivered much more accurate predictions. This accuracy could be attributed to
the larger receptive field size of SGUNET compared to MGN.

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002006

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003136

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003052

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.004701

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002277

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003734

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.001647

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002757

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002198

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003475

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002956

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.004713

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002025

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003390

(a) MGN (b) MGN-FT (Uniform) (d) SGUNET (e) SGUNET-FT (Uniform) (g) GROUND TRUTH(c) MGN-FT (First-N) (f) SGUNET-FT (First-N)

Figure 8: Simulated meshes at various stages (t=200 at the top row, t=300 at the bottom row) for
different models: MGN, MGN-FT (fine-tuned with Uniform strategy), SGUNET, SGUNET-FT (fine-
tuned with Uniform strategy), and the ground truth. All models are trained on 1/8 of the original
training size. The colors indicate displacement magnitude.

Figures 9 and 10 compare the roll-out validation RMSE, while Table 4 presents the performance of
different models on the test dataset. The results reveal that — consistent with the findings on De-
formable Plate — (1) Fine-tuned models consistently outperform those trained from scratch across
all dataset scales. Notably, reduction on training data does not lead to much worse performance,
especially on the proposed SGUNET. (2) Fine-tuned models also exhibit faster convergence speeds.
For instance, as shown in Figure 10c, SGUNET-FT on 1

8 of the training data reaches the RMSE value
that its counterpart requires 500k steps to achieve, in just 200k steps.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

MGN MGN FT (uniform) MGN FT (first-N) Ours Ours FT (uniform) Ours FT (first-N)

5 × 10 3

6 × 10 3

7 × 10 3

8 × 10 3

Ro
llo

ut
 V

al
id

 R
M

SE

All Data
1/4 Data
1/8 Data

Figure 9: The best validation loss of the two models on the Deforming Plate dataset when trained
from scratch and when fine-tuned.

0 100000 200000 300000 400000 500000
step

10 2

6 × 10 3

7 × 10 3

8 × 10 3

9 × 10 3

be
st

_r
m

se

MGN_all
MGN_1/4
MGN_1/8
Ours_all
Ours_1/4
Ours_1/8

(a)

0 100000 200000 300000 400000 500000
step

10 2

6 × 10 3

7 × 10 3

8 × 10 3

9 × 10 3
be

st
_r

m
se

MGN_all
MGN_1/4
MGN_1/8
MGN_FT_all
MGN_FT_1/4
MGN_FT_1/8

(b)

0 100000 200000 300000 400000 500000
step

10 2

6 × 10 3

7 × 10 3

8 × 10 3

9 × 10 3

be
st

_r
m

se

Ours_all
Ours_1/4
Ours_1/8
Ours_FT_all
Ours_FT_1/4
Ours_FT_1/8

(c)

Figure 10: Comparison of the best validation loss tendencies on the Deforming Plate. (a) Two
models both trained from scratch. (b) MGN trained from scratch and fine-tuned with the Uniform
strategy. (c) SGUNET trained from scratch and fine-tuned with the Uniform strategy.

5 DISCUSSION

In this paper, we introduce a novel pre-training and fine-tuning framework tailored specifically for
mesh-based physical simulations. Our approach uses a scalable graph U-net (SGUNET), which is
defined in a modular and configurable manner to facilitate the parameter sharing process for transfer
learning. We constructed a dataset for pre-training, i.e. ABCD, and utilized it to pre-train the
models. Through extensive experiments, we demonstrate that not only does SGUNET outperform
MGN, a SOTA model in this field, but also both models achieve improvements in performance across
various dataset scales when fine-tuned. Notably, the fine-tuned models reduce their dependence on
the training data.

Despite the promising results, there are some limitations that warrant further exploration. First, we
have evaluated our framework only in the context of quasi-static simulations. Future work could
extend it to a broader range of physical systems to assess its versatility and effectiveness in more
dynamic scenarios. Second, our current transfer learning methods, which includes two strategies for
parameter sharing and one for parameter restriction, have proven effective, exploring alternative and
more advanced transfer learning techniques could offer valuable opportunities for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kelsey R. Allen, Tatiana Lopez-Guevara, Yulia Rubanova, Kimberly L. Stachenfeld, Alvaro
Sanchez-Gonzalez, Peter W. Battaglia, and Tobias Pfaff. Graph network simulators can learn
discontinuous, rigid contact dynamics. In Karen Liu, Dana Kulic, and Jeffrey Ichnowski (eds.),
Conference on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland, New Zealand, vol-
ume 205 of Proceedings of Machine Learning Research, pp. 1157–1167. PMLR, 2022a. URL
https://proceedings.mlr.press/v205/allen23a.html.

Kelsey R Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-Gonzalez, Peter
Battaglia, Jessica Hamrick, and Tobias Pfaff. Physical design using differentiable learned simu-
lators. arXiv preprint arXiv:2202.00728, 2022b.

Kelsey R Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks. arXiv preprint arXiv:2212.03574, 2022c.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based
physical simulation with bi-stride multi-scale graph neural network. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pp. 3541–3558. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/cao23a.html.

Saurabh Deshpande, Stéphane P.A. Bordas, and Jakub Lengiewicz. Magnet: A graph u-net architec-
ture for mesh-based simulations. Engineering Applications of Artificial Intelligence, 133:108055,
2024. ISSN 0952-1976. doi: https://doi.org/10.1016/j.engappai.2024.108055. URL https:
//www.sciencedirect.com/science/article/pii/S0952197624002136.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter W. Battaglia. Mul-
tiscale meshgraphnets. CoRR, abs/2210.00612, 2022. doi: 10.48550/ARXIV.2210.00612. URL
https://doi.org/10.48550/arXiv.2210.00612.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pp. 2083–2092. PMLR, 2019.

Rini Jasmine Gladstone, Helia Rahmani, Vishvas Suryakumar, Hadi Meidani, Marta D’Elia,
and Ahmad Zareei. Gnn-based physics solver for time-independent pdes. arXiv preprint
arXiv:2303.15681, 2023.

Henry Gouk, Timothy M Hospedales, and Massimiliano Pontil. Distance-based regularisation of
deep networks for fine-tuning. arXiv preprint arXiv:2002.08253, 2020.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset
generator. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 3749–3761, 2022.

Omar M Hafez and Mark M Rashid. A robust workflow for b-rep generation from image masks.
Graphical Models, 128:101174, 2023.

Xu Han, Han Gao, Tobias Pfaff, Jian-Xun Wang, and Liping Liu. Predicting physics in mesh-
reduced space with temporal attention. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=XctLdNfCmP.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Bur-
naev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geomet-
ric deep learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9601–9611, 2019.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020.

11

https://proceedings.mlr.press/v205/allen23a.html
https://proceedings.mlr.press/v202/cao23a.html
https://proceedings.mlr.press/v202/cao23a.html
https://www.sciencedirect.com/science/article/pii/S0952197624002136
https://www.sciencedirect.com/science/article/pii/S0952197624002136
https://doi.org/10.48550/arXiv.2210.00612
https://openreview.net/forum?id=XctLdNfCmP

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonas Linkerhägner, Niklas Freymuth, Paul Maria Scheikl, Franziska Mathis-Ullrich, and Ger-
hard Neumann. Grounding graph network simulators using physical sensor observations. arXiv
preprint arXiv:2302.11864, 2023.

Tatiana Lopez-Guevara, Yulia Rubanova, William F Whitney, Tobias Pfaff, Kimberly Stachenfeld,
and Kelsey R Allen. Scaling face interaction graph networks to real world scenes. arXiv preprint
arXiv:2401.11985, 2024.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, G Sas-
try, A Askell, S Agarwal, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 1, 2020.

Rahul Narain, Armin Samii, and James F O’brien. Adaptive anisotropic remeshing for cloth simu-
lation. ACM transactions on graphics (TOG), 31(6):1–10, 2012.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
based simulation with graph networks. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=roNqYL0_XP.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

A Sai Bharadwaj Reddy and D Sujitha Juliet. Transfer learning with resnet-50 for malaria cell-
image classification. In 2019 International conference on communication and signal processing
(ICCSP), pp. 0945–0949. IEEE, 2019.

Edmar Rezende, Guilherme Ruppert, Tiago Carvalho, Fabio Ramos, and Paulo De Geus. Malicious
software classification using transfer learning of resnet-50 deep neural network. In 2017 16th
IEEE international conference on machine learning and applications (ICMLA), pp. 1011–1014.
IEEE, 2017.

Yulia Rubanova, Alvaro Sanchez-Gonzalez, Tobias Pfaff, and Peter W. Battaglia. Constraint-based
graph network simulator. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pp. 18844–18870. PMLR, 2022. URL https://proceedings.mlr.press/
v162/rubanova22a.html.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International conference on machine learning, pp. 4470–4479. PMLR, 2018.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 8459–8468. PMLR, 2020. URL
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Henry G Weller, Gavin Tabor, Hrvoje Jasak, and Christer Fureby. A tensorial approach to com-
putational continuum mechanics using object-oriented techniques. Computers in physics, 12(6):
620–631, 1998.

William F Whitney, Tatiana Lopez-Guevara, Tobias Pfaff, Yulia Rubanova, Thomas Kipf, Kimberly
Stachenfeld, and Kelsey R Allen. Learning 3d particle-based simulators from rgb-d videos. arXiv
preprint arXiv:2312.05359, 2023.

Zhiqiu Xu, Yanjie Chen, Kirill Vishniakov, Yida Yin, Zhiqiang Shen, Trevor Darrell, Lingjie Liu,
and Zhuang Liu. Initializing models with larger ones. In The Twelfth International Conference
on Learning Representations, 2023.

12

https://openreview.net/forum?id=roNqYL0_XP
https://proceedings.mlr.press/v162/rubanova22a.html
https://proceedings.mlr.press/v162/rubanova22a.html
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

LI Xuhong, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning
with convolutional networks. In International Conference on Machine Learning, pp. 2825–2834.
PMLR, 2018.

Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang, ChangSe-
ung Woo, Ilho Kim, SeokWoo Lee, Joon-Young Yang, Sooyoung Yoon, and Noseong Park.
Learning flexible body collision dynamics with hierarchical contact mesh transformer. CoRR,
abs/2312.12467, 2023. doi: 10.48550/ARXIV.2312.12467. URL https://doi.org/10.
48550/arXiv.2312.12467.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43–76, 2020.

13

https://doi.org/10.48550/arXiv.2312.12467
https://doi.org/10.48550/arXiv.2312.12467

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DATASET DETAILS

Three quasi-static datasets, ABCD, Deforming Plate, Deformable Plate are used in our experiments.
All datasets are simulated as hyper-elastic deformations with linear elements. For ABCD, it includes
20,000 trajectories for pre-training. For Deforming Plate, it contains 1200 trajectories in total, we
split it into 1000/100/100 for training, validation and testing. For Deformable Plate, we use a split
of 675/135/135 for training, validation and testing.

In the experiments, we repeated the fine-tuning on Deformable Plate and Deforming Plate 5 times.
Each time, we shuffled the data splits for training, validation and testing while maintaining the ratio.

Table 2: Basic statistics for datasets.

pre-training Dataset # |VM |
(avg.)

|VE |
(avg.)

|EM,M |
(avg.)

|EE,E |
(avg.)

|EE,M |
(avg.) # Steps Mesh Type Dimension

ABCD 4445 12944 42919 57052 51777 20 Tetrahedral 3

Transfer Learning
Dataset # |VM |

(avg.)
|VE |
(avg.)

|EM,M |
(avg.)

|EE,E |
(avg.)

|EE,M |
(avg.) # Steps Mesh Type Dimension

Deforming Plate 1270 4038 12718 15648 16154 400 Tetrahedral 3
Deformable Plate 138 183 648 515 549 50 Triangular 2

B METHOD DETAILS

B.1 DFS-POOLING

We provide the pseudocode for generating the cluster index vector, which is utilized for graph pool-
ing in the GUnet module.

Algorithm 1: Get nodes clustering index
Data: adjacency matrix A, pooling ratio p, material index vector m, number of nodes n
Result: cluster index vector c

1 Function DFS(nid,mat):
2 c.get(nid)← cid;
3 cnt← cnt+ 1;
4 if cnt ≥ p then
5 cid← cid+ 1;
6 cnt← 0;
7 end
8 for nnid ∈ [0, 1, . . . , n− 1] do
9 if nnid ∈ left ∧m.get(nnid) == mat then

10 left.remove(nnid);
11 DFS(nnid,mat);
12 end
13 end
14 return
15 Let cid← −1, cnt← 0;
16 Let left← set(0, 1, . . . , n− 1), c← [−1]n;
17 while left is not empty do
18 nid← left.pop(0);
19 mat←m.get(nid);
20 if c.count(cid) > 0 then
21 cid← cid+ 1;
22 cnt← 0;
23 end
24 DFS(nid,mat);
25 end
26 return c

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.2 ALIGNMENT OF GUNET

A GUnet module comprise L stages. To align a GUnet with Lpt stages in the pre-trained model with
a GUnet having Lft stages in the fine-tuned model, it is essential to construct a mapping function that
build the connection between stages of the two models. Similar to the alignment of the Processor
module, we design two mapping methods. Let g2(GUpt) denote the function that maps a GUnet
GUpt in the pre-trained model to a GUnet GUft in the fine-tuned model. For Uniform Mapping,

GUi
ft = guni

2 (i;GUpt) =

g1(GU

⌊i/upN⌋
pt), if Lpt < Lft

MEANst(i)+d(i)
j=st(i) {g1(GUj

pt)}, if Lpt > Lft

g1(GUi
pt), if Lpt == Lft.

For First-N Mapping,

GUi
ft = gFirst-N

2 (i;GUpt) =

{
g1(GUi

pt), if i ≤ Lpt

Randomly Initialized, if i > Lpt.

The calculations for upN, dwN, st(i), and ed(i) are nearly the same as those in scaling the Processor.
The only difference is to replace m∗ with L∗ . Here, GUi denotes the Processor at the i-th layer
of the GUnet. Prior to the alignment between GUnets, the Processor should be aligned up using the
function g1 to ensure consistency.

B.3 HOW TO CALCULATE RECEPTIVE FIELD SIZE

The receptive field size is defined as the maximum distance from which the central node can ag-
gregate information from other nodes. Let the receptive field in the i-th stage be denoted by ri,
the pooling ratio by pi, and the number of message passing steps in the GUnet’s Processors by
mGU. Due to the presence of a Processor at the bottom of the GUnet, we have rL = mGU. Given
ri, the receptive field for the (i − 1)-th stage can be calculated as ri−1 = (ri + 1) · pi − 1. By
applying this recursively, the receptive field of the central node in the first stage is determined as
r0 = (mGU + 1) ·

(∏L−1
i=0 pi + 1

)
− 2. Prior to reaching the first stage of the GUnet, the graph

has already undergone mEnc steps of information aggregation through the Processor in the Encoder.
Therefore, the overall receptive field size is r = mEnc + (mGU + 1) ·

(∏L−1
i=0 pi + 1

)
− 2.

B.4 MORE INFORMATION ABOUT HETEROGENEOUS GRAPH

As described in Section 3.2, each node and edge type has a distinct feature matrix. Specifically,
the feature at time t is constructed as follows: 1) for vi ∈ VM , the feature is given by ni

∣∣∣∣(xt
i −

x0
i); 2) for vi ∈ VE , it is represented as λi

∣∣∣∣µi

∣∣∣∣(xt
i − x0

i); 3) for ei,j ∈ E src,tgt, the feature is
x0
ij

∣∣∣∣|x0
ij |
∣∣∣∣xt

ij

∣∣∣∣|xt
ij |. Here, ni is a binary indicator (0 or 1) representing whether the mesh node vi

is a normal or boundary node, λi and µi are mechanical properties of the material, xt
i denotes the

world coordinates of node i at time t, and xt
ij refers to the relative world position between nodes i

and j at time t. The operator
∣∣∣∣ denotes concatenation, while | · | refers to the L2 norm.

Following the approach in previous work Pfaff et al. (2021), we construct edges between the plate
and the ball in the Deforming Plate and Deformable Plate datasets based on the distance between
endpoints. Specifically, the distances used for ABCD, Deforming Plate, and Deformable Plate are
0.0003, 0.003, and 0.05, respectively. Unlike MGN, which connects mesh nodes directly, we estab-
lish edges between element nodes.

Previous work transforms the mesh data from the Deforming Plate and Deformable Plate datasets
into homogeneous graphs, where mesh vertices are represented as graph nodes. As a result, these
datasets only capture the physical information of the mesh vertices and lack material properties. To
address these limitations, we 1) use the average position of the mesh nodes to represent the position
of the corresponding element node, and 2) set the material properties λ and µ to zero.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C EXPERIMENT DETAILS

C.1 MODEL CONFIGURATION

MGN: For the Deforming Plate and Deformable Plate datasets, we adhere to the settings outlined
in the original paper Pfaff et al. (2021); Linkerhägner et al. (2023). For the ABCD dataset, which
involves larger-scale mesh sizes, more message passing steps are required. Since increased message
passing steps lead to higher memory consumption and longer training times, we balance effective-
ness and efficiency by setting the message passing steps in the Encoder and Processor to 5 and 13,
respectively.

SGUNET: We configure our model based on two key objectives: 1) achieving a larger mesh recep-
tive field size and 2) maintaining a model size that is comparable to or smaller than that of MGN.
We evaluate the model performance across several configurations and select the one that performs
best.

Noise Std.: As we adopt the next-step prediction approach, adding noise to the input data is essen-
tial to enhance robustness during inference. We follow the noise settings specified in the original
paper Pfaff et al. (2021); Linkerhägner et al. (2023) for the Deforming Plate and Deformable Plate
datasets, which are 0.003 and 0.05, respectively. For the ABCD dataset, given that it involves fewer
roll-out steps, we use a smaller noise standard deviation value of 0.0003.

C.2 LOSS

The task-related objective across all datasets is unified as the mean squared error (MSE) loss of the
normalized delta displacement between nodes over two steps. This can be expressed as:

Ltask = 1
|VM |+|VE |

∑
v∈VM∪VE

∥∥∥˜̇xv

pred
− ˜̇xv

GT∥∥∥2 ,
where ˜̇xv

pred
and ˜̇xv

GT
represent the normalized predicted and ground truth displacements of node

v over two steps, respectively.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

We present the experimental results of MGN and SGUNET on the Deformable Plate and Deforming
Plate datasets in Table 3 and Table 4, respectively. These results are obtained by loading the check-
point from the best-performing step on the validation set, followed by inference on the correspond-
ing test datasets. To facilitate comparison, the best result for each training data size is highlighted in
bold, while the second-best result is underlined.

Table 3: The performance of the two models
on the test dataset for Deformable Plate when
trained from scratch and when fine-tuned.

Model Method All Data 1
8 Data 1

16 Data

MGN
From scratch 0.062391±0.0106 0.064114±0.0046 0.070436±0.0065

Fine-tuned (First-N) 0.056409±0.0052 0.057404±0.0015 0.058858±0.0052
Fine-tuned (uni) 0.054644±0.0029 0.055432±0.0032 0.060024±0.0030

SGUNET
From scratch 0.059615±0.0005 0.063806±0.0085 0.064714±0.0096

Fine-tuned (First-N) 0.057769±0.0058 0.059909±0.0062 0.061929±0.0060
Fine-tuned (uni) 0.056966±0.0061 0.057517±0.0044 0.057560±0.0034

Table 4: The performance of the two models on
the Deforming Plate dataset when trained from
scratch and when fine-tuned.

Model Method All Data 1
4 Data 1

8 Data

MGN
From scratch 0.007058±0.0009 0.007068±0.0006 0.007477±0.0008

Fine-tuned (First-N) 0.005903±0.0008 0.006977±0.0008 0.006350±0.0005
Fine-tuned (uni) 0.006363±0.0006 0.006523±0.0007 0.006535±0.0009

SGUNET
From scratch 0.006402±0.0008 0.006585±0.0007 0.007045±0.0008

Fine-tuned (First-N) 0.006071±0.0002 0.005993±0.0003 0.006006±0.0004
Fine-tuned (uni) 0.006173±0.0005 0.006140±0.0005 0.006272±0.0006

Figure 11 and Figure 12 provide supplementary animations, where the models are trained on the full
training dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) MGN (b) MGN-FT (Uniform) (d) SGUNET (e) SGUNET-FT (Uniform) (g) GROUND TRUTH

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.581012

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980249

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.586750

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

(c) MGN-FT (First-N)

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.580000

0.00 0.250 0.500 0.750 1.00
Displacement Magtitude

Max: 0.980000

(f) SGUNET-FT (First-N)

Figure 11: Simulated meshes at various stages (t=30 at the top row, t=50 at the bottom row) for dif-
ferent models. All models are trained on the full training dataset. The colors indicate displacement
magnitude.

(a) MGN (b) MGN-FT (Uniform) (d) SGUNET (e) SGUNET-FT (Uniform) (g) GROUND TRUTH

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002803

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.004353

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002423

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003670

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.001941

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003074

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002065

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003357

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002198

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003475

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.004432

(c) MGN-FT (First-N)

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002911

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.002146

0.00 0.00125 0.00250 0.00375 0.00500
Displacement Magtitude

Max: 0.003404

(f) SGUNET-FT (First-N)

Figure 12: Simulated meshes at various stages (t=200 at the top row, t=300 at the bottom row) for
different models. All models are trained on the full training dataset. The colors indicate displace-
ment magnitude.

17

	Introduction
	Related Work
	Method
	Overview
	Problem Statement
	Scalable Graph U-Net
	Utilizing the pre-trained model
	Parameter Sharing
	Parameter Restriction

	Experiments
	Datasets
	Baseline and Metric
	pre-training Results
	Transfer Learning Performance

	Discussion
	Dataset Details
	Method Details
	DFS-Pooling
	Alignment of GUnet
	How to Calculate Receptive Field Size
	More Information about Heterogeneous Graph

	Experiment Details
	Model Configuration
	Loss
	Additional Experimental Results

