
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFER LEARNING IN SCALABLE GRAPH NEURAL
NETWORK FOR IMPROVED PHYSICAL SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, Graph Neural Network (GNN) based models have shown promis-
ing results in simulating physics of complex systems. However, training dedicated
graph network based physics simulators can be costly, as most models are confined
to fully supervised training, which requires extensive data generated from tradi-
tional physics simulators. To date, how transfer learning could improve the model
performance and training efficiency has remained unexplored. In this work, we
introduce a pre-training and transfer learning paradigm for graph network simula-
tors. We propose the scalable graph U-net (SGUNET). Incorporating an innovative
depth-first search (DFS) pooling, the SGUNET is adaptable to different mesh sizes
and resolutions for various simulation tasks. To enable the transfer learning be-
tween differently configured SGUNETs, we propose a set of mapping functions to
align the parameters between the pre-trained model and the target model. An extra
normalization term is also added into the loss to constrain the difference between
the pre-trained weights and target model weights for better generalization per-
formance. To pre-train our physics simulator we created a dataset which includes
20,000 physical simulations of randomly selected 3D shapes from the open source
A Big CAD (ABC) dataset. We show that our proposed transfer learning meth-
ods allow the model to perform even better when fine-tuned with small amounts
of training data than when it is trained from scratch with full extensive dataset.
On the 2D Deformable Plate benchmark dataset, our pre-trained model fine-tuned
on 1/16 of the training data achieved an 11.05% improvement in position RMSE
compared to the model trained from scratch.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown promising results in simulating physics of complex
systems on unstructured meshes Pfaff et al. (2021); Allen et al. (2022a); Rubanova et al. (2022);
Allen et al. (2022c). Existing works stack message passing (MP) blocks to model propagation of
physical information. Different pooling operations Li et al. (2020); Cao et al. (2023) and U-Net like
architectures Gladstone et al. (2023); Deshpande et al. (2024) have been introduced to better solve
the multi-scale challenges in different simulation tasks. However, despite their potential, current
GNN-based methods rely heavily on supervised training approaches. Collecting extensive annotated
data typically involves using traditional Finite Element Analysis (FEA) solvers Han et al. (2022);
Fortunato et al. (2022); Allen et al. (2022b), 3D engines Greff et al. (2022), and real-life video
clips Lopez-Guevara et al. (2024). The substantial cost of acquiring the training data has constrained
the scalability and practicality of GNN-based simulators.

On the other hand, transfer learning has revolutionized fields like computer vision (CV) Reddy &
Juliet (2019); Rezende et al. (2017) and natural language processing (NLP) Radford et al. (2019);
Mann et al. (2020); Touvron et al. (2023), where models pre-trained on large datasets are fine-
tuned for specific tasks, leading to remarkable improvements in training efficiency and the model’s
performance Zhuang et al. (2020). However, for GNN-based simulators, network architecture hy-
perparameters, such as number of message passing steps and pooling ratios, must be specifically
tailored to the mesh resolution of the target problem Fortunato et al. (2022); Cao et al. (2023). As
a result, pre-trained models are difficult to load and fine-tune directly for downstream GNN-based
simulators. It remains unexplored how to apply transfer learning to GNN-based physics simulators.
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In this work, we introduce a transfer learning paradigm applied to the proposed scalable graph U-net
(SGUNET) for physical simulations. The SGUNET follows the Encoder-Processor-Decoder design
and incorporates an innovative DFS pooling operation to handle various mesh receptive fields. It
is designed to be modular and configurable, making it adaptable to different mesh sizes and reso-
lutions across various simulation tasks. To enable transfer learning between differently configured
SGUNETs, we propose a set of mapping functions to align the parameters between the pre-trained
model and the target model. An extra normalization term is also added into the loss to constrain the
difference between the pre-trained weights and target model weights for better generalization perfor-
mance. As there is no existing dataset available for pre-training, we created a dataset named ABC
Deformable (ABCD) for pre-training. The dataset includes approximately 20,000 physical simu-
lations of deformable bodies, whose shapes are sampled from the open-source ABC dataset Koch
et al. (2019).

We evaluated our proposed methods over two public datasets, namely the 2D Deformable Plate
Linkerhägner et al. (2023) and a more complex 3D Deforming Plate Pfaff et al. (2021). We set
MESHGRAPHNET (MGN) Pfaff et al. (2021) training from scratch as the baseline. On 2D De-
formable Plate, our model pre-trained by ABCD and fine-tuned on 1/16 of the training data could
achieve an 11.05% improvement in position RMSE compared to the model trained from scratch.
On 3D Deforming Plate, our pre-trained model reached the same level of performance when fine-
tuned with only 1/8 of the training data in 40% of the training time. Applying the transfer learning
approach to MGN also lead to better performance with less training data and shorter training time.

2 RELATED WORK

Graph Neural Networks (GNNs) have emerged as a powerful tool for simulating complex physical
systems, particularly on unstructured meshes Pfaff et al. (2021); Allen et al. (2022a); Rubanova
et al. (2022); Allen et al. (2022c;b). However, these methods predominantly rely on supervised
training, which requires extensive annotated data. Common approaches involve generating data
through analytical solvers like OpenFOAM Weller et al. (1998) and ArcSim Narain et al. (2012).
Additionally, some works use real-world observations to train models Whitney et al. (2023); Allen
et al. (2022c). Early work, such as MGN Pfaff et al. (2021), adapts the Encoder-Process-Decode
architecture Sanchez-Gonzalez et al. (2020) to mesh data, with the Process module implemented as
a GNN for effective message passing. Variants like EA-GNN and M-GNN Gladstone et al. (2023)
introduce enhancements such as virtual edges and multi-resolution graphs to improve efficiency
and handle long-range interactions. Additionally, the transformer architecture has been explored
in mesh-based physical simulations. Hybrid models like the GMR-Transformer-GMUS Han et al.
(2022) and HCMT Yu et al. (2023) combine GNNs to learn local rules and transformers to capture
global context and long-term dependencies over roll-out trajectories. Unlike most methods that
directly predict future states from input data, C-GNS Rubanova et al. (2022) employs a GNN to
model system constraints and computes future states by solving an optimization problem based on
these learned constraints.

Transfer learning, which transfers knowledge from a source domain to a target domain, has gained
prominence in deep learning for improving performance and reducing the need for annotated data
Reddy & Juliet (2019); Rezende et al. (2017); Mann et al. (2020); Touvron et al. (2023). Strategies
typically involve parameter control, either by sharing parameters between models or enforcing sim-
ilarity through techniques like l2-norm penalties Zhuang et al. (2020); Gouk et al. (2020); Xuhong
et al. (2018). These approaches have proven effective in computer vision and natural language pro-
cessing. However, the application of transfer learning to GNN-based physics simulations remains
largely unexplored.

3 METHOD

3.1 OVERVIEW

In this section, we introduce our pre-training and fine-tuning framework. We begin by detailing the
data format used by our model. Following this, we provide an in-depth explanation of the model
architecture, discussing its fundamental networks, operators, and key modules. Finally, we describe
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the transfer learning mechanism, emphasizing two mapping functions that adjust the model size for
optimal performance.

mesh node

element node

𝒱!

𝒱"

mesh-mesh edge ℰ!!

mesh-element edge ℰ"!/ℰ!"

element-element edge ℰ""

(a) (b)

Figure 1: (a) An illustration of the composition of mesh dataM and its representation as a hetero-
geneous graph Ghetero. (b) Example of down-sampled graphs with pooling ratios as 3 and 2.

3.2 PROBLEM STATEMENT

Given the physical state of a system, our task is to predict the subsequent state over a time inter-
val and under specified boundary conditions. The system’s current state at time t is described by a
discretized mesh M t and can be represented in 2D or 3D space. The mesh data M t is comprised
of world coordinates, element connectivity, and physical parameters (stress/strain state and material
properties). We use one-step prediction to find the subsequent mesh state M t+1, but for sake of no-
tational convenience, we will omit the superscript t, which indicates the timestamp in the subsequent
expressions.

To facilitate the learning process, we transform the original mesh data M into a heterogeneous graph
Ghetero = (V, E), where V denotes the set of nodes and E represents the set of edges. The node
set V comprises two types of node: mesh nodes VM and element nodes VE . The mesh vertices
in M are converted to graph nodes in VM , while the mesh faces are represented as nodes in VE .
This heterogeneous graph structure is necessary to describe physical state variables like stress in a
single-valued way when multiple materials are present in a system, as is typical for many physical
simulations. The edge set E includes three groups of edges: (1) bidirectional edges EM,M between
adjacent mesh vertices VM , (2) bidirectional edges EE,E between adjacent faces VE , and (3) direc-
tional edges EE,M and EM,E which connect each mesh face to its vertices. Figure 1a provides a
demonstration of mesh data derived from the Deformable Plate dataset and its corresponding het-
erogeneous graph.

Each type of node and edge has its own feature matrix. For example, the feature matrix of mesh
nodes VM is XM ∈ R|VM |×hM

0 , where the feature vector of node i ∈ VM is the i-th row vector of
XM . We explain the composition of feature matrices in Appendix ??.

3.3 SCALABLE GRAPH U-NET

Our model comprises four main modules, as illustrated in Figure 2a. We adopt an Encoder-Process-
Decoder Sanchez-Gonzalez et al. (2020) style model with several key extensions: (1) the framework
is extended to handle the heterogeneous graph structure with multiple node and edge types, and (2)
we add a staged U-Net with variable DFS pooling and unpooling that greatly expands the model’s
receptive field. In the following paragraphs, we will detail these networks and modules.

Encoder: The Encoder comprises a set of MLP models and three Processors. The MLP models map
raw node and edge features of varying sizes into a unified latent space. The three Processors manage
the message passing flows VM → VM , VE → VE , and VM → VE , respectively. Consequently, the
Encoder transforms the heterogeneous graph Ghetero into a homogeneous graph GE by aggregating
the mesh node representations into their neighboring element nodes.

Processor: The Processor (Pr) consists of m identical Graph-Net blocks (GNBs), with the output of
each block serving as the input to the subsequent block in the sequence. This sequential processing
enables the model to gather and integrate information from nodes located up to m hops away from
the central node.
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(a)

(b) Uniform mapping (c) First-N mapping

Figure 2: (a) A detailed depiction of our proposed model, SGUNET, which includes four primary
modules: the Processor Pri for information propagation; the Encoder for data transformation, the
GUnet for graph pooling, and the Decoder for downstream tasks. (b) & (c) Mapping functions for
GUNet stages and GNBs for the case where pre-trained model has more stages and per-processor
GNBs than the fine-tuned model.

Each Graph-Net block operates as an independent message passing unit, with no shared parameters
between blocks. We extend the concept of Graph-Net blocks from Sanchez-Gonzalez et al. (2018);
Pfaff et al. (2021) to accommodate graphs with various types of nodes and edges. Specifically,
for message passing flow from V src to V tgt, where src and tgt ∈ {E,M}, the feature of the edge
connecting nodes i and j is updated via

Xsrc,tgt
i,j = f src,tgt (Xsrc

i |X
tgt
j |X

src,tgt
i,j

)
,

where f src,tgt is an MLP model with residual connections, and | represents the concatenation opera-
tion. After updating the edge features, the feature of the end-point node j is updated via

Xtgt
j = f tgt

Xtgt
j |

∑
i∈N src

j

Xsrc,tgt
i,j

 ,

where f tgt is an MLP model with residual connections, andN src
j are the neighborhoods of node j of

type src.

GUnet Stage: The GUnet (GU) is composed of L stages, with each stage containing one pooling
layer and two Processors. During the down-sampling phase, a Processor (PrEi ) and a down-sample
operator (Downi) are sequentially applied at stage i. This process allows graphs of varying sizes
to undergo information propagation and aggregation. During the up-sampling phase, the procedure
is reversed: the graph is first restored to its original size by an up-sampling operator (Upi) before
being processed by a Processor (PrDi ) at stage i. Unlike traditional graph network models such
as those in Pfaff et al. (2021); Rubanova et al. (2022); Allen et al. (2022a), which require many
message passing steps to capture long-range dependencies, the GUnet is able to process long-range
data with significantly fewer message passing steps. This can also help alleviate the difficulty of
scaling message passing networks to a large number of nodes as the number of message passing
steps needed would become intractable for GPU memory.

We design a Depth First Search style pooling (DFS-pooling) which has two key advantages that
distinguishes it from the existing work Gao & Ji (2019): (1) changeable pooling ratios for different
pooling stages and (2) pooling based on node proximity. We first select an un-visited node from the
element node set as the starting node and initiate a DFS-style random walk to explore adjacent nodes
of the same material. During this walk, nodes are clustered according to the pooling ratio, with nodes
in each cluster pooled into a single node. We use an even-pooling scheme of averaging weights to
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update the node and edge features within each cluster. This process continues until all nodes in
VE have been visited. The pseudo-code for this clustering computation is provided in Algorithm 1.
Additionally, we provide an example of down-sampled graphs in Figure 1b with pooling ratios as 3
and 2, respectively. Here, nodes of different colors have different types of material. Note that this
computation needs to be performed only once during the preprocessing stage, once the pooling ratio
is determined.

Decoder: In line with MGN Pfaff et al. (2021), we use an MLP model to project the latent features
of the element nodes XE into the output space. Additionally, we perform a 1-hop message passing
operation from VE to VM to interpolate the features of the element nodes to those of mesh nodes.
Finally, another MLP model decodes the interpolated latent features of the mesh nodes into the
desired output space.

3.4 UTILIZING THE PRE-TRAINED MODEL

How exactly the knowledge from a pre-trained model is instilled into a target task-specific model,
particularly when their architectures are mismatched, is a non-trivial task. As stated in Section 2, one
of the widely-used approaches in transfer learning operates at the parameter level. We also adopt the
parameter sharing and parameter restriction strategies and discuss these in more detail here. To our
knowledge, this is the first time transfer learning has been adapted and applied to GNNs predicting
physics simulations.

3.4.1 PARAMETER SHARING

The parameter sharing strategy involves initializing the downstream task-specific model with a pre-
trained model. Typically, the pre-trained model is either the same as or more complex than the
task-specific model due to resource constraints Xu et al. (2023). However, this is not the case for
our mesh-based graph network model. This distinction arises because the number of stages and
message passing steps in the GUnet are closely aligned with the data size and simulation settings.
As a result, conventional weight initialization methods are not directly applicable. Therefore, we
design alternative strategies to effectively transfer learned knowledge from the pre-trained model to
the downstream model within our unique framework.

We propose a scaling method at two levels — Processor and GUnet — to align the sizes of the pre-
trained and fine-tuned models. We choose between two mapping functions for both the Processors
and GUnet: Uniform and First-N. The details of these mapping functions are described below. For
the Processors, we employ the mapping function on GNBs, which ensures that the alignment reflects
the stages of message propagation through the blocks. For the GUnet, we employ the mapping
function on the GUNet stages. In general, the mapping function chosen for the Processors and GUnet
need not be the same, but for our present work we used the same mapping (First-N or Uniform) for
both Processors and GUnet for a given experiment.

Note that the Encoder and the Decoder do not contain generalizable knowledge as they are tailored
to specific tasks. In our implementation, we randomly initialize the parameters of the Encoder and
Decoders during fine-tuning.

1) Uniform Mapping: The first method of parameter sharing between pre-trained and fine-tuned
models is the Uniform method. The goal of this mapping method is to achieve uniform division and
alignment of weights. To align the weights of two Processors, we consider cases where the number
of GNBs in the pre-trained model mpt is less than, greater than, or equal to that in the fine-tuned
model mft. Formally, let g1(Prpt) be a function that maps a Processor Prpt in the pre-trained model
to a Processor Prft in the fine-tuned model. This mapping function uses uniform division to achieve
the alignment:

Prift = guni
1 (i;Prpt) =


Pr

⌊i/upN⌋,
pt , if mpt < mft

MEANst(i)+d(i)
j=st(i) {Prjpt}, if mpt > mft

Pript, if mpt == mft,

where,

st(i) =

{
(dwN + 1)× i, if i < r,
dwN× i+ r, if i ≥ r,

d(i) =

{
dwN + 1, if i < r,
dwN, if i ≥ r

,
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upN = ⌈mft/mpt⌉, dwN = ⌊mpt/mft⌋, r = mpt mod mft.

Pri represents the i-th Graph-Net block in the Processor, and MEAN{·} represents the averag-
ing operation. We can define the mapping function for the GUnet g2(GUpt) in a similar fashion.
We leave the detailed discussion to Appendix B.2. An example of the Uniform mapping for both
Processor and GUnet is shown in Figure 2b.

2) First-N Mapping: The second method for parameter sharing between pre-trained and fine-tuned
models is the First-N method. For Processor, the goal of this mapping method is to selectively share
weights for the first set of Graph-Net blocks that are common between the pre-trained and fine-tuned
models. Formally,

Prift = gFirst-N
1 (i;Prpt) =

{
Pript, if i ≤ mpt

Randomly Initialized, if i > mpt.

We can also define the First-N mapping from a pre-trained GUnet GUpt to a fine-tuned GUnet GUft.
An example of the First-N mapping of both pooling and message passing is shown in Figure 2c.

Regardless of the mapping methods, the stages from the GUnet must first be mapped from the pre-
trained model to the fine-tuned model, then within each GUNet stage the GNBs for the Processor
must be mapped to the fine-tuned model as well. In this way there is a hierarchical approach to the
shared parameters.

In summary, the key difference between the Uniform and First-N mapping functions lies in the
extent to which parameters from the GUnet modules are used by the fine-tuned model. The Uniform
strategy may allow for more comprehensive parameter use, whereas the First-N approach might be
more selective. The effectiveness of these mapping functions will be assessed in Section 4.

3.4.2 PARAMETER RESTRICTION

Beyond parameter sharing, we implement a parameter restriction technique to enhance the gen-
eralization capabilities of the downstream models. Following Gouk et al. Gouk et al. (2020), we
calculate the Frobenius distance between the pre-trained and fine-tuned model weights to apply a
regularization term that penalizes discrepancies between them. Let Wpt denote the weights of the
pre-trained model, and Wft represent the weights of the fine-tuned model. Then the Frobenius norm
of the difference between these two sets of weights can be expressed as:

∥Wpt −Wft∥F =

√√√√ m∑
i=1

n∑
j=1

(
W

(i,j)
pt −W

(i,j)
ft

)2

.

To incorporate Frobenius distance into the training process, the regularization term is added to the
loss function. The regularized loss function Lreg can be written as:

Lreg = Ltask + λ∥Wpt −Wft∥2F ,

where λ is a hyperparameter that controls the strength of the regularization term, and Ltask repre-
sents the original task-related loss.

4 EXPERIMENTS

We present an evaluation of our proposed pre-training and fine-tuning framework for mesh-based
simulations. We begin by detailing the datasets used in our experiments, highlighting both the gen-
eralized dataset constructed for pre-training and the benchmark datasets employed for fine-tuning.
Following this, we introduce the baseline models against which our approach is compared. We then
present the results of our pre-training phase and evaluate the transfer learning performance.

4.1 DATASETS

1) For pre-training: Since there is currently no existing work on pre-training for mesh-based phys-
ical simulations, and popular benchmark datasets contain at best a few thousands training samples,
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Figure 3: Randomized FEA simulation dataset using geometry from ABC dataset.

we constructed a larger and more-generalized pre-training dataset. The goal of this dataset was to
have a wide variety of geometric shapes that are deformed after coming into contact with each other.
We used the ABC dataset Koch et al. (2019), which is a CAD model dataset used for geometric
deep learning, to get a wide sample of parts and shapes to deform. To generate a simulation in our
pre-training dataset, we first randomly select two CAD geometries, then auto-mesh them with the
meshing tool Shabaka Hafez & Rashid (2023). We then align the two meshed parts in 3D space
and apply compressive boundary conditions to simulate the parts coming into contact. Figure 3
illustrates the workflow of the pre-training dataset construction process.

In total, we generated a pre-training dataset of 20,000 simulations by drawing pairs of geometries
from a set of 400 geometry samples. Figure 4 shows several example simulations and the modes of
deformation achieved through contact. Here we can see examples of mechanical contact and stress
around a hole.

Figure 4: The FEA simulation results using ABC CAD dataset highlight various deformation modes,
including compression with associated tension around a hole, as well as plate and beam bending.

2) For Transfer Learning: We selected two representative datasets for quasi-static mechanical
simulations as benchmarks to evaluate model performance on downstream tasks: 2D Deformable
Plate Linkerhägner et al. (2023) and 3D Deforming Plate Pfaff et al. (2021). These downstream
task datasets represent a subspace of simulations relative to our generalized pre-training dataset, and
thought to be good candidates to evaluate our fine-tuning framework. For more detailed information
about the datasets, please refer to Table 2.

4.2 BASELINE AND METRIC

To demonstrate the generalization and effectiveness of our pre-training and fine-tuning paradigm,
we used MGN Pfaff et al. (2021), a state-of-the-art model in the field of physics simulation, as the
baseline for comparison. The model configurations are shown in Table 1 and more explanations can
be found in Appendix C.1. We used the RMSE loss on the positions of mesh nodes VM as the metric
to evaluate model performance. We show the calculation of receptive field size in Appendix ??.

4.3 PRE-TRAINING RESULTS

We trained both the MGN and SGUNET models on ABCD for 1 million training steps. The RMSE
losses for MGN on the training and validation datasets are 8.3205×10−4 and 5.8018×10−4, re-
spectively. In comparison, SGUNET achieves RMSE losses of 4.2041×10−4 on the training set and
4.2657×10−4 on the validation set. These results demonstrate that SGUNET outperforms MGN,

7
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Table 1: Hyperparameter configurations for the models.

Model Dataset # Message Passing
(Encoder)

# Message Passing
(Processor)

Mesh Receptive
Field Size # Parameters Batch Size

MGN
ABCD 5 13 18 1053766 2
Deforming Plate 2 15 17 891462 8
Deformable Plate 2 6 8 553156 16

Model Dataset Pooling Ratio # Message Passing
(Encoder)

# Message Passing
(GUnet)

Mesh Receptive
Field Size # Parameters Batch Size

SGUNET

ABCD [4, 2, 2] 3 1 35 719686 4
Deforming Plate [4, 2] 4 2 29 894918 16
Deformable Plate [2] 2 2 9 569540 16

reducing the training loss by nearly 50%. Moreover, the validation loss shows that SGUNET gener-
alizes better to unseen data while converging more effectively during training.

4.4 TRANSFER LEARNING PERFORMANCE

To evaluate the effectiveness of our pre-training and fine-tuning framework, we performed experi-
ments using the ABCD dataset for pre-training. Both the MGN and SGUNET models are trained for
a defined number of epochs. Subsequently, we fine-tuned these models on downstream tasks. For
the Deformable Plate dataset, the models were fine-tuned for 20k steps. For the Deforming Plate
dataset, the models were fine-tuned for 500k steps. We applied two parameter sharing strategies —
Uniform and First-N — when loading the checkpoint of the pre-trained model. Additionally, we
reduced the size of the training dataset to investigate whether our framework can decrease reliance
on large volume of data. During this process, we recorded the minimum validation loss and saved
the corresponding model checkpoint, which was later used to assess performance on the test dataset.
All experiments are repeated 5 times with different random seeds.

Deformable Plate: We reduced the training set to 1
8 , and 1

16 of its original size. The animations
in Figure 5 provide an intuitive qualitative assessment. This figure presents an example from the
test dataset. From these visualizations, we can observe a clear improvement in the handling of
deformations at the contact area between the ball and the plate after fine-tuning. Specifically, the
ball and plate no longer overlap, the plate’s deformation curve conforms more closely to the ball’s
contour, and the deformation in areas farther from the contact point aligns more accurately with the
ground truth.
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Figure 5: Simulated meshes at various stages (t=30 at the top row, t=50 at the bottom row) for differ-
ent models: MGN, MGN-FT (fine-tuned with Uniform and First-N strategies), SGUNET, SGUNET-
FT (fine-tuned with Uniform and First-N strategies), and the ground truth. All models are trained on
1/8 of the original training size. The colors indicate displacement magnitude.

Figures 6 and 7 compare the roll-out validation RMSE for different models across three data scales,
offering insights from various perspectives. The results demonstrate that SGUNET consistently out-
performs MGN across all data scales, with lower RMSE values and faster convergence, particularly
when fine-tuned. These observations are corroborated by the test dataset performance shown in Ta-
ble 3. Notably, the RMSE of SGUNET fine-tuned with the Uniform strategy on 1

16 of the training
data is comparable to that of the model fine-tuned on the full dataset, achieving an 11.05% improve-
ment compared to the model trained from scratch.

These results reveal that fine-tuning with the Uniform strategy further reduces the RMSE compared
to the First-N strategy, demonstrating the effectiveness of this approach. Notably, SGUNET-FT with
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the Uniform strategy achieves the lowest RMSE even with significantly reduced datasets, highlight-
ing the model’s robustness and efficiency in generalizing from limited data.
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Figure 6: The best validation loss of the two models on the Deformable Plate dataset when trained
from scratch and when fine-tuned.
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Figure 7: Comparison of the best validation loss tendencies on the Deformable Plate. (a) Two
models both trained from scratch. (b) MGN trained from scratch and fine-tuned with the Uniform
strategy. (c) SGUNET trained from scratch and fine-tuned with the Uniform strategy.

Deforming Plate: We reduced the training set to 1
4 and 1

8 of its original size. The images in Fig-
ure 8 offer a qualitative assessment by showing an example from the test dataset. The visualizations
reveal that MGN performs poorly when trained from scratch as the displacement of the plate was
concentrated tightly around the ball. Although fine-tuning improved MGN’s predictions, the dis-
placement area it predicts is still much smaller than the ground truth. In contrast, SGUNET, espe-
cially SGUNET-FT, delivered much more accurate predictions. This accuracy could be attributed to
the larger receptive field size of SGUNET compared to MGN.
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Figure 8: Simulated meshes at various stages (t=200 at the top row, t=300 at the bottom row) for
different models: MGN, MGN-FT (fine-tuned with Uniform strategy), SGUNET, SGUNET-FT (fine-
tuned with Uniform strategy), and the ground truth. All models are trained on 1/8 of the original
training size. The colors indicate displacement magnitude.

Figures 9 and 10 compare the roll-out validation RMSE, while Table 4 presents the performance of
different models on the test dataset. The results reveal that — consistent with the findings on De-
formable Plate — (1) Fine-tuned models consistently outperform those trained from scratch across
all dataset scales. Notably, reduction on training data does not lead to much worse performance,
especially on the proposed SGUNET. (2) Fine-tuned models also exhibit faster convergence speeds.
For instance, as shown in Figure 10c, SGUNET-FT on 1

8 of the training data reaches the RMSE value
that its counterpart requires 500k steps to achieve, in just 200k steps.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

MGN MGN FT (uniform) MGN FT (first-N) Ours Ours FT (uniform) Ours FT (first-N)

5 × 10 3

6 × 10 3

7 × 10 3

8 × 10 3

Ro
llo

ut
 V

al
id

 R
M

SE

All Data
1/4 Data
1/8 Data

Figure 9: The best validation loss of the two models on the Deforming Plate dataset when trained
from scratch and when fine-tuned.
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Figure 10: Comparison of the best validation loss tendencies on the Deforming Plate. (a) Two
models both trained from scratch. (b) MGN trained from scratch and fine-tuned with the Uniform
strategy. (c) SGUNET trained from scratch and fine-tuned with the Uniform strategy.

5 DISCUSSION

In this paper, we introduce a novel pre-training and fine-tuning framework tailored specifically for
mesh-based physical simulations. Our approach uses a scalable graph U-net (SGUNET), which is
defined in a modular and configurable manner to facilitate the parameter sharing process for transfer
learning. We constructed a dataset for pre-training, i.e. ABCD, and utilized it to pre-train the
models. Through extensive experiments, we demonstrate that not only does SGUNET outperform
MGN, a SOTA model in this field, but also both models achieve improvements in performance across
various dataset scales when fine-tuned. Notably, the fine-tuned models reduce their dependence on
the training data.

Despite the promising results, there are some limitations that warrant further exploration. First, we
have evaluated our framework only in the context of quasi-static simulations. Future work could
extend it to a broader range of physical systems to assess its versatility and effectiveness in more
dynamic scenarios. Second, our current transfer learning methods, which includes two strategies for
parameter sharing and one for parameter restriction, have proven effective, exploring alternative and
more advanced transfer learning techniques could offer valuable opportunities for future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kelsey R. Allen, Tatiana Lopez-Guevara, Yulia Rubanova, Kimberly L. Stachenfeld, Alvaro
Sanchez-Gonzalez, Peter W. Battaglia, and Tobias Pfaff. Graph network simulators can learn
discontinuous, rigid contact dynamics. In Karen Liu, Dana Kulic, and Jeffrey Ichnowski (eds.),
Conference on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland, New Zealand, vol-
ume 205 of Proceedings of Machine Learning Research, pp. 1157–1167. PMLR, 2022a. URL
https://proceedings.mlr.press/v205/allen23a.html.

Kelsey R Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-Gonzalez, Peter
Battaglia, Jessica Hamrick, and Tobias Pfaff. Physical design using differentiable learned simu-
lators. arXiv preprint arXiv:2202.00728, 2022b.

Kelsey R Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks. arXiv preprint arXiv:2212.03574, 2022c.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based
physical simulation with bi-stride multi-scale graph neural network. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pp. 3541–3558. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/cao23a.html.
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A DATASET DETAILS

Three quasi-static datasets, ABCD, Deforming Plate, Deformable Plate are used in our experiments.
All datasets are simulated as hyper-elastic deformations with linear elements. For ABCD, it includes
20,000 trajectories for pre-training. For Deforming Plate, it contains 1200 trajectories in total, we
split it into 1000/100/100 for training, validation and testing. For Deformable Plate, we use a split
of 675/135/135 for training, validation and testing.

In the experiments, we repeated the fine-tuning on Deformable Plate and Deforming Plate 5 times.
Each time, we shuffled the data splits for training, validation and testing while maintaining the ratio.

Table 2: Basic statistics for datasets.

pre-training Dataset # |VM |
(avg.)

# |VE |
(avg.)

# |EM,M |
(avg.)

# |EE,E |
(avg.)

# |EE,M |
(avg.) # Steps Mesh Type Dimension

ABCD 4445 12944 42919 57052 51777 20 Tetrahedral 3

Transfer Learning
Dataset # |VM |

(avg.)
# |VE |
(avg.)

# |EM,M |
(avg.)

# |EE,E |
(avg.)

# |EE,M |
(avg.) # Steps Mesh Type Dimension

Deforming Plate 1270 4038 12718 15648 16154 400 Tetrahedral 3
Deformable Plate 138 183 648 515 549 50 Triangular 2

B METHOD DETAILS

B.1 DFS-POOLING

We provide the pseudocode for generating the cluster index vector, which is utilized for graph pool-
ing in the GUnet module.

Algorithm 1: Get nodes clustering index
Data: adjacency matrix A, pooling ratio p, material index vector m, number of nodes n
Result: cluster index vector c

1 Function DFS(nid,mat):
2 c.get(nid)← cid;
3 cnt← cnt+ 1;
4 if cnt ≥ p then
5 cid← cid+ 1;
6 cnt← 0;
7 end
8 for nnid ∈ [0, 1, . . . , n− 1] do
9 if nnid ∈ left ∧m.get(nnid) == mat then

10 left.remove(nnid);
11 DFS(nnid,mat);
12 end
13 end
14 return
15 Let cid← −1, cnt← 0;
16 Let left← set(0, 1, . . . , n− 1), c← [−1]n;
17 while left is not empty do
18 nid← left.pop(0);
19 mat←m.get(nid);
20 if c.count(cid) > 0 then
21 cid← cid+ 1;
22 cnt← 0;
23 end
24 DFS(nid,mat);
25 end
26 return c
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B.2 ALIGNMENT OF GUNET

A GUnet module comprise L stages. To align a GUnet with Lpt stages in the pre-trained model with
a GUnet having Lft stages in the fine-tuned model, it is essential to construct a mapping function that
build the connection between stages of the two models. Similar to the alignment of the Processor
module, we design two mapping methods. Let g2(GUpt) denote the function that maps a GUnet
GUpt in the pre-trained model to a GUnet GUft in the fine-tuned model. For Uniform Mapping,

GUi
ft = guni

2 (i;GUpt) =


g1(GU

⌊i/upN⌋
pt ), if Lpt < Lft

MEANst(i)+d(i)
j=st(i) {g1(GUj

pt)}, if Lpt > Lft

g1(GUi
pt), if Lpt == Lft.

For First-N Mapping,

GUi
ft = gFirst-N

2 (i;GUpt) =

{
g1(GUi

pt), if i ≤ Lpt

Randomly Initialized, if i > Lpt.

The calculations for upN, dwN, st(i), and ed(i) are nearly the same as those in scaling the Processor.
The only difference is to replace m∗ with L∗ . Here, GUi denotes the Processor at the i-th layer
of the GUnet. Prior to the alignment between GUnets, the Processor should be aligned up using the
function g1 to ensure consistency.

B.3 HOW TO CALCULATE RECEPTIVE FIELD SIZE

The receptive field size is defined as the maximum distance from which the central node can ag-
gregate information from other nodes. Let the receptive field in the i-th stage be denoted by ri,
the pooling ratio by pi, and the number of message passing steps in the GUnet’s Processors by
mGU. Due to the presence of a Processor at the bottom of the GUnet, we have rL = mGU. Given
ri, the receptive field for the (i − 1)-th stage can be calculated as ri−1 = (ri + 1) · pi − 1. By
applying this recursively, the receptive field of the central node in the first stage is determined as
r0 = (mGU + 1) ·

(∏L−1
i=0 pi + 1

)
− 2. Prior to reaching the first stage of the GUnet, the graph

has already undergone mEnc steps of information aggregation through the Processor in the Encoder.
Therefore, the overall receptive field size is r = mEnc + (mGU + 1) ·

(∏L−1
i=0 pi + 1

)
− 2.

B.4 MORE INFORMATION ABOUT HETEROGENEOUS GRAPH

As described in Section 3.2, each node and edge type has a distinct feature matrix. Specifically,
the feature at time t is constructed as follows: 1) for vi ∈ VM , the feature is given by ni

∣∣∣∣(xt
i −

x0
i ); 2) for vi ∈ VE , it is represented as λi

∣∣∣∣µi

∣∣∣∣(xt
i − x0

i ); 3) for ei,j ∈ E src,tgt, the feature is
x0
ij

∣∣∣∣|x0
ij |
∣∣∣∣xt

ij

∣∣∣∣|xt
ij |. Here, ni is a binary indicator (0 or 1) representing whether the mesh node vi

is a normal or boundary node, λi and µi are mechanical properties of the material, xt
i denotes the

world coordinates of node i at time t, and xt
ij refers to the relative world position between nodes i

and j at time t. The operator
∣∣∣∣ denotes concatenation, while | · | refers to the L2 norm.

Following the approach in previous work Pfaff et al. (2021), we construct edges between the plate
and the ball in the Deforming Plate and Deformable Plate datasets based on the distance between
endpoints. Specifically, the distances used for ABCD, Deforming Plate, and Deformable Plate are
0.0003, 0.003, and 0.05, respectively. Unlike MGN, which connects mesh nodes directly, we estab-
lish edges between element nodes.

Previous work transforms the mesh data from the Deforming Plate and Deformable Plate datasets
into homogeneous graphs, where mesh vertices are represented as graph nodes. As a result, these
datasets only capture the physical information of the mesh vertices and lack material properties. To
address these limitations, we 1) use the average position of the mesh nodes to represent the position
of the corresponding element node, and 2) set the material properties λ and µ to zero.
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C EXPERIMENT DETAILS

C.1 MODEL CONFIGURATION

MGN: For the Deforming Plate and Deformable Plate datasets, we adhere to the settings outlined
in the original paper Pfaff et al. (2021); Linkerhägner et al. (2023). For the ABCD dataset, which
involves larger-scale mesh sizes, more message passing steps are required. Since increased message
passing steps lead to higher memory consumption and longer training times, we balance effective-
ness and efficiency by setting the message passing steps in the Encoder and Processor to 5 and 13,
respectively.

SGUNET: We configure our model based on two key objectives: 1) achieving a larger mesh recep-
tive field size and 2) maintaining a model size that is comparable to or smaller than that of MGN.
We evaluate the model performance across several configurations and select the one that performs
best.

Noise Std.: As we adopt the next-step prediction approach, adding noise to the input data is essen-
tial to enhance robustness during inference. We follow the noise settings specified in the original
paper Pfaff et al. (2021); Linkerhägner et al. (2023) for the Deforming Plate and Deformable Plate
datasets, which are 0.003 and 0.05, respectively. For the ABCD dataset, given that it involves fewer
roll-out steps, we use a smaller noise standard deviation value of 0.0003.

C.2 LOSS

The task-related objective across all datasets is unified as the mean squared error (MSE) loss of the
normalized delta displacement between nodes over two steps. This can be expressed as:

Ltask = 1
|VM |+|VE |

∑
v∈VM∪VE

∥∥∥˜̇xv

pred
− ˜̇xv

GT∥∥∥2 ,
where ˜̇xv

pred
and ˜̇xv

GT
represent the normalized predicted and ground truth displacements of node

v over two steps, respectively.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

We present the experimental results of MGN and SGUNET on the Deformable Plate and Deforming
Plate datasets in Table 3 and Table 4, respectively. These results are obtained by loading the check-
point from the best-performing step on the validation set, followed by inference on the correspond-
ing test datasets. To facilitate comparison, the best result for each training data size is highlighted in
bold, while the second-best result is underlined.

Table 3: The performance of the two models
on the test dataset for Deformable Plate when
trained from scratch and when fine-tuned.

Model Method All Data 1
8 Data 1

16 Data

MGN
From scratch 0.062391±0.0106 0.064114±0.0046 0.070436±0.0065

Fine-tuned (First-N) 0.056409±0.0052 0.057404±0.0015 0.058858±0.0052
Fine-tuned (uni) 0.054644±0.0029 0.055432±0.0032 0.060024±0.0030

SGUNET
From scratch 0.059615±0.0005 0.063806±0.0085 0.064714±0.0096

Fine-tuned (First-N) 0.057769±0.0058 0.059909±0.0062 0.061929±0.0060
Fine-tuned (uni) 0.056966±0.0061 0.057517±0.0044 0.057560±0.0034

Table 4: The performance of the two models on
the Deforming Plate dataset when trained from
scratch and when fine-tuned.

Model Method All Data 1
4 Data 1

8 Data

MGN
From scratch 0.007058±0.0009 0.007068±0.0006 0.007477±0.0008

Fine-tuned (First-N) 0.005903±0.0008 0.006977±0.0008 0.006350±0.0005
Fine-tuned (uni) 0.006363±0.0006 0.006523±0.0007 0.006535±0.0009

SGUNET
From scratch 0.006402±0.0008 0.006585±0.0007 0.007045±0.0008

Fine-tuned (First-N) 0.006071±0.0002 0.005993±0.0003 0.006006±0.0004
Fine-tuned (uni) 0.006173±0.0005 0.006140±0.0005 0.006272±0.0006

Figure 11 and Figure 12 provide supplementary animations, where the models are trained on the full
training dataset.
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(a) MGN (b) MGN-FT (Uniform) (d) SGUNET (e) SGUNET-FT (Uniform) (g) GROUND TRUTH

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.580000

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.980000

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.580000

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.980000

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.580000

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.980000

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.581012

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.980249

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.586750

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.980000

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.580000

0.00  0.250 0.500 0.750 1.00  
Displacement Magtitude

Max: 0.980000

(c) MGN-FT (First-N)
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Figure 11: Simulated meshes at various stages (t=30 at the top row, t=50 at the bottom row) for dif-
ferent models. All models are trained on the full training dataset. The colors indicate displacement
magnitude.
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Figure 12: Simulated meshes at various stages (t=200 at the top row, t=300 at the bottom row) for
different models. All models are trained on the full training dataset. The colors indicate displace-
ment magnitude.
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