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Abstract
Triple-negative breast cancer (TNBC) is a partic-
ularly aggressive subtype of breast cancer that
is usually treated with chemotherapy. However,
the effectiveness of the treatment can vary widely.
Accurate prediction of the response to chemother-
apy is crucial in preparing effective personalized
treatment. This paper introduces a machine learn-
ing framework that uses imaging mass cytome-
try (IMC) data from clinical trials to train graph
neural networks (GNNs) to predict whether a pa-
tient will respond to chemotherapy. Our approach
combines single-cell protein expression and spa-
tial cell-cell contact information extracted from
IMC images. To account for staining variabil-
ity known as batch effects, we introduce a sur-
rogate loss function that enables learning of a
representation space predictive of response, yet
invariant to batch artefacts. We investigate differ-
ent graph construction methods (k-nearest neigh-
bors, k-atmost neighbors, Delaunay triangulation)
to capture cell-cell contact delineating tumor mi-
croenvironment. Our framework demonstrates
improved predictive performance through batch
effect correction and effective integration of pro-
tein expression with spatial cellular relationships.

1. Introduction
Breast cancer is a prevalent global form of cancer, posing
significant challenges in treatment and management due to
high incidence and mortality rates worldwide (Sung et al.,
2021). Among its subtypes, TNBC is particularly aggres-
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sive, characterized by the lack of estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) (Bianchini et al., 2016). ER, PR
and HER2 are molecular targets for specific targeted ther-
apies in breast cancer. Their absence in TNBC means that
these targeted therapies, such as anti-estrogen (e.g., tamox-
ifen) or anti-HER2 (e.g., trastuzumab) drugs, are ineffective
for treating TNBC patients (Shetti et al., 2019). With limited
targeted therapeutic options TNBC treatment often relies on
conventional chemotherapy. However, there is significant
variability in the response rates to chemotherapy, resulting
in unnecessary toxicity for non-responders (Bianchini et al.,
2016). Predicting a patient’s response to chemotherapy is
crucial for personalized treatment planning, enabling the
identification of alternative treatments when necessary.

Recent advancements in spatially resolved imaging tech-
nologies, such as IMC, have made it possible to quantify
multiple protein markers within individual cells, a promis-
ing development for designing cancer therapeutics. IMC
uses metal-tagged antibodies to detect and quantify over 40
proteins or other molecules in biological samples, with a
spatial resolution of 1 µm and an ablation frequency of 200
Hz (Giesen et al., 2014). This technology offers a powerful
tool for fast profiling of selected areas of biopsy samples,
enabling studies ranging from spatial analysis of tumour
microenvironments to the characterization of pathological
features in diseases such as TNBC.

GNNs have demonstrated promising capabilities in captur-
ing spatial relationships and modeling complex biological
networks (Xu et al., 2019; Li et al., 2022). GNNs are in-
herently designed to handle graph-structured data, making
them a suitable candidate to integrate protein expression and
cell-cell contact information to learn features that capture
disease development (Wang et al., 2021).

In this paper, we utilized an IMC dataset of patients to de-
velop a batch effect-invariant GNN model for predicting
response to chemotherapy. The IMC images were processed
through a dedicated preprocessing pipeline to extract single-
cell protein expression levels and their spatial information.
However, a significant challenge in analyzing these spatial
single-cell protein data is the high variability resulting from
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Figure 1. We present a pipeline that includes feature extraction from raw IMC images and building a response prediction model. On
the left is a feature extraction stage, where the first step involves using Steinbock (Windhager et al., 2023) and IMC-Denoise (Lu
et al., 2023) methodologies to mitigate artefacts such as hot pixels and shot noise. Subsequently, cell segmentation is performed using
Mesmer (Greenwald et al., 2022), where the centroids of identified cells denote their spatial coordinates. These centroids are then utilised
to construct a graph, wherein the mean pixel intensities per cell are used to quantify its protein expression. This protein expression data is
integrated for training GNN as showcased on the right. Following model training, GNNExplainer is deployed to find the most predictive
protein profiles indicative of a positive case on a held-out patient data.

the staining with antibodies, making it difficult to separate
relevant biological signals, such as patient-to-patient dif-
ferences, from noise. To mitigate such batch effects, we
introduced a surrogate loss that helps in learning a repre-
sentation space that is predictive of response while being
invariant to batch-specific artefacts.

To summarise the key contributions of our work are:

1. Response prediction with batch correction. We pro-
pose a learning objective that uses protein expression and
cell-cell contact graphs to learn a representation that is pre-
dictive of target class while erasing information that can be
predictive of batch artefacts. We achieve this by introduc-
ing a surrogate loss for “batch effect” prediction and when
updating a GNN we reverse the gradients from this predic-
tor. Our results show improved predictive performance with
such a regularization objective.

2. Effect of different graph construction methods on
response prediction. Given spatial coordinates of cells
there are different ways to construct a graph representation
to capture cell-cell contact relationships informative of tu-
mor structure and tumor-microenvironment composition.
We investigate three choices: k-nearest neighbor (k-NN),
k-atmost neighbors, and delaunay triangulation. We show
for IMC data k-NN achieves best performance compared to
other graph choices.

2. Methodology
We start by preprocessing IMC images to extract protein
expression profiles and centroids of individual cells. Then,
we introduce our method that uses a GNN to predict whether
patients will respond to chemotherapy, while also removing
batch effects using a surrogate optimization objective. The
complete framework for predicting the response of TNBC
patients to chemotherapy based on IMC imaging data is
illustrated in Figure 1. Next, we introduce the real-world
dataset of IMC images utilized in our experiments.

TNBC IMC Dataset We use a real-world dataset gener-
ated as part of the Wellcome Leap Delta Tissue program 1,
mostly from retrospective samples from a large number
of patients (via biobanking consent) and a few from the
FORCE clinical trial. A cohort of patients diagnosed with
triple negative breast cancer (TNBC) was recruited and tis-
sue biopsy taken before starting neoadjuvant chemotherapy.
A pathologist identified a set of regions of interest (ROIs)
based on H&E staining, which are then analyzed with IMC.
Here, IMC measures protein abundance using a panel of
35 metal-tagged antibody markers for tumoral, immune,
and stromal cells (CD3, CD4, CD8a, CD11b, CD14, CD16,
CD20, CD27, CD31, CD38, CD44, CD45, CD45RO, CD68,
CD107a, CD163, CD366, Beta-Catenin, E-Cadherin, Pan-

1https://wellcomeleap.org/delta-tissue/

https://wellcomeleap.org/delta-tissue/
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Keratin, Vimentin, Tbet, FOXP3, HLA-DR-DQ-DP, Alpha-
SMA, Granzyme-B, B7-H4, Ki-67, PD1, PD-L1, PD-L2,
p53, Collagen Type I, EGFR, VEGF) as well as two anti-
bodies for DNA2. This results in an image with 35 channels
(one for each protein marker).

Patients are classified based on their residual cancer bur-
den (RCB) score at the end of the treatment. Here, we
adopt a binary label for the patient response, defining a
pathological, complete responder (pCR) if the RCB is 0 and
non-responder otherwise (nR). We implement strict quality
control metrics on cells and remove ROIs with less than
1000 cells. From 445 ROIs and 58 Patients, the dataset that
passes quality control consists of 396 ROIs from 51 patients
associated with five staining groups. In the dataset there are
37 nR and 24 pCR patients.

Data preprocessing The IMC data contain hot pixel noise
and shot noise primarily resulting due to the detection mech-
anism. Hot pixel noise occurs due to the formation of an-
tibody aggregates that produce regions of the image with
high antibody counts. Shot noise arises because of the dis-
crete nature of ion detection and antibody binding, which
causes random fluctuations in signal intensity. These noise
sources collectively make it challenging to determine pro-
tein expression levels with high precision. As part of the
pre-processing step, we utilize Steinbock (Windhager et al.,
2023) and a state-of-the-art deep-learning-based algorithm
IMC-Denoise (Lu et al., 2023) to extract and denoise the
images. Subsequently, we apply Mesmer (Greenwald et al.,
2022), a segmentation algorithm to delineate individual cells
and quantify protein expression levels within distinct cel-
lular regions. Mesmer is a deep learning-based algorithm
that provides cell masks for spatial localization of proteins.
Once the cells are segmented, centroids are computed to
represent the cells’ spatial coordinates within an ROI.

Graph construction The cell-cell contact graph captures
cellular interactions, providing insights into the spatial con-
nectivity of cells at varying scales. In our work, we combine
this graph-based representation with protein expression data
to predict response to chemotherapy. Here, we provide
a detailed description of different methods for the graph
construction.

We use three distinct graph construction approaches: k-
nearest neighbours (kNN), k-almost neighbours, and Delau-
nay triangulation. The kNN method connects each cell to
its k nearest neighbours based on the Euclidean distance
between centroids. In contrast, the k-atmost neighbour ap-
proach uses a distance threshold. It connects each cell with
up to k cells if their distance falls within the specified thresh-

2DNA is only used for segmentation. Since it is expressed in
all cells we exclude it from prediction.

old while ensuring each cell is at least connected to one
nearest neighbour. The threshold here is the weight that
separates the weakest (1− k

N )× 100% of edges (where N
is the number of nodes in a graph). Finally, the Delaunay
triangulation method connects the centroids of cells forming
triangles such that no cell centroid lies inside the circum-
circle of any triangle, inferring cellular adjacency based
on their spatial arrangement.By incorporating these graph
construction techniques, we aimed to capture the potential
cellular interactions and investigate their performance on
the downstream task of response prediction.

Prediction of response to chemotherapy The experi-
mental protocol for data generation introduces technical
artefacts that may obscure biological features. For example,
differences in sample preparation or batches of reagents
may introduce variations in the measured protein abundance
that is unrelated to the biological variability of the samples.
These artefacts affect the measurements in groups or batches
and are known in the literature as batch effects. These batch
effects ultimately bias the distribution of measurements.
Correcting batch-related variations is crucial to disentangle
biological signals from technical artefacts. To this end, we
introduce an optimization objective using a gradient reversal
to simultaneously predict responder labels while censoring
information that includes batch-sensitive information.

Let X ∈ Rn×d be a protein expression matrix, G = (V,E)
be cell-cell contact graph with n = |V | as a set of ver-
tices and |E| as a set of edges (constructed as described
in Section 2), d is number of protein markers, s ∈ S be a
staining label where unique labels are S = {0, 1, 2, 3, 4},
and y ∈ Y be a label that takes value 1 for responder or
0 for non-responder. We use a GNN encoder fθ to embed
input G and X of each ROI to a fixed length representation
z ∈ Rdz where dz is a dimensionality of latent space, gϕ to
predict responder/non-responder labels, and hω to predict
the staining labels. To encourage the encoder to learn fea-
tures that are not sensitive to staining labels, the encoder
parameters are optimized to maximize the loss Lstain(., .)
and simultaneously minimize the loss of response predictor
Lresponder(., .). In Equation,

L = min
θ,ω,ϕ

Lresponder(gϕ(fθ(G,X)), y)

− λLstain(hω(fθ(G,X)), s)

where θ, ϕ and ω are the parameters of the encoder, re-
sponse predictor, and batch predictor, respectively. The final
loss is averaged over all ROIs in the dataset. The optimiza-
tion is performed using a gradient reversal layer (Raff &
Sylvester, 2018) that in backward pass negates the gradient
w.r.t the staining objective and in forward pass acts as an
identity function. This optimization mechanism allows the
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GNN encoder to learn representations that are invariant to
the staining effect and contain the necessary information
required for the response prediction task. Response predic-
tion is a binary task for which Lresponder reduces to a binary
cross-entropy loss, and stain prediction is a multiclass clas-
sification that reduces Lstain to a categorical cross-entropy
loss.

ROI to patient-level prediction. Pathologists annotate
ROIs, which can be stained in different batches for the
same patient. We, therefore, treat them as separate sam-
ples for training purposes. However, predicting a patient-
level response is more relevant for any clinical decision-
making. During the evaluation phase, patient-level predic-
tions were obtained using a majority voting scheme across
the ROIs belonging to the same patient. Specifically, let
Rp = {r1, r2, . . . , rn} represent the set of ROI-level pre-
dictions for patient p, where ri ∈ {0, 1} represents the
predicted response (0 for non-responder, 1 for responder)
for the ith ROI. The patient-level prediction Pp was then
determined as:

Pp =

{
1, if

∑n
i=1 ri > n/2

0, otherwise
(1)

2.1. Experimental setup

We implemented our framework in Python using Py-
Torch (Paszke et al., 2017) and PyTorch Geometric li-
brary (Fey & Lenssen, 2019) for GNNs. The encoder archi-
tecture comprises a two-layer Graph Convolutional Network
(GCN) (Kipf & Welling, 2017) followed by average pooling.
The response prediction head is a linear layer that predicts
the probability of a patient’s response to chemotherapy. In
contrast, stain prediction is a classification layer that predicts
the probability of an ROI coming from a specific staining
label. The regularization hyperparameter λ was set to 0.25
to balance the loss contribution.

To evaluate the predictive performance of the model, we re-
port the area under the curve (AUC), accuracy, and F1 score
to capture the effect of class imbalance. We report these
scores for evaluation of ROI-level prediction and patient-
level prediction using majority voting. These metrics com-
prehensively evaluate the model’s ability to predict patient
response to chemotherapy in TNBC.

We split our dataset into a training and test set with a 70%
and 30% split. We set k=7 for the k-NN and k-atmost
graph construction. We experimented with different k values
from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and found that k=7
resulted in the best performance.

3. Results and Discussion
Ablation comparing different graph construction meth-
ods. When working with the spatial coordinates of cells
within an ROI, there are different methods available for
creating a graph representation. Table 1 summarizes the per-
formance of different graph construction approaches. Our
results indicate that the k-NN graph outperforms other ap-
proaches in terms of ROI-level performance and achieves
comparable performance to the Delaunay triangulation
method at the patient level. Owing to its simplicity and
superior performance, we use the k-NN approach for graph
construction in the subsequent analyses presented in this
paper.

Table 3. Ablation of batch effect correction with k-NN graph (k=7).
Introducing staining loss leads to improved performance, encour-
aging the GNN to learn representations invariant of batch effects.

Batch Correction No Batch Correction

ROI Patient ROI Patient

AUC 0.797 0.928 0.766 0.857
Accuracy 0.751 0.947 0.766 0.894
F1 Score 0.752 0.923 0.739 0.833

Ablation of staining correction. To investigate the benefit
of including a staining predictor, we run an ablation study
where we compare the performance of the model trained
with and without the staining predictor. The performance is
reported in Table 2. We observe training with our objective
significantly improves the performance with an improve-
ment of 3.1% in ROI-level and 7.1% in patient-level AUC,
demonstrating the benefit of the proposed approach.

Comparison to baseline. To demonstrate the benefit of
incorporating spatial information, we compare our model
with baselines such as logistic regression, random forest,
and XGBoost. The results of our model are outlined in
Table 2 at ROI and patient level prediction. GNN model
consistently outperforms the baselines demonstrating the
benefit of spatial connectivity information from cell-cell
contact graph.

Feature attribution. We utilized the GNNExplainer (Ying
et al., 2019) algorithm to assess the importance of protein
markers in the prediction of responders. GNNExplainer
explains GNN predictions by identifying the most relevant
node features and sub-graph structures. It determines attri-
bution by computing the mutual information between the
input (a subset of node attributes and sub graphs) and the
GNN’s prediction, effectively quantifying the contribution
of each node feature to the final prediction. Graph level con-
tribution is obtained by summing up scores of each marker
across all nodes. Figure 2 reports the top 10 protein markers
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Table 1. Comparison of patient-level predictions using different graph construction approaches. k-NN achieves the best ROI-level
prediction performance and the same performance as Delaunay on patient-level predictions.

Graph Type AUC Accuracy F1 Score

ROI Patient ROI Patient ROI Patient

K-NN (K=7) 0.797 0.928 0.751 0.947 0.752 0.923
K-atmost neighbors (K=7) 0.698 0.785 0.657 0.842 0.649 0.723
Delaunay triangulation 0.774 0.928 0.704 0.947 0.698 0.923

Table 2. Here, we demonstrate the benefit of integrating cell-cell contact graph information with protein expression levels for predicting
response to chemotherapy. Results show improved performance compared to baseline methods trained solely on protein expression
features.

Method Logistic Regression XGBoost Random Forest GCN

ROI Patient ROI Patient ROI Patient ROI Patient

AUC 0.610 0.571 0.531 0.571 0.541 0.571 0.797 0.928
Accuracy 0.583 0.684 0.590 0.684 0.597 0.684 0.751 0.947
F1 Score 0.534 0.571 0.485 0.25 0.544 0.250 0.752 0.923

Figure 2. We rank all protein markers by their importance score
determined by GNNExplainer algorithm and report top 10 markers
and their score for response prediction.

for a patient who responds to therapy.

Most of the markers in the top ten are immune markers,
with the exception of B7-H4 and Alpha-SMA. There has
been recent evidence suggesting that TNBC tumours with
higher tumour infiltrating lymphocytes (TILs) are associated
with a better prognosis and a higher likelihood of achieving
pathological complete response (Huertas-Caro et al., 2023).
In particular, Tbet, which regulates effector T-cell activa-
tion, has been identified as a better prognostic indicator
for TNBC (Mori et al., 2019). Additionally, while there
is some evidence that the overexpression of B7-H4 leads
to a poor prognosis in TNBC (Wang et al., 2018), a recent
study indicates that the loss of B7-H4 expression in breast
cancer cells escaping from T cell cytotoxicity contributes
to epithelial-to-mesenchymal transition (Zhou et al., 2023),
which is known to have a poor prognosis.

Discussion Developing a model that can predict the re-

sponse of patients to chemotherapy has implications for per-
sonalized treatment strategies. By identifying patients who
are not responding, a more personalized therapeutic treat-
ment can be designed. Patients who are predicted to respond
favourably to a specific treatment can be prioritized for that
therapy, maximizing the likelihood of positive outcomes
and minimizing unnecessary exposure to ineffective, costly
treatments as well as toxicity and side effects. Conversely,
patients predicted to be non-responders can be promptly
transitioned to alternative therapeutic options, avoiding de-
lays in effective treatment and potentially improving overall
survival rates (Glasson et al., 2023). In future work, we aim
to combine our predictions with clinicians to take a step
towards the effective translation of IMC-derived insights
into clinical practice.

4. Conclusion
This paper introduced a GNN-based approach for predicting
chemotherapy response in TNBC patients using a novel IMC
dataset. A key challenge addressed was mitigating batch
effects from staining variability that can obscure biologically
relevant signals. We proposed a surrogate objective function
implemented via gradient reversal, allowing the model to
learn a representation space predictive of response while
invariant to batch artefacts. Our framework demonstrates the
potential of GNNs in using spatially-resolved IMC data for
accurate response prediction by integrating spatial context
and protein expression features within a unified graph-based
framework. This approach offers a promising avenue for
advancing personalized treatment strategies and improving
clinical outcomes for TNBC patients through effectively
integrating multichannel imaging data.
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