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Abstract

Training large language models (LLMs) typi-
cally relies on adaptive optimizers such as Adam,
which require significant memory to maintain
first- and second-moment matrices, which are
known as optimizer states. While recent works
such as GaLore, Fira and APOLLO have proposed
state-compressed variants to reduce memory con-
sumption, a fundamental question remains: What
is the minimal amount of optimizer state that is
truly necessary to retain state-of-the-art perfor-
mance in LLM pretraining? In this work, we
systematically investigate this question using a
bottom-up approach. We find that two (memory-
and compute-efficient) optimization techniques
are particularly effective: (1) column-wise gradi-
ent normalization significantly boosts the perfor-
mance of plain SGD without requiring momen-
tum; and (2) adding first-order momentum only
to the output layer — where gradient variance is
highest — yields performance competitive with
fully adaptive methods such as Muon. Based on
these insights, we propose SCALE (Stochastic
Column-normAlized Last-layer momEntum), a
new optimizer that combines column-normalized
SGD with last-layer momentum, where column
normalization refers to normalizing the gradient
along the output dimension. Across multiple
LLaMA models (60M-1B), SCALE matches or
exceeds the performance of Adam while using
only 35-45% of the total memory. It also consis-
tently outperforms memory-efficient optimizers
such as Galore, Fira and APOLLO, making it a
strong candidate for large-scale pretraining under
memory constraints. Code is available at this link.
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1. Introduction

Adaptive optimizers such as RMSProp (Hinton et al., 2012),
Adam (Kingma & Ba, 2015) are the default optimizers for
large-scale attention-based deep neural networks such as
large language models (LLMs). While effective, these op-
timizers incur significant memory overhead due to their
reliance on maintaining both first- and second-moment es-
timates of the gradient, which are also known as optimizer
states. For example, Adam requires storing two additional
tensors per parameter tensor, tripling the memory usage
compared to vanilla stochastic gradient descent (SGD).

On the other hand, despite its superior memory efficiency,
vanilla SGD performs poorly when applied directly in LLM
training, due to the absence of adaptive scaling in the update
step (See Figure 3 for experiment results, also see Zhao et al.
(2025); Zhang et al. (2020)). This has motivated a wave of
recent research (Zhao et al., 2024; Zhang et al., 2024; Liu
et al., 2024; Xu et al., 2024; Pethick et al., 2025; Ma et al.,
2024) focused on developing memory-efficient alternatives
to Adam that aim to retain its performance while reducing
memory consumption. Despite the growing literature, there
has been no systematic study to identify which specific
algorithmic components are most essential for designing
highly-performed yet minimal-memory optimizers. This
motivates our central research question:

What is the minimum subset of optimizer states
beyond the SGD that is required to achieve
state-of-the-art pretraining performance?

In this work, we pursue this question through a bottom-
up, minimalist approach. Concretely, we: (1) Identify two
key components that enhance the performance of vanilla
SGD: gradient normalization and momentum; (2) Analyze
how these components can be adapted in the most memory-
efficient manners;(3) Justify our design choices through a
combination of theoretical insights and empirical evidence.

Our study suggests that two techniques, when used together,
are particularly effective: (i) column-wise gradient nor-
malization, which improves SGD performance significantly
without requiring momentum; and (ii) adding first-order
momentum exclusively to the output layer, where gra-
dient variance is highest. These insights lead us to pro-
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Figure 1. Perplexity v.s. memory consumption among a number
of SOTA algorithms. Solutions achieved towards the left-bottom
side of the plot represent better performance/memory trade-off

(see Appendix A.3 for the details of the memory estimation).
pose SCALE (Stochastic Column-normAlized Last-layer

momEntum), a minimalist optimizer that combines these
two techniques, which requires roughly the same amount
of memory as compared to vanilla SGD. For example, for
1B (resp. 7B) model, SCALE only requires 10% (resp. 2%)
more memory as compared to vanilla SGD. Meanwhile,
SCALE achieves competitive performance as compared with
SOTA optimizers Adam and Muon, with only 35% and 52%
of the memory cost for training 1B models, respectively.
Please see Fig. 1 for an illustration of performance and
memory trade-off among different SOTA algorithms.

2. Methodology
Denote the optimization problem of LLM as

. 1o
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where / is the loss function, § = [y, ..., 0] is the model
trainable parameters, with 6; the [-th layer, [ = 1,2, ..., L.
With attention-based network, we can simply assume that
each §; € R n*dio jg a weight matrix, with the input
dimension d; j, and output dimension d; o, Here &; with
i =1, ..., n represents training data samples.
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To solve (2.1), vanilla SGD draws a small batch of i.i.d
samples {&; »}p=1,. p at iteration ¢ and performs update
toward the negative stochastic gradient direction g' :=
+ Zle V(0" &), where B is batch size and 7 is the
learning rate. Although memory-efficient, SGD performs
poorly in LLM training due to the lack of adaptive scaling
(Zhao et al., 2025), and we verify this in Fig. 3 where we
run SGD and Adam on LLaMA 60M pretraining task.

In contrast, adaptive algorithms such as Adam (Kingma &
Ba, 2015) update parameters using a more sophisticated
scheme (where © represents element-wise product):

0t = 0t — nym'/(Vol + €), where
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We examine Adam via the two essential components: The
first is Gradient Normalization. The key difference of
Adam from SGD is the normalization factor v? in the de-
nominator. One could first normalize each element of SGD,
resulting in the sign-SGD update as follows:

et _ gt

1 ———— = 0" — n sign(g")
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where sign stands for taking the sign for each element;
The second is Exponential Moving Average (EMA). The
stochasticity of the mini-batch sample {&; }s—1,. 5 of ¢
could be smoothed by taking the exponential moving aver-
age (EMA) for both the numerator and denominator for the
update (2.3), resulting in the second line of (2.2) for updat-
ing the numerator and denominator. In the next sections, we
examine each of these components separately and discuss
their effectiveness in isolation. We start from the gradient
normalization, which is memory-free. Then we discuss how
to use EMA in a more memory-friendly way to boost the
performance of the optimizer.

g+t = (2.3)

2.1. Gradient normalization

In view of how sign-SGD plays as the key connecting SGD
and Adam, in this section we inspect the effect of different
gradient normalizations. Denote G* the stochastic gradient
of current iteration (we use upper letters since we assume
the weight blocks 6; in (2.1) are matrices). Different normal-
ization techniques arise from using different matrix norms
in the following steepest descent formulation:

Ot =0 + Al A = argmin (G, A)
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where Gt € R™*" denotes the (stochastic) gradient at
iteration ¢. In particular, we let || A/, to represent the
operator norm of matrix A induced by vector norm ¢, and
£,.We can derive the following results based on (Bernstein
& Newhouse, 2024):

argmin (G,A) = -UV', G=UXV' isthe SVD,
IAll2—2<1
. col1 (G) col,,(G)
argmin (G, A) = ,
1A 1251 [leoly (G) ]| [|eoln (G
_row1(G)
\|row1(G)|
argmin (G, A) = —
IAll2— 00 <1 rowm(G)
[[row.m (G)]|
argmin (G, A) = —sign(G),

[A][1 500 <1
2.5)
which we refer to as singular-value, column-wise, row-wise
and sign normalization, respectively.

. It is worth mentioning that multiple existing works can be

summarized in this gradient normalization framework. For
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example, Sign-SGD/Adam utilize || - |10 (sign normal-
ization), Muon (Jordan et al., 2024) utilizes || - ||2—2 norm
(singular-value normalization), whereas SCION (Pethick
et al., 2025) and SlimAdam (Kalra et al., 2025) apply differ-
ent norms for different layers. In Appendix A.5, we compare
the computation of different normalizations in (2.5), where
singular-value normalization is most time consuming.

Experimental insights. We conduct the preliminary experi-
ment on pretraining LLaMA models (See Section 4 for the
experiment setting) to test SGD (2.4) with different normal-
izations (applying to all the layers) as specified in (2.5). We
report the pretraining perplexities in Table 1, and we notice
that all the normalizations improve over SGD, however none
of them alone could match the performance of Stable-SPAM
(which is a stabilized version of AdamW) or Muon, two of
the state-of-the-art algorithms. In particular, singular-value
normalization and column-wise normalization demonstrate
better performance than row-wise and sign normalization.
Given its lower cost, we adopt column-wise normalization
as our base algorithm moving forward.

60M 130M 350M
Adam 30.05 23.13 18.77
Stable-SPAM  28.77 2220 16.80
Muon 28.86 22.20 16.70
singular-value 34.15 25.25 18.73
column-wise 39.89 28.85 20.38
row-wise 79.27 37.67 21.63
sign 5436 4042 27.95

Table 1. Preliminary experiments results (perplexity) of pretraining
LLaMA models on C4 dataset, using different norms for steep-
est gradient descent (2.4) methods as specified in (2.5). For the
singular-value normalization, we use the inexact Newton-Schulz
(NS) iteration (again see Jordan et al. (2024) for details) for fast
approximation.

2.2. Momentum in the last layer

So far, gradient normalization has been applied uniformly
across all layers. We now investigate layer-specific momen-
tum, motivated by the hypothesis that not all layers benefit
equally from exponential moving average (EMA).

Layer-wise gradient variance. To identify the most impor-
tant layer which provides the largest performance gain when
incorporating momentums, we conjecture that the stochastic
gradients of different layers have different variances, and
layers with higher gradient variances require momentums
more than layers with lower gradient variances.

We first conduct a simple experiment on LLaMA 130M to
check the gradient variance of different layers. To estimate
the gradient variance, one need the full gradient (by input
the entire training dataset) which is not practicable. Instead,
we take a much larger training batch as input' to estimate the

'We take the common training batch size as 32 and the large
batch size as 512.
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Figure 2. Estimated variance of the stochastic gradients (and mo-
mentum when applicable) for different layers in two methods
(smoothed by 50 iterations window). We observe that when run-
ning SGD with column-wise normalization (SGD-col-norm, left
plot), the variance of the last layer (Im_head) is largest for most of
the time, following by the variance of the first layer (embedding)
and other layers. After applying momentum to the last layer (SGD-
col-norm-mmt-last, right plot), the variance of the momentum of
last layer (Im_head momentum) decreases to a very low level. In-
terestingly, the variance of the first layer in plot (b) is also smaller
than the one in plot (a).

true gradient. The experiment results are shown in Figure 2.
We observe that the variance of the last layer is largest for
most of the time, followed by the variance of the first layer
then other layers.

Next, we show theoretically that momentum helps the most
for the layers with larger gradient variances. We inspect
the theoretical property of applying SGD with momentum
(SGD-M) to the LLM optimization problem (2.1). Consider
the following SGD-M algorithm to solve (2.1):

my = Bmy " + (1= B)g", ' = Ve l(0"; &)

(2.6)
0" =0 —mmj

where ! = 1, ..., L represents different layers, i.e. we assume
different layers contain different momentum with different
hyperparameters. We have the following theoretical result
(see Appendix A.9 for the proof).

Theorem 2.1. Suppose ((0) in (2.1) is lower bounded
by (*, ~y-smooth (i.e. N{(0) is Lipschitz continuous
with constant ), also the stochastic gradient is unbiased
Ee¢, Vo, (0% &) = Vo, £(0") and with bounded variance:

Ee, Vo, 0(0"% &) — Vo, L(6")| < of 2.7)

foralll=1,...Landt=0,..,T — 1. With appropriate
choice of hyperparameters m; > n (see (A.20) and (A.23))
and B; < 1 —§ (0 is an absolute constant), we have the
following convergence result for update (2.6):

1 & e 2LA3PEA,
T E[Vi]© < T ovT
=1 =1
1— L L 3/2 1— 2 2
+Z( B \ﬁ+ 0 3@ v >Uz2
—\1+B84vyT 2VT By ALT ) 6
(2.8)

where Ay = ((0%) — (%,
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Algorithm 1 SCALE: Stochastic Column-normalized Last-
layer Momentum

Input: Initialized trainable parameters 6°, hyperparame-
ters 3; and 1 ;.
fort=0,1,...., 7T —1do
Sample mini-batch data {&; , }p=1...B;
for Layers! =1,..., L do
Compute the stochastic
% ZbB:I Vezf(9t§ gt,b);
if [ = L (last layer) then
mf = Bym{ " + (1 = B;) Vo (6" &)
else
m} = Vg, 0(0"; &) (record the gradient directly);
end if
0t = 0! — pC(m!) where C is the column-wise
normalization;
end for
end for

gradient g =

Remark 2.1. Theorem 2.1 suggests that by taking different
0, for different layers | = 1, ..., L, the convergence could be
improved. The second term of the right-hand side of (2.8)
takes the form

_l—x

1—-=z ol
_1—|—x+c 3

» €% Tarage

f(x)

where x represents the layer-wise momentum hyperparam-
eter (3. It is straightforward to verify that f(x) is decreas-
ing in (0,1 — 0], therefore an optimal strategy is to pick
81 = 1 — d. However from a memory-efficient point of view,
only B = 0 saves the memory of momentums.

Now, if o, (variance of the gradient of the [-th layer) is
significantly higher than other layers, then taking [3; higher
than other layers will result in better convergence. On
the other hand, if o, is close to) zero, taking B; = 0 will
provide memory-efficiency without harming the convergence
too much. In particular, if the variances o, ~ 0 for | =
1,....L — 1, one could take 5; = 0 forl = 1,....,L — 1
and only keep the momentum for the last layer without
significantly damaging the convergence rate.

We also conduct experiments in Appendix A.6 and found
that column-wise normalization could outperform singular-
value normalization when combining with last-layer mo-
mentums (see Table 5).

3. Proposed Algorithm

We now present our new algorithm SCALE in Algorithm 1.
The proposed algorithm is a simple combination of column-
wise normalization and last-layer momentum. In Appendix
A.2, we discuss in detail how our algorithm relates to exist-
ing works, as well as possible theoretical insights.

Methods ‘ Sign Col-wise Row-wise Singular-val 1storder EMA 2nd order EMA ‘ Memory (7B)

SGD 13.48
Adafactor Vi 13.48
Adam v v v 40.43
Muon v v 26.95
SWAN v v * 14.52
SCALE v Last Layer 13.74

T: Adafactor only records the 2nd order EMA of the column and row norms, effectively reducing
the memory from d;, X dout to din + dout
*: SWAN applies Adam for the first and last layer, following the practice of Galore (see Ma et al.
(2024, Appendix J)).

Table 2. Summarization of related methods. “Sign”, “Col-wise”,
“Row-wise” and “Singular-val” correspond to four normalizations
in (2.5), respectively. “lst order EMA” and “2nd order EMA”
stand for first and second order EMA. The last column records
the memory (GB) of weights and optimizer states for LLaMA 7B
training (see Appendix A.3 for the details of the estimation).

4. Experiments

In this section, we test the proposed Algorithm 1 for LLM
pretraining. We test on pretraining LLaMA (60M, 130M,
350M, 1B) models on the C4 (Colossal Clean Crawled Cor-
pus) dataset (Raffel et al., 2020). The detailed experiment
settings are provided in Appendix A.7.

Results. We report the results of the evaluation perplexity in
Table 3. We can see that the proposed algorithm outperforms
existing memory efficient optimizers, also (nearly) matches
the performance of the state of the art (Stable-SPAM and
Muon), especially for larger models, with only 35-65% of
the memory. We also contrast the performance with the
memory consumed in Figure 1, where we can see that the
proposed method is indeed at the Pareto frontier for optimal
memory use while maintaining the (near) state-of-the-art
performance. This makes it a strong candidate for large-
scale pretraining under memory constraints.

Model Size | 6M | 130M | 350M | 1B

Tokens | 14B | 26B | 78B | 13.1B

Adam 30.05 (0.35G) | 23.13 (0.81G) | 18.77 (2.21G) | 16.52 (8.04G)
Stable-SPAM 28.77 (0.35G) | 22.20 (0.81G) | 16.80 (2.21G) | 13.97 (8.04G)
Muon 28.86 (0.23G) | 22.20 (0.54G) | 16.70 (1.47G) | 14.18 (5.36G)
GaLore 34.58 (0.28G) [ 25.31 (0.61G) | 19.37 (1.59G) | 15.57 (4.76G)
Fira 30.34 (0.28G) [ 22.96 (0.61G) | 16.82 (1.59G) | 15.10 (4.76G)

SWAN (from (Ma et al., 2024)) | 30.00 (0.25G) | 22.83 (0.46G) | 17.14 (1.00G) | 14.42 (3.20G)
APOLLO 30.94 (0.28G) | 22.93 (0.61G) | 16.75 (1.59G) | 14.20 (4.76G)
APOLLO-Mini 31.85(0.25G) | 23.63 (0.46G) | 17.11 (1.00G) | 14.13 (3.20G)

SCALE (ours) [30.81 (0.15G) | 22.57 (0.32G) | 16.32 (0.80G) | 14.25 (2.81G)
Table 3. Experiment results for pretraining on LLaMA models on
C4 dataset.

S. Conclusion and Limitations

In this paper, we design a memory efficient optimizer
through a minimalist approach. The proposed algorithm uti-
lizes the building blocks that lead to the success of Adam but
further refine them to make it more memory efficient. We
motivate each of our construction step by theoretical or ex-
perimental tests. The resulting algorithm, SCALE, achieves

superior pretraining performance while only requires 35-
45% of Adam memory. Limitations of current work include
that it does not involve other models or pretraining datasets.
Future works include scaling up the optimizer to even larger
models and testing it on more datasets.
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A. Appendix
A.1. Related Works

Memory-efficient variations of Adam. A recent line of works aims to improve memory efficiency of Adam, compressing
the historical states stored, namely the first- and second-order statistics by the use of gradient projections. GaLore (Zhao
et al., 2024), being one of the pioneering works, stores the states in a low-rank subspaces that capture most gradient
information. Fira (Chen et al., 2024) achieves superior performance than GaLore by re-introducing full-rank information
to the low-rank gradients. APOLLO (Zhu et al., 2024) constructs the update based on gradient scaling factors that are
estimated from the ratio between the low-dimensional gradient and the low-dimensional Adam update; APOLLO-Mini is
a memory efficient version of APOLLO by estimating in a rank-1 subspace. GRASS (Muhamed et al., 2024) improves
GalLore by designing sparse projection matrices guided by the norm of the rows of the gradients. SlimAdam (Kalra et al.,
2025) compresses second-order moments based on signal-to-noise analysis. Some other methods group parameters into
blocks and apply block-wise updates (Luo et al., 2024; Ramesh et al., 2024; Pan et al., 2024), block-wise scaling (Zhang
et al., 2024), channel-wise scaling (Zhu et al., 2025), to further reduce the memory costs.

Towards stateless optimizers. More recent works start to question the necessity of optimizer states as required by Adam.
Adafactor (Shazeer & Stern, 2018) is perhaps the first work to record the momentum of the column and row norms of the
gradient matrix, reducing the memory of optimizer states from O(d?) to O(d) (assuming that the gradient matrix is d by d).
SWAN (Ma et al., 2024) adopts gradient whitening and normalization, which matches the performance of Adam when it is
applied only to the intermediate layers (and the first and last layers still use Adam, see Section 4 for details). (Zhao et al.,
2025) demonstrates SGD with signed momentum is able to recover the performance of Adam. SGD-Sal (Xu et al., 2024)
verifies that proper learning-rate scaling at initialization is sufficient to achieve good performance.

Novel optimizers with better performance than Adam. Another line of work focuses on proposing new optimizers
to achieve improved convergence properties compared to Adam. SPAM and Stable-SPAM (Huang et al., 2025b;a) reset
momentum and clip spike gradients, stabilizing mixed-precision LLM training and yield better performance than Adam.
Sophia (Liu et al., 2024) accelerates training by leveraging an estimated diagonal Hessian. Muon (Jordan et al., 2024)
proposes gradient orthogonalization to further stabilize and enhance LLM training. Other approaches (Bernstein &
Newhouse, 2024; Pethick et al., 2025; Kalra et al., 2025) explore various (layer-wise) normalization schemes to design
better adaptive optimizers.

A.2. Connection of proposed algorithm to existing works, also convergence

We now give a discussion on the connection of the proposed method to existing works. The proposed algorithm utilizes
column-wise normalization, which is also discussed in (Pethick et al., 2025). In particular, (Pethick et al., 2025) uses
momentum for all the layers, also singular-value normalization for most of layers except for the last layer, where they also
propose an option of column-wise normalization (since (Pethick et al., 2025) denotes the weight matrices as W € RouXdin,
their row-wise normalization is the same operation as our column-wise normalization); Row-wise normalization is utilized
in SWAN (Ma et al., 2024), and our method differs from SWAN in the following aspects: first, we use column-wise
normalization and SWAN uses row-wise normalization; second, SWAN essentially uses both the row-wise and singular-
value normalization while we only utilize column-wise normalization; third, SWAN applies AdamW for the embedding and
LM head layers (the first and last layers) which significantly increases the memory overhead, whereas our approach only
introduces first-order momentum for the last layer. We summarize the techniques used in different papers in Table 2.

Convergence of Algorithm 1. We remark here that the convergence provided in Pethick et al. (2025, Section 5) could be
adopted to provide a convergence analysis for Algorithm 1, since Algorithm 1 differs from the general framework of Pethick
et al. (2025, Algorithm 2) only by the fact that Algorithm 1 applies different momentum for different layers. However, we
believe that such convergence analysis will not provide insights on the superior performance of the proposed algorithm,
since existing analysis also does not provide explanations of the superior performance of Adam over SGD in terms of
convergence rate (Reddi et al., 2019; Zhang et al., 2022).

A.3. Details of memory estimation for 1B and 7B models

Here we compute the memory estimate for both 1B and 7B models. We only compute the major parameters, including
embedding layers, attention and MLP layers. We follow prior works (Zhao et al., 2024; Han et al., 2024) in estimating the
memory using bf loat16 format, where each floating point number occupies 2 bytes.
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7B model: Pre-last layers include 6.607B parameters and last layer includes 0.131B parameters, which in total leads to
6.738B parameters.

L]

SGD: Only the parameter states are stored, which amount to 13.476G memory.

Adafactor: Apart from the parameter states, Adafactor stores a row-wise and column-wise momentum, which is 0.005G
memory. In total, Adafactor requires 13.481G memory.

Adam: Apart from the parameter states, Adam/AdamW store first and second order momentum, which costs 26.952G.
In total, Adam/AdamW requires 40.428G memory.

Muon: Apart from the parameter states, Muon stores first-order momentum, which costs 13.476G. In total, Muon
requires 26.952G memory.

SWAN: Apart from the parameter states, SWAN additionally stores first-order and second-order momentum of the first
and last layer, which costs 1.048G. In total, SWAN requires 14.524G.

SCALE (Our method): Apart from parameter states, SCALE additionally stores first-order momentum of last-layer
weight, which costs 0.262G. In total, SCALE requires 13.738G memory.

1B model: Pre-last layers include 1.273B parameters and last layer includes 0.066B parameters, which in total leads to
1.339B parameters.

SGD: Only the parameter states are stored, which amount to 2.678G memory.

Adafactor: Apart from the parameter states, Adafactor stores a row-wise and column-wise momentum, which is 0.002G
memory. In total, Adafactor requires 2.68G memory.

Adam: Apart from the parameter states, Adam/AdamW store first and second order momentum, which costs 5.356G. In
total, Adam/AdamW requires 8.034G memory.

Muon: Apart from the parameter states, Muon stores first-order momentum, which costs 2.678G. In total, Muon requires
5.356G memory.

SWAN: Apart from the parameter states, SWAN additionally stores first-order and second-order momentum of the first
and last layer, which costs 0.524G. In total, SWAN requires 3.202G.

SCALE (Our method): Apart from parameter states, SCALE additionally stores first-order momentum of last-layer
weight, which costs 0.131G. In total, SCALE requires 2.809G memory.

A.4. SGD fails to deliver reasonable performance
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Figure 3. Comparison of SGD and Adam training loss and evaluation perplexity on LLaMA 130M model. With the best tuned learning
rates, SGD fails to converge to any reasonable level of perplexity.
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A.5. Computation cost of different normalizations

In terms of the computational cost, the normalization techniques discussed in (2.5) can be quite different. In particular,
singular-value normalization requires computing full SVD, which is the most time consuming comparing to the rest.
Even though efficient approximation methods of SVD has been studied in (Jordan et al., 2024; Ma et al., 2024) (e.g., the
Newton-Schulz (NS) procedure), they are still much more time consuming as compare with the other three normalization
techniques, see Table 4 for a test on the time required for different normalizations.

dimension d 1024 2048 4096
singular-value 79.77 354.27 1958.66
singular-value (NS) 6.03 7.00 14.41
column-wise 0.10 0.12 0.17
row-wise 0.09 0.11 0.13
sign 0.03 0.03 0.03

Table 4. Time (ms) consumed by each of the normalization methods on a torch matrix tensor with dimension din = dow = d, testing on a
single NVIDIA A40 GPU. Here the singular-value normalization are computed both exactly (first row, using torch.linalg.svd
directly) and inexactly using Newton-Schulz (NS) iteration (second row, see (Jordan et al., 2024) for details)®.

A.6. Col-wise normalization is better when combining with last-layer momentum

It is observed in Table 1 that singular-value normalization obtains better performance than the column-wise normalization
for pretraining. We conduct another simple experiment to check the performance of the two normalizations with last-layer-
momentum. The results are summarized in Table 5, from which we can see that the performance of two normalizations +
last-layer-momentum is similar, and we choose column-wise due to the computational time concern in view of Table 4.

Model Size | 60M 130M 350M
Tokens | 1.4B 2.6B 7.8B
Muon | 28.86 22.20 16.70
Singular-val + last-layer-momentum 31.20 22.33 16.67

Column-wise + last-layer-momentum (ours) | 30.81 22.57 16.32

Table 5. Evaluation perplexity of two normalizations (singular-value and column-wise) when combined with last-layer-momentum.

A.7. Details of the experiments

We performed wandb sweeps for all methods we tested up to models of size 350M, searching learning rates within {0.00005,
0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01}. For the 1B model, due to resource constraints we manually tune the
learning rates using as starting point the optmial learning rate from the 350M sweep. For SCALE, the reported results are
using learning rates le-3 for models sizes 60M, 130M and 350M and 2e-4 for 1B. In addition, our reported result for the 1B
model uses the same learning rate scaling technique used by Muon (Liu et al., 2025), as we find to result to a minor gain;
without it, the achieved perplexity for the 1B model is 14.34. Also, we set the last layer’s momentum parameter 3 = 0.9,
being a common choice for first order momentum. In addition, for all vector parameters we employ the Adam optimizer,
following (Jordan et al., 2024; Liao et al., 2024). This does not influence the memory usage because the vector parameters
are orders of magnitude smaller in size compared to the matrix parameters.

Baselines. We compare the proposed Algorithm 1 with Adam, Stable-SPAM, Muon, GaLore, Fira and SWAN (see Section
A.1 for a more detailed introduction of these works). Stable-SPAM and Muon provide the state-of-the-art pretraining
perplexities over Adam. GaLore and Fira are two memory-efficient optimizers that project the gradients to low rank. SWAN
is an optimizer that uses column normalized SGD except for the first and last layers, and it could achieve state-of-the-art*.

It is worth noticing that GaLore, Fira and SWAN run Adam for the first and last layers for stable training. For the 60M
model the first and last layers contain over 50% of the total network parameters, and around 40% for 130M model. For the
350M this goes down to less than 20% and for the 1B to about 10%. Therefore, for smaller models these methods have

3The difference of column- and row-wise normalization may originate from the way PyTorch stores tensors with strides, see this link.
*We copy SWAN'’s result directly from (Ma et al., 2024) since we cannot replicate the result exactly due to code unavailability.
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limited memory savings as compared to Adam, which trains a significant percentage of the network parameters.

For all LLaMA experiments, we follow (Zhao et al., 2024) and set the sequence length to 256 and the batch size to 512, train
using BF16 format and report evaluation perplexity as our metric. We also use a cosine learning rate with linear warm-up
for the first 10% of the iterations. For low-rank optimizers (GaLore and Fira) we follow their suggested hyperparameters
(including the rank) but tune the learning rates. For muon we follow the implementation from (Liu et al., 2025). For all the
implemented methods, we conduct a hyperparameter search via wandb sweeps (see Appendix A.7 for details).

A.8. Learning Rate Sensitivity analysis

Validation Perplexity
w B » u
v o w o
| |

w
o
L

254 —®— Ours
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20 T T
n < < m m m o o
o OI O‘ OI o O‘ o o
(7] [} Q [} Q [ [ [
— - < - m n - o~

Learning Rate

Figure 4. Learning rate sensitivity analysis, comparing Stable-SPAM (a stabilized version of Adam) and our method. Results from the
130M LLaMA model.

In Figure 4 we test the performance of our algorithm, SCALE, with different learning rates and compare it with that of
Stable-SPAM (Huang et al., 2025a). We observe both algorithms behave similarly withing a reasonable range of learning
rates.

A.9. Proofs for Section 2.2

In this section, we conduct the proof for Theorem 2.1. The proof follows (Liu et al., 2020). First, we have the following
lemmas, which are variations of Liu et al. (2020, Lemma 1 and 2).

Lemma A.1. Suppose that the assumptions in Theorem 2.1 hold. For SGD-M (2.6), we have

1— B 2t\ 2
S1+51(1_ l)al. (A.1)

E H —(1-8) ZB Vo,

Proof. It is straightforward to see m} = (1 — 3;) Z 1 lf Zgl, where g} := Vg, f(6% &).
We have

2 2

E ||mf —(L=5) Y B Ve l(8") (1- B — Vo, ((6"))
i=1
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Therefore

2
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2
=(1— B1)°E¢,Ee, - - - e,

t
> 5 gl = Ve, l(8")
i=1
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i=1 j=1
Due to unbiasedness of stochastic gradients, the cross terms cancel, therefore we have

2
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+ 5

t
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[y

for all layers [ =1, ..., L. O]

Lemma A.2. Suppose that the assumptions in Theorem 2.1 hold. For SGD-M (2.6), we have

2

t t—1
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for all layers | =1, ..., L, where
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Proof. Since

=
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where we use Cauchy-Schwarz inequality for the first inequality and the last is by AM-GM inequality. Now applying the
Lipschitz smoothness assumption, we have
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then we get (A.2). ]

Lemma A.3. For SGD-M (2.6), define the auxiliary sequence by

. o; t=1 (Ad)
z] = .
l 1 _ Elﬁl 9;71 t>2
and denote z' = (2%, ..., 2} ] the entire auxiliary variable at iteration t. Then we have
t+1
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and

t_pt _
2 — 0 =—

Proof. For ¢t = 1, we have (since m® = 0)

o 1 I By

K 21_1—51 Lo1-p

Gg—ﬁgzl_ﬂ(@ 91) mgl~

For t > 2, we have

1
AT s O ) - e )

1 t B t—1
=——(-nmj) — —— m
1 _ ﬂl( 77 l) 1 _ Bl( 7] l )
1 t t—1
=——(—mm; + —mpBim
- 61( mmy + —mBmy )
=—mg;.
For z} — 6}, it can be computed similarly. O

We need the following proposition to show the final convergence of Theorem 2.1.

Proposition A.1. Suppose that the assumptions in Theorem 2.1 hold. For SGD-M (2.6), we have
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where the auxiliary sequence z} is defined by (A.4).

Proof. By Lemma A.3 we have that

and

foralll =1,2,..., L.

Now using the Lipschitz smooth of ¢, we get
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where we use the unbiasedness of the gradient estimator in the last line. Now we bound the second term as follows:
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plug these into (A.6) we get:
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Now we return to the proof of Theorem 2.1.
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Proof. [Proof of Theorem 2.1] By Proposition A.1 and Lemma A.2, we have
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From (A.7) we get
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where for the last three inequalities we use (A.1) and
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To make the last three lines of above non-positive, we could take
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consequently
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Note that we have defined s := ZlL:l ;. We can upper bound it by s < L/+/~+T if we assume 7; < 1/+4/+T. Combining
(A.13) and (A.17) we get:
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1 1 1B, 1=81=-5,/1-6 1

By taking the product of two of the terms in the RHS of the above relation, we have the following upper bound on 7?:

1 1-B, 1

. A21
" e AT (2D
Plugging (A.21) and (A.14) into (A.18), we obtain:
L
Y mE|V{|* <2(E [¢'] - E [¢+'])
=t (A.22)

L
1-8 1 1-58 V7 \ o
+§<1+[3;47T+ ot g a7t
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Now since 3; < 1 — §, we have that 7, is lower bounded

_ min 1 1 (1—@) 1-6 1-83/1-4
n 8y SvLY B ) 4y 4y V2L

1 6 5 6.0 1
> —_— — = A.23
mm{w SyL’ 4y 47\/2L’WT} K (A.23)
we obtain:
(E[¢'] —E[¢'1])
zEuv ” < Eo™]
"

i (A.24)

1 1-48 1 1-8 \ﬁ o2.

Now by telescoping sum of (A.22) fort = 1,..., T, also notice that 1/n = O(y/YTL~v/?) as T grows, we get our final
result of

T L L
1 2032 RA, 1-BLy7 Iy¥? 1-8 ~
T E[Vi|® < + ( + + o A25
T ;; Vil = VT Z L+ BiayT 2T B} ALT) 6% (A-25)
This completes the proof. 0
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