
Published in Transactions on Machine Learning Research (07/2023)

The Open MatSci ML Toolkit: A Flexible Framework
for Machine Learning in Materials Science

Santiago Miret ∗ santiago.miret@intel.com
Intel Labs

Kin Long Kelvin Lee ∗ kin.long.kelvin.lee@intel.com
Intel Accelerated Computing Systems & Graphics

Carmelo Gonzales carmelo.gonzales@intel.com
Intel Labs

Marcel Nassar marcel.nassar@intel.com
Intel Labs

Matthew Spellings mspells@vectorinstitute.ai
Vector Institute

Reviewed on OpenReview: https: // openreview. net/ forum? id= QBMyDZsPMd

Abstract

We present the Open MatSci ML Toolkit: a flexible, self-contained, and scalable Python-
based framework to apply deep learning models and methods on scientific data with a
specific focus on materials science and the OpenCatalyst Dataset. Our toolkit provides: 1.
A scalable machine learning workflow for materials science leveraging PyTorch Lightning,
which enables seamless scaling across different computation capabilities (laptop, server,
cluster) and hardware platforms (CPU, GPU, XPU). 2. Deep Graph Library (DGL) support
for rapid graph neural network prototyping and development. By publishing and sharing
this toolkit with the research community via open-source release, we hope to: 1. Lower
the entry barrier for new machine learning researchers and practitioners that want to get
started with the OpenCatalyst dataset, which presently comprises the largest computational
materials science dataset. 2. Enable the scientific community to apply advanced machine
learning tools to high-impact scientific challenges, such as modeling of materials behavior for
clean energy applications. We demonstrate the capabilities of our framework by enabling
three new equivariant neural network models for multiple OpenCatalyst tasks and arrive at
promising results for compute scaling and model performance. The code of the framework
and experiments presented in this is paper are publicly available at https://github.com/
IntelLabs/matsciml.

1 Introduction

Recent years have seen great advances in applying advanced machine learning methods, especially novel deep
learning methods, to scientific challenges that rely on computational modeling in the development of new
physical systems (Krenn et al., 2022; Axelrod et al., 2022; Jumper et al., 2021). Modern deep neural networks
trained to reproduce physical calculations, which are used to understand and optimize the behavior of real
systems, can operate with high accuracy and are often orders of magnitude faster compared to methods
based solely on human-derived calculations (Friederich et al., 2021; Chen & Ong, 2022; Fung et al., 2021).

∗ Equal contribution.

1

https://openreview.net/forum?id=QBMyDZsPMd
https://github.com/IntelLabs/matsciml
https://github.com/IntelLabs/matsciml

Published in Transactions on Machine Learning Research (07/2023)

However, these representational capabilities usually come with significant engineering costs: The large variety
of physical systems studied in chemistry, as well as the methods to represent those physical systems along
with the data-driven paradigms used to predict their behavior, can make it cumbersome, time-consuming
and error-prone to adapt models and tools to new datasets and applications. To mitigate these frequent
challenges, we present the Open MatSci ML Toolkit, a flexible framework to develop deep learning techniques
for chemistry and materials science applications.

Catalysts are essential components of chemical processes that help accelerate the rate of various chemical
reactions. Catalytic materials design, especially the design of low-cost catalysts, remains an ongoing challenge
that will continue to become more and more important for a variety of applications, including renewable
energy and sustainable agriculture. The OpenCatalyst Project, jointly developed by Fundamental AI Research
(FAIR) at Meta AI and Carnegie Mellon University’s Department of Chemical Engineering, encompasses one
of the first large-scale datasets to enable the application of machine learning (ML) techniques, with the full
dataset containing over 1.3 million molecular relaxations of 82 adsorbates on 55 different catalytic surfaces
(Chanussot* et al., 2021). The original release from 2019 has also been supplemented by subsequent updates
in 2020 and 2022, along with an active leaderboard and annual competition (Tran et al., 2022).

Figure 1: Open MatSci ML Toolkit enables researchers
to create and perform scientific machine learning on the
OpenCatalyst in a scalable manner leveraging DGL and
PyTorch Lightning.

The notable effort of providing high-quality data
for catalytic materials is a major step forward
in enabling ML researchers and practitioners to
innovate on materials design challenges at great
computational scales, and has already enabled
the development of new geometric deep learning
architectures ((Klicpera et al., 2020b) (Gasteiger
et al., 2021)), some of which have been trained
with nearly a billion parameters (Sriram et al.,
2022).

While the toolkit of the original OpenCatalyst
repository is very powerful, it incorporates a
significant amount of complexity due to various
interacting pieces of software: model definitions,
functions for distributed training, and task
abstractions. These components are often not
self-contained, which makes it difficult for new
ML researchers to navigate and interact with the
repository, create new architectures or modeling
methods, and run experiments on the dataset. To
address these usability challenges, we introduce
the Open MatSci ML Toolkit, a flexible and easy-
to-scale framework for deep learning on the Open
Catalyst Dataset. We designed the Open MatSci ML Toolkit with the following basic principles and compelling
features:

• Ease of use for new ML researchers and practitioners that want to get started with the OpenCatalyst
dataset.

• Scalable computation leveraging PyTorch Lightning (Falcon & The PyTorch Lightning Team, 2019)
across different computation capabilities (laptop, server, cluster) and hardware platforms (i.e. CPU,
GPU, XPU) without sacrificing the scientific abstraction.

• Support for DGL (Wang et al., 2019) for rapid GNN development to complement the original
repository’s usage of PyTorch Geometric (Fey & Lenssen, 2019). In this work we showcase a set of
models built on our toolkit for OCP-20 described in Section 4.

2

Published in Transactions on Machine Learning Research (07/2023)

The examples outlined in this study and its associated open-source repository 1 show how to get started with
the Open MatSci ML Toolkit using a simple Python script, Jupyter notebook, or the PyTorch Lightning CLI
for a simple training instance on a subset of the original dataset (referred to as a development or dev-set)
shipped with the repository that can be run on a laptop without needing to download and preprocess the
minimal canonical dataset. Subsequently, we scale our example Python script to large compute systems
with advanced equivariant deep learning models, including multi-GPU training on a single compute node, to
distributed training across multiple nodes and GPUs in a computing cluster. Leveraging the capabilities
of both PyTorch Lightning and DGL, we enable compute and experiment scaling with minimal additional
overheard and complexity.

2 Background & Related Work

Geometric Deep Learning (GDL) generalizes neural networks to non-Euclidean domains such as graphs
and manifolds (Bronstein et al., 2017; 2021). Such domains are increasingly used to model systems in scientific
applications, such as molecular and crystal structures like those found in the OpenCatalyst project. In
particular, GDL provides a way to represent entity interactions and various invariances and equivariances
under geometric transformations—both vital for modeling molecules and catalyst interactions. Graphs and
point cloud data2 are the most common representations of such molecule-catalyst systems with different GDL
methods operating on inputs with various inductive biases.

Graph Neural Networks, one of the earliest GDL applications to atomic systems, process a graph
representation of molecular and solid-state material systems (Gilmer et al., 2017). These neural networks
are able to take advantage of the natural representation of molecules as graphs, whereby message passing
between nodes (atoms) resembles atomic interactions. Despite this, vanilla message passing GNNs are unable
to distinguish between certain motifs and are bounded by the performance of the 1-Weisfeiler-Lehman (WL)
isomorphism test (Xu et al., 2019). Even with recent advances in pushing GNNs beyond the WL-test (Morris
et al., 2019), such networks do not utilize any of the known physical symmetries, thereby reducing their
effectiveness on molecular data beyond their theoretical limitations.

Equivariant Neural Networks restrict the space of functions learnable by the network to obey symmetries
found in the input data. Symmetries are a powerful inductive bias that drastically narrow the solution space
that needs to be explored by the neural network, thereby making learning easier and improving generalization.
Physical systems often exhibit many symmetries, either in their overall structure (e.g. water within the
C2v point group), within structural motifs (e.g. three-fold rotation symmetry in methyl rotors), and, when
nuclear dynamics are considered, complete nuclear permutation groups (Bunker & Jensen, 1998; Williams &
Eisfeld, 2020) (e.g. ethane and the G36 group (Mellor et al., 2019)). Composing many layers that individually
respect symmetries relevant to a variety of problems has proven to be a powerful method to design deep
neural network architectures for a range of modeling challenges. Exploiting such symmetries has emerged
as a driving force for designing neural networks for physics models, for example as equivariance under the
SO(3) group; that is, equivariance under translations and rotations in 3D space. Various works, such as
Thomas et al. (2018); Anderson et al. (2019); Fuchs et al. (2020), leverage group representations to achieve
full equivariance. While equivariant models can be more parameter efficient, they can also be computationally
expensive or constrained in expressivity due to the model basis.

Equivariant/Directional Graph Neural Networks merge both graph and point cloud representations to
leverage the benefits of both representations. One of these equivariant GNNs (E(n)-GNN by Satorras et al.
(2021)) achieves this by separating node features into spatial components that are equivariant and invariant
atomic features. These are then mixed together in a series of aggregation steps that preserve the spatial
equivariance and feature invariance. Other GNNs take a more direct approach to equivariance by embedding
angles, distance and dihedral angles in classic basis sets such as Legendre polynomials and spherical harmonics
(GemNet (Gasteiger et al., 2021) and DimeNet (Klicpera et al., 2020a)), which possess well-known symmetry
properties. These models can be viewed as directional GNNs since they typically expand their receptive
field beyond the 1-hop neighborhood utilizing angular data to direct the message propagation. Directional

1https://github.com/IntelLabs/matsciml
2A collection of atomic particles in three-dimensional space, which unlike graphs do not have explicit connectivity.

3

https://github.com/IntelLabs/matsciml

Published in Transactions on Machine Learning Research (07/2023)

models have high representational power, but come at a significant computational and memory cost. The
performance of these models depends on the task and complexity of the data: EGNN can perform on-par
with DimeNet and GemNet on simple classification tasks (Satorras et al., 2021); however, directional models
typically perform better in more advanced applications such as conformer search (Ganea et al., 2021; Jing
et al., 2022).

Short-Range Equivariant Networks restrict the ability of signals to travel long distances as layers are
composed. In a typical graph neural network, signals from one node are able to travel an additional neighbor
hop away in the graph for every message passing layer in the network; in contrast, short-range networks avoid
transmitting these signals. These short-range restrictions can help promote localized representations that
are more efficient to learn. One such architecture uses geometric algebra—or Clifford algebra—to formulate
rotation-invariant and -equivariant combinations of input vectors, which are transmitted in a permutation-
equivariant way via an attention mechanism (Spellings, 2021). The Allegro framework (Musaelian et al.,
2022) learns to produce localized representations from a series of equivariant tensor products, rather than
using geometric algebra to achieve rotation equivariance.

3 Software Framework

The Open MatSci ML Toolkit software framework is designed with great emphasis on abstraction and
inheritance in order to maximize reusability and agility for machine learning researchers. These ideas
are achieved in part by present-day best practices in Python as an object-oriented language, and through
modern, specialized frameworks such as PyTorch Lightning and DGL. We believe these design choices
make it significantly easier to apply novel model architectures and training techniques to scientific data, in
particular the OpenCatalyst dataset. In addition to enabling researcher to construct graph neural networks
with DGL as described in Section 3.2, we also enable support for point cloud representations, which are
described in Section 3.3. These capabilities significantly the options for research to design diverse sets of
model architectures that can leverage both graph and point cloud representations for atomistic data drawing
upon some of the approaches we outline in Section 2. In the following sections, we will discuss changes in
abstractions and refactoring steps from the original OpenCatalyst implementation.

3.1 PyTorch Lightning Refactor

In modern AI/ML workflows, the concept of “MLOps” comprises the lifecycle from model conception and
implementation, training and testing in a variety of software/hardware environments, to drawing inferences
on new data, and all of the iterative cycles in between. Thus, a non-negligible amount of time spent by
researchers for new workloads is typically in engineering: interfacing data with new architectures, metric
logging, performance profiling, and ensuring consistent functionality through the development process from
testing locally on a laptop to distributed training on multiple computing nodes and across different types
of accelerators. Because of the grand scale that OpenCatalyst aims for and successfully achieves, a large
amount of the original codebase corresponds to performance and functionality; meaning that complexity is
necessary to be able to take advantage of data parallelism, to perform hyperparameter optimization, and
to support the various catalyst prediction tasks. This lays a significant amount of responsibility on both
developers and users: the former must create a comprehensive suite of tests and rely heavily on CI/CD to
ensure functionality, and the latter must navigate a maze of software dependencies and documentation, which
are also maintained by the developer.

One half of the conceptual changes in the Open MatSci ML Toolkit—the other half being the primary graph
framework—is to offload MLOps related components to a well-designed and maintained framework: PyTorch
Lightning (Falcon & The PyTorch Lightning Team, 2019). By reusing dataset and framework components
from OpenCatalyst and relying on the pipeline abstractions from PyTorch Lightning, we can maintain a more
compact codebase while providing more flexibility, extendibility, transparency, and functionality. Figure 2
illustrates the end-to-end pipeline/directed acyclic graph for the Open MatSci ML Toolkit, whose elements
should be relatively familiar to those who have used OpenCatalyst and/or PyTorch Lightning.

4

Published in Transactions on Machine Learning Research (07/2023)

S2EFDGLDataModule
Lightning data module

S2EFLitModule
Lightning module Lightning Trainer

User loop control

Launch

Callbacks
Logger
Accelerator
Environment

Script / Lightning CLI / SlurmEGNN
Neural network backbone

Figure 2: Illustration of the Open MatSci ML Toolkit pipeline with concrete components using the
Structure to Energy & Forces ("S2EF") task. Dataset/task splits and configurations are specified through
LightningDataModules. Task specific LightningModules encode the logic for training, metric logging, and
how data is passed from dataset to an underlying abstract deep learning model. The Trainer interface
provides an the ability to control feedback (e.g. logging, progress bars), training flow (Callbacks), and XPU
usage without the need to modify the pipeline source code.

3.1.1 Data abstraction

In order to support future neural network research, we expanded the scope of the original OpenCatalyst
dataset to support graph and non-graph data structures, as well as implemented a number of quality of life
improvements to the general developer workflow. We refer the reader to the Appendix (i.e. Figure A.5)
for more details pertaining to the changes, and here we only briefly highlight the core differences in user
experience.

One of the core goals of the Open MatSci ML Toolkit is to have continuity from developing and testing on
local environments—such as laptops—to using the pipeline in high performance computing environments.
In terms of data pipeline abstraction, on the one end the Open MatSci ML Toolkit provides preprocessed,
miniature (∼100 graphs) development or “devset”s: this circumvents the need to download, extract, and
preprocess the data on personal computers constrained by storage and by computational power, while allowing
researchers to prototype on the full pipeline. The development sets are created by taking random subsplits of
the smaller data splits from the OpenCatalyst dataset. We also provide a mechanism for creating other splits
not included with the Open MatSci ML Toolkit, facilitating further research into data efficiency. To use the
devsets for development, there is a convenient mechanism for retrieving the DGL version of each task:

1 from ocpmodels . lightning . data_utils import S2EFDGLDataModule , IS2REDGLDataModule
2 # default settings optimized for local development ; small batch , no parallel loaders
3 devset_module = S2EFDGLDataModule . from_devset ()

On the other end of the spectrum, where one wishes to distribute the dataset across multiple workers
on multiple compute nodes, users can leverage the same data modules as the miniature case: the
DistributedDataParallel data sampling and loading is offloaded to PyTorch Lightning internals. We
will discuss this further in Section 3.1.3.

As alluded to earlier in this section, the Open MatSci ML Toolkit data pipeline abstraction is designed to
facilitate exploration of other data representations of materials systems, including algorithms less strongly
linked to graph-based message passing. This includes recent approaches based on geometric algebra or Clifford
algebras for point clouds by Spellings (2021), as well as methods based on tensor products, such as Musaelian
et al. (2022). These algorithms operate locally on the bonds within a point cloud without typical message
passing from one atom to another, while retaining the data efficiency imparted by model equivariance.

3.1.2 Model abstraction

The model abstraction, as seen in the bottom left nodes in Figure 2, comprises a neural network backbone and
a task-specific LightningModule. In the concrete example described in Section 4, the EGNN model represents
a subclass of an AbstractEnergyModel: a model that takes arbitrary input, and predicts the energy. For
instance, a graph-based model will process nodes and perform some readout operation to reduce node and
graph level features to a scalar value for the energy. At a higher level, the task specific S2EFLitModule is
instantiated by passing an instance of EGNN, and implements the logic for training (i.e. forward-backward

5

Published in Transactions on Machine Learning Research (07/2023)

passes), validation and testing, as well as logging. By conceptually separating the model (i.e. the neural
network itself) from the training mechanism, researchers only need to focus on architecture development by
subclassing AbstractEnergyModel, as the rest of the pipeline stays the same barring changes in which kind
of data is required by the model.

3.1.3 Training loop

For typical regression tasks such as the initial structure to relaxed energy ("IS2RE"), the training loop
takes advantage of automatic optimization in PyTorch Lightning, meaning that the backpropagation and
optimization steps are abstracted away from the user. In cases with specialized autograd steps, such as the
force component of “S2EF”, and in many physics inspired neural network architectures, backpropagation
is manually performed. While this highlights a gap in coverage by MLOps frameworks such as PyTorch
Lightning, it also illustrates their open-endedness: one can maintain the flexibility necessary for research,
while keeping the many other benefits and best practices guided by PyTorch Lightning.

With regards to changes in the behavior of the pipeline, users can rely on modular PyTorch Lightning
components that can trigger at certain parts of the training loop—such as at the beginning of a training
batch, or at the end of the validation epoch—with the Callbacks abstraction. The scope of such events
include, but is not limited to: early stopping according to some validation metric, model checkpointing based
on training intervals or metrics, as well as more specialized and flexible tasks like code profiling targeted to
specific pipeline components—all without the need to inspect and modify the core source code.

Regarding logging/experiment tracking, the Open MatSci ML Toolkit relies on PyTorch Lightning Loggers,
which are able to log locally to CSV or Tensorboard format, as well as to hosted services such as Weights
and Biases and SigOpt; the latter of which can also be used for hyperparameter optimization (HPO), which
makes up a valuable tool in a researcher’s toolkit. Users are not confined to a single choice of logging or HPO
platform, providing flexibility in tooling that fits a given researcher’s workflow.

The final component relevant to the training process is the PyTorch Lightning Trainer class, which orchestrates
the components mentioned above and executes training, validation, testing, and inference loops. The Trainer
interface also configures more performance oriented settings such as accelerator usage, distributed compute,
and mixed precision as shown in the example configuration below:

1 trainer = pl. Trainer (
2 max_epochs =5,
3 callbacks =[...] , # pipeline behavior ;
4 accelerator ="gpu", # use XPUs;
5 precision ="bf16", # new data types ;
6 strategy ="ddp",
7 devices =8, # 8 workers
8 num_nodes =4 # per 4 nodes ;
9)

The main advantage is being able to seamlessly navigate between development and training cycles: the core
pipeline remains unchanged, yet with a simple change in configuration, the user is able to take advantage of
computational resources as they become available. Under the hood, the Lightning abstractions handle data
movement to devices, autocasting in correct contexts, and orchestrating workers.

3.2 Deep Graph Library (DGL) Refactor

The original OpenCatalyst repo leverages Pytorch Geometric (PyG) for implementing various neural networks
described in Section 2. In the Open MatSci ML Toolkit, we chose to complement the original implementation
by building on top of the Deep Graph Library (DGL). While both PyG and DGL are highly performant
libraries for graph neural networks, and the decision to choose one over the other is often subjective, we
motivate our choice of DGL for this library as follows:

• Graph Abstraction: The DGL graph data structure dgl.DGLGraph offers more flexibility for storing
diverse molecular data over the PyG structure torch_geometric.data.Data. This abstraction

6

Published in Transactions on Machine Learning Research (07/2023)

allows for more general data pipelines amicable to experimentation and ablation studies; two qualities
that are important in scientific exploration.

• Cross-platform Optimization: While both DGL and PyG are well-optimized for single-node GPU
deployment, DGL also supports additional platforms, in particular efficient sparse matrix algorithms
for CPUs with documented compute benefits on datacenter CPUs.

• Support for Sampling-Based, and Distributed Training beyond Data-Parallel: many applications
involve large graph data that does not fit onto a single GPU. Such cases require specialized sampling
techniques to either shrink the graph size or distribute the storage across multiple nodes. While both
PyG and DGL support sampling-based training, DGL is more mature when it comes to sampling
graphs and running distributed training of GNNs (Mostafa, 2021; Zheng et al., 2021).

Next, we discuss each of the above points in more detail.

3.2.1 Graph Abstraction

PyG’s Data has a graph data structure composed of the following fixed attributes: node feature matrix x,
edges edge_index, edge attributes edge_attr, labels y, and node position matrix pos. Additional attributes
can be set using keyword argument collection in the constructor. In contrast, DGL’s DGLGraph provides a
dictionary-style access to graph data through DGLGraph.ndata (node features) and DGLGraph.edata (edge
features). While, these dictionaries do not impose any restrictions on feature names or number, the DGLGraph
object will enforce that the feature dimension match the number of nodes and edges.

While PyG’s Data covers a large part of the use cases in the GNN world, we argue that using the flexible
DGLGraph as example representation decouples the dataset from the model-specific data pipeline, while
retaining data consistency such as matching the number of features and edges. This lends itself to a wide
variety of customized pipelines that can explore various model explorations and ablation studies. For
example, consider a molecular data structure that contains various features on both atoms and bonds: QM9
(Ramakrishnan et al., 2014), a common molecular property prediction benchmark, includes atom features
detailing atom coordinates x, atom type tp, atomic number z, number of hydrogens nH, and hybridization
Gilmer et al. (2017). A given set of molecular features would then contain the following fields:

1 class Example (NamedTuple):
2 x: List[float]
3 tp: List[bool]
4 z: int
5 nH: int
6 bonds : List[Tuple [int , int]]

Assuming all the above fields have been cast into their appropriate Tensor types, converting Example to
PyG’s Data can be done as follows

1 example_dict = example . _asdict ()
2 src , dst = zip (* example_dict .pop(’bonds ’))
3 edge_index = torch . hstack ((src , dst))
4 pos = example_dict .pop(’x’)
5

6 # assign to fixed attributes
7 embed_tp , embed_z , embed_nH = embed (example)
8 feat = torch .cat ((embed_tp , embed_z , embed_nH)
9 data = Data(pos=pos , x=feat , edge_index = edge_index)

10 # assign to generic container
11 data = Data(pos=pos , edge_index = edge_index , ** example_dict)

while in DGL’s DGLGraph this would look like
1 src , dst = zip (* example_dict .pop(’bonds ’))
2 dgl_graph = dgl. graph ((src , dst))
3 dgl_graph . ndata = example . _asdict ()

7

Published in Transactions on Machine Learning Research (07/2023)

The above example demonstrates that the DGLGraph can accommodate diverse data without having to
perform any special model-specific preprocessing while retaining graph consistency across assigned nodes and
features. PyG Data, on the other hand, either requires feature preprocessing and assignment to the x field or
generically attaching the features to the data object.

3.2.2 Cross-Platform Optimization

GPU acceleration plays a pivotal role in modern neural network training in general, including for GNNs.
Recently, there has been an increasing interest in deploying GNNs, particularly in distributed computing
settings, on other a diverse hardware platforms including datacenter CPUs and custom deep learning
accelerators from nascent hardware vendors. While both DGL and PyG are well optimized for CUDA, DGL
implements highly efficient kernels for sparse matrix operations central to graph processing through libxsmm,
providing more flexibility in the type of hardware used for training and inference (Avancha et al., 2020).

3.2.3 Sampling and Distributed Training Beyond Data-Parallel

Increasingly, single device training of GNNs is reaching its limits as graphs and models scale in size and
memory requirements. A common way to address these limits is to shrink the size of the graphs by sub-
sampling the graph so that it fits into single device memory Hamilton et al. (2017). Yet, this type of sampling
can lead to performance degradation due to the discarded neighborhood information, prompting a surge in
new distributed training for GNNs (Hamilton et al., 2017; Md et al., 2021; Mostafa, 2021; Zheng et al., 2021).
DGL already supports various forms of graph distributed training for both sampled and full batch training,
and this capability could prove invaluable for molecular design datasets as both model and data complexity
grows. While these types of distributed training might not be directly relevant to OpenCatalyst, they could
be useful in future applications with large system sizes, such as large-scale molecular dynamics with billions
of atoms (Musaelian et al., 2022; Guo et al., 2022; Shibuta et al., 2017).

3.3 Point Cloud Representation

Up to this point, our discussion in Section 3 has mainly highlighted graph representations of atomic data, and
subsequently, graph neural network architectures. While graphs are a natural way to represent systems of
bonded atoms, we also aim to support alternative data representations in our framework, in order to enable
development of diverse deep learning architectures. One such example, which is already implemented in Open
MatSci ML Toolkit, are atom-centered point cloud representations that are used to achieve translation and
rotation equivariance in several recent architectures, including NequIP (Batzner et al.), Geometric Algebra
Attention Networks (Spellings, 2021), and Allegro (Musaelian et al., 2022).

Atom-centered point cloud representations often incur a high memory cost, leading us to build our procedure
on top of the data abstractions discussed earlier, while only constructing neighborhood point clouds for
the most relevant atoms. In the case of OpenCatalyst, this means that we extract the molecular adsorbate
(typically a few atoms) and the surface, which—according to prior chemical knowledge—should contribute
the most to describing the system as a whole. Furthermore, in each catalyst + molecule system, we randomly
sample a number of additional bulk crystal atoms below the surface layer that constitute the substrate for a
more holistic description. We construct atomic features using symmetric one-hot embeddings based on the
corresponding atomic numbers, which seeks to mirror the treatment for the positions and embed information
about the central atom, as well as each non-central atom in the point cloud. Finally, the point cloud data
are batched by padding molecule and substrate dimensions with zeros that can subsequently be masked
during computation. Given that the point cloud representation shares the same core components as graph
datasets, the same pipeline can be used with minimal code changes, largely owing to inheritance patterns
(see Figure 5 in Appendix C). The same also applies for different methods of constructing atomic point cloud
representations that may be different from atom-centered point clouds we apply in our experiments.

8

Published in Transactions on Machine Learning Research (07/2023)

4 Experiments & Testing

We designed our experiments to showcase the capabilities of our toolkit highlighted in Section 1. We perform
all our experiments on Titan-V GPUs with the number of GPUs and experimental runtimes detailed in each
individual experimental section. Concretely, our experiments demonstrate:

• Seamless Compute Scaling: We show the benefits of compute scaling across multiple devices in a
single node and multi-node setting for different OpenCatalyst tasks described in Section 4.1.

• Model Enablement: We implement three new model architectures and show generally reasonable
results on OCP-20 tasks described in Section 4.2. Concretely, we provide training results for the
following architectures:

– E(n)-GNN by Satorras et al. (2021) - a rotation-equivariant graph neural network.
– MegNet by Chen et al. (2019) - a domain specific GNN for materials science applications.
– Geometric ALgebra Attention Network (GALA) by Spellings (2021) - a short-range equivariant

network based on Clifford algebra that applies point cloud representations.

As shown in Table 1, the success of the new models relies on our compute scaling capabilities and
our flexible MLOps data and model pipelines.

All of the models presented have the inductive bias of rotation equivariance; in general, equivariance for
functions f(I), g(I) for an entity I is defined as: f(g(I)) = g(f(I)). Intuitively this means that the features
of an entity transform equally with a given manipulation, such as a rotation. This is particularly useful
for property prediction in material compounds, such as the IS2RE and S2EF tasks, where rotation of the
entire compound itself does not affect the properties of the compound. Each of the models, however, impart
equivariance in different ways through their architecture. We refer the reader to Section 2 and the original
papers for further details.

4.1 Hardware Scaling Capabilities

Task Model
Size

Number
GPUs

Epoch
Time (h)

Experiment
Time (h)

IS2RE (All)
E(n)-GNN 72k 24 0.063 2.84
MegNet 986k 24 0.108 4.86
Gala 1.5M 24 1.32 59.6

S2EF (2M)
E(n)-GNN 72k 32 0.404 18.2
MegNet 1.2M 40 1.36 61.3

Table 1: Compute details for our experiments on IS2RE-All (∼500K Training & ∼25K Validation) and
S2EF-2M (2M Training & 1M Validation) indicating the compute requirements to perform effective model
training on OCP-20 in reasonable wall-clock time. Both model architecture (Gala > MegNet > E(n)-GNN)
and task complexity (S2EF > IS2RE) influence compute needs.

As an illustrative example, we deploy E(n)-GNN using the Open MatSci ML Toolkit to the OCP-20 S2EF
task with 200K training samples and 1M validation samples, which is amendable to studying the compute
performance one can achieve using our framework. We apply distributed data-parallel training based on the
PyTorch library (Li et al., 2020) to scale training across multiple devices on single GPU compute node, as
well as multiple GPU compute nodes. As seen in Figure 3, single node scaling to multiple GPUs for the
S2EF and IS2RE tasks shows a decreasing benefit as more GPUs are added, asymptotically approaching the
apparent limit of parallelizable computation benefits for this particular setting. Epoch training throughput in
the multi-node setting for two nodes suggests close to linear scaling. While the overall benefits of compute

9

Published in Transactions on Machine Learning Research (07/2023)

(a) Single Node Scaling on S2EF (b) Multi-Node Node Scaling on S2EF (c) Single Node Scaling on IS2RE

Figure 3: Time per Epoch (s) for Multiple Devices on Single Node and 8-Device Multi-Node Setting for
the S2EF Task on 200K and 1M Validation Data Split and Single Node Scaling for IS2RE Task on 10K and
∼25K Validation Data Set.

scaling increase with a more intensive task, the overarching compute time, both in core-time and in wall-clock
time, also increases making the overall experiment more costly.

4.2 OCP-20 Task Performance

We leverage our toolkit to perform training experiments on two large-scale tasks within OCP-20:

1. IS2RE-All: Initial Structure to Relaxed Energy for all data contained in OCP-20 (∼500K training
samples). IS2RE is trained on MAE (L1) loss: LIS2RE

θ = 1
n

∑n
i=1 |yi − f energy

θ (zi)| with fθ being the
model parameterized by θ, yi being the energy labels and zi being the input data features. The
primary aim of this task is to model the absorption energy of the catalyst + adsorbate in the relaxed
state, which is generally most relevant for catalytic design applications.

2. S2EF-2M: Structure to Energy & Forces prediction for 2 million training samples. S2EF is also trained
on the L1 loss with a separate term for energy prediction and force labels: LS2EF

θ = Lenergy
θ + Lforce

θ =
1
n

∑n
i=1 |yenergy

i − f energy
θ (zi)| + 1

n

∑n
i=1

∣∣yforce
i − f force

θ (zi)
∣∣. The forces are obtained by taking the

gradient of energy predictions with respect to atomic positions: f force
θ = − dfenergy

θ
(z)

dx with x being the
atomic positions in the system. This requires significantly larger memory and compute compared to
the IS2RE task, as well as support for multiple passes of automatic differentiation. The S2EF tasks
aims to model the prediction of energy and forces on a single frame thereby training the model to
provide a more general approximation of the original chemistry simulation.

We perform the IS2RE-All task for all three models and the S2EF tasks for E(n)-GNN and MegNet. We
did not perform S2EF with Gala because the overall memory requirements were too large to fit onto GPU,
mainly due to the significant additional memory cost of force predictions. Gala training on IS2RE was
already strained in memory utilization given that we applied a batch size of 1 point cloud and performed
gradient accumulation across 64 batches to compensate for the small batch size. The full list of relevant
hyperparameters can be found in Appendix A.

4.2.1 IS2RE-All Task Performance

The IS2RE-All training results in Table 2 and Figures 4a, 4b & 4c show that Gala performs best on training
loss and MegNet performs best on in-distribution validation loss. E(n)-GNN performs worst across all
in-distribution and out-of-distribution tasks for total task loss. The trend of the training loss, whose deviation
corresponds to the loss across various batches in a given epoch, indicates a downwards slope with recurring

10

Published in Transactions on Machine Learning Research (07/2023)

(a) E(n)-GNN IS2RE-All Training (b) MegNet IS2RE-All Training (c) Gala IS2RE-All Training

(d) E(n)-GNN S2EF-2M Training (e) MegNet S2EF-2M Training

Figure 4: Training and in-distribution validation loss curves for the IS2RE-All Task on E(n)-GNN, MegNet
and Gala (top row) and the S2EF-2M Task for E(n)-GNN and MegNet (bottom row). In-distribution
validation loss generally follows the training loss for all tasks with a somewhat steeper decrease for S2EF
than IS2RE. Full results, including out-of-distribution validation losses, are shown in Table 2 and Table 3

Model Training Total Loss ↓ Energy MAE (eV) ↓ Energy within Threshold (%) ↑

Loss ID OOD Cat OOD Ads OOD Both ID OOD Cat OOD Ads OOD Both ID OOD Cat OOD Ads OOD Both

IS2RE Validation Dataset

E(n)-GNN 0.238 0.256 0.239 0.321 0.271 0.710 0.692 0.825 0.745 3.15 3.19 1.93 2.04
MegNet 0.211 0.233 0.216 0.314 0.259 0.656 0.644 0.901 0.800 3.83 3.99 1.84 1.99
GALA 0.153 0.240 0.217 0.276 0.235 1.598 1.565 1.469 1.216 1.02 1.11 1.09 1.19

IS2RE Test Dataset

E(n)-GNN - - - - - 0.706 0.710 0.803 0.760 3.19 3.06 1.94 1.99
MegNet - - - - - 0.653 0.668 1.138 1.123 3.90 3.55 1.74 1.60
GALA - - - - - 1.585 1.565 1.649 1.475 0.97 1.05 0.80 0.86

Table 2: Task results for IS2RE (All) with MAE training loss for in-distribution (ID), out-of-distribution
catalysts (OOD-Cat), out-of-distribution adsorbates (OOD-Ads), and out-of-distribution catalysts and
adsorbates (OOD-Both) for total loss, energy MAE (eV) and energy within threshold (EwT). We highlight
the best performing model for each metric. “-” indicates settings that are not applicable for the test data.
While GALA mostly has the best performance measured by the loss, MegNet and E(n)-GNN perform better
among the energy MAE and EwT.

deviation pattern. This suggests that the networks may find particular data samples more challenging than
others as it cycles through the same batches over different epochs. The learning curves for all models also
show that the in-distribution validation loss generally follows the training loss, which is expected for this

11

Published in Transactions on Machine Learning Research (07/2023)

setting. In the case of out-of-distribution tasks, MegNet performs slightly better than Gala on OOD-Catalyst
with Gala performing best on OOD-Adsorbates and OOD-Both. Gala’s relatively consistent performance
across ID and OOD tasks suggests that Gala may have greater generalization ability compared to E(n)-GNN
and MegNet. It is also worth noting that all three models have the most difficulty on the OOD-Adsorbates
task, indicating that it is more difficult to generalize for new molecules in the catalyst+molecule system
compared to changing the underlying catalyst crystal structure. For the Energy MAE (eV) and EwT metrics
MegNet outperforms E(n)-GNN in ID and OOD-Cat, while E(n)-GNN outperforms MegNet in OOD-Ads
and OOD-Both. This trends holds across both validation and training data splits.

4.2.2 S2EF Task Performance

The total loss values shown in Table 3 and Figures 4d and 4e include errors from both the energy prediction
and the force prediction components. Compared to the IS2RE results in Figures 4a, 4b & 4c, the S2EF
results in Figures 4d and 4e indicate a stronger downwards slope in both the training and in-distribution
validation losses, particularly for MegNet. MegNet outperforms E(n)-GNN across all tasks, including in-
distribution and out-of-distribution settings. For non-loss metrics (Energy MAE, EFwT & Force MAE),
E(n)-GNN outperforms MegNet for validation data, while MegNet outperforms E(n)-GNN for test data.
MegNet’s generally stronger performance compared to E(n)-GNN could be related to two factors: 1. Greater
representation capacity due to a higher number of model parameters; 2. MegNet’s domain specific feature
design, including graph-level variables, may be more useful in resolving the greater diversity of data found
in the S2EF tasks. The results shown in Table 1 also show the greater compute cost associated with the
S2EF-2M task, both in the amount of hardware used as well as the related wall-clock time, driven by larger
dataset size and greater task complexity.

Model Training Total Loss ↓ Energy MAE (eV) ↓ Energy & Forces within Threshold (%) ↑ Force MAE (eV/Å) ↓

Loss ID OOD Cat OOD Ads OOD Both ID OOD Cat OOD Ads OOD Both ID OOD Cat OOD Ads OOD Both ID OOD Cat OOD Ads OOD Both

S2EF Validation Dataset

E(n)-GNN 0.307 0.333 0.331 0.388 0.433 1.675 1.673 1.675 1.731 0.0037 0.0031 0.0056 0.0049 0.0811 0.0800 0.0800 0.0943
MegNet 0.252 0.268 0.274 0.341 0.378 1.730 1.723 1.766 1.827 0 0 0 0 0.102 0.101 0.101 0.113

S2EF Test Dataset

E(n)-GNN - - - - - 1.722 1.699 1.942 2.008 0 0 0 0 0.102 0.0994 0.103 0.118
MegNet - - - - - 1.665 1.648 1.836 1.901 0.0038 0.0027 0.0038 0.0016 0.0810 0.0788 0.0802 0.0979

Table 3: Task results for S2EF (2M) with MAE training loss for in-distribution (ID), out-of-distribution
catalysts (OOD-Cat), out-of-distribution adsorbates (OOD-Ads), and out-of-distribution catalysts and
adsorbates (OOD-Both) for total loss, energy MAE (eV), forces MAE (eV/Å), and energy within threshold
(EwT) as a percentage of the dataset. We highlight the best performing model for each metric. “-” indicates
settings that are not applicable for the test data. MegNet outperforms E(n)-GNN for total and for all test
data metrics, while E(n)-GNN performs better for validation data on energy MAE, forces MAE and EFwT.

5 Discussion

5.1 Comparisons with existing models

One of the primary motivations of this paper, and the future work we hope to enable, is the search for new
neural network architectures to accelerate materials discovery. We hence contextualize the results in Table 2
and Table 3 by making caveated comparisons with published Open Catalyst results, such as DimeNet++
(Klicpera et al., 2020a) and GemNet-XL (Sriram et al., 2022). In the case of IS2RE, the task measures
mean absolute deviation in adsorption energies (in units of eV) calculated with the RPBE density functional
(Chanussot* et al., 2021), which estimate the thermodynamic stability of molecules adhering to catalytic
surfaces. While direct comparisons are not possible as validation results were not included in earlier papers,
the IS2RE MAE results for each model shown in Table 2 are on the order of ∼0.25 eV across multiple
validation distributions. The reported test errors for DimeNet++ (0.56 eV, (Chanussot* et al., 2021)) and
more recently GemNet-XL (0.38 eV, (Sriram et al., 2022)), suggest that our reported results generally perform
worse in Energy MAE.

12

Published in Transactions on Machine Learning Research (07/2023)

In the case of S2EF, our comparisons have additional limitations given that our training set of 2M samples is
at least an order of magnitude smaller than those applied in other works (Chanussot* et al., 2021; Sriram et al.,
2022). Nevertheless, E(n)-GNN and MegNet both present somewhat favorable performance in total loss when
compared to GemNet-XL trained on the full S2EF training set (∼133M) by Sriram et al. (2022), who reported
OOD-Both joint (sum of energy and forces) test errors of 0.38, compared with 0.43 [E(n)-GNN] and 0.38
(MegNet). We emphasize that, while these are not directly comparable, we believe that our results highlight
the potential in discovering novel architectures—particularly parameter efficient ones like E(n)-GNN—and
data representations, such as the atom-centered point cloud representation described in Section 3.3, which
are facilitated by the Open MatSci ML Toolkit. As the framework matures, we look forward towards scaling
up experiments further and enabling direct comparisons with the OCP-20 leaderboard, while also continuing
to grow the application of machine learning models for materials discovery applications (Friederich et al.,
2021; Chen & Ong, 2022).

5.2 Future Work

In this paper, we introduced the Open MatSci ML Toolkit and demonstrated how it can be applied to
train advanced geometric deep learning models on different tasks within the OpenCatalyst dataset through
seamless compute scaling and automated MLOps. While the primary aim of this paper was to showcase the
capabilities of the framework, the challenge of training better and more effective machine learning models on
the OpenCatalyst dataset remains. We hope that our results provide a convincing starting point to continue
to build on top of the current version of the framework and enable future research in geometric deep learning
applied to materials science. Moreover, while the OpenCatalyst remains the largest for materials science,
further relevant datasets and benchmarks (Dunn et al., 2020; Jain et al., 2013; Kirklin et al., 2015; Calderon
et al., 2015) could be integrated into the Open MatSci ML Toolkit leveraging our flexible and extensible
framework to accelerate the development of advanced machine learning tools for materials science.

13

Published in Transactions on Machine Learning Research (07/2023)

References
Anderson, B., Hy, T.-S., and Kondor, R. Cormorant: Covariant molecular neural networks. 2019. doi:

10.48550/ARXIV.1906.04015. URL https://arxiv.org/abs/1906.04015.

Avancha, S., Md, V., Misra, S., and Mohanty, R. Deep graph library optimizations for intel(r) x86 architecture.
CoRR, abs/2007.06354, 2020. URL https://arxiv.org/abs/2007.06354.

Axelrod, S., Schwalbe-Koda, D., Mohapatra, S., Damewood, J., Greenman, K. P., and Gómez-Bombarelli, R.
Learning matter: Materials design with machine learning and atomistic simulations. Accounts of Materials
Research, 3(3):343–357, 2022.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M., Molinari, N., Smidt, T. E.,
and Kozinsky, B. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic
potentials. Nature Communications, 13(1):2453. ISSN 2041-1723. doi: 10.1038/s41467-022-29939-5. URL
http://www.nature.com/articles/s41467-022-29939-5.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. Geometric deep learning: Going
beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, July 2017. ISSN 1053-5888,
1558-0792. doi: 10.1109/MSP.2017.2693418.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges, May 2021.

Bunker, P. R. and Jensen, P. Molecular Symmetry and Spectroscopy. NRC Research Press, Ottawa, 2. ed
edition, 1998. ISBN 978-0-660-17519-5.

Calderon, C. E., Plata, J. J., Toher, C., Oses, C., Levy, O., Fornari, M., Natan, A., Mehl, M. J., Hart, G.,
Nardelli, M. B., et al. The aflow standard for high-throughput materials science calculations. Computational
Materials Science, 108:233–238, 2015.

Chanussot*, L., Das*, A., Goyal*, S., Lavril*, T., Shuaibi*, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho,
C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C. L., and Ulissi, Z. Open
catalyst 2020 (oc20) dataset and community challenges. ACS Catalysis, 2021. doi: 10.1021/acscatal.0c04525.

Chen, C. and Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. arXiv
preprint arXiv:2202.02450, 2022.

Chen, C., Ye, W., Zuo, Y., Zheng, C., and Ong, S. P. Graph networks as a universal machine learning
framework for molecules and crystals. Chemistry of Materials, 31(9):3564–3572, 2019.

Dunn, A., Wang, Q., Ganose, A., Dopp, D., and Jain, A. Benchmarking materials property prediction
methods: the matbench test set and automatminer reference algorithm. npj Computational Materials, 6(1):
1–10, 2020.

Falcon, W. and The PyTorch Lightning Team. PyTorch Lightning, 3 2019. URL https://github.com/
Lightning-AI/lightning.

Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop
on Representation Learning on Graphs and Manifolds, 2019.

Friederich, P., Häse, F., Proppe, J., and Aspuru-Guzik, A. Machine-learned potentials for next-generation
matter simulations. Nature Materials, 20(6):750–761, 2021.

Fuchs, F. B., Worrall, D. E., Fischer, V., and Welling, M. Se(3)-transformers: 3d roto-translation equivariant
attention networks, 2020. URL https://arxiv.org/abs/2006.10503.

Fung, V., Zhang, J., Juarez, E., and Sumpter, B. G. Benchmarking graph neural networks for materials
chemistry. npj Computational Materials, 7(1):1–8, 2021.

14

https://arxiv.org/abs/1906.04015
https://arxiv.org/abs/2007.06354
http://www.nature.com/articles/s41467-022-29939-5
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://arxiv.org/abs/2006.10503

Published in Transactions on Machine Learning Research (07/2023)

Ganea, O., Pattanaik, L., Coley, C., Barzilay, R., Jensen, K., Green, W., and Jaakkola, T. Geomol: Torsional
geometric generation of molecular 3d conformer ensembles. Advances in Neural Information Processing
Systems, 34:13757–13769, 2021.

Gasteiger, J., Becker, F., and Günnemann, S. Gemnet: Universal directional graph neural networks for
molecules. Advances in Neural Information Processing Systems, 34:6790–6802, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 1263–1272. JMLR.org, 2017.

Guo, Z., Lu, D., Yan, Y., Hu, S., Liu, R., Tan, G., Sun, N., Jiang, W., Liu, L., Chen, Y., et al. Extending
the limit of molecular dynamics with ab initio accuracy to 10 billion atoms. In Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 205–218, 2022.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learning on large graphs. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp. 1025–1035,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner,
D., Ceder, G., et al. Commentary: The materials project: A materials genome approach to accelerating
materials innovation. APL materials, 1(1):011002, 2013.

Jing, B., Corso, G., Chang, J., Barzilay, R., and Jaakkola, T. Torsional diffusion for molecular conformer
generation. arXiv preprint arXiv:2206.01729, 2022.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates,
R., Žídek, A., Potapenko, A., et al. Highly accurate protein structure prediction with alphafold. Nature,
596(7873):583–589, 2021.

Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., and Wolverton, C.
The open quantum materials database (oqmd): assessing the accuracy of dft formation energies. npj
Computational Materials, 1(1):1–15, 2015.

Klicpera, J., Giri, S., Margraf, J. T., and Günnemann, S. Fast and Uncertainty-Aware Directional Message
Passing for Non-Equilibrium Molecules. arXiv:2011.14115 [physics], December 2020a.

Klicpera, J., Groß, J., and Günnemann, S. Directional message passing for molecular graphs. arXiv preprint
arXiv:2003.03123, 2020b.

Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P., dos Passos Gomes, G.,
Häse, F., Jinich, A., Nigam, A., et al. On scientific understanding with artificial intelligence. Nature
Reviews Physics, pp. 1–9, 2022.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., Paszke, A., Smith, J., Vaughan, B.,
Damania, P., et al. Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020.

Md, V., Misra, S., Ma, G., Mohanty, R., Georganas, E., Heinecke, A., Kalamkar, D., Ahmed, N. K., and
Avancha, S. Distgnn: Scalable distributed training for large-scale graph neural networks. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’21, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421. doi:
10.1145/3458817.3480856. URL https://doi.org/10.1145/3458817.3480856.

Mellor, T. M., Yurchenko, S. N., Mant, B. P., and Jensen, P. Transformation Properties under the Operations
of the Molecular Symmetry Groups G36 and G36(EM) of Ethane H3CCH3. Symmetry, 11(7):862, July
2019. ISSN 2073-8994. doi: 10.3390/sym11070862.

15

https://doi.org/10.1145/3458817.3480856

Published in Transactions on Machine Learning Research (07/2023)

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. Weisfeiler
and leman go neural: Higher-order graph neural networks. AAAI, abs/1810.02244, 2019. URL http:
//arxiv.org/abs/1810.02244.

Mostafa, H. Sequential aggregation and rematerialization: Distributed full-batch training of graph neural
networks on large graphs. arXiv preprint arXiv:2111.06483, 2021.

Musaelian, A., Batzner, S., Johansson, A., Sun, L., Owen, C. J., Kornbluth, M., and Kozinsky, B. Learning
local equivariant representations for large-scale atomistic dynamics. arXiv preprint arXiv:2204.05249, 2022.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld, O. A. Quantum chemistry structures and
properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n) equivariant graph neural networks. In International
conference on machine learning, pp. 9323–9332. PMLR, 2021.

Shibuta, Y., Sakane, S., Miyoshi, E., Okita, S., Takaki, T., and Ohno, M. Heterogeneity in homogeneous
nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nature
communications, 8(1):1–9, 2017.

Spellings, M. Geometric algebra attention networks for small point clouds. arXiv preprint arXiv:2110.02393,
2021.

Sriram, A., Das, A., Wood, B. M., Goyal, S., and Zitnick, C. L. Towards training billion parameter graph
neural networks for atomic simulations. arXiv preprint arXiv:2203.09697, 2022.

Thomas, N., Smidt, T. E., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation- and translation-equivariant neural networks for 3d point clouds. CoRR, abs/1802.08219, 2018.
URL http://arxiv.org/abs/1802.08219.

Tran, R., Lan, J., Shuaibi, M., Goyal, S., Wood, B. M., Das, A., Heras-Domingo, J., Kolluru, A., Rizvi, A.,
Shoghi, N., et al. The open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysis. arXiv
preprint arXiv:2206.08917, 2022.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T.,
Karypis, G., Li, J., and Zhang, Z. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Williams, D. M. G. and Eisfeld, W. Complete Nuclear Permutation Inversion Invariant Artificial Neural
Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems. The
Journal of Physical Chemistry A, 124(37):7608–7621, September 2020. ISSN 1089-5639. doi: 10.1021/acs.
jpca.0c05991.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? ICLR, abs/1810.00826,
2019. URL http://arxiv.org/abs/1810.00826.

Zheng, D., Song, X., Yang, C., LaSalle, D., Su, Q., Wang, M., Ma, C., and Karypis, G. Distributed hybrid
cpu and gpu training for graph neural networks on billion-scale graphs. arXiv preprint arXiv:2112.15345,
2021.

16

http://arxiv.org/abs/1810.02244
http://arxiv.org/abs/1810.02244
http://arxiv.org/abs/1802.08219
http://arxiv.org/abs/1810.00826

Published in Transactions on Machine Learning Research (07/2023)

A Hyperparameters

Example hyperparameters for E(n)-GNN

Table 4: Hyperparameters for E(n)-GNN

Hyperparameter Value
MLP hidden dim 32
MLP output dim 32
of EGNN layers 3
Node MLP dim [48, 48]
Edge MLP dim [16, 16]
Atom position MLP dim [64, 64]
MLP activation ReLU
Graph read out Sum
Node projection block depth 2
Node projection hidden dim 128
Node projection activation ReLU
Output block depth 3
Output hiddem dim 64
Output activation ReLU

Optimizer parameters
Learning Rate 0.003626
Gamma 0.6878
Batch Size 8

Example hyperparameters for MegNet

Table 5: Hyperparameters for MegNet

Hyperparameter Value
Edge MLP dim 2
Node MLP dim 5
Graph variable MLP dim 9
MLP projection dim 11
MegNet blocks 4
MLP hidden dims [128, 64]
MegNet convolution dims [128, 128, 64]
of S2S layers 5
of S2S iterations 4
Output projection dims [64, 16]
Dropout 0.1

Optimizer parameters
Learning Rate 0.0001
Gamma 0.2
Batch Size 8

Example hyperparameters for Gala

17

Published in Transactions on Machine Learning Research (07/2023)

Table 6: Hyperparameters for Gala

Hyperparameter Value
Input dimension 200
Hidden dimension 100
Merge function concat
Join function concat
Rotation-invariant mode full
Rotation-covariant mode full
Rotation-invariant value norm momentum
Rotation-equivariant value norm momentum layer
Value function normalization layer
Score function normalization layer
Block-level normalization layer

Optimizer parameters
Learning Rate 0.001
Gamma 0.8
Batch Size 1

B Development Example

A self-contained python script running the full pipeline on one of our dev-sets is shown below:

1 """ Sample Python Script Without Imports """
2

3 # Define Parameters
4 BATCH_SIZE = 8
5 NUM_WORKERS = 4
6 REGRESS_FORCES = False
7 epochs = 5
8

9

10 # Model configuration for MegNet
11 model_config = {
12 " edge_feat_dim ": 2,
13 " node_feat_dim ": 5,
14 " graph_attr_dim ": 9,
15 "dim": 1,
16 " num_blocks ": 4,
17 " hiddens ": [128 , 64]
18 " conv_hiddens ": [128 , 128 , 64]
19 " s2s_num_layers ": 5,
20 " s2s_num_iters ": 4,
21 " output_hiddens ": [64 , 16] ,
22 " is_classification ": False ,
23 " dropout ": 0.1 ,
24 }
25

26 # use default settings for MegNet
27 megnet = MegNet (** model_config)
28

29

30 # use the GNN in the LitModule for all the logging , loss computation , etc.
31 model = S2EFLitModule (megnet , regress_forces = REGRESS_FORCES , lr =1e-3, gamma =0.1)
32 data_module = S2EFDGLDataModule . from_devset (
33 batch_size = BATCH_SIZE , num_workers = NUM_WORKERS
34)
35

18

Published in Transactions on Machine Learning Research (07/2023)

36 # alternatively , if you don ’t want to run with validation , just do S2EFDGLDataModule .
from_devset

37 data_module = S2EFDGLDataModule (
38 train_path = s2ef_devset ,
39 val_path = s2ef_devset ,
40 batch_size = BATCH_SIZE ,
41 num_workers = NUM_WORKERS ,
42)
43

44 trainer = pl. Trainer (accelerator ="gpu", strategy ="ddp", devices =2, max_epochs = epochs)
45 trainer .fit(model , datamodule = data_module)

Listing 1: Self-Contained Example Script With Scalable Devices

As can be seen in the definition of trainer, this short script already performs training on two GPUs with
users being able to change the devices variable to adjust the numbers of GPUs they want to leverage for
distributed training on a single node.

19

Published in Transactions on Machine Learning Research (07/2023)

C Data pipeline abstraction

PyTorch Dataset

BaseOCPDatasetImplements
.lmdb logic

Graph Abstraction

DGLDataset Interprets .lmdb as
graph representations

S2EFDGLDataset IS2REDGLDataset Extracts task specific
keys and labels

Tensor Abstraction

PointCloudDataset

S2EFDGLDataModule

IS2REDGLDataModule

PointCloudDataModule

Coordinates splits, collating,
and data loading

PyTorch Lightning Data Modules

Base Dataset

Wraps task specific
datasets to extract
point clouds

User Interaction

Figure 5: Inheritance diagram for the data abstraction in Open MatSci ML Toolkit. The main user interaction
layer is presented at the bottom, corresponding to subclasses of LightningDataModule. Arrows denote
directional relationship between the classes; the dashed line indicates that the PointCloudDataset wraps
the task specific datasets, whereby the user is provided with a sampled point cloud representation of the
original graphs.

20

	Introduction
	Background & Related Work
	Software Framework
	PyTorch Lightning Refactor
	Data abstraction
	Model abstraction
	Training loop

	Deep Graph Library (DGL) Refactor
	Graph Abstraction
	Cross-Platform Optimization
	Sampling and Distributed Training Beyond Data-Parallel

	Point Cloud Representation

	Experiments & Testing
	Hardware Scaling Capabilities
	OCP-20 Task Performance
	IS2RE-All Task Performance
	S2EF Task Performance

	Discussion
	Comparisons with existing models
	Future Work

	Hyperparameters
	Development Example
	Data pipeline abstraction

