
Over-parameterised Shallow Neural Networks with
Asymmetrical Node Scaling:

Global Convergence Guarantees and Feature Learning

François Caron
Dept of Statistics, University of Oxford

Oxford, United Kingdom

Fadhel Ayed
Huawei Technologies

Paris, France

Paul Jung
Dept of Mathematics, Fordham University

Bronx, New York, USA

Hoil Lee
Dept of Mathematical Sciences, KAIST

Daejeon, South Korea

Juho Lee
Graduate School of AI, KAIST

Daejeon, South Korea

Hongseok Yang
School of Computing, KAIST

Daejeon, South Korea

Abstract

We consider gradient-based optimisation of wide, shallow neural networks with
hidden-node ouputs scaled by positive scale parameters. The scale parameters are
non-identical, differing from classical Neural Tangent Kernel (NTK) parameter-
isation. We prove that, for large networks, with high probability, gradient flow
converges to a global minimum AND can learn features, unlike in the NTK regime.

1 Introduction

Training neural networks (NNs) involves minimising a non-convex objective function where optimi-
sation methods, such as gradient descent (GD), often find solutions with low training error. To better
understand this phenomenon, one line of research has analysed GD training of over-parameterised
NNs with a large number m of hidden nodes. Under a “

√
1/m” scaling of hidden nodes, Jacot et al.

(2018) showed that, as m → ∞, the GD solution coincides with that of kernel regression under a
limiting Neural Tangent Kernel (NTK). Under this so-called NTK scaling, theoretical guarantees for
global convergence and generalisation properties have been shown for large-width NNs (Du et al.,
2019b,a; Oymak and Soltanolkotabi, 2020; Arora et al., 2019; Bartlett et al., 2021). However, a
number of articles (Chizat et al., 2019; Yang, 2019; Arora et al., 2019) noted that in this large-width
regime, there is no feature learning; thus, for large-width NNs under NTK scaling, GD training is
performed in a lazy training regime, in contrast to the typical feature-learning regime of deep NNs.

We investigate global convergence properties and feature learning in gradient-type training of feedfor-
ward neural networks (FFNNs) under a more general asymmetrical node scaling. In particular, each
node j = 1, . . . ,m has a fixed node-specific scaling

√
λm,j with

λm,j = γ · 1

m
+ (1− γ) · λ̃j∑m

k=1 λ̃k
(1)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

where γ ∈ [0, 1] and 1 ≥ λ̃1 ≥ λ̃2 ≥ . . . ≥ 0 are fixed scalars with
∑∞
j=1 λ̃j = 1. Note that γ = 1

corresponds to the NTK scaling
√

1/m. If γ < 1, the node scaling is necessarily asymmetrical for
large-width networks. A typical example might be to take, for instance, λ̃j = 6π−2j−2 for all j ≥ 1.

We consider a shallow FFNN with smooth activation function and without bias, where the first layer
weights are trained via gradient flow (GF) using empirical risk minimisation under the `2 loss. We
show that, under similar assumptions as (Du et al., 2019b,a) on the data, activation function, and
initialisation, when the number of nodes m is sufficiently large: (i) if γ > 0, the training error goes
to 0 at a linear rate with high probability; and (ii) feature learning arises if and only if γ < 1. In
the Supplementary Material, we also provide numerical experiments which illustrate the theoretical
results, and which demonstrate empirically that such node-scaling is also useful for transfer learning.

2 Problem setup

Model. Consider a shallow FFNN with m hidden nodes and scalar output. For simplicity, assume
there is no bias term. Let x ∈ Rd be an input vector, where d is the input dimension. The model is

fm(x;W) =

m∑
j=1

√
λm,jajσ(Zj(x;W)) with Zj(x;W) =

1√
d
w>j x, for j ∈ [m] (2)

where fm(x;W) is the scalar output of the FFNN; Zj(x;W) is the pre-activation of the j-th hidden
node; σ : R→ R is the activation function; wj ∈ Rd is the column vector of weights between node
j of the hidden layer and the input nodes; aj ∈ R is the weight between the hidden node j and the
output node; λm,j ≥ 0 is a scaling parameter for hidden node j; W = (w>1 , . . . ,w

>
m)> is a column

vector of dimension md corresponding to the parameters to be optimised.

Assume σ admits a derivative σ′. For n ≥ 1, let σ : Rn → Rn (resp. σ′ : Rn → Rn) be the
vector-valued multivariate function that applies σ (resp. σ′) element-wise to each of the n input
variables. For simplicity, we henceforth assume that the output weights aj are randomly initialised

and fixed afterwards: aj
iid∼Uniform({−1, 1}), j ≥ 1. This assumption is common for large shallow

networks (see e.g. (Du et al., 2019b; Bartlett et al., 2021)), and typically the analysis extends to
models which train both layers. The scaling parameter λm,j is fixed and satisfies Equation (1). By
construction, λm,1 > 0 and

∑m
j=1 λm,j = 1 for all m ≥ 1. The case γ = 1 corresponds to NTK

scaling. The case γ = 0 and λ̃j = 1
K for j ∈ [K] for some K ≤ m and 0 otherwise corresponds to a

finite FFNN of width K.

Training. Let Dn = {(xi, yi)}i∈[n] be the training dataset of n ≥ 1 observations. Let X be the
n-by-d matrix whose ith row is x>i . We aim to minimise the empirical risk under `2 loss. Let

Lm(W) =
1

2

n∑
i=1

(yi − fm(xi;W))2, (3)

be the objective function which is, in general, non-convex. For dataset Dn, width m ≥ 1, output
weights aj , and scaling parameters (λm,j)j∈[m], we aim to estimate the trainable parameters W
by minimising Lm(W) using GF (in the Supplementary Material we discuss an extension to GD).
Let W0 be some initialisation. Under GF, (Wt)t>0 is the solution to the following ordinary
differential equation (ODE): dWt

dt = −∇WLm(Wt) with limt→0 Wt = W0. Let wtj be the
value of the parameter wj at time t, and define Ztj(x) = Zj(x;Wt). Note that ∇wjfm(x;W) =√
λm,jajσ

′(Zj(x;W)) · 1√
d
x. Thus, under gradient flow, for j ∈ [m] and x ∈ Rd,

dwtj

dt
=

n∑
i=1

(yi − fm(xi;Wt))∇wjfm(x;Wt) =

√
λm,jaj√
d

n∑
i=1

(yi − fm(xi;Wt))σ
′(Ztj(xi))xi.

Note that the derivatives associated with each hidden node j are scaled by
√
λm,j . For an input

x ∈ Rd, the output of the FFNN therefore satisfies the ODE

dfm(x;Wt)

dt
= ∇Wfm(x;Wt)

> dWt

dt
=

n∑
i=1

(yi − fm(xi;Wt))Θm(x,xi;Wt),

2

where Θm : Rd × Rd → R is the neural tangent kernel, defined by

Θm(x,x′;W) =
x>x′

d

m∑
j=1

λm,jσ
′(Zj(x;W))σ′(Zj(x

′;W)). (4)

The associated neural tangent Gram (NTG) matrix Θ̂m(X;W) is the n-by-n positive semidefinite
matrix whose (i, j)-th entry is Θm(xi,xj ;W). It takes the form

Θ̂m(X;W) =
1

d

m∑
j=1

λm,j diag

(
σ′
(
Xwj√
d

))
XX> diag

(
σ′
(
Xwj√
d

))
. (5)

where diag(v) denotes an n-by-n diagonal matrix A with Aii = vi for v = (v1, . . . , vn).

Henceforth our main assumptions are:
Assumption 2.1 (Dataset). (a) All inputs are non-zero and have norms at most 1: 0 < ‖xi‖ ≤ 1 for
all i ≥ 1. (b) For all i 6= i′ and c ∈ R, xi 6= cxi′ . (c) There is C > 0 such that |yi| ≤ C for all i ≥ 1.
Assumption 2.2 (Activation function). The activation function is analytic, with |σ′(x)| ≤ 1 and
|σ′′(x)| ≤M for some M > 0, and it is not a polynomial.

Assumption 2.3 (Initialisation). For j ∈ [m], w0j
iid∼N (0, Id), where Id is the d-by-d identity matrix.

3 Neural Tangent Kernel at initialisation and its limit

Mean NTG at initialisation and its minimum eigenvalue. Let W0 be a random initialisation from
Assumption 2.3. Consider the mean NTK at initialisation Θ∗(x,x′) = E [Θm(x,x′;W0)]. Then,
Θ∗ becomes the same as the limiting NTK under 1/

√
m scaling. Let Θ̂∗(X) = E

[
Θ̂m(X;W0)

]
be the associated n-by-n mean NTG matrix at initialisation, whose (i, i′)-th entry is Θ∗(xi,xi′).
Let κn = eigmin(Θ̂∗(X)) be the minimum eigenvalue of the mean NTG matrix at initialisation.
This minimum eigenvalue plays an important role in the analysis of global convergence properties
in the symmetrical NTK regime. Based on arguments from Du et al. (2019b,a), one has under
Assumptions 2.1 to 2.3, that κn > 0.

Limiting NTG. To set the stage and give some intuition, we now describe the limiting behaviour
of the NTG, for a fixed sample size n, as the width m goes to infinity. The proofs of all results are
contained in the Supplementary Material.
Proposition 3.1. Consider a sequence (w0j)j≥1 of iid random vectors distributed as in Assump-
tion 2.3. Suppose Assumption 2.2 holds. Then,

Θ̂m(X;W0)→ Θ̂∞(X;W0) (6)

almost surely asm→∞, where Θ̂∞(X;W0) = γΘ̂∗(X)+(1−γ)Θ̂
(2)
∞ (X;W0), with the following

random positive semi-definite matrix Θ̂
(2)
∞ (X;W0):

Θ̂(2)
∞ (X;W0) =

1

d

∞∑
j=1

λ̃j diag

(
σ′
(
Xw0j√

d

))
XX> diag

(
σ′
(
Xw0j√

d

))
.

Also, E[Θ̂∞(X;W0)] = E[Θ̂
(2)
∞ (X;W0)] = Θ̂∗(X), and

E
[
‖Θ̂∞(X;W0)− Θ̂∗(X)‖2F

]
= C0(X)(1− γ)2

∑
j≥1

λ̃2
j (7)

where ‖ · ‖F denotes the Frobenius norm, and C0(X) ≥ 0 is some positive constant equal to∑
1≤i,i′≤n

(
x>i xi′

d

)2

Var

(
σ′
(

1√
d
w>01xi

)
σ′
(

1√
d
w>01xi′

))
.

3

When γ = 1 (symmetric NTK scaling), the NTG converges to a constant matrix, and the solution
obtained by GF coincides with that of kernel regression. When γ < 1, Proposition 3.1 shows that the
NTG is random at initialisation, even in the infinite-width limit, suggesting that we are not operating
in the kernel regime, asymptotically. As shown in Equation (7), the departure from the kernel regime,
as measured by the total variance of the limiting random NTG, can be quantified by the nonnegative
constant (1 − γ)2

(∑
j≥1 λ̃

2
j

)
∈ [0, 1]. When this constant is close to 0, we approach the kernel

regime; increasing this value leads to a departure from the kernel regime, and increases the amount
of feature learning (see Theorems 4.3 and 4.4). The quantity

∑
j≥1 λ̃

2
j ∈ (0, 1] is always strictly

positive. More rapid decrease of the λ̃j as j increases will lead to higher values of
∑
j≥1 λ̃

2
j as is

illustrated in the Supplementary Material.

Having described the behaviour of the NTG at initialisation in the infinite-width limit, and provided
intuition on the node scaling parameters, we are ready to state our main results on global convergence
and feature learning properties of large FFNNs under such asymmetrical scaling.

4 Main results

Global convergence for gradient flow. Our main theorem, which is given below, explains what
happens during training via GF. It says that with high probability, (i) the loss decays exponentially
fast with respect to κn and the training time t, and (ii) the weights wtj and the NTG matrix change

by O((nλ
1/2
m,j)/(κnd

1/2γ)) and O((n3
∑m
j=1 λ

2
m,j)/(κ

2
nd

3γ2) + (n2
√∑m

j=1 λ
2
m,j)/(κnd

2γ)), re-
spectively. Define

C1 = sup
c∈(0,1]

Ez∼N (0,1)[σ((cz)/
√
d)2]. (8)

Theorem 4.1. (Global convergence) Consider δ ∈ (0, 1). Assume Assumptions 2.1 to 2.3, γ > 0,
and

m ≥ max

(
23n log 2n

δ

κnd
,

210n3M2(C2 + C1)

κ3
nd

3γ2δ
,

215n4M2(C2 + C1)

κ4
nd

4γ2δ

)
where C is the bound on the yi’s in Assumption 2.1. Then, with probability at least 1 − δ, the
following properties hold for all t ≥ 0:

(a) eigmin(Θ̂m(X;Wt)) ≥ γκn
4 ;

(b) Lm(Wt) ≤ e−(γκnt)/2Lm(W0);

(c) ‖wtj −w0j‖ ≤
√
λm,j × n

κnd1/2

√
27(C2+C1)

γ2δ for all j ∈ [m];

(d) ‖Θ̂m(X;Wt)− Θ̂m(X;W0)‖2 ≤
(

27n3M2(C2+C1)
κ2
nd

3γ2δ ·
∑m
j=1 λ

2
m,j

)
+
(

25n2M(C2+C1)1/2

κnd2γδ1/2
·√∑m

j=1 λ
2
m,j

)
.

The theorem says that if γ > 0, the training error converges to 0 exponentially fast. Moreover,
the weight change is bounded by a factor

√
λm,j and the NTG change is bounded by a factor√∑m

j=1 λ
2
m,j . Note that the upper bound in (c) vanishes in the limit if and only if γ = 1 (NTK

regime); similarly, the upper bound in (d) vanishes if and only if γ = 1. Although we were not able
to obtain matching lower bounds, we next argue that feature learning arises whenever γ < 1.
Remark 4.2. A result similar to the above holds for the ReLU activation function. Also, a result
analogous to (b), showing global convergence also holds for GD. (See the Supplementary Material.)

Feature learning. Next, we state results about feature learning when γ < 1. We first show that
on average, each individual weight in the network changes on the order of λm,j by an infinitesimal
gradient update. For j ∈ [m], k ∈ [d], let w0jk be the k-th component of the weight vector w0j at

initialisation and define g1(x) = Ez∼N (0,1)

[
σ(z‖x‖/

√
d)σ′(z‖x‖/

√
d)
]
.

Theorem 4.3. Assume Assumption 2.2. For all j ∈ [m] and k ∈ [d], we have

E
[
dwtjk
dt

∣∣∣∣
t=0

]
= −λm,j√

d

n∑
i=1

xikg1(xi).

4

Recall that λm,j → (1− γ)λ̃j as m→∞. So if γ < 1 and λ̃j > 0, the expected change of wj for
an infinitesimal update is non-zero in the infinite-width limit.

Next, we characterise the expected change of the NTK at time 0, using the neural tangent hierarchy
(Huang and Yau, 2020). Define g2(x1,x2,x3) = E(z1,z2,z3) [σ′′(z1)σ′(z2)σ′(z3)σ(z3)] , where
(z1, z2, z3) is a centred Gaussian vector with covariance E[zizj] = x>i xj/d, for 1 ≤ i, j ≤ 3.

Theorem 4.4. Assume Assumption 2.2. For all xk,x` ∈ (Rd \ {0}), we have

E
[
dΘm(xk,x`;Wt)

dt

∣∣∣∣
t=0

]
= −x>k x`

d3/2

[
n∑
i=1

g2(xk,x`,xi)x
>
k xi + g2(x`,xk,xi)x

>
` xi

]
m∑
j=1

λ2
m,j .

The above theorem shows that the expected change to the NTK at initialisation is scaled by the factor∑m
j=1 λ

2
m,j , which converges to (1 − γ)2

∑
j λ̃

2
j as m → ∞. The expected change in the NTK at

the first GD iteration is therefore bounded away from zero when γ < 1.

5

References
S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generaliza-

tion for overparameterized two-layer neural networks. In International Conference on Machine
Learning, pages 322–332. PMLR, 2019.

P. Bartlett, A. Montanari, and A. Rakhlin. Deep learning: a statistical viewpoint. Acta numerica, 30:
87–201, 2021.

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. Advances in
Neural Information Processing Systems, 32, 2019.

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural
networks. In International Conference on Machine Learning, pages 1675–1685. PMLR, 2019a.

S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-parameterized
neural networks. In International Conference on Learning Representations, 2019b.

J. Huang and H.-T. Yau. Dynamics of deep neural networks and neural tangent hierarchy. In
International Conference on Machine Learning, pages 4542–4551. PMLR, 2020.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing Systems, pages 8571–8580, 2018.

S. Oymak and M. Soltanolkotabi. Toward moderate overparameterization: Global convergence
guarantees for training shallow neural networks. IEEE Journal on Selected Areas in Information
Theory, 1(1):84–105, 2020.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 12(4):389–434, 2012.

P. Wolinski, G. Charpiat, and Y. Ollivier. Asymmetrical scaling layers for stable network pruning.
OpenReview Archive, 2020.

G. Yang. Wide feedforward or recurrent neural networks of any architecture are Gaussian processes.
In Advances in Neural Information Processing Systems, pages 9947–9960, 2019.

6

This Supplementary Material is organised as follows. Appendix A presents additional convergence
results and feature learning properties when the activation function is the (non-smooth) ReLU function.
In particular, Theorem A.1 states conditions for the global convergence of gradient flow in the ReLU
case, and is similar to Theorem 4.1 (smooth case) in the main paper. As noted in Appendix A.2,
some of the propositions on feature learning also apply to the ReLU case. Appendix A.3 discusses
some open problems in our framework when dealing with a ReLU activation function. Useful
bounds and identities are presented in Appendix B. Appendix C gives a proof of the proposition
regarding the structure of the limiting NTG at initialisation while Appendix D provides a secondary
proposition regarding the minimum eigenvalue of the NTG at initialisation. Appendix E states and
proves secondary lemmas on gradient flow dynamics. Appendix F and G give details of the main
proof for global convergence of gradient flow, respectively for the ReLU and smooth case. The proofs
are rather short and mostly build on the secondary lemmas and propositions of Appendices D and E.
Appendix H gives a detailed proof for global convergence of gradient descent in the smooth case.
The proof builds on results of convergence of gradient flow. Appendix I gives proofs of the theorems
of Section 4 on feature learning. Appendix J provides experiments to illustrate the results, under a
smooth activation, namely the Swish activation function. Finally, Appendix K provides experiments,
but with a ReLU activation instead of the Swish activation function.

Contents

1 Introduction 1

2 Problem setup 2

3 Neural Tangent Kernel at initialisation and its limit 3

4 Main results 4

A Results for the ReLU activation function 10

A.1 Global convergence under gradient flow . 10

A.2 Feature learning . 10

A.3 Discussion . 11

B Useful bounds and identities 11

B.1 Matrix Chernoff inequalities . 11

B.2 Some identities on (λm,j)j∈[m] . 11

C Proof of Proposition 3.1 on the limiting NTG 12

D Secondary Proposition - NTG at initialisation 13

E Secondary Lemmas on gradient flow dynamics 14

E.1 Lemma on exponential decay of the empirical risk and scaling of the weight changes 14

E.2 Lemma bounding the NTK change and minimum eigenvalue - ReLU case 15

E.3 Lemma on a sufficient condition for Theorem A.1 - ReLU case 19

E.4 Lemma bounding the NTK change and minimum eigenvalue - Smooth activation case 20

E.5 Lemma on a sufficient condition for Theorem 4.1 - Smooth activation case 22

F Proof of Theorem A.1 on the global convergence of gradient flow (ReLU case) 24

7

G Proof of Theorem 4.1 on the global convergence of gradient flow (smooth case) 26

H Global convergence of gradient descent (smooth activation) 28

H.1 Sketch of the proof . 28

H.2 Two key lemmas . 29

H.3 Proof of Theorem H.1 . 32

I Proof of the results of Section 4 on feature learning 35

I.1 Proof of Theorem 4.3 (smooth and ReLU) . 35

I.2 Proof of Theorem 4.4 (smooth case) . 35

J Experimental results (smooth activation) 36

J.1 Regression . 38

J.2 Classification . 38

K Experimental results for a ReLU activation function 39

K.1 Regression . 39

K.2 Classification . 39

8

List of Figures

1
∑∞
j=1 λ̃

2
j as a function of α . 12

2 Results on simulated data. From left to right, 1) training risks, 2) differences in
weight norms ‖wtj −w0j‖ with the j’s being those neurons which have maximal
differences at the end of the training, 3) differences in NTG matrices, and 4) minimum
eigenvalues of NTG matrices. 36

3 A subset of results for the regression experiments. From left to right, 1) training
risks for concrete dataset, 2) the differences in weight norms ‖wtj −w0j‖ with
j’s being the neurons having the maximum difference at the end of the training for
energy dataset, 3) the differences in NTG matrices for airfoil dataset, 4) test risks
of transferred models for plant dataset. 37

4 A subset of results for MNIST dataset. From left to right, 1) training risks, 2)
difference in weight norms, 3) the test accuracies of the pruned models, 4) test
accuracies of transferred models. 37

5 Results for CIFAR�100. From left to right, 1) test risk through training, 2) the
differences in weight norms ‖wtj − w0j‖ with j’s being the neurons having the
maximum difference at the end of the training, 3) the test risks of the pruned models,
and 4) test accuracies of the pruned models. 37

6 Results for the concrete dataset (swish) . 39

7 Results for the energy dataset (swish) . 40

8 Results for the airfoil dataset (swish) . 41

9 Results for the plant dataset (swish) . 42

10 Results for the MNIST dataset (swish) . 43

11 Results for the CIFAR�10 dataset (swish) . 44

12 Results for the CIFAR�10 dataset (swish). Impact of the parameter γ. 44

13 Results for the concrete dataset (ReLU) . 45

14 Results for the energy dataset (ReLU) . 46

15 Results for the airfoil dataset (ReLU) . 47

16 Results for the plant dataset (ReLU) . 48

17 Results for the MNIST dataset (ReLU) . 49

18 Results for the CIFAR�10 dataset (ReLU) . 50

19 Results for the CIFAR�100 dataset (ReLU) . 50

9

A Results for the ReLU activation function

Although we assume a smooth activation function in the main text of the paper (Assumption 2.2),
some of the results remain true when we drop this assumption and use the ReLU activation function
instead. In this section, we explain these results for ReLU. Throughout the section, we assume a
weak derivative σ′(x) = 1{x>0} of the ReLU activation function σ.

A.1 Global convergence under gradient flow

Our global convergence theorem under gradient flow in the main text (Theorem 4.1) has a counterpart
for the ReLU case, which is given below. This counterpart says that when we train the network
with the ReLU activation, with high probability, the loss decays exponentially fast with respect to

κn and the training time t, and the weights wtj and the NTG matrix change by O
(
nλ

1/2
m,j

κnd1/2

)
and

O

(
n2 ∑m

j=1 λ
3/2
m,j

κnd3/2
+

n3/2
√∑m

j=1 λ
3/2
m,j

κ
1/2
n d5/4

)
, respectively.

Theorem A.1 (Global convergence, gradient flow, ReLU). Consider δ ∈ (0, 1). Let D0 =√
2C2 + (2/d). Assume Assumptions 2.1 and 2.3, and the use of the ReLU activation function.

Also, assume γ > 0 and

m ≥ max

(
23n log 4n

δ

κnd
,

225n4D2
0

κ4
nd

3γ2δ5
,

235n6D2
0

κ6
nd

5γ2δ5

)
.

Then, with probability at least 1− δ, the following properties hold for all t ≥ 0:

(a) eigmin(Θ̂m(X;Wt)) ≥ γκn
4 ;

(b) Lm(Wt) ≤ e−(γκnt)/2Lm(W0);
(c) ‖wtj −w0j‖ ≤ 23nD0

κnd1/2γδ1/2

√
λm,j for all j ∈ [m];

(d) ‖Θ̂m(X;Wt) − Θ̂m(X;W0)‖2 ≤
(

29n2D0

κnd3/2γδ5/2
·
∑m
j=1 λ

3/2
m,j

)
+
(

26n3/2D
1/2
0

κ
1/2
n d5/4γ1/2δ5/4

·√∑m
j=1 λ

3/2
m,j

)
.

The proof of the theorem is given in Appendix F, and uses Lemmas E.1 to E.3 and Proposition D.1.

The theorem guarantees that whenever γ > 0, the training error converges to 0 exponentially fast.
Also, it implies that the weight change is bounded by a factor

√
λm,j , and the NTG change is

bounded by a factor
√∑m

j=1 λ
3/2
m,j . As we show in Appendix B.2, as m tends to∞,

λm,j → (1− γ)λ̃j for every j ≥ 1, and
m∑
j=1

λ
3/2
m,j → (1− γ)3/2

∞∑
j=1

λ̃
3/2
j .

Thus, when λ̃j > 0 (note that we necessarily have λ̃1 > 0), the upper bound in (c) is vanishing in the
infinite-width limit if and only if γ = 1 (NTK regime); similarly, the upper bound in (d) is vanishing
if and only if γ = 1. In fact, feature learning arises whenever γ < 1, since Theorem 4.3 in Section 4
holds for ReLU as we will explain in the next subsection.

A.2 Feature learning

Theorem 4.3 holds when we drop Assumption 2.2 and assume the use of the ReLU activation function
instead. Furthermore, in the ReLU case, g1(x) = ‖x‖/

√
2πd. Thus, the expected change in the

theorem has the following more specific form: for all j ∈ [m] and k ∈ [d],

E
[
dwtjk
dt

∣∣∣∣
t=0

]
= − λm,j

d
√

2π

n∑
i=1

xik‖xi‖.

This ReLU version of Theorem 4.3 can be shown by the very proof of the original theorem given in
Appendix I.1; the proof does not depend on whether we use ReLU or a smooth activation function
satisfying Assumption 2.2.

10

A.3 Discussion

Theorem A.1 is the counterpart of Theorem 4.1 for the global convergence of gradient flow with
a ReLU activation function. Despite empirical evidence from Appendix K suggesting that similar
convergence results could potentially be applicable to GD in the ReLU context, we have yet to
substantiate this with a comprehensive proof. The proof of the global convergence of GD with
smooth activation provided in Appendix H relies on a Taylor approximation. This necessitates the
activation function σ to be twice differentiable. It is worth noting that, in the symmetric NTK case,
the global convergence of GD with a ReLU activation has been shown by Du et al. (2019b, Section
4). Their proof, however, critically relies on the fact that the weights remain stationary throughout the
iterations of GD, which is not the scenario we are dealing with here when γ > 0. As such, it remains
a compelling open question to determine whether the global convergence of GD can be proven within
our specific framework when employing a ReLU activation function.

B Useful bounds and identities

B.1 Matrix Chernoff inequalities

The following matrix bounds can be found in (Tropp, 2012).
Proposition B.1. Consider a finite sequence (X1, X2, . . . , Xp) of independent, random, positive
semi-definite n × n matrices with eigmax(Xj) ≤ R almost surely for all j ∈ [p], for some R > 0.
Define

µmin = eigmin

 p∑
j=1

E[Xj]

 and µmax = eigmax

 p∑
j=1

E[Xj]

 .

Then, for all δ ∈ [0, 1),

Pr

eigmin

 p∑
j=1

Xj

 ≤ (1− δ)µmin

 ≤ n [e−δ

(1− δ)1−δ

]µmin/R

≤ ne−δ
2µmin/(2R).

Also, for all δ ≥ 0,

Pr

eigmax

 p∑
j=1

Xj

 ≥ (1 + δ)µmax

 ≤ n [eδ

(1 + δ)1+δ

]µmax/R

≤ ne−δ
2µmax/((2+δ)R).

B.2 Some identities on (λm,j)j∈[m]

The following proposition summarises a number of useful properties on the scaling parameters.
Proposition B.2. For all m ≥ 1,

m∑
j=1

λm,j = 1, (9)

√
γm ≤

m∑
j=1

√
λm,j ≤

√
m. (10)

For every r > 1, as m→∞,
m∑
j=1

λrm,j ∼
m∑
j=1

(
λ

(2)
m,j

)r
→ (1− γ)r

∑
j≥1

λ̃rj . (11)

Proof. Equation (9) follows from the definition of λm,j as shown below:
m∑
j=1

λm,j =

m∑
j=1

(
γ

m
+ (1− γ)

λ̃j∑m
k=1 λ̃k

)
= γ + (1− γ)

m∑
j=1

λ̃j∑m
k=1 λ̃k

= γ + (1− γ) = 1.

11

Figure 1: Value of
∑∞
j=1 λ̃

2
j as a function of α, where (λ̃j)j≥1 are defined as in Equation (35), As

α→ 1, it converges to 0, which corresponds to the kernel regime.

In Equation (10), the upper bound follows from Cauchy-Schwarz and Equation (9), and the lower
bound from the definition of λm,j :

√
γm =

m∑
j=1

√
γ

m
≤

m∑
j=1

√
λm,j ≤

√√√√ m∑
j=1

λm,j

√√√√ m∑
j=1

1 = 1 ·
√
m.

For Equation (11), we note the following bounds on the sum of the λrm,j for all r > 1:

m∑
j=1

(
λ

(2)
m,j

)r
≤

m∑
j=1

(λm,j)
r ≤


 m∑
j=1

(
λ

(1)
m,j

)r1/r

+

 m∑
j=1

(
λ

(2)
m,j

)r1/r

r

where the second inequality uses Minkowski inequality. But as m→∞, the term
∑m
j=1(λ

(1)
m,j)

r =

γrm−(r−1) → 0. Furthermore, as m→∞,
m∑
j=1

(
λ

(2)
m,j

)r
=

(1− γ)r(∑m
k=1 λ̃k

)r m∑
j=1

λ̃rj → (1− γ)r
∑
j≥1

λ̃rj

because (
∑
k≥1 λ̃k)r = 1.

Figure 1 shows the value of
∑
j≥1 λ̃

2
j = ζ(2/α)

ζ(1/α)2 as a function of α, when using Zipf weights
Equation (35).

C Proof of Proposition 3.1 on the limiting NTG

This proposition holds also under the ReLU activation case. In what follows, we will give a proof
that works for both the smooth activation function and ReLU.

It is sufficient to look at the convergence of individual entries of the NTG matrix; that is, to show that,
for each pair 1 ≤ i, i′ ≤ n,

Θm(xi,xi′ ;W0) =
x>i xi′

d
×
(
γ

m

m∑
j=1

σ′(Zj(xi;W0))σ′(Zj(xi′ ;W0))

+
(1− γ)∑m
k=1 λ̃k

m∑
j=1

λ̃jσ
′(Zj(xi;W0))σ′(Zj(xi′ ;W0))

) (12)

tends to

γΘ∗(xi,xi′) +
(1− γ)

d
x>i xi′

∞∑
j=1

λ̃jσ
′(Zj(xi;W0))σ′(Zj(xi′ ;W0)) (13)

12

almost surely as m→∞. Using the fact that |σ′(z)| ≤ 1 and the triangle inequality, the modulus of
the difference between the RHS of Equation (12) and Equation (13) is upper bounded by∣∣∣∣x>i xi′d

∣∣∣∣
γ

∣∣∣∣∣∣
 1

m

m∑
j=1

σ′(Zj(xi;W0))σ′(Zj(xi′ ;W0))

− E[σ′(Z1(xi;W0))σ′(Z1(xi′ ;W0))]

∣∣∣∣∣∣
+ (1− γ)

(1∑m
j=1 λ̃j

− 1

)
m∑
j=1

λ̃j +

∞∑
j=m+1

λ̃j


=

∣∣∣∣∣x>i xi′d

∣∣∣∣∣
(
γ

∣∣∣∣∣
(

1

m

m∑
j=1

σ′(Zj(xi;W0))σ′(Zj(xi′ ;W0))

)
− E[σ′(Z1(xi;W0))σ′(Z1(xi′ ;W0))]

∣∣∣∣∣
+ 2(1− γ)

1−
m∑
j=1

λ̃j

)
which tends to 0 almost surely as m tends to infinity using the law of large numbers and the fact that∑∞

j=1 λ̃j = 1.

D Secondary Proposition - NTG at initialisation

The following proposition is a corollary of Lemma 4 in (Oymak and Soltanolkotabi, 2020). It holds
under both the ReLU and smooth activation cases. A proof is included for completeness.

Proposition D.1. Let δ ∈ (0, 1). Assume Assumptions 2.1 and 2.3, γ > 0, and m ≥ 23n log n
δ

κnd
. Also,

assume that the activation function satisfies Assumption 2.2 or it is ReLU. Then, with probability at
least 1− δ,

eigmin(Θ̂m(X;W0)) ≥ eigmin(Θ̂(1)
m (X;W0)) >

γκn
2

> 0.

Proof. We follow here the proof of Lemma 4 in (Oymak and Soltanolkotabi, 2020).

Θ̂m(X;W) =
1

d

m∑
j=1

λm,jAj

=
1

d

m∑
j=1

λ
(1)
m,jAj +

1

d

m∑
j=1

λ
(2)
m,jAj

where
Aj = diag(σ′(Xwj/

√
d))XX> diag(σ′(Xwj/

√
d)).

Let Θ̂
(1)
m (X;W) = 1

d

∑m
j=1 λ

(1)
m,jAj = γ

md

∑m
j=1Aj . Note that eigmin(Θ̂m(X;W)) ≥

eigmin(Θ̂
(1)
m (X;W)) a.s., and

E[Θ̂(1)
m (X;W0)] = γΘ̂∗(X)

where Θ̂∗(X) is defined in ??. We have, for all j ≥ 1,

‖Aj‖2 = eigmax(Aj) ≤ eigmax(diag(σ′(Xwj/
√
d))2) eigmax(XX>) ≤ eigmax(XX>)

≤ trace(XX>) ≤ n.
(14)

At initialisation, A1, A2, . . . , Am are independent random matrices. Using matrix Chernoff inequali-
ties (see Proposition B.1), we obtain, for any ε ∈ [0, 1),

Pr
(

eigmin(Θ̂m(X;W0)) ≤ (1− ε)γκn
)
≤ ne−ε

2mκnd/(2n).

Let δ ∈ (0, 1). Taking ε = 1/2, we have that, if mκnd23n ≥ log n
δ , then

Pr
(

eigmin(Θ̂m(X;W0)) ≤ γκn
2

)
≤ δ.

13

E Secondary Lemmas on gradient flow dynamics

The proof technique used to prove Theorems 4.1 and A.1 is similar to that of (Du et al., 2019b)
(NTK scaling). In particular, we provide in this section Lemmas similar to Lemmas 3.2, 3.3 and
3.4 in (Du et al., 2019b), but adapted to our setting. Lemma E.1 is an adaptation of Lemma 3.3.
Lemmas E.2 and E.4 are adaptations of Lemma 3.2, respectively for the ReLU and smooth activation
cases. Lemmas E.3 and E.5 are adaptations of Lemma 3.4, respectively for the ReLU and smooth
activation cases.

E.1 Lemma on exponential decay of the empirical risk and scaling of the weight changes

The following lemma is an adaptation of Lemma 3.3 of (Du et al., 2019b), and applies to both the
ReLU and smooth activation cases. It shows that, if the minimum eigenvalue of the NTG matrix is
bounded away from 0, gradient flow converges to a global minimum exponentially fast. Recall that
y = (y1, . . . , yn)> ∈ Rn.

Lemma E.1. Let t > 0 and ζ > 0. Assume Assumption 2.1 and eigmin(Θ̂m(X;Ws)) ≥ ζ
2 for all

0 ≤ s ≤ t. Also, assume that the activation function satisfies Assumption 2.2 or it is ReLU. Then,

Lm(Wt) ≤ e−ζtLm(W0),

and for all j ∈ [m],

‖wtj −w0j‖ ≤
√
nλm,j
d
‖y − u0‖

2

ζ
, (15)

where u0 = (fm(x1;W0), . . . , fm(xn;W0))> ∈ Rn.

Proof. For 0 ≤ s ≤ t, write us = (fm(x1;Ws), . . . , fm(xn;Ws))
>. We have

d

ds
us = Θ̂m(X;Ws)(y − us).

It follows that
dLm(Ws)

ds
= −(y − us)

>Θ̂m(X;Ws)(y − us) ≤ −
ζ

2
(y − us)

>(y − us) = −ζLm(Ws).

Using Grönwall’s inequality, we obtain

Lm(Wt) ≤ e−ζtLm(W0).

For 0 ≤ s ≤ t, using the Cauchy-Schwarz inequality, we get∥∥∥∥dwsj

ds

∥∥∥∥2

=

∥∥∥∥∥√λm,j aj√d
n∑
i=1

σ′(Zsj(xi))xi · (yi − fm(xi;Ws))

∥∥∥∥∥
2

=
λm,j
d

d∑
k=1

(
n∑
i=1

σ′(Zsj(xi))xik · (yi − fm(xi;Ws))

)2

≤ λm,j
d

d∑
k=1

(
n∑
i=1

x2
ik

)(
n∑
i=1

σ′(Zsj(xi))
2(yi − fm(xi;Ws))

2

)

=
λm,j
d

(
n∑
i=1

σ′(Zsj(xi))
2(yi − fm(xi;Ws))

2

)(
d∑
k=1

n∑
i=1

x2
ik

)

≤ λm,j
d

(
n∑
i=1

(yi − fm(xi;Ws))
2

)(
n∑
i=1

d∑
k=1

x2
ik

)

≤ nλm,j
d
‖y − us‖2

≤ nλm,j
d
‖y − u0‖2e−ζs.

14

Integrating and using Minkowski’s integral inequality, we obtain

‖wtj −w0j‖ =

∥∥∥∥∫ t

0

d

ds
wsjds

∥∥∥∥ ≤ ∫ t

0

∥∥∥∥ ddswsj

∥∥∥∥ ds
≤
√
nλm,j
d
‖y − u0‖

∫ t

0

e−ζs/2ds

≤
√
nλm,j
d
‖y − u0‖

2

ζ
.

From now on, the proofs for the ReLU and smooth-activation cases slightly differ.

E.2 Lemma bounding the NTK change and minimum eigenvalue - ReLU case

The next lemma and its proof are similar to Lemma 3.2 in (Du et al., 2019b) and its proof. Recall that
0 < ‖xi‖ ≤ 1 for every i ∈ [n], and the w0j are iid N (0, Id).

Lemma E.2. Let δ ∈ (0, 1), and cm,j > 0 for every j ∈ [m]. Assume that Assumptions 2.1 and 2.3
holds and the activation function is ReLU. Then, with probability at least 1− δ, the following holds.
For every W = (w>1 , . . . ,w

>
m)>, if it satisfies

‖w0j −wj‖ ≤
δ2cm,j

4
for all j ∈ [m],

we have

∥∥∥Θ̂(s)
m (X;W)− Θ̂(s)

m (X;W0)
∥∥∥

2
≤ n

d

m∑
j=1

λ
(k)
m,jcm,j +

2n

d

√√√√ m∑
j=1

λ
(k)
m,jcm,j for all k ∈ [2]

and

eigmin(Θ̂m(X;W)) ≥ eigmin(Θ̂(1)
m (X;W0))−

 nγ

dm

m∑
j=1

cm,j +
2nγ

dm1/2

√√√√ m∑
j=1

cm,j

 . (16)

Proof. For k ∈ [2], let

f (k)
m (−;W) : Rd → R, f (k)

m (x;W) =

m∑
j=1

√
λ

(k)
m,jajσ(Zj(x;W)).

Define ∇Wf
(k)
m (X;W) to be the n-by-(md) matrix whose i-th row is the md-dimensional row

vector (∇Wf
(k)
m (xi;W))>.

Note that for all k ∈ [2],∥∥∥Θ̂(k)
m (X;W)− Θ̂(k)

m (X;W0)
∥∥∥

2

=
∥∥∥∇Wf (k)

m (X;W)∇Wf (k)
m (X;W)> −∇Wf (k)

m (X;W0)∇Wf (k)
m (X;W0)>

∥∥∥
2

≤
∥∥∥∇Wf (k)

m (X;W)−∇Wf (k)
m (X;W0)

∥∥∥2

2
(17)

+ 2
∥∥∥∇Wf (k)

m (X;W0)
∥∥∥

2

∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥

2
.

15

The justification of the inequality from above is given below (which is an expanded version of the
three equations (364-366) in (Bartlett et al., 2021)): for all n-by-(pd) matrices A and B,∥∥AA> −BB>∥∥

2
=

∥∥∥∥1

2
(A−B)(A+B)> +

1

2
(A+B)(A−B)>

∥∥∥∥
2

≤ 1

2

(∥∥(A−B)(A+B)>
∥∥

2
+
∥∥(A+B)(A−B)>

∥∥
2

)
≤ 1

2

(
‖A−B‖2 ×

∥∥(A+B)>
∥∥

2
+ ‖A+B‖2 ×

∥∥(A−B)>
∥∥

2

)
= ‖A−B‖2 × ‖A+B‖2
≤ ‖A−B‖2 × (‖A−B +B‖2 + ‖B‖2)

≤ ‖A−B‖2 × (‖A−B‖2 + 2 ‖B‖2) .

Coming back to the inequality in Equation (17), we next bound the two terms
∥∥∥∇Wf

(k)
m (X;W0)

∥∥∥
2

and
∥∥∥∇Wf

(k)
m (X;W)−∇Wf

(k)
m (X;W0)

∥∥∥
2

there.

We bound the first term as follows:∥∥∥∇Wf (k)
m (X;W0)

∥∥∥2

2
≤
∥∥∥∇Wf (k)

m (X;W0)
∥∥∥2

F
=

n∑
i=1

m∑
j=1

∥∥∥∇wjf
(k)
m (xi;W0)

∥∥∥2

=

n∑
i=1

m∑
j=1

λ
(k)
m,j |σ

′(Zj(xi;W0))|2 ‖xi‖
2

d

≤ n

d

m∑
j=1

λ
(k)
m,j ≤

n

d
γk (18)

where γ1 = γ and γ2 = 1 − γ. The second inequality uses the assumption that |σ′(x)| ≤ 1
for all x ∈ R and ‖xi‖ ≤ 1 for all i ∈ [n]. The third inequality follows from the fact that∑m
j=1 λ

(k)
m,j ≤

∑m
j=1 λm,j = 1.

For the second term, we recall that Zj(xi;W) = 1√
d
w>j xi. Using this fact, we derive an upper

bound for the second term as follows:∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥2

2

≤
∥∥∥∇Wf (k)

m (X;W)−∇Wf (k)
m (X;W0)

∥∥∥2

F

=

n∑
i=1

m∑
j=1

∥∥∥∇wjf
(k)
m (xi;W)−∇wjf

(k)
m (xi;W0)

∥∥∥2

=

n∑
i=1

m∑
j=1

∥∥∥∥√λ(k)
m,jaj

xi√
d

[σ′(Zj(xi;W))− σ′(Zj(xi;W0))]

∥∥∥∥2

=
1

d

n∑
i=1

m∑
j=1

‖xi‖2 λ(k)
m,j |σ

′(Zj(xi;W))− σ′(Zj(xi;W0))|2 . (19)

In the rest of the proof, we will derive a probabilistic bound on the upper bound just obtained, and
show the conclusions claimed in the lemma.

For any ε > 0, i ∈ [n], and j ∈ [m], we define the event

Ai,j(ε) =
{
∃wj s.t. ‖w0j −wj‖ ≤ ε and σ′(w>j xi) 6= σ′(w>0jxi)

}
.

If this event happens, we have |w>0jxi| ≤ ε. To see this, assume that Ai,j(ε) holds with wj as a
witness of the existential quantification, and note that since the norm of xi is at most 1,∣∣w>0jxi −w>j xi

∣∣ ≤ ‖w0j −wj‖ ‖xi‖ ≤ ε.

16

If w>0jxi > 0, then w>j xi ≤ 0 and thus

w>0jxi ≤ ε+ w>j xi < ε.

Alternatively, if w>0jxi ≤ 0, then w>j xi > 0 and thus

−w>0jxi ≤ ε−w>j xi ≤ ε.

In both cases, we have the desired |w>0jxi| ≤ ε.

Using the observation that we have just explained and the fact that w>0jxi ∼ N (0, ‖xi‖2), we obtain,
for a random variable N ∼ N (0, 1),

Pr(Ai,j(ε)) ≤ Pr

(
|N | ≤ ε

‖xi‖

)
= erf

(
ε

‖xi‖
√

2

)

≤

√√√√1− exp

(
−

(
4

(
ε

‖xi‖
√

2

)2
)
/π

)

≤

√
2ε2

‖xi‖2π
≤ ε

‖xi‖
, (20)

where the second inequality uses erf(x) ≤
√

1− exp(−(4x2)/π). Let Ψ(W0) be the constraint on
W = (w>1 , . . . ,w

>
m)> defined by

W ∈ Ψ(W0) ⇐⇒ ‖w0j′ −wj′‖ ≤
δ2cm,j′

4
for all j′ ∈ [m].

Then, for all k = 1, 2, we have

E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥2

2

]

≤ 1

d

n∑
i=1

m∑
j=1

‖xi‖2λ(k)
m,jE

[
sup

W∈Ψ(W0)

|σ′(Zj(xi;W))− σ′(Zj(xi;W0))|2
]

≤ 1

d

n∑
i=1

m∑
j=1

‖xi‖2λ(k)
m,j Pr (∃W ∈ Ψ(W0) s.t. σ′(Zj(xi;W)) 6= σ′(Zj(xi;W0)))

=
1

d

n∑
i=1

m∑
j=1

‖xi‖2λ(k)
m,j Pr

(
∃wj s.t. ‖w0j −wj‖ ≤

δ2cm,j
4

and σ′(w>j xi) 6= σ′(w>0jxi)

)

≤ 1

d

n∑
i=1

m∑
j=1

‖xi‖2λ(k)
m,j Pr

(
Ai,j(δ

2cm,j/4)
)

≤ (δ2/4)

d

n∑
i=1

m∑
j=1

‖xi‖λ(k)
m,jcm,j

≤ n(δ2/4)

d

m∑
j=1

λ
(k)
m,jcm,j .

The first inequality uses the bound in Equation (19), and the fourth inequality uses the inequality
derived in Equation (20).

17

We bring together the bound on the expectation just shown and also the bounds proved in Equa-
tions (17) and (18). Recalling that γ1 = γ and γ2 = 1− γ, we have

E

[
sup

W∈Ψ(W0)

∥∥∥Θ̂(k)
m (X;W)− Θ̂(k)

m (X;W0)
∥∥∥

2

]

≤ E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥2

2

]

+ 2E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X;W0)

∥∥∥
2

∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥

2

]

≤ E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥2

2

]

+ 2

√
n

d
γk E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥

2

]

≤ E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥2

2

]

+ 2

√
n

d
γk

√√√√E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf
(k)
m (X;W)−∇Wf

(k)
m (X;W0)

∥∥∥2

2

]

≤ n(δ2/4)

d

m∑
j=1

λ
(k)
m,jcm,j + 2

√
n

d
γk

√√√√n(δ2/4)

d

m∑
j=1

λ
(k)
m,jcm,j

≤ δ

2

n
d

m∑
j=1

λ
(k)
m,jcm,j +

2n

d

√√√√γk

m∑
j=1

λ
(k)
m,jcm,j

 .

The third inequality uses Jensen’s inequality, and the last uses the fact that δ/2 ≥ (δ/2)2. Hence, for
each k = 1, 2, by Markov inequality, we have, with probability at least 1− (δ/2),

sup
W∈Ψ(W0)

∥∥∥Θ̂(k)
m (X;W)− Θ̂(k)

m (X;W0)
∥∥∥

2
≤ n

d

m∑
j=1

λ
(k)
m,jcm,j +

2n

d

√
γk

√√√√ m∑
j=1

λ
(k)
m,jcm,j .

By union bound, the conjunction of the above inequalities for the k = 1 and k = 2 cases holds with
probability at least 1− δ.

We prove the last remaining claim using the following lemma.

If A and B are real symmetric matrices, then

eigmin(A) ≥ eigmin(B)− ‖A−B‖2,

which holds because

eigmin(A) = eigmin(B + (A−B)) ≥ eigmin(B) + eigmin(A−B)

≥ eigmin(B)− eigmax(B −A)

≥ eigmin(B)− ‖B −A‖2 = eigmin(B)− ‖A−B‖2.

18

Thus,

inf
W∈Ψ(W0)

(
eigmin(Θ̂(1)

m (X;W))
)

≥ eigmin(Θ̂(1)
m (X;W0))− sup

W∈Ψ(W0)

∥∥∥Θ̂(1)
m (X;W)− Θ̂(1)

m (X;W0)
∥∥∥

2

≥ eigmin(Θ̂(1)
m (X;W0))−

n
d

m∑
j=1

λ
(1)
m,jcm,j +

2n

d

√√√√γ

m∑
j=1

λ
(1)
m,jcm,j


= eigmin(Θ̂(1)

m (X;W0))−

 nγ

dm

m∑
j=1

cm,j +
2nγ

dm1/2

√√√√ m∑
j=1

cm,j


holds with probability at least 1 − δ. Equation (16) then follows from the fact that for all W,
eigmin(Θ̂m(X;W)) ≥ eigmin(Θ̂

(1)
m (X;W)).

E.3 Lemma on a sufficient condition for Theorem A.1 - ReLU case

We now bring together the results from Proposition D.1 and Lemmas E.1 and E.2, and identify a
sufficient condition for Theorem A.1, which corresponds to the condition in Lemma 3.4 in (Du et al.,
2019b).

Lemma E.3. Consider δ ∈ (0, 1). Assume that Assumptions 2.1 and 2.3 hold, the activation function
is ReLU, and cm,j > 0 for all j ∈ [m]. Also, assume that γ > 0 and

m ≥ max

(8n log 4n
δ

dκn

)
,

 8n

dκn

m∑
j=1

cm,j

 ,

162n2

d2κ2
n

m∑
j=1

cm,j

 .

Define

R′m,j =

√
nλm,j
d
‖y − u0‖

4

γκn
and Rm,j =

δ2cm,j
64

.

If R′m,j < Rm,j for all j ∈ [m] with probability at least 1− δ
2 , then on an event with probability at

least 1− δ, we have that for all j ∈ [m], R′m,j < Rm,j and the following properties also hold for all
t ≥ 0:

(a) eigmin(Θ̂m(X;Wt)) ≥ γκn
4 ;

(b) Lm(Wt) ≤ e−(γκnt)/2Lm(W0);

(c) ‖wtj −w0j‖ ≤ R′m,j for all j ∈ [m]; and

(d) ‖Θ̂m(X;Wt)− Θ̂m(X;W0)‖2 ≤ n
d

∑m
j=1 λm,jcm,j + 2

√
2·n
d

√∑m
j=1 λm,jcm,j .

Proof. Suppose R′m,j < Rm,j for all j ∈ [m] on some event A′ having probability at least 1 − δ
2 .

Also, we would like to instantiate Proposition D.1 and Lemma E.2 with δ/4, so that each of their
claims holds with probability at least 1− δ

4 . Let A be the intersection of A′ with the event that the
conjunction of the two claims in Proposition D.1 and Lemma E.2 hold with δ/4. By the union bound,
A has probability at least 1− δ. We will show that on the event A, the four claimed properties of the
lemma hold.

It will be sufficient to show that

‖wsj −w0j‖ ≤ Rm,j for all j ∈ [m] and s ≥ 0. (21)

To see why doing so is sufficient, pick an arbitrary t0 ≥ 0, and assume the above inequality for all
s ≥ 0. Then, by event A and Lemma E.2, for all 0 ≤ s ≤ t0, we have the following upper bound

19

on the change of the Gram matrix from time 0 to s, and the following lower bound on the smallest
eigenvalue of Θ̂m(X;Ws):∥∥∥Θ̂m(X;Ws)− Θ̂m(X;W0)

∥∥∥
2
≤

2∑
k=1

∥∥∥Θ̂(k)
m (X;Ws)− Θ̂(k)

m (X;W0)
∥∥∥

2

≤
2∑
k=1

n
d

m∑
j=1

λ
(k)
m,jcm,j +

2n

d

√√√√ m∑
j=1

λ
(k)
m,jcm,j


≤ n

d

m∑
j=1

λm,jcm,j +
2
√

2 · n
d

√√√√ m∑
j=1

λm,jcm,j

and

eigmin(Θ̂m(X;Ws)) ≥ eigmin(Θ̂(1)
m (X;W0))−

 nγ

dm

m∑
j=1

cm,j +
2nγ

dm1/2

√√√√ m∑
j=1

cm,j


≥ γκn

2
− γκn

4
·

 1

m
· 4n

dκn

m∑
j=1

cm,j +
1

m1/2
· 8n

dκn

√√√√ m∑
j=1

cm,j


≥ γκn

2
− γκn

4
=
γκn

4
.

We now apply Lemma E.1 with ζ being set to γκn
2 , which gives

Lm(Wt0) ≤ e−(γκnt0)/2Lm(W0)

and

‖wt0j −w0j‖ ≤
√
nλm,j
d
‖y − u0‖

4

γκn
= R′m,j for all j ∈ [m].

We have just shown that all the four properties in the lemma hold for t0.

It remains to prove Equation (21) under the event A and the assumption that R′m,j < Rm,j for all
j ∈ [m] holds on this event. Suppose that Equation (21) fails for some j ∈ [m]. Let

t1 = inf {t | ‖wj −w0j‖ > Rm,j for some j ∈ [m]} .

Then, by the continuity of wtj on t, we have

‖wsj −w0j‖ ≤ Rm,j for all j ∈ [m] and 0 ≤ s ≤ t1
and for some j0 ∈ [m],

‖wt1j0 −w0j0‖ = Rm,j0 . (22)
Thus, by the argument that we gave in the previous paragraph, we have

‖wt1j −w0j‖ ≤ R′m,j for all j ∈ [m].

In particular, ‖wt1j0 −w0j0‖ ≤ R′m,j0 . But this contradicts our assumption R′m,j0 < Rm,j0 .

E.4 Lemma bounding the NTK change and minimum eigenvalue - Smooth activation case

We now give a version of Lemma E.2 for the smooth activation case (that is, under Assumption 2.2).
The proof of this version is similar to the one for Lemma 5 in (Oymak and Soltanolkotabi, 2020), and
uses the three equations (364-366) in (Bartlett et al., 2021).
Lemma E.4. Assume that Assumptions 2.1 to 2.3 hold. Let cm,j > 0 for every j ∈ [m]. Then, for
any fixed W = (w>1 , . . . ,w

>
m)>, if it satisfies

‖w0j −wj‖ ≤
cm,j

2
for all j ∈ [m],

20

we have

∥∥∥Θ̂(k)
m (X;W)− Θ̂(k)

m (X;W0)
∥∥∥

2
≤ nM2

4d2

m∑
j=1

λ
(k)
m,jc

2
m,j+

nM

d3/2

√√√√ m∑
j=1

λ
(k)
m,jc

2
m,j for all k ∈ [2]

and

eigmin(Θ̂m(X;W)) ≥ eigmin(Θ̂(1)
m (X;W0))−

nM2γ

4d2m

m∑
j=1

c2m,j +
nMγ

d3/2m1/2

√√√√ m∑
j=1

c2m,j

 .

(23)

Note that this lemma has a deterministic conclusion, although its original counterpart (Lemma E.2)
has a probabilistic one.

Proof. The beginning part of the proof is essentially an abbreviated version of the beginning part of
the proof of Lemma E.2. This repetition is intended to help the reader by not forcing her or him to
look at the proof of Lemma E.2 beforehand.

For k ∈ [2], let

f (k)
m (−;W) : Rd → R, f (k)

m (x;W) =

m∑
j=1

√
λ

(k)
m,jajσ(Zj(x;W)),

and define ∇Wf
(k)
m (X;W) to be the n-by-(pd) matrix whose i-th row is the pd-dimensional row

vector (∇Wf
(k)
m (xi;W))>.

For all k ∈ [2], we have∥∥∥Θ̂(k)
m (X;W)− Θ̂(k)

m (X;W0)
∥∥∥

2

=
∥∥∥∇Wf (k)

m (X;W)∇Wf (k)
m (X;W)> −∇Wf (k)

m (X;W0)∇Wf (k)
m (X;W0)>

∥∥∥
2

≤
∥∥∥∇Wf (k)

m (X;W)−∇Wf (k)
m (X;W0)

∥∥∥2

2
(24)

+ 2
∥∥∥∇Wf (k)

m (X;W0)
∥∥∥

2

∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥

2
.

To see why this inequality holds, see the proof of Lemma E.2. We bound the two terms∥∥∥∇Wf
(k)
m (X;W0)

∥∥∥
2

and
∥∥∥∇Wf

(k)
m (X;W)−∇Wf

(k)
m (X;W0)

∥∥∥
2

in Equation (24). We bound
the first term as follows:∥∥∥∇Wf (k)

m (X;W0)
∥∥∥2

2
≤
∥∥∥∇Wf (k)

m (X;W0)
∥∥∥2

F
=

n∑
i=1

m∑
j=1

∥∥∥∇wjf
(k)
m (xi;W0)

∥∥∥2

=

n∑
i=1

m∑
j=1

λ
(k)
m,j |σ

′(Zj(xi;W0))|2 ‖xi‖
2

d

≤ n

d

m∑
j=1

λ
(k)
m,j ≤

n

d
γk

where γ1 = γ and γ2 = 1 − γ. The second inequality uses the assumption that |σ′(x)| ≤ 1

for all x ∈ R and ‖xi‖ ≤ 1 for all i ∈ [n]. The third inequality holds because
∑m
j=1 λ

(k)
m,j ≤∑m

j=1 λm,j = 1. For the second term, we recall that |σ′′(x)| ≤ M and so σ′ is M -Lipschitz, and
also that Zj(xi;W) = 1√

d
w>j xi. Using these facts, we derive an upper bound for the second term

21

as follows: ∥∥∥∇Wf (k)
m (X;W)−∇Wf (k)

m (X;W0)
∥∥∥2

2

≤
∥∥∥∇Wf (k)

m (X;W)−∇Wf (k)
m (X;W0)

∥∥∥2

F

=

n∑
i=1

m∑
j=1

∥∥∥∇wjf
(k)
m (xi;W)−∇wjf

(k)
m (xi;W0)

∥∥∥2

=

n∑
i=1

m∑
j=1

∥∥∥∥√λ(k)
m,jaj

xi√
d

[σ′(Zj(xi;W))− σ′(Zj(xi;W0))]

∥∥∥∥2

=
1

d

n∑
i=1

‖xi‖2
m∑
j=1

λ
(k)
m,j [σ′(Zj(xi;W))− σ′(Zj(xi;W0))]

2

≤ 1

d

n∑
i=1

m∑
j=1

λ
(k)
m,j [σ′(Zj(xi;W))− σ′(Zj(xi;W0))]

2

≤ M2

d2

n∑
i=1

m∑
j=1

λ
(k)
m,j

(
(wj −w0j)

>
xi

)2

≤ nM2

d2

m∑
j=1

λ
(k)
m,j ‖wj −w0j‖2

≤ nM2

4d2

m∑
j=1

λ
(k)
m,jc

2
m,j .

The second to last step uses the Cauchy-Schwartz inequality, and the last step uses our assumption
that ‖wj −w0j‖ ≤ cm,j

2 for all j ∈ [m]. From the derived bounds on the first and second terms in
the last line of Equation (24), it follows that

∥∥∥Θ̂(k)
m (X;W)− Θ̂(k)

m (X;W0)
∥∥∥

2
≤ nM2

4d2

m∑
j=1

λ
(k)
m,jc

2
m,j + 2

√
n

d
γk

√√√√nM2

4d2

m∑
j=1

λ
(k)
m,jc

2
m,j

=
nM2

4d2

m∑
j=1

λ
(k)
m,jc

2
m,j +

nM

d3/2

√√√√γk

m∑
j=1

λ
(k)
m,jc

2
m,j .

Finally, as noted in the proof of Lemma E.2, we have

eigmin(Θ̂m(X;W)) ≥ eigmin(Θ̂(1)
m (X;W))

≥ eigmin(Θ̂(1)
m (X;W0))−

∥∥∥Θ̂(1)
m (X;W)− Θ̂(1)

m (X;W0)
∥∥∥

2
.

Thus,

eigmin(Θ̂m(X;W)) ≥ eigmin(Θ̂(1)
m (X;W0))−

nM2γ

4d2m

m∑
j=1

c2m,j +
nMγ

d3/2m1/2

√√√√ m∑
j=1

c2m,j

 .

E.5 Lemma on a sufficient condition for Theorem 4.1 - Smooth activation case

We now give a version of Lemma E.3 for the smooth activation case (i.e., under Assumption 2.2). It
brings together the results from Proposition D.1 and Lemmas E.1 and E.4, and identifies a sufficient
condition for Theorem A.1, which corresponds to the condition in Lemma 3.4 in (Du et al., 2019b).

22

Lemma E.5. Assume that Assumptions 2.1 to 2.3 hold. Let δ ∈ (0, 1), and cm,j > 0 for all j ∈ [m].
Assume that γ > 0 and

m ≥ max

8n log 2n
δ

dκn
,
nM2δ2

8d2κn

m∑
j=1

c2m,j ,
4n2M2δ2

d3κ2
n

m∑
j=1

c2m,j

 .

For each j ∈ [m], define

R′m,j =

√
nλm,j
d
‖y − u0‖

4

γκn
and Rm,j =

δcm,j
8

.

If R′m,j < Rm,j for all j ∈ [m] with probability at least 1− δ
2 , then on an event with probability at

least 1− δ, we have that for all j ∈ [m], R′m,j < Rm,j and the following properties also hold for all
t ≥ 0:

(a) eigmin(Θ̂m(X;Wt)) ≥ γκn
4 ;

(b) Lm(Wt) ≤ e−(γκnt)/2Lm(W0);

(c) ‖wtj −w0j‖ ≤ R′m,j for all j ∈ [m]; and

(d) ‖Θ̂m(X;Wt)− Θ̂m(X;W0)‖2 ≤ nM2δ2

82d2

∑m
j=1 λm,jc

2
m,j + nMδ

23/2d3/2

√∑m
j=1 λm,jc

2
m,j .

Proof. The proof is very similar to that of Lemma E.3, although the concrete bounds in these proofs
differ due to the differences between Lemma E.2 and Lemma E.4.

Suppose R′m,j < Rm,j for all j ∈ [m] on some event A′ having probability at least 1− δ
2 . Also, we

would like to instantiate Proposition D.1 with δ/2, so that its claim holds with probability at least
1− δ

2 . Let A be the intersection of A′ with the event that claim in Proposition D.1 holds with δ/2. By
the union bound, A has probability at least 1− δ. We will show that on the event A, the four claimed
properties of the lemma hold.

It will be sufficient to show that

‖wsj −w0j‖ ≤ Rm,j for all s ≥ 0. (25)

To see why doing so is sufficient, pick an arbitrary t0 ≥ 0, and assume the above inequality for all
s ≥ 0. Then, by the event A and Lemma E.4, for all 0 ≤ s ≤ t0, we have the following upper bound
on the change of the Gram matrix from time 0 to s, and the following lower bound on the smallest
eigenvalue of Θ̂m(X;Ws):∥∥∥Θ̂m(X;Ws)− Θ̂m(X;W0)

∥∥∥
2

≤
∥∥∥Θ̂(1)

m (X;Ws)− Θ̂(1)
m (X;W0)

∥∥∥
2

+
∥∥∥Θ̂(2)

m (X;Ws)− Θ̂(2)
m (X;W0)

∥∥∥
2

≤ nM2δ2

64d2

m∑
j=1

λm,jc
2
m,j +

nMδ

23/2d3/2

√√√√ m∑
j=1

λm,jc2m,j

and

eigmin(Θ̂m(X;Ws)) ≥ eigmin(Θ̂(1)
m (X;W0))−

nM2δ2γ

64d2m

m∑
j=1

c2m,j +
nMδγ

4d3/2m1/2

√√√√ m∑
j=1

c2m,j


>
γκn

2
− γκn

4

 1

m
· nM

2δ2

16d2κn

m∑
j=1

c2m,j +
1

m1/2
· nMδ

d3/2κn

√√√√ m∑
j=1

c2m,j


≥ γκn

2
− γκn

4

(
1

2
+

1

2

)
=
γκn

4
.

23

We now apply the version of Lemma E.1 for the analytic activation σ, with ζ being set to γκn
2 . This

application gives
Lm(Wt0) ≤ e−(γκnt0)/2Lm(W0)

and

‖wt0j −w0j‖ ≤
√
nλm,j
d
‖y − u0‖

4

γκn
= R′m,j for all j ∈ [m].

We have just shown that all the four properties in the lemma hold for t0.

It remains to prove Equation (25) under the event A. Suppose that Equation (25) fails for some
j ∈ [m]. Let

t1 = inf {t | ‖wtj −w0j‖ > Rm,j for some j ∈ [m]} .
Then, by the continuity of wtj on t, we have

‖wsj −w0j‖ ≤ Rm,j for all j ∈ [m] and 0 ≤ s ≤ t1
and for some j0 ∈ [m],

‖wt1j0 −w0j0‖ = Rm,j0 . (26)
Thus, by the argument that we gave in the previous paragraph, we have

‖wt1j −w0j‖ ≤ R′m,j for all j ∈ [m].

In particular, ‖wt1j0 −w0j0‖ ≤ R′m,j0 . But this contradicts our assumption R′m,j0 < Rm,j0 .

F Proof of Theorem A.1 on the global convergence of gradient flow (ReLU
case)

The proof of Theorem A.1 essentially follows Lemma E.3, which itself follows from the secondary
Proposition D.1 and Lemmas E.1 and E.2, derived in Appendices D and E. Pick δ ∈ (0, 1). Let

D =

√
n2

(
C2 +

1

d

)
2 · 5122

γ2δ5κ2
nd

where C is the assumed upper bound on the |yi|’s. Assume γ > 0 and

m ≥ max

((
8n log 4n

δ

κnd

)
,

(
8nD

dκn

)2

,

(
162n2D

d2κ2
n

)2
)

and set cm,j as follows:

cm,j =
√
λm,j ·

√
n2

(
C2 +

1

d

)
2 · 5122

γ2δ5κ2
nd

=
√
λm,j ·D.

Note that 8n

dκn

m∑
j=1

cm,j

2

=

(
8nD

dκn

)2

·

 m∑
j=1

√
λm,j

2

≤
(

8nD

dκn

)2

·

 m∑
j=1

λm,j

 ·m
=

(
8nD

dκn

)2

·m ≤ m2,

and also that162n2

d2κ2
n

m∑
j=1

cm,j

2

=

(
162n2D

d2κ2
n

)2

·

 m∑
j=1

√
λm,j

2

≤
(

162n2D

d2κ2
n

)2

·

 m∑
j=1

λm,j

 ·m
=

(
162n2D

d2κ2
n

)2

·m ≤ m2.

24

Thus,

m ≥ max

(8n log 4n
δ

dκn

)
,

 8n

dκn

m∑
j=1

cm,j

 ,

162n2

d2κ2
n

m∑
j=1

cm,j

 .

As a result, we can now employ Lemma E.3. Thus, if we find an event A′ such that the probability
of A′ is at least 1− (δ/2) and under A′, we have R′m,j < Rm,j , then the conclusion of Lemma E.3
holds. In particular, we may further calculate conclusions (c) and (d) of Lemma E.3 as

‖wtj −w0j‖ ≤ R′m,j < Rm,j =
δ2cm,j

64
=
δ2

64
·
√
λm,j ·

√
n2

(
C2 +

1

d

)
2 · 5122

γ2δ5κ2
nd

=
8n

κnd1/2
·

√(
C2 +

1

d

)
2

γ2δ
·
√
λm,j ,

and

‖Θ̂m(X;Wt)− Θ̂m(X;W0)‖2 ≤
n

d

m∑
j=1

λm,jcm,j +
2
√

2 · n
d

√√√√ m∑
j=1

λm,jcm,j

=
n

d
·D ·

m∑
j=1

λ
3/2
m,j +

2
√

2 · n
d

·
√
D ·

√√√√ m∑
j=1

λ
3/2
m,j

=
n

d
·

√
n2

(
C2 +

1

d

)
2 · 5122

γ2δ5κ2
nd
·
m∑
j=1

λ
3/2
m,j

+
2
√

2 · n
d

·
(
n2

(
C2 +

1

d

)
2 · 5122

γ2δ5κ2
nd

)1/4

·

√√√√ m∑
j=1

λ
3/2
m,j

=
512n2

κnd3/2
·

√(
C2 +

1

d

)
2

γ2δ5
·
m∑
j=1

λ
3/2
m,j

+
64n3/2

κ
1/2
n d5/4

·
((

C2 +
1

d

)
2

γ2δ5

)1/4

·

√√√√ m∑
j=1

λ
3/2
m,j .

It remains to find such an event A′. Start by noting that

E[‖y − u0‖2] =

n∑
i=1

(
y2
i − 2yiE[fm(xi;W0)] + E[fm(xi;W0)2]

)
=

n∑
i=1

y2
i − 2yi · 0 + E

1

d

m∑
j=1

λm,j(w
>
j xi)

21{w>
j xi≥0}


=

n∑
i=1

y2
i +

1

d

m∑
j=1

λm,jE
[
(w>j xi)

21{w>
j xi≥0}

]
≤ n

(
C2 +

1

d

)
.

Thus, by Markov inequality, with probability at least 1− (δ/2),

‖y − u0‖2 < n

(
C2 +

1

d

)
2

δ
.

25

Let A′ be the corresponding event for the above inequality. Then, under A′, we have

R′m,j =

√
nλm,j
d
‖y − u0‖

4

γκn

<

√
nλm,j
d
·

√
n

(
C2 +

1

d

)
2

δ
· 4

γκn

=
√
λm,j ·

√
n2

(
C2 +

1

d

)
2 · 42

γ2δκ2
nd

=
δ2cm,j

128
<
δ2cm,j

64
= Rm,j .

Thus, A′ is the desired event.

G Proof of Theorem 4.1 on the global convergence of gradient flow (smooth
case)

The proof of the theorem is similar to that of Theorem A.1. It derives from Lemma E.5, which itself
follows from the secondary Proposition D.1 and Lemmas E.1 and E.4, derived in Appendices D
and E. Recall that

C1 = sup
c∈(0,1]

E[σ(cz)2]

where the expectation is taken over the real-valued random variable z with the distributionN (0, 1/d).
To see that C1 is finite, note that since |σ′(x)| ≤ 1 for all x ∈ R, we have

|σ(cz)− σ(0)| ≤ |cz| for all c ∈ (0, 1].

Thus, for every c ∈ (0, 1],
σ(0)− |cz| ≤ σ(cz) ≤ σ(0) + |cz|,

which implies that

E[σ(cz)2] ≤ σ(0)2 + 2|σ(0)| · |c| · E[|z|] + c2E[z2]

≤ σ(0)2 + 2|σ(0)| · E[|z|] + E[z2].

As a result, E[σ(cz)2] is bounded, so C1 is finite.

Pick δ ∈ (0, 1). Assume γ > 0 and

m ≥ max

((
8n

κnd
· log

2n

δ

)
,

(
210n3M2

κ3
nd

3
· C

2 + C1

γ2δ

)
,

(
215n4M2

κ4
nd

4
· C

2 + C1

γ2δ

))
and instantiate Lemma E.5 using the below cm,j :

cm,j =
√
λm,j ·

√
n2 (C2 + C1)

2 · 642

γ2δ3κ2
nd

where C is the assumed upper bound on the |yi|’s. Note that

nM2δ2

8d2κn

m∑
j=1

c2m,j =
nM2δ2

8d2κn

m∑
j=1

(
λm,j · n2

(
C2 + C1

) 2 · 642

γ2δ3κ2
nd

)

=
nM2δ2

8d2κn
· n2

(
C2 + C1

) 2 · 642

γ2δ3κ2
nd
·
m∑
j=1

λm,j

=
210n3M2

κ3
nd

3
× C2 + C1

γ2δ

26

and
4n2M2δ2

d3κ2
n

m∑
j=1

c2m,j =
4n2M2δ2

d3κ2
n

m∑
j=1

(
λm,j · n2

(
C2 + C1

) 2 · 642

γ2δ3κ2
nd

)

=
4n2M2δ2

d3κ2
n

· n2
(
C2 + C1

) 2 · 642

γ2δ3κ2
nd
·
m∑
j=1

λm,j

=
215n4M2

κ4
nd

4
× C2 + C1

γ2δ
.

Thus,

m ≥ max

8n log 2n
δ

dκn
,
nM2δ2

8d2κn

m∑
j=1

c2m,j ,
4n2M2δ2

d3κ2
n

m∑
j=1

c2m,j

 .

This allows us to employ Lemma E.5. Hence, it is sufficient to find an event A′ such that the
probability of A′ is at least 1− (δ/2) and under A′, we have R′m,j < Rm,j . The desired conclusion
then follows from the conclusion of Lemma E.5, and the below calculations: if ‖wtj −w0j‖ ≤ R′m,j
and R′m,j < Rm,j , then

‖wtj −w0j‖ < Rm,j =
δcm,j

8

=
δ

8
·
√
λm,j ·

√
n2 (C2 + C1)

2 · 642

γ2δ3κ2
nd

=
√
λm,j ×

n

κnd1/2

√
128(C2 + C1)

γ2δ
,

and the upper bound on ‖Θ̂m(X;Wt) − Θ̂m(X;W0)‖2 in the conclusion of Lemma E.5 can be
rewritten to

‖Θ̂m(X;Wt)− Θ̂m(X;W0)‖2

≤ nM2δ2

82d2

m∑
j=1

λm,jc
2
m,j +

nMδ

23/2d3/2

√√√√ m∑
j=1

λm,jc2m,j

=
nM2δ2

43d2

m∑
j=1

λm,j

(
λm,jn

2 (C2 + C1)2 · 642

γ2δ3κ2
nd

)

+
nMδ

23/2d3/2

√√√√ m∑
j=1

λm,j

(
λm,jn2

(C2 + C1)2 · 642

γ2δ3κ2
nd

)

=

n3M2

κ2
nd

3

m∑
j=1

λ2
m,j

27(C2 + C1)

γ2δ

+
n2M

κnd2

√√√√ m∑
j=1

λ2
m,j

210(C2 + C1)

γ2δ
.

Note that

E[‖y − u0‖2] =

n∑
i=1

(
y2
i − 2yiE[fm(xi;W0)] + E[fm(xi;W0)2]

)
=

n∑
i=1

y2
i − 2yi · 0 + E

 m∑
j=1

λm,jσ(Zj(xi;W0))2


=

n∑
i=1

y2
i +

m∑
j=1

λm,jE
[
σ(Zj(xi;W0))2

]
≤ n

(
C2 + C1

)
.

27

Thus, by Markov inequality, with probability at least 1− (δ/2),

‖y − u0‖2 < n
(
C2 + C1

) 2

δ
.

Let A′ be the corresponding event for the above inequality. Then, under A′, we have

R′m,j =

√
nλm,j
d
‖y − u0‖

4

γκn

<

√
nλm,j
d
·
√
n (C2 + C1)

2

δ
· 4

γκn

=
√
λm,j ·

√
n2 (C2 + C1)

2 · 42

γ2δκ2
nd

=
δcm,j

16
<
δcm,j

8
= Rm,j .

Thus, A′ is the desired event.

H Global convergence of gradient descent (smooth activation)

Let y ∈ Rn be the vector (y1, . . . , yn)> of the outputs in the training dataset Dn = {(xi, yi)}i∈[n].
For each gradient-descent step s, let us ∈ Rn be the outputs at step s based on the inputs in Dn, that
is, us = (fm(x1;Ws), . . . , fm(xn;Ws))

>. The following convergence theorem intuitively says
that if the learning rate η of gradient descent is sufficiently small and the width of the network is large
enough, then with high probability, the training error of the network decays exponentially fast to 0.

Theorem H.1. Consider δ ∈ (0, 1). Assume Assumptions 2.1 to 2.3, γ > 0, and

0 < η < min

(
2

γκn
,
γκnd

2

8n2
,

γκnd
2δ1/2

29/2n2M(C2 + C1)1/2

)
,

where C and C1 are from Assumption 2.1 and Equation (8). Let α = ηγκn/2 and β = (1−α)1/2. If

m ≥ max

(
23n log 2n

δ

κnd
,

25η2n3M2(C2 + C1)

κnd3(1− β)2δ
,

211η2n4M2(C2 + C1)

κ2
nd

4(1− β)2δ

)
,

then with probability at least 1− δ,

‖y − us‖2 ≤ (1− α)s‖y − u0‖2 for all s ∈ N ∪ {0}. (27)

Note that the condition on the learning rate requires η = O(γκn/n
2). Thus, the best possible

convergence rate from the theorem is (1− (ηγκn/2)) = (1− (C0γ
2κ2
n/n

2)) for some constant C0.

The proof by induction on the gradient-descent step s and follows the structure of the convergence
proof of (Du et al., 2019a, Theorem 5.1) with the necessary modifications, which in particular account
for the changing weights and Gram matrices in our setup. That said, te two proofs differ significantly
because, as in the case of gradient flow, the weights wsj and the Gram matrix Θ̂m(X;Ws) change
during gradient descent in our case, while they remain almost constant in the case of (Du et al.,
2019a).

H.1 Sketch of the proof

The proof is by induction on the number of gradient-update steps s. Here is a sketch of the proof for
the inductive case. We start by decomposing the error at step s+ 1:

‖y − us+1‖2 = ‖(y − us)− (us+1 − us)‖2

= ‖y − us‖2 − 2(y − us)
>(us+1 − us) + ‖us+1 − us‖2

= ‖y − us‖2 − 2(y − us)
>I1 − 2(y − us)

>I2 + ‖us+1 − us‖2 , (28)

28

where I1 = ηΘ̂m(X;Ws)(y − us) and I2 = (us+1 − us − I1). We can then show that with high
probability, both the third and the fourth terms in Equation (28) are O(η2)‖y− us‖2, so that the sum
of these terms can be bounded from above by (ηγκn/4)‖y − us‖2 if η is sufficiently small. On the
other hand, the second term can be bounded using the minimum eigenvalue of the positive definite
Gram matrix:

−2(y − us)
>I1 =

(
−2η(y − us)

>Θ̂m(X;Ws)(y − us)
)

≤ −2η eigmin(Θ̂m(X;Ws))‖y − us‖2.

We will show that if the network is large enough, with high probability, −2η eigmin(Θ̂m(X;Ws)) in
the above upper bound is at most −3ηγκn/4. Putting all these together gives the required bound:
with high probability,

‖y − us+1‖2 ≤ ‖y − us‖2 − 2(y − us)
>I1 − 2(y − us)

>I2 + ‖us+1 − us‖2

≤ ‖y − us‖2 −
3ηγκn

4
‖y − us‖2 +

ηγκn
4
‖y − us‖2

≤
(

1− ηγκn
2

)
‖y − us‖2

≤
(

1− ηγκn
2

)s+1

‖y − u0‖2.

The step of upper-bounding −2η eigmin(Θ̂m(X;Ws)) by −3ηγκn/4 is where we have to account
for the changing weights and Gram matrix, and this is where the difference between our proof and
that of (Du et al., 2019a) lies.

As mentioned already, the Gram matrix Θ̂m(X;Ws) changes during gradient descent even when the
network is very wide, but we will show that despite these changes, its minimum eigenvalue remains
lower-bounded by 3γκn/8 with high probability. This can be done using the decomposition

Θ̂m(X;Wt) = Θ̂(1)
m (X;Wt) + Θ̂(2)

m (X;Wt). (29)

where λ
(1)
m,j = γ/m and λ

(2)
m,j = ((1 − γ)λ̃j)/

∑m
k=1 λ̃k, and λ

(1)
m,j + λ

(2)
m,j = λm,j . At

a high level, the reasoning goes like this. The induction hypothesis implies that the weight
change ‖wsj − w0j‖ is O(

√
λm,j), which is small enough to guarantee that Θ̂

(1)
m (X;Ws′) re-

mains almost constant during training for a large network. This, in turn, implies that the min-
imum eigenvalue of Θ̂

(1)
m (X;Ws) is lower-bounded by 3γκn/8 with high probability. Since

eigmin(Θ̂m(X;Ws)) ≥ eigmin(Θ̂
(1)
m (X;Ws)), we get the desired upper bound.

H.2 Two key lemmas

Before proving the theorem, we show two useful facts. Let u(W) be the n-dimensional vector

(fm(x1;W), . . . , fm(xn;W))>

which consists of the network outputs on the training inputs under the parameters W. Note that for
each gradient-update step s ∈ N ∪ {0}, the vector u(Ws) is equal to us, the notation that we have
been using in the main text of the paper. We also define u′(W) to be the following n-by-m matrix:

u′(W) =
∂u

∂W
.

For each s ∈ N ∪ {0}, let Θ̂m(s) = Θ̂m(X;Ws) and

ũs+1 =

(
us − η

dut
dt

∣∣∣
Wt=Ws

)
=
(
us − ηΘ̂m(s)(us − y)

)
be the Euler discretisation of the gradient flow of the output. Here η > 0 is the learning rate.
Lemma H.2. For all W and j ∈ [m],∥∥∥∥∂Lm(W)

∂wj

∥∥∥∥ ≤
√
λm,jn√
d
‖y − u(W)‖.

29

Proof. ∥∥∥∥∂Lm(W)

∂wj

∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

(u(W)i − yi)×
√
λm,jaj × σ′

(
w>j xi√

d

)
× xi√

d

∥∥∥∥∥
≤

n∑
i=1

∥∥∥∥∥(u(W)i − yi)×
√
λm,jaj × σ′

(
w>j xi√

d

)
× xi√

d

∥∥∥∥∥
≤
√
λm,j√
d
×

n∑
i=1

|u(W)i − yi|

≤
√
λm,jn√
d
‖y − u(W)‖.

The next lemma gives an upper bound on ‖y − us+1‖. As we will show shortly, this upper bound
will play a crucial role in the proof of Theorem H.1.

Lemma H.3. Assume Assumptions 2.1 to 2.3. Then, for all s ∈ N ∪ {0}, we have

‖y − us+1‖2 ≤
(

1− 2η eigmin(Θ̂m(s)) +
2η2Mn3/2

d2
‖y − us‖+

η2n2

d2

)
× ‖y − us‖2. (30)

Proof. Write
us+1 − us = ũs+1 − us︸ ︷︷ ︸

I1

+ us+1 − ũs+1︸ ︷︷ ︸
I2

.

Then, we have

‖y − us+1‖2 = ‖(y − us)− (us+1 − us)‖2

= ‖y − us‖2 − 2(y − us)
>(us+1 − us) + ‖us+1 − us‖2

= ‖y − us‖2 − 2(y − us)
>I1 − 2(y − us)

>I2 + ‖us+1 − us‖2 .

Since the Gram matrix Θ̂m(s) is positive definite and η > 0, we have

(y − us)
>I1 = (y − us)

> (ũs+1 − us) = η(y − us)
>Θ̂m(s)(y − us)

≥ η eigmin(Θ̂m(s)) ‖y − us‖2 .

We now get a bound on I2. Note that Θ̂m(s) = u′s(u
′
s)
> where u′s = u′(Ws) = ∂u

∂W

∣∣
W=Ws

. Let

L′m(W) =
∂Lm(W)

∂W
=

n∑
i=1

(u(W)i − yi)u′(W)i = u′(W)>(u(W)− y)

and
L′m(s) = L′m(Ws).

Then,

I2 = us+1 − us + ηu′s(u
′
s)
>(us − y)

=

(
−
∫ η

r=0

(
u′
(
Ws − rL′m(s)

))
L′m(s) dr

)
+ ηu′s(u

′
s)
>(us − y)

=

∫ η

r=0

(
u′s − u′(Ws − rL′m(s))

)
L′m(s) dr.

Also,

‖L′m(s)‖ =

∥∥∥∥∥
n∑
i=1

(yi − usi)u′si

∥∥∥∥∥ ≤
n∑
i=1

|yi − usi| ‖u′si‖

30

and

‖u′si‖
2

=

m∑
j=1

λm,ja
2
j

(
σ′

(
w>sjxi√

d

))2
‖xi‖2

d
≤ 1

d
,

since
∑
j λm,j = 1, aj ∈ {−1,+1}, σ′ is 1-Lipschitz, and ‖xi‖ ≤ 1. Hence, by Cauchy-Schwarz,

‖L′m(s)‖ ≤ 1√
d

n∑
i=1

|yi − usi| ≤
√
n√
d
‖y − us‖ .

Let W(s,r) = Ws − rL′m(s). For j ∈ [m], write w(s,r)j for the part of W(s,r) going to the j-th
node. Then, for all i ∈ [n],∥∥u′si − u′(W(s,r))i

∥∥2
=

m∑
j=1

λm,ja
2
j

(
σ′

(
w>sjxi√

d

)
− σ′

(
w>(s,r)jxi√

d

))2
‖xi‖2

d

≤M2
m∑
j=1

λm,ja
2
j

((
wsj −w(s,r)j

)>
xi

)2 ‖xi‖2

d2

≤ M2

d2

m∑
j=1

λm,j
∥∥wsj −w(s,r)j

∥∥2

≤ M2

d2

∥∥Ws −W(s,r)

∥∥2
.

The first inequality follows from the M -Lipschitz continuity of σ′, and the next inequality from
aj ∈ {−1, 1}, ‖xi‖ ≤ 1, and Cauchy-Schwartz. The last inequality uses the fact that

∑
j λm,j = 1.

Finally, for all 0 ≤ r ≤ η,∥∥Ws −W(s,r)

∥∥ = r ‖L′m(s)‖ ≤ η
√
n√
d
‖y − us‖ .

Thus,

‖I2‖2 =

n∑
i=1

(∫ η

r=0

(
u′si − u′(W(s,r))i

)>
L′m(s) dr

)2

≤
n∑
i=1

(∫ η

r=0

∣∣∣∣(u′si − u′(W(s,r))i

)>
L′m(s)

∣∣∣∣ dr)2

≤
n∑
i=1

(∫ η

r=0

‖u′si − u′(W(s,r))i‖ × ‖L′m(s)‖ dr
)2

≤
n∑
i=1

(∫ η

r=0

ηM
√
n

d3/2
‖y − us‖ ×

√
n√
d
‖y − us‖ dr

)2

=
η4M2n3

d4
‖y − us‖4

=

(
η2Mn3/2

d2
‖y − us‖2

)2

.

As the upper bound depends quadratically on η, we can choose it small enough for gradient descent
to converge, as we will show in the proof of Theorem H.1 in the next subsection.

Recall that ‖y − us+1‖2 can be expressed as the sum of four terms:

‖y − us+1‖2 = ‖y − us‖2 − 2(y − us)
>I1 − 2(y − us)

>I2 + ‖us+1 − us‖2 . (31)
Thus far, we have bounded the second and third terms on the RHS of Equation (31):

−2(y − us)
>I1 ≤ −2η eigmin(Θ̂m(s))‖y − us‖2,

−2(y − us)
>I2 ≤ 2‖y − us‖‖I2‖ ≤

(
2η2Mn3/2

d2
‖y − us‖3

)
.

31

These bounds lead to the first three terms in the claimed upper bound of Equation (30). It remains to
get an appropriate upper bound of the fourth term on the RHS of Equation (31).

Using the bound on the derivative of the loss in Lemma H.2, we complete the proof:

‖us+1 − us‖2 =

n∑
i=1

(u(s+1)i − usi)2

=

n∑
i=1

 m∑
j=1

√
λm,jaj

(
σ

(
w>(s+1)jxi√

d

)
− σ

(
w>sjxi√

d

))2

≤
n∑
i=1

 m∑
j=1

√
λm,jaj

∣∣∣∣∣σ
(
w>(s+1)jxi√

d

)
− σ

(
w>sjxi√

d

)∣∣∣∣∣
2

≤
n∑
i=1

 m∑
j=1

√
λm,jaj

∣∣∣∣∣w
>
(s+1)jxi√

d
−

w>sjxi√
d

∣∣∣∣∣
2

≤
n∑
i=1

 m∑
j=1

√
λm,jaj√
d
‖w(s+1)j −wsj‖‖xi‖

2

≤

(
n∑
i=1

‖xi‖2
)
×

 m∑
j=1

√
λm,jaj√
d

× ‖w(s+1)j −wsj‖

2

≤ n×

 m∑
j=1

√
λm,jaj√
d

×
∥∥∥∥η ∂Lm(Ws)

∂wsj

∥∥∥∥
2

≤ n×

 m∑
j=1

√
λm,jaj√
d

×
η
√
λm,jn√
d

‖y − us‖

2

≤ η2n2

d2
‖y − us‖2

 m∑
j=1

λm,j

2

=
η2n2

d2
‖y − us‖2.

H.3 Proof of Theorem H.1

Using the lemmas we have just shown, we will prove global convergence of gradient descent. Recall
the assumed bound C on |yi| for every i ≥ 1 in Assumption 2.1, and also

C1 = sup
c∈(0,1]

E[σ(cz)2]

where the expectation is taken over the real-valued random variable z distributed as N (0, 1/d). As
shown in Appendix G, C1 is finite.

By the argument in Appendix G again, there exists an event E1 such that E1 happens with probability
at least 1− (δ/2) and conditioned on E1, we have

‖y − u0‖ <
√
n(C2 + C1)

2

δ
. (32)

Meanwhile, by Proposition D.1, there is an event E2 such that E2 happens with probability at least
1− (δ/2) and conditioned on E2, we have

eigmin(Θ̂m(0)) >
γκn

2
. (33)

32

Let E3 be the event that is the conjunction of E1 and E2. This event happens with probability at least
1− δ, and under this event, Equations (32) and (33) both hold.

Condition on E3. We prove the inequality in Equation (27) by induction on s. The base case of s = 0
is immediate. To prove the inductive case, assume that s ≥ 1, and that the inequality in Equation (27)
holds for all s′ = 0, 1, . . . , s− 1.

Let

cm,j =
ηn

1− β

√
8λm,j(C2 + C1)

δd
.

Then,

m∑
j=1

c2m,j =

 η2n2

(1− β)2

8(C2 + C1)

δd

m∑
j=1

λm,j

 =

(
η2n2

(1− β)2

8(C2 + C1)

δd

)
.

Note that for all j ∈ [m],

‖wsj −w0j‖ ≤
s−1∑
s′=0

‖w(s′+1)j −ws′j‖

≤
s−1∑
s′=0

η

∥∥∥∥∂Lm(Ws′)

∂ws′j

∥∥∥∥
≤

s−1∑
s′=0

η

√
λm,jn

d
‖y − us′‖

≤ η
√
λm,jn

d

s−1∑
s′=0

(1− α)s
′/2‖y − u0‖

≤ η

1− β

√
λm,jn

d
‖y − u0‖

≤ η

1− β

√
λm,jn

d

√
n(C2 + C1)

2

δ

=
1

2
× ηn

1− β

√
8λm,j(C2 + C1)

δd
=
cm,j

2

where the third inequality uses the bound shown in Lemma H.2, the fourth inequality follows from
the induction hypothesis, and the sixth inequality uses the bound in (32). Thus, by Lemma E.4 with
cm,j from above and the lower bound on the minimum eigenvalue in Equation (33), we have

eigmin(Θ̂m(s))

≥ eigmin(Θ̂(1)
m (X;W0))−

nM2γ

4d2m

m∑
j=1

c2m,j +
nMγ

d3/2m1/2

√√√√ m∑
j=1

c2m,j


=
γκn

2
−

(
nM2γ

4d2m

(
η2n2

(1− β)2

8(C2 + C1)

δd

)
+

nMγ

d3/2m1/2

√
η2n2

(1− β)2

8(C2 + C1)

δd

)

=
γκn

2
−

(
2η2n3M2γ(C2 + C1)

d3m(1− β)2δ
+

√
8ηn2Mγ(C2 + C1)1/2

d2m1/2(1− β)δ1/2

)
.

33

Meanwhile, by Lemma H.3, the induction hypothesis, and Equation (32),

‖y − us+1‖2

≤
(

1− 2η eigmin(Θ̂m(s)) +
2η2Mn3/2

d2
‖y − us‖+

η2n2

d2

)
‖y − us‖2

≤
(

1− 2η eigmin(Θ̂m(s)) +
2η2Mn3/2

d2
(1− α)s/2‖y − u0‖+

η2n2

d2

)
‖y − us‖2

≤

(
1− 2η eigmin(Θ̂m(s)) +

2η2Mn3/2

d2
(1− α)s/2

√
n(C2 + C1)

2

δ
+
η2n2

d2

)
‖y − us‖2.

Thus, we can complete the proof of this inductive case if we show that

(
2η eigmin(Θ̂m(s))− 2η2Mn3/2

d2
(1− α)s/2

√
n(C2 + C1)

2

δ
− η2n2

d2

)
≥ ηγκn

2

which is equivalent to

eigmin(Θ̂m(s)) ≥

(
ηMn3/2

d2
(1− α)s/2

√
n(C2 + C1)

2

δ
+
ηn2

2d2
+
γκn

4

)
.

We will show this sufficient condition by proving the following stronger inequality (stronger because
of the lower bound on eigmin(Θ̂m(s)) that we have derived above):

γκn
2
−

(
2η2n3M2γ(C2 + C1)

d3m(1− β)2δ
+

√
8ηn2Mγ(C2 + C1)1/2

d2m1/2(1− β)δ1/2

)

≥

(
ηMn3/2

d2
(1− α)s/2

√
n(C2 + C1)

2

δ
+
ηn2

2d2
+
γκn

4

)
,

which is equivalent to

γκn
4
≥
(

2η2n3M2γ(C2 + C1)

d3m(1− β)2δ
+

√
8ηn2Mγ(C2 + C1)1/2

d2m1/2(1− β)δ1/2

+
ηMn3/2

d2
(1− α)s/2

√
n(C2 + C1)

2

δ
+
ηn2

2d2

)
.

But the four summands on the RHS of the above inequality are at most γκn/16 by the assumed upper
bound on η, the assumed lower bound on m, and the fact that (1− α) ≤ 1. Thus, the inequality from
above holds, as desired.

34

I Proof of the results of Section 4 on feature learning

I.1 Proof of Theorem 4.3 (smooth and ReLU)

We have:

E
[
dwsjk
ds

∣∣∣∣
s=0

]
= E

[
n∑
i=1

(yi − fm(xi;W0)) ·
(
dfm(xi;Wt)

dwtjk

)∣∣∣∣
t=0

]

=

n∑
i=1

E

[
(yi − fm(xi;W0)) ·

√
λm,jajσ

′

(
w>0jxi√

d

)
xik√
d

]

=

√
λm,j
d

(
n∑
i=1

E

[
yiajσ

′

(
w>0jxi√

d

)
xik

]
−

n∑
i=1

E

[
fm(xi;W0)ajσ

′

(
w>0jxi√

d

)
xik

])

= −
√
λm,j
d

n∑
i=1

E

[
fm(xi;W0)ajσ

′

(
w>0jxi√

d

)
xik

]

= −
√
λm,j
d

n∑
i=1

E

 m∑
j′=1

√
λm,j′aj′σ

(
w>0jxi√

d

) ajσ
′

(
w>0jxi√

d

)
xik


= −

√
λm,j
d

n∑
i=1

E

[(√
λm,jajσ

(
w>0jxi√

d

))
ajσ
′

(
w>0jxi√

d

)
xik

]

= −λm,j√
d

n∑
i=1

xikE

[
σ

(
w>0jxi√

d

)
σ′

(
w>0jxi√

d

)]

= −λm,j√
d

n∑
i=1

xikg1(xi)

I.2 Proof of Theorem 4.4 (smooth case)

We can write

dΘm(xα,xβ ;Wt)

dt
= −

n∑
i=1

(fmxi;Wt)− yi)Θ(3)
m (xα,xβ ,xi;Wt)

where

Θ(3)
m (xα,xβ ,xi;Wt) =

〈
∇WΘm(xα,xβ ;Wt), ∇Wf(xi;Wt)

〉
. (34)

We have

∇WΘm(xα,xβ ;Wt) =(
∇2

Wfm(xα;Wt)
)
∇Wfm(xβ ;Wt) +

(
∇2

Wfm(xβ ;Wt)
)
∇Wfm(xα;Wt).

35

0 1 2 3 4 5
Iterations 1e4

0.00

0.02

0.04

0.06

0.08

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0 1 2 3 4 5
Iterations 1e4

0

5

10

15

20

25

‖w
tj
−

w
0j
‖

0 1 2 3 4 5
Iterations 1e4

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0 1 2 3 4 5
Iterations 1e4

0.0
00

02
0.0

00
04

0.0
00

06
0.0

00
08

0.0
00

10
0.0

00
12

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

Figure 2: Results on simulated data. From left to right, 1) training risks, 2) differences in weight
norms ‖wtj −w0j‖ with the j’s being those neurons which have maximal differences at the end of
the training, 3) differences in NTG matrices, and 4) minimum eigenvalues of NTG matrices.

Thus,

Θ(3)
m (xα,xβ ,xi;Wt)

=
(
∇Wfm(xi;Wt)

)>(
∇2

Wf(xα;Wt)
)(
∇Wfm(xβ ;Wt)

)
+
(
∇Wfm(xi;Wt)

)>(
∇2

Wf(xβ ;Wt)
)(
∇Wfm(xα;Wt)

)
=

m∑
j=1

aj
λ

3/2
m,j

d3/2
σ′

(
w>tjxi√

d

)
x>αxβ

×

(
x>αxiσ

′′

(
w>tjxα√

d

)
σ′

(
w>tjxβ√

d

)
+ x>β xiσ

′′

(
w>tjxβ√

d

)
σ′

(
w>tjxα√

d

))
.

We therefore calculate

E
[
dΘm(xα,xβ ;Wt)

dt

∣∣∣∣
t=0

]
= E

[
−

n∑
i=1

(fm(xi;W0)− yi)Θ(3)
m (xα,xβ ,xi;W0)

]

= −
m∑
j=1

λ
3/2
m,j

d3/2
x>αxβ

n∑
i=1

E

[
aj

(
m∑
j′=1

√
λm,j′aj′σ

(
w>0j′xi√

d

))

×

(
x>αxiσ

′′

(
w>0jxα√

d

)
σ′

(
w>0jxβ√

d

)
σ′

(
w>0jxi√

d

)

+ x>β xiσ
′′

(
w>0jxβ√

d

)
σ′

(
w>0jxα√

d

)
σ′

(
w>0jxi√

d

))]

=

m∑
j=1

λ2
m,j

d3/2
x>αxβ

n∑
i=1

E

[
σ

(
w>0jxi√

d

)(
x>αxiσ

′′

(
w>0jxα√

d

)
σ′

(
w>0jxβ√

d

)
σ′

(
w>0jxi√

d

)

+ x>β xiσ
′′

(
w>0jxβ√

d

)
σ′

(
w>0jxα√

d

)
σ′

(
w>0jxi√

d

))]

= −x>αxβ
d3/2

[
x>α

(
n∑
i=1

xig2(xα,xβ ,xi)

)
+ x>β

(
n∑
i=1

xig2(xβ ,xα,xi)

)]
m∑
j=1

λ2
m,j .

J Experimental results (smooth activation)

We use here a (smooth) swish activation function σ(z) = z/(1 + e−z). We obtained quantitatively
similar results with a ReLU activation function; see Appendix K.

36

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40

50

60

‖w
tj
−

w
0
j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

20 40 60 80 100
Feature dimension

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 3: A subset of results for the regression experiments. From left to right, 1) training risks
for concrete dataset, 2) the differences in weight norms ‖wtj −w0j‖ with j’s being the neurons
having the maximum difference at the end of the training for energy dataset, 3) the differences in
NTG matrices for airfoil dataset, 4) test risks of transferred models for plant dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40
‖w

tj
−

w
0j
‖

500 1000 1500 2000
Number of pruned nodes

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 a
cc

ur
ac

y

20 40 60 80 100
Feature dimension

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Figure 4: A subset of results for MNIST dataset. From left to right, 1) training risks, 2) difference in
weight norms, 3) the test accuracies of the pruned models, 4) test accuracies of transferred models.

Simulated data. We first illustrate our theory on simulated data.1 We generate n = 100 observations
where for i = 1, . . . , n, xi is d = 50 dimensional and sampled uniformly on the unit sphere and
yi = 5

d

∑d
j=1 sin(πxi,j) + εi where εi

iid∼N (0, 1). We use the FFNN of Section 2, with the swish
activation function, m = 2000 hidden nodes and λm,j as in Equation (1) and

λ̃j =
1

ζ(1/α)

1

j1/α
, j ≥ 1 (35)

where γ ∈ [0, 1] and α ∈ (0, 1). We consider the four values (γ, α) ∈
{(1,−), (0.5, 0.7), (0.5, 0.5), (0, 0.4)}. For each setting, we run GD with a learning rate of 1.0
for 50 000 steps, which is repeated five times to get average results. We summarise the results in
Figure 2, which shows the training error and the evolution of the weights, NTG, and minimum
eigenvalue of the NTG as a function of the GD iterations. We see a clear correspondence between the
theory and the empirical results. For γ > 0, GD achieves near-zero training error. The minimum
eigenvalue and the training rates increase with the value of γ. For γ = 1, we have the highest
minimum eigenvalue and the fastest training rate; however, there is no/very little feature learning:
the weights and the NTG do not change significantly over the GD iterations. When γ < 1, there is
clear evidence of feature learning: both the weights and the NTG change significantly over time; the
smaller γ and α, the more feature learning arises.

Regression. We also validate our model on four real-world regression datasets from the UCI
repository2: concrete ((n, d) = (1030, 9)), energy ((n, d) = (768, 8)), airfoil ((n, d) =
(1503, 6)), and plant (n, d) = (9568, 4)). We split each dataset into training (40%) , test (20%),
and validation sets (40%), and the validation set is used to test transfer learning. We use the same

1The code can found at https://github.com/AnomDoubleBlind/asymmetrical_scaling/
2https://archive.ics.uci.edu/ml/datasets.php

Figure 5: Results for CIFAR�100. From left to right, 1) test risk through training, 2) the differences
in weight norms ‖wtj −w0j‖ with j’s being the neurons having the maximum difference at the end
of the training, 3) the test risks of the pruned models, and 4) test accuracies of the pruned models.

37

https://github.com/AnomDoubleBlind/asymmetrical_scaling/
https://archive.ics.uci.edu/ml/datasets.php

parameters as in the above paragraph, and we now train our FFNNs for 100 000 steps in each run.
To further highlight the presence of feature learning in our model, we test the transferability of
features learnt from our networks as follows. We first split the validation set into a held-out training
set (50%) and a test set (50%), and extract features of the held-out training set using the FFNNs
trained on the original training set. Features are taken to be the outputs of the hidden layers, so each
data point in the validation set is represented with a m = 2000 dimensional vector. Then, we sort
feature dimensions with respect to feature importance measured as (λm,j‖wt,j‖2)j∈[m] and use the
top-k of these to train an external model. The chosen external model is a FFNN with a single hidden
layer having 64 neurons and ReLU activation, and it is trained for 5000 steps of GD with a learning
rate of 1.0. Our theory suggests that smaller γ and α values likely lead to better transfer learning. A
subset of our results is summarised in Figure 3; additional results are found in Appendix J. In line
with the simulated data experiments, we observe a stronger presence of feature learning, in terms of
weight-norm changes and NTG changes, for smaller values of γ and α. Also, we observe that models
with smaller values of γ have lower risks when a small number of features are used for the transfer.
The interpretation is that those models are able to learn a sufficient number of representative features
using relatively fewer neurons.

Classification. We apply our model on two image classification tasks. The first is small-scale using
the setting assumed in our theory, while the second is larger-scale using a more realistic setting.
In addition to the transferability experiment described in the previous pragraph, we also test the
prunability of the FFNNs. We gradually prune hidden nodes which have small feature importance
and measure risks after pruning. Feature importance is measured as above. Our theory suggests that
models with smaller γ and/or α values are likely more robust with respect to pruning, as long as
γ < 1. Wolinski et al. (2020) had similar empirical findings on the benefits of asymmetrical scaling
for network pruning when γ = 0.
MNIST. We take a subset of size 5000 from the MNIST dataset and train the same models used in
the previous experiments. We also test pruning and transfer learning, where we use an additional
subset of size 5000 to train an external FFNN having a single hidden layer with 128 nodes. To match
our theory, instead of using cross-entropy loss, we use the MSE loss by treating one-hot class labels
as continuous-valued targets. The outputs of the models are 10 dimensional, so we compute the NTG
matrices using only the first dimension of the outputs. In general, we get similar results in line with
our previous experiments. The pruning and transfer learning results are displayed in Figure 4. Other
results can be found in Figure 10 in the Supplementary Material.
CIFAR. We consider a more challenging image classification task of CIFAR–10 and CIFAR–100.
The datasets have 60 000 images of which 50 000 are used for training and the rest for testing. There
are, respectively, ten and a hundred different classes. We illustrate the benefits of asymmetrical node
scaling and show they hold for this more challenging problem. In many applications, one uses a large
model pre-trained on a general task and then performs fine-tuning or transfer learning to adapt it
to the task at hand. We implement this approach on a Resnet-18 model, pre-trained on ImageNet
data. With this model, we transform each original image to a vector of dimension 512. We then
train shallow FFNNs as described in ??, with m = 2000, and output dimension 10 (resp. 100). This
experiment differs from previous results as 1) we use stochastic GD with a mini-batch size of 64
instead of full batch GD; 2) we use cross-entropy loss instead of MSE; and 3) both layers are trained.
All experiments are run five times, and the learning rate is 5.0. In Figure 5, we report the pruning
results for the same four values of pairs (γ, α) as above, for CIFAR–100. Similar results are obtained
for CIFAR–10 (see Appendix J). Similar conclusions as before hold here, even though the theory
does not apply directly.

J.1 Regression

In Figures 6, 7, 8 and 9 we respectively provide the detailed results for the datasets concrete,
energy, airfoil and plant.

J.2 Classification

We provide in Figure 10 detailed results for the MNIST dataset, and in Figure 11 results for the
CIFAR–10 dataset. In Figure 12, we provide further details on the individual impact of the parameter
γ ∈ [0, 1]. Recall that the smaller the value of γ, the more asymmetry is introduced, where γ = 1

38

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.14

0.16

0.18

0.20

0.22

0.24

Te
st

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40

50

60

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

0.5

1.0

1.5

2.0

2.5

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
00

00
0.0

00
25

0.0
00

50
0.0

00
75

0.0
01

00
0.0

01
25

0.0
01

50
0.0

01
75

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

20 40 60 80 100
Feature dimension

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 ri
sk

20 40 60 80 100
Feature dimension

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 6: Results for the concrete dataset (swish). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training risks for transfer learning, and 7) test risks for transfer learning.

recovers the iid model. We can see from the experiments that pruning performance is improved as γ
becomes smaller.

K Experimental results for a ReLU activation function

We provide here additional experimental results, as in Appendix J, but with a different activation
function. Namely, we replace the swish activation function with the ReLU function. Although our
theory does not cover the convergence of GD with the ReLU, the experimental results obtained in
this section are quantitatively similar to those obtained with the swish function.

K.1 Regression

In Figures 13, 14, 15 and 16 we respectively provide detailed results for the datasets concrete,
energy, airfoil and plant.

K.2 Classification

We provide in Figures 17, 18 and 19 detailed results for respectively the MNIST, CIFAR10 and
CIFAR100 experiments.

39

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.00

0.02

0.04

0.06

0.08

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Te
st

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40

50

60

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
00

0

0.0
00

1

0.0
00

2

0.0
00

3

0.0
00

4

0.0
00

5

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

20 40 60 80 100
Feature dimension

0.0

0.1

0.2

0.3

0.4

Tr
ai

ni
ng

 ri
sk

20 40 60 80 100
Feature dimension

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 7: Results for the energy dataset (swish). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training risks for transfer learning, and 7) test risks for transfer learning.

40

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.20

0.25

0.30

0.35

0.40

Te
st

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

20

40

60

80

100

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

1.5
0

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

1e 5

20 40 60 80 100
Feature dimension

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 ri
sk

20 40 60 80 100
Feature dimension

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 8: Results for the airfoil dataset (swish). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training risks for transfer learning, and 7) test risks for transfer learning.

41

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.050

0.052

0.054

0.056

0.058

0.060

0.062

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.058
0.059
0.060
0.061
0.062
0.063
0.064
0.065
0.066

Te
st

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

1e 5

20 40 60 80 100
Feature dimension

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Tr
ai

ni
ng

 ri
sk

20 40 60 80 100
Feature dimension

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 9: Results for the plant dataset (swish). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training risks for transfer learning, and 7) test risks for transfer learning.

42

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 a

cc
ur

ac
y

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 a
cc

ur
ac

y

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
00

2

0.0
00

3

0.0
00

4

0.0
00

5

0.0
00

6

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

500 1000 1500 2000
Number of pruned nodes

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

500 1000 1500 2000
Number of pruned nodes

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 a
cc

ur
ac

y

20 40 60 80 100
Feature dimension

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 a
cc

ur
ac

y

20 40 60 80 100
Feature dimension

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Figure 10: Results for the MNIST dataset (swish). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training accuracies for pruning, 7) test accuracies for pruning, 8) training accuracies
for transfer learning, and 9) test accuracies for transfer learning.

43

Figure 11: Results for the CIFAR�10 dataset (swish). From left to right and top to bottom, 1) test
accuracies through training, 2) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons
having the maximum difference at the end of the training, 3) test risks of the pruned models, and 4)
test accuracies of the pruned models.

Figure 12: Results for the CIFAR�10 dataset (swish). Impact of the parameter γ. From left to right
and top to bottom, 1) test accuracies through training, 2) differences in weight norms ‖wtj −w0j‖
with j’s being the neurons having the maximum difference at the end of the training, 3) test risks of
the pruned models, and 4) test accuracies of the pruned models.

44

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Te
st

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40

50

60

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.5

1.0

1.5

2.0

2.5

3.0

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

20 40 60 80 100
Feature dimension

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 ri
sk

20 40 60 80 100
Feature dimension

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 13: Results for the concrete dataset (ReLU). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training risks for transfer learning, and 7) test risks for transfer learning.

45

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Te
st

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0
10
20
30
40
50
60
70
80

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
00

0
0.0

02
5

0.0
05

0
0.0

07
5

0.0
10

0
0.0

12
5

0.0
15

0
0.0

17
5

0.0
20

0

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

20 40 60 80 100
Feature dimension

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Tr
ai

ni
ng

 ri
sk

20 40 60 80 100
Feature dimension

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 14: Results for the energy dataset (ReLU). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training risks for transfer learning, and 7) test risks for transfer learning.

46

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

20

40

60

80

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
00

0

0.0
00

5

0.0
01

0

0.0
01

5

0.0
02

0

0.0
02

5

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

20 40 60 80 100
Feature dimension

0.0

0.1

0.2

0.3

0.4

Tr
ai

ni
ng

 ri
sk

20 40 60 80 100
Feature dimension

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 15: Results for the airfoil dataset (ReLU). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training risks for transfer learning, and 7) test risks for transfer learning.

47

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.045

0.050

0.055

0.060

0.065

Tr
ai

ni
ng

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.060

0.062

0.064

0.066

0.068

Te
st

 ri
sk

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

2

0

2

4

6

8

10

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.5

1.0

1.5

2.0

2.5

3.0

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
00

0

0.0
00

2

0.0
00

4

0.0
00

6

0.0
00

8

0.0
01

0

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

20 40 60 80 100
Feature dimension

0.06

0.07

0.08

0.09

0.10

0.11

Tr
ai

ni
ng

 ri
sk

20 40 60 80 100
Feature dimension

0.06

0.07

0.08

0.09

0.10

0.11

Te
st

 ri
sk

γ= 1.0

α= 0.7, γ= 0.5

α= 0.5, γ= 0.2

α= 0.4, γ= 0.0

Figure 16: Results for the plant dataset (ReLU). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training risks for transfer learning, and 7) test risks for transfer learning.

48

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 a

cc
ur

ac
y

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40

‖w
tj
−

w
0j
‖

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.2

0.4

0.6

0.8

1.0

‖Θ̂
m

(X
;W

t)
−

Θ̂
m

(X
;W

0
)‖

2

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

0.0
05

0.0
06

ei
g

m
in
(Θ̂

m
(X

;W
t)

)

500 1000 1500 2000
Number of pruned nodes

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

500 1000 1500 2000
Number of pruned nodes

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

20 40 60 80 100
Feature dimension

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 a
cc

ur
ac

y

20 40 60 80 100
Feature dimension

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Figure 17: Results for the MNIST dataset (ReLU). From left to right and top to bottom, 1) training
risks, 2) test risks, 3) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons having
the maximum difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG
eigenvalues, 6) training accuracies for pruning, 7) test accuracies for pruning, 8) training accuracies
for transfer learning, and 9) test accuracies for transfer learning.

49

Figure 18: Results for the CIFAR�10 dataset (ReLU). From left to right and top to bottom, 1) test
accuracies through training, 2) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons
having the maximum difference at the end of the training, 3) test risks of the pruned models, and 4)
test accuracies of the pruned models.

Figure 19: Results for the CIFAR�100 dataset (ReLU). From left to right and top to bottom, 1) test
accuracies through training, 2) differences in weight norms ‖wtj −w0j‖ with j’s being the neurons
having the maximum difference at the end of the training, 3) test risks of the pruned models, and 4)
test accuracies of the pruned models.

50

	Introduction
	Problem setup
	Neural Tangent Kernel at initialisation and its limit
	Main results
	Results for the ReLU activation function
	Global convergence under gradient flow
	Feature learning
	Discussion

	Useful bounds and identities
	Matrix Chernoff inequalities
	Some identities on (m,j)j[m]

	Proof of prop:limitingNTG on the limiting NTG
	Secondary Proposition - NTG at initialisation
	Secondary Lemmas on gradient flow dynamics
	Lemma on exponential decay of the empirical risk and scaling of the weight changes
	Lemma bounding the NTK change and minimum eigenvalue - ReLU case
	Lemma on a sufficient condition for thm:upper-bound:relu - ReLU case
	Lemma bounding the NTK change and minimum eigenvalue - Smooth activation case
	Lemma on a sufficient condition for thm:upper-bound:smooth-activation - Smooth activation case

	Proof of thm:upper-bound:relu on the global convergence of gradient flow (ReLU case)
	Proof of thm:upper-bound:smooth-activation on the global convergence of gradient flow (smooth case)
	Global convergence of gradient descent (smooth activation)
	Sketch of the proof
	Two key lemmas
	Proof of thm:convergence-gd:smooth-case

	Proof of the results of sec:featurelearning on feature learning
	Proof of thm:average-weight-change (smooth and ReLU)
	Proof of thm:featurelearning:smooth (smooth case)

	Experimental results (smooth activation)
	Regression
	Classification

	Experimental results for a ReLU activation function
	Regression
	Classification

