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Abstract

How do people navigate the exploration-exploitation (EE) trade-off when making
repeated choices with unknown rewards? We study this question through the lens
of multi-armed bandit problems and introduce a novel behavioral model, Quantal
Choice with Adaptive Reduction of Exploration (QCARE). It generalizes Thomp-
son Sampling, allowing for a principled way to quantify the EE trade-off and re-
flect human decision-making patterns. The model adaptively reduces exploration
as information accumulates, with the reduction rate serving as a parameter to quan-
tify the EE trade-off dynamics. We theoretically analyze how varying reduction
rates influence decision quality, shedding light on the effects of “over-exploration”
and “under-exploration.” Empirically, we validate QCARE through experiments
collecting behavioral data from human participants. QCARE not only captures
critical behavioral patterns in the EE trade-off but also outperforms alternative
models in predictive power. Our analysis reveals a behavioral tendency toward
over-exploration.

In many business settings, decision-makers repeatedly choose among options with unknown rewards,
learning from experiencee.g., consumers picking unfamiliar brands or managers selecting suppliers
without known reliability. The decision-making process can be very intricate. In particular, it ne-
cessitates a delicate balance between exploration – trying different options to learn about potential
rewards – and exploitation – exploiting the best-known options to collect rewards. The exploration-
exploitation (EE) trade-off is usually modeled by the multi-armed bandit problem (MAB). In this
problem, the decision maker faces several slot machines (or “arms”), each with an unknown re-
ward probability distribution. The decision maker’s goal is to maximize their reward over time by
choosing which arms to pull. This problem has drawn attention from many communities such as
economics, computer science, and management science. Significant advancements in algorithmic
solutions have been made, such as the Gittens Index policy, Thompson Sampling, and Upper Confi-
dence Bound methods. (See more details in the literature review.)

However, the algorithms designed to maximize rewards for MAB problems may behave very differ-
ently from human behavior when they face similar problems. For example, [2] demonstrated that
Gittins index-based policies may not describe human behavioral data as well as seemingly naive
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models, such as hot-hand and exponential smoothing policies. Given that many repeated decisions
in business practices are not dictated by algorithms but rather managed by human beings, our paper
is driven by the following questions: How do human decision-makers balance the trade-off between
exploration and exploitation? How does varying the balance between exploration and exploitation
impact decision quality?

Summary of Results and Contributions

Modeling contributions. In this paper, we introduce a novel model that bridges algorithmic and
behavioral modeling to shed light on the dynamic interplay between exploration and exploitation.
Our model leverages concepts from the quantal choice framework, where the decision-maker relies
on a (randomized) score system and chooses the arm with the highest attraction score. On a high
level, the score is arm- and history- dependent and takes the following form:

SCORE = HISTORICAL PERFORMANCE + WEIGHT × RANDOM SHOCK.

We relay to the full paper for a precise formula. This score system explicitly encodes the trade-off
between exploration and exploitation: The first is purely determined by the historical performance
of the arm. It signifies exploitation as it leads the decision maker to choose the arm with the best
historical performance. The second component consists of random shocks. It enables exploration
by trying arms that have not performed well historically. The weight term thus controls the balance
between exploration and exploitation.

An important feature of our model is that the weight will shrink with the number of times the arm
has been pulled. In other words, exploitation will be emphasized over exploration over time as
the decision maker’s experience accumulates. This feature is inspired by qualitative evidence from
experiments. It is also why we term of our model as Quantal Choice with Adaptive Reduction of
Exploration (QCARE).

We parameterize the decision maker’s EE trade-off dynamics into a structural parameter. We refer
to it as the reduction rate of exploration and denote it as α. The larger the value of α, the faster the
reduction rate of exploration, and therefore exploitation dominates exploration more quickly. The
specific form of the weight draws inspiration from the online learning literature: QCARE can be
viewed as a generalization of the well-celebrated Thompson Sampling (TS) method. When α = 0.5,
our model reduces to Gaussian TS. When α < 0.5 (resp. α > 0.5), our model captures a policy that
explores more (resp. less) aggressively than TS. Empirically, the value of α can then be estimated
from behavioral data.

The marriage between online learning and behavioral modeling offers our model a few advantages,
which we summarize below.

• First, it captures the learning effect for dynamic choices in a parsimonious way. When it comes to
dynamic choice models, the traditional approach determines choice probabilities in a “subgame-
perfect” manner (e.g., 3, 4, 1). However, the computation of value functions suffers from the
curse of dimensionality. In comparison, the scores in our model admit myopic forms and thus
allow simplicity for both theoretical analysis and empirical estimation.

• Second, it provides an interpretable yet principled quantification of the EE trade-off. We theoret-
ically characterize how EE trade-off affects decision quality, thus justifying key concepts such as
over- and under- exploration. (See our summary of technical contributions below.)

• Third, the QCARE policy family includes not only (asymptotically) optimal policies such as
Thompson Sampling, but also suboptimal ones due to over- and under- exploration. This allows
QCARE to capture choice behavior with potentially bounded rationality. The benefit of this flex-
ibility is reflected by how it displays better empirical performance on behavioral data, as well as
unlocking novel behavioral patterns. (See our summary of experimental and empirical contribu-
tions below.)

Theoretical contributions. We study both non-asymptotic and asymptotic properties of QCARE.
We show that QCARE displays comparative statistics properties that are qualitatively consistent with
our lab evidence. In addition, we show that all α > 0 enables the decision maker to converge to the
optimal arm in the long run. It suggests that every α > 0 is “plausible” – at least when T is large –
since they all correspond to long-run-average optimal policies.
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Besides intuitive qualitative properties, QCARE offers a principled way to quantify the EE trade-off
using α. We develop an asymptotic theory regarding how different alpha values lead to different
decision qualities, measured by regret.

• When α = 0.5, QCARE achieves the optimal regret order of O(
√
T ). In other words, in the

asymptotic regime where T = ∞ represents the “optimal” balance of exploration vs. exploitation.

• When α < 0.5, the regret order gradually deteriorates to Ω(T 1−α).

• When α > 0.5, the regret order worsens drastically to Ω(T 1−ε) for every ε > 0.

The analysis above characterizes the effects of “over” and “under” exploration asymptotically, which
we illustrate in Figure 1.

Figure 1: Asymptotic Regret of QCARE as a function of α

We extend our analysis in two dimensions. First, to deepen the theoretical understanding of the
asymptotic results above, we study a general family of Markovian MAB policies and identify condi-
tions under which the same asymptotic pattern of over- and under- exploration emerge. Second, we
conduct extensive numerical studies and find that the insight from asymptotic analysis generalizes
to the non-asymptotic setting where T is fixed to be a moderate value.

Experimental and Empirical contributions. We conduct experiments to collect behavioral data
regarding how real human beings make decisions in the MAB problem. QCARE displays strong
capabilities of capturing human behavior, especially in terms of out-of-sample prediction power
compared to other models drawn from different streams of literature. Through our analysis, we
discover an interesting behavioral pattern: people tend to “over-explore” in the sense that they settle
at leading arm more slowly than the expected-reward-maximizing rate. While such bias could be
partly rationalized by the risk aversion of the participants, their behavior of not choosing the leading
arm appears to reflect a mix of random behavioral errors (in the same spirit of 5) layered on top of
the “intrinsic” exploration required for dynamic learning.

Analysis of A More General Framework

We study the decision dynamics and regret of QCARE by embedding it in and characterizing a gen-
eral class of Markovian MAB policies. We then verify which of these conditions QCARE satisfies
under different values of α. Unlike traditional analyses that focus only on order-optimal policies,
our framework applies to a wide range of behavioral policies, including those that are over- or under-
exploring. As such, we believe our analysis makes a theoretical contribution to the analysis of MAB
policies in its own right.

Setup and basic properties. Let us first describe the family of MAB policies our analysis extends
to. Let ki(t) and µ̂i(t) represent the pull count and empirical reward of arm i up to period t − 1.
We consider MAB policies that only depend on S(t) := (k1(t), . . . , kN (t), µ̂1(t), . . . , µ̂N (t)) as
a sufficient statistic, which takes values in S := ZN

+ × [0, 1]N . We also index a typical state as
S = (κ, u), where κ := (κ1, . . . , κN ) ∈ ZN

+ and u := (u1, . . . , uN ) ∈ [0, 1]N are scalar vectors.
In this way, an admissible policy can be represented by a probability function Q = (Q1, . . . , QN ) :
S → ∆N , where Qi(S) = Pr (a(t) = i | S(t) = S) is the probability to pull arm i given state S.
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With a slight abuse of notation, we also find it convenient to write Qi(S) as Qi(S) = Qi(S
i;S−i),

where Si = (κi, ui) and S−i = (κ1, . . . , κi−1, κi+1, κN , u1, . . . , ui−1, ui+1, ..., uN ) are the state
values for arm i and the rest of the arms, respectively. The family of MAB policies we consider is
equivalent to the Sequentially Randomized Markov Experiments studied by [6]. QCARE belongs to
this family, and we refer the reader to [6] for many other members of this family.2

Conditions for “over” and “under” exploration. Let us now proceed to two key novel measures
we use to quantify “over” and under” exploration. We start with the one corresponding to over-
exploration.

Definition. Let α ∈ (0, 0.5) be fixed. The probability function Q is α-exploratory if there exists
constants ε > 0, δ ∈ (0, 1) and a sequence of numbers {∆1,∆2, . . .},where ∆T = Ω(T−α), such
that for all sufficiently large T , u1 ≤ ∆T , and κ such that

∑
i>1 κi < δT , it holds that

1−Q1 (κ1, κ2, ..., κN , u1, 0, 0, ..., 0) ≥ ε.

Roughly speaking, a policy with an α-exploratory function Q allows situations where even all arms
have been pulled Ω(T ) times and their empirical reward differences on the order of Ω(T−α), the
arm-pulling probabilities do not concentrate on the leading arm. In other words, an α-exploratory
function Q with a small α is a sign of heavy exploration. Intuitively, if the exploration is too heavy,
then the policy may fail to concentrate on any particular arm despite overwhelming evidence that
a certain arm the the best. In the result below, we formally characterize the consequence of such
“over-exploration.”

Theorem. Let α ∈ (0, 0.5) and N > 1 be fixed. If the probability function Q is α-exploratory, then
the regret satisfies R(T ) = Ω(T 1−α).

The next property provides a quantitative measure of how a policy could potentially “under explore.”

Definition. Let α ∈ (0.5,+∞) and N > 1 be fixed. The function Q is α-irreversible if for any
following list of quantities: (i) arbitrarily small constant δ > 0, (ii) arm j > 1, (iii) u ∈ [0, 1]N

satisfying uj − u1 = Ω(1), and (iv) κ ∈ ZN
+ satisfying κ1, κj ≥ (log T )

1
2α−δ for sufficiently large

T , it holds that Q1(κ, u) ≤ (log T )
1

2α−δ

T .

Roughly speaking, a policy with an α-irreversible function Q allows situations where there are two
arms where both are pulled only (log T )

1
2α−δ times, while the worse-performing arm’s pulling proba-

bility already diminishes on the order of O
(

(log T )
1

2α−δ

T

)
. This loosely translates to the probability

of pulling the non-leading arms decaying super-exponentially fast with the pull count. Hence that
corresponds to a sign of aggressive concentration (or lack of exploration). Intuitively, if the con-
centration is too aggressive, then the policy may be mistakenly stuck in the inferior arm in a “bad”
event where it performs better empirically during the initial periods. This intuition is also where the
name “irreversibility” comes from. In the result below, we formally characterize the performance
consequence for “under-exploration.”

Theorem. Suppose the probability function Q is unradical, i.e., for κ ∈ ZN
+ and u ∈ [0, 1]N such

that u1 ≤ min{u2, . . . , uN}, Q1(κ, u) ≤ 1
2 . Then even when N = 2, for every policy with an

α-irreversible function Q, the regret satisfies R(T ) = Ω(T 1−o(1)).

The theorem reveals that without sufficient exploration, the aforementioned “bad” event happens
with probability Ω(T−o(1)) and the regret conditional that bad event is on the order of Ω(T ). That
makes the overall regret deteriorate almost linear in T .

2We assume that the probability function cannot “cheat” by depending on the arm identity information.
Formally, this is by assuming that it is invariant to relabeling. That is, for every permutation σ : [N ] →
[N ], i ∈ [N ], and state S = (κ1, . . . , κN , u1, . . . , uN ) ∈ S, Qi(κσ(1), . . . , κσ(N), uσ(1), . . . , uσ(N)) =
Qσ(i)(κ1, . . . , κN , u1, . . . , uN ).
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