
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ASSESSING THE REVERSE-ENGINEERING ABILITIES
OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Using AI to create autonomous researchers has the potential to accelerate scien-
tific discovery. A prerequisite for this vision is analyzing whether an AI model
can identify the underlying structure of a black-box system from its behavior. In
this paper, we explore how well a large language model (LLM) learns to identify a
black-box function from passively observed versus actively collected data. We in-
vestigate the reverse-engineering capabilities of LLMs across three distinct types
of black-box systems, each chosen to represent different problem domains where
future autonomous AI researchers may have considerable impact: programs, for-
mal languages, and math equations. Through extensive experiments, we show
that LLMs fail to extract information from observations, reaching a performance
plateau that falls short of the Bayesian inference ideal. However, we demonstrate
that prompting LLMs to not only observe but also intervene—actively querying
the black-box with specific inputs to observe the resulting output—improves per-
formance by allowing LLMs to test edge cases and refine their beliefs. By provid-
ing the intervention data from one LLM to another, we show that this improvement
is partially tethered to the process of generating effective interventions, paralleling
results in the literature on human learning. Further analysis reveals that engaging
in interventions can help LLMs escape from two common failure modes: over-
complication, where the LLM falsely assumes prior knowledge about the black-
box, and overlooking, where the LLM fails to incorporate observations. These
insights provide practical guidance for helping LLMs more effectively reverse-
engineer black-box systems, supporting their use in making new discoveries.

1 INTRODUCTION

Developing intelligent systems to accelerate scientific discovery has been a long-standing goal of
artificial intelligence research (Gil et al., 2014; Wang et al., 2023). Despite rapid progress in creat-
ing large language models (LLMs) for understanding text and solving problems in math and coding,
automating science poses a different kind of challenge. A core aspect of scientific discovery is
reverse-engineering the mechanism behind a black-box system, which requires capabilities beyond
responding to a one-off query. In particular, reverse-engineering often involves 1) understanding ob-
served data in order to develop hypotheses, 2) designing experiments to actively acquire informative
data from the black-box to test those hypotheses, and 3) describing and communicating the results.

Existing work using LLMs for automating scientific processes either focuses on static observational
data (Rmus et al., 2025; Shojaee et al., 2025) or emulates scientific workflows using “LLM scien-
tists” with many moving parts (Gandhi et al., 2025; Schmidgall et al., 2025). In contrast, research
in related fields has used carefully controlled tasks to evaluate whether machine learning systems
can perform key aspects of reverse-engineering, including inductive reasoning (Rule et al., 2024),
learning causal features from passive data (Lampinen et al., 2023), and optimal experimental de-
sign (Chaloner & Verdinelli, 1995; Rainforth et al., 2024). This work is often informed by work
in cognitive science, which has studied how humans engage in active learning using methods in
which the source (either passive observation or active experimentation) and content of data can be
differentiated (Markant & Gureckis, 2010; 2014). Such controlled methods have not been applied
to state-of-the-art LLMs, leaving fundamental questions unanswered: “How well can LLMs make
inferences from passive observations?” and “Can they actively collect data to refine their hypothe-
ses?”.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Math Equation: 

 
Observations: 
x = [7, 2], [3, 5], y = second 
x = [1, 9], [6, 3], y = first,  
…

<latexit sha1_base64="IQhaFQtCx+oprumjKhFHe03t1+c=">AAACSHicbZDNSxtBGMZnU+tHrBrr0cvQIESEZSZ+XgRBKD0qNCpkk2V2MpsMzn4w864Yli3953rp0Zt/Qy89KKU3Zzc5aOILA8/zvO98/YJUSQOEPDq1DwsfF5eWV+qrn9bWNxqbn69MkmkuOjxRib4JmBFKxqIDEpS4SbVgUaDEdXB7Xvav74Q2Mom/wzgVvYgNYxlKzsBGfsPv4FPsKRFCi7jtH/c+7efE3S/wHibuifXtife0HI5gt597oWY8p0WVFvUd5lN7AnEPPK807coclUafEvfQbzSJS6rC84JORRNN68JvPHiDhGeRiIErZkyXkhR6OdMguRJF3cuMSBm/ZUPRtTJmkTC9vAJR4B2bDHCYaLtiwFX6ekfOImPGUWAnIwYjM9srw/d63QzCk14u4zQDEfPJRWGmMCS4pIoHUgsOamwF41rat2I+YpYUWPZ1C4HOfnleXLVdeuTSy4Pm2defExzLaBt9QS1E0TE6Q9/QBeogjn6hP+gJPTu/nb/OP+f/ZLTmTBFuoTdVq70AOverPg==</latexit>

U =
�
0.2 x0.3

1 + 0.8 x0.3
2

� 1
0.3

<latexit sha1_base64="O4tSELmr9RRb1/uaWsTveCmKJyY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI8BQTwmYB6QLGF20puMmZ1dZmaFsAS8e/GgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaLSPJb3ZpygH9GB5CFn1FipHvaKJbfszkBWibcgJVig1it+dfsxSyOUhgmqdcdzE+NnVBnOBE4K3VRjQtmIDrBjqaQRaj+bHTohZ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1ITXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRsCN7yy6ukeVH2KmWvflmq3j7N48jDCZzCOXhwBVW4gxo0gAHCM7zCm/PgvDjvzse8NecsIjyGP3A+fwD0HY10</latexit>

f

Construct 
Query

Receive 
Response

AI Scientist

<latexit sha1_base64="m3+JiMX+s6s650jldCSI6N/iR00=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgHsKuiHoMCOIxonlAsobZyWwyZHZ2mekVwhLwB7x4UMSrX+TNv3HyOGhiQUNR1U13V5BIYdB1v53c0vLK6lp+vbCxubW9U9zdq5s41YzXWCxj3Qyo4VIoXkOBkjcTzWkUSN4IBldjv/HItRGxusdhwv2I9pQIBaNopbvw4aRTLLlldwKySLwZKcEM1U7xq92NWRpxhUxSY1qem6CfUY2CST4qtFPDE8oGtMdblioaceNnk1NH5MgqXRLG2pZCMlF/T2Q0MmYYBbYzotg3895Y/M9rpRhe+plQSYpcsemiMJUEYzL+m3SF5gzl0BLKtLC3EtanmjK06RRsCN78y4ukflr2zsve7Vmpcv00jSMPB3AIx+DBBVTgBqpQAwY9eIZXeHOk8+K8Ox/T1pwzi3Af/sD5/AENT44Q</latexit>

f⇤
Black Box

Hypothesis

<latexit sha1_base64="WBhftGS9IqSWegEQ7VLgCKI01h8=">AAACDnicdZBLSwMxFIXv1Fetr1GXbgZLwVWZEVGXBUFcVrAPaEvJZO60oZnMkGSEMlTcu/GvuHGhiFvX7vw3po+FtnogcDjnhuR+fsKZ0q77ZeWWlldW1/LrhY3Nre0de3evruJUUqzRmMey6ROFnAmsaaY5NhOJJPI5NvzBxbhv3KJULBY3ephgJyI9wUJGiTZR1y61UxGg9CWhmN39o1HXLrpldyJn0XgzU4SZql37sx3ENI1QaMqJUi3PTXQnI1IzynFUaKcKE0IHpIctYwWJUHWyyTojp2SSwAljaY7QziT9eSMjkVLDyDeTEdF9Nd+Nw7+6VqrD807GRJJqFHT6UJhyR8fOmI0TMIlU86ExhEpm/urQPjFotCFYMBC8+ZUXTf247J2WveuTYuXyfoojDwdwCEfgwRlU4AqqUAMKD/AEL/BqPVrP1pv1Ph3NWTOE+/BL1sc3WIif5g==</latexit>|
{z

}

Formal Language
Program

Math Equation

Infer from observations and/or interventions.

<latexit sha1_base64="t4ftgNdExanKtmnEoUjfTl051Vc=">AAACkXicbVFdb9MwFHXC1wgwOvbIi0VV1IkqskPZxkNRBRJC4mVIdJvUdJHjOq0150P2DaKKgvg5/B7e+Dc4SZH2wZUsnXvuudf2uXGhpAFC/jjunbv37j/Yeeg9evxk92lv79mpyUvNxYznKtfnMTNCyUzMQIIS54UWLI2VOIsvPzT1s29CG5lnX2FTiEXKVplMJGdgqaj3azDDExwqkcCQ+MGP7xG9qIj/usavMPGPbR50eajlag0HF1WYaMYrWrds7Q1YRO0E4o9HmEVBCw9HWE+I/8YbvBzagSO8iejBCIdhRwQNEfwjwmUOxgurq8proqYe1lGvT3zSBr4N6Bb00TZOot5v28nLVGTAFTNmTkkBi4ppkFyJ2gtLIwrGL9lKzC3MWCrMomodrfHAMkuc5NqeDHDLXu2oWGrMJo2tMmWwNjdrDfm/2ryE5HhRyawoQWS8uygpFYYcN+vBS6kFB7WxgHEt7VsxXzPrONgletYEevPLt8Fp4NNDn34Z96cff3Z27KDn6AUaIoqO0BR9Qidohriz64ydifPO3XffulP3fSd1na2F++hauJ//AhU1uVA=</latexit>{(x1, y1), (x2, y2), . . . }

The Reverse-Engineering Problem
Bayesian Inference

# (x, y) pairs

Perf

LLM w/ Intervention

LLM w/ Passive Observations  

Two Failure Modes Mitigated by Intervention

Program:  
Return the 3rd element of 
the list. 
Observations: 
x = [2, 3, 4, 5], y = 4 
x = [1, 8, 3, 2], y = 3

[Ignores the observations] 
<latexit sha1_base64="fyYz1qDIcbGlAKGYjblsRmOtv1I=">AAACRHicbZBNaxNBGMdnq9Y21Tbq0ctgCEQMy0yMsZdCQRCPEcwLZJNldjKbDJl9YebZ0rCs9Kv14gfw1k/QSw+KeBUnmxxs4gMD/+f/f+btF6RKGiDkxtl78PDR/uODw8rRk6fHJ9Vnz/smyTQXPZ6oRA8DZoSSseiBBCWGqRYsCpQYBIsPq3xwIbSRSfwFlqkYR2wWy1ByBtbyq6N6D59hT4kQGsRtfb306SQn7tsCv8HEPbV9a917Ws7m8HqSe6FmPKdF6RYV5lN7AHHbTcz8Vik7TazPiPvOr9aIS8rCu4JuRA1tqutXv3vThGeRiIErZsyIkhTGOdMguRJFxcuMSBlfsJkYWRmzSJhxXkIocN06Uxwm2q4YcOn+uyNnkTHLKLCTEYO52c5W5v+yUQbh6TiXcZqBiPn6ojBTGBK8IoqnUgsOamkF41rat2I+ZxYSWO4VC4Fuf3lX9Fsu7bj0c7t2/vFqjeMAvUSvUANR9B6do0+oi3qIo2t0i36gn84358755fxej+45G4Qv0L1y/vwFVS6q3w==</latexit>

a1 = 0.4, a2 = 0.6, r = 0.5

LLM Struggles to Utilize Passive Observations

Overcomplication Overlooking

def func(lst):
    lst = sorted(lst)
    return lst[2]

<latexit sha1_base64="faehwGuZS6XhArx+pgVvHK1VHno=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAIB4TMA9IljA76U3GzM4uM7NiWALevXhQxKuf5M2/cfI4aGJBQ1HVTXdXkAiujet+O7mV1bX1jfxmYWt7Z3evuH/Q0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HweuI3H1BpHss7M0rQj2hf8pAzaqxUe+wWS27ZnYIsE29OSjBHtVv86vRilkYoDRNU67bnJsbPqDKcCRwXOqnGhLIh7WPbUkkj1H42PXRMTqzSI2GsbElDpurviYxGWo+iwHZG1Az0ojcR//PaqQmv/IzLJDUo2WxRmApiYjL5mvS4QmbEyBLKFLe3EjagijJjsynYELzFl5dJ46zsXZS92nmpcvM0iyMPR3AMp+DBJVTgFqpQBwYIz/AKb8698+K8Ox+z1pwzj/AQ/sD5/AEPdI2G</latexit>x
<latexit sha1_base64="qtpkiGJQxJfYm7q9gOJES97e08Y=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeiwI4rEF+wFtKJvtpF272YTdjRBCwbsXD4p49Sd589+4/Tho64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfitR1Sax/LeZAn6ER1IHnJGjZXqWa9UdivuFGSZeHNShjlqvdJXtx+zNEJpmKBadzw3MX5OleFM4LjYTTUmlI3oADuWShqh9vPpoWNyapU+CWNlSxoyVX9P5DTSOosC2xlRM9SL3kT8z+ukJrz2cy6T1KBks0VhKoiJyeRr0ucKmRGZJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7rHj1i3L19mkWRwGO4QTOwIMrqMId1KABDBCe4RXenAfnxXl3PmatK848wiP4A+fzBxD4jYc=</latexit>y Passive 

Observation

Active 
InterventionIntervene

<latexit sha1_base64="rpkhbQ1jpECDV4N+dV0FWDDWLHc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KomIeix68VjFfkAbymY7aZduNmF3I5bQf+DFgyJe/Ufe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmIyrNY/lgRgn6Ee1LHnJGjZXun066pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5NgqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwys+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4q3kXFuzsvV6/zOApwCEdwCh5cQhVuoQZ1YBDCM7zCmzN0Xpx352PWuuTkMwfwB87nD0i4jTM=</latexit>

x0 <latexit sha1_base64="LmtN1ns/wN9IyhXoTmYycTqXHIo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6GJ/2yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZpdOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hDDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD0o9jTQ=</latexit>

y0

Randomly 
Sampled

Figure 1: Reverse-engineering. Left: Defining the problem. The AI scientist will obtain passive
observations from the black box or collect data through active intervention to construct a hypothesis.
Right (top): with only passive observations, the LLM cannot make effective use of the data and lags
behind Bayesian inference; allowing the LLM to intervene improves performance. Right (bottom):
effective intervention can mitigate two common failure modes: overcomplication and overlooking.

To answer these questions, we systematically study LLMs on three reverse-engineering tasks in-
spired by the cognitive-science literature and selected to mimic challenges in scientific settings:
reconstructing list-mapping programs (Rule et al., 2024), formal languages (McCoy & Griffiths,
2023), and math equations (Foster et al., 2019). Through extensive experiments, we show that LLMs
are limited in their ability to make inferences from observations, leading to performance plateaus
compared to Bayesian models. However, allowing LLMs to perform interventions—generating test
cases or queries to collect new, informative data—can significantly improve their performance.

Through further experiments where outcomes of interventions conducted by one LLM become ob-
servational data for another, we show that the benefits of intervention seem to come from the LLM
testing and refining its own beliefs rather than simply collecting higher-quality data. This is similar
to a phenomenon observed in human learning, where people show limited benefit from interventions
generated by others (Markant & Gureckis, 2010; 2014). Further investigation reveals that generat-
ing interventions seems to help LLMs overcome two failure modes: 1) overcomplication, where the
LLM tends to construct overly-complex hypotheses, and 2) overlooking, where the LLM neglects
observations or draws overly-generic conclusions without careful checking.

Our contributions are as follows:

• Drawing inspiration from controlled studies of human cognition, we formalize reverse-
engineering as a core problem for assessing the scientific discovery capabilities of LLMs
and design three black-box tasks to facilitate such an assessment.

• We demonstrate empirically that frontier LLMs still struggle, relative to Bayesian infer-
ence, at reverse-engineering these black boxes from only passive observations.

• We show that LLMs can perform interventions to obtain more informative data, and that
effective intervention mitigates the failure modes of overcomplication and overlooking.

• We show that performance degrades when repurposing the LLM’s intervention data as ob-
servations, pinpointing the mechanism behind the improvements it produces and highlight-
ing a potential pitfall for exchanging knowledge among LLMs.

2 RELATED WORK

Inductive Inference Some of the earliest work on reverse-engineering appears under the label
of inductive inference for “hypothesizing a general rule from examples” (Angluin & Smith, 1983).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Classic instances of this problem include work on identifying the underlying structure of a finite-
state automaton through observations of its input-output behavior (Rivest & Schapire, 1987; 1989).
While this problem typically considers passive observations, seminal work on active learning fo-
cuses on analyzing the benefits of actively querying inputs to solicit the most-informative outputs
from the unknown function of interest (Littlestone, 1988; Angluin, 1988; Settles, 2009). The key
distinction between these seminal works and ours is the attention towards LLMs and assessing their
capacity for successfully identifying different types of black boxes from input-output examples.

Bayesian Optimal Experiment Design An adjacent line of work considers the sequential de-
sign of experiments which maximally yield information gain about an unknown parameter of inter-
est (Lindley, 1956; DeGroot, 1962; Chaloner & Verdinelli, 1995; Rainforth et al., 2024); one may in-
terpret these methods as studying a non-LLM-focused, Bayesian analogue of the reverse-engineering
problem we formulate in the subsequent section, where a learner begins with a prior distribution
over the black box in question and must maximally reduce epistemic uncertainty (Der Kiureghian &
Ditlevsen, 2009) with a given budget of experiments. To the extent that LLMs may implicitly engage
with an underlying approximate posterior inference scheme (Xie et al., 2021; Griffiths et al., 2024;
Zhu & Griffiths, 2024a; Falck et al., 2024; McCoy et al., 2024), the reverse-engineering capabilities
studied in this work can be tied to this Bayesian optimal experiment design problem.

Reinforcement Learning The fundamentals of the reverse-engineering problem also connect with
various ideas studied in the context of reinforcement learning (RL) (Sutton & Barto, 1998). Any
model-based RL agent (Sutton, 1990; 1991; Brafman & Tennenholtz, 2002; Strehl & Littman, 2008)
naturally engages with a particular instance of the reverse-engineering problem where the black-box
function in question is the transition function and/or reward function of a Markov Decision Process
(MDP) (Bellman, 1957; Puterman, 1994). The distinction explored in this work between a LLM
that passively observes versus actively intervenes on the black box in question has a direct connec-
tion to the exploration challenge in RL, which has profound impact on an agent’s ability to recover
an accurate model of the world (Thrun & Möller, 1991; Deisenroth & Rasmussen, 2011; Strens,
2000; Osband et al., 2013); while recent work (Arumugam & Griffiths, 2025) has studied how to
improve exploration with LLMs, this paper focuses on assessing the innate capabilities of LLMs
to actively query informative data. Ostrovski et al. (2021) demonstrate the ineffectiveness of pas-
sive learning with deep RL agents and their need to intervene so as to correct misunderstandings
about the world; our work provides the LLM complement to their findings. The KWIK learning
framework of Li et al. (2008) provides a theoretical analysis for reverse-engineering a MDP transi-
tion function when a learner must either confidently estimate the environment dynamics or say “I
don’t know” (Walsh et al., 2009; Li & Littman, 2010; Sayedi et al., 2010; Szita & Szepesvári, 2011;
Abernethy et al., 2013). Finally, there is a connection between intervention for effective reverse-
engineering and meta RL (Liu et al., 2021), with recent work showing that passive learning can be
effective with LLMs once there is an effective exploration strategy capable of yielding high-quality
observations (Lampinen et al., 2023); naturally, the latter problem is precisely what we demonstrate
interventions allow LLMs to solve for themselves in reverse-engineering tasks.

LLMs for Automating the Scientific Process With the rapid advances in LLMs, recent work has
explored using them to automate different parts of the scientific process such as ideation (Si et al.,
2024), assistance (Gottweis et al., 2025), writing research papers (Lu et al., 2024; Starace et al.,
2025), or emulating AI scientists in simulated environments (Schmidgall et al., 2025). Additionally,
multi-modal and multi-agent AI models have driven significant progress in applications such as
protein science (O’Neill et al., 2025), while frameworks like MatPolit (Ni et al., 2024) integrate
human cognitive insights to accelerate discoveries in materials science. These works utilize the
abundant knowledge stored in LLMs to directly tackle real-world complexity in science (Reddy &
Shojaee, 2025). Recent work also shows that LLMs can autonomously generate and test hypotheses
to advance automated scientific discovery (Agarwal et al., 2025). However, the complexity of these
settings and the resulting agents make it hard to disentangle the consequences of the engineering
choices that go into these systems. Our work focuses on simple and controllable black boxes to
study the core capabilities of the LLMs themselves.

Understanding Failure Modes in LLMs Recently, many works have examined the failure modes
(Aggarwal et al., 2025) of formal reasoning in LLMs. It has been observed that LLMs can exhibit

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

failure modes of both “overthinking” (Chen et al., 2024) and “underthinking” (Wang et al., 2025)
when tackling mathematical problems and code generation (He et al., 2025; Sprague et al., 2024)
and (Cuadron et al., 2025; Sprague et al., 2024; Sui et al., 2025; Cemri et al., 2025). To under-
stand LLM abilities beyond formal reasoning tasks, recent work has leveraged insights and datasets
from cognitive science (Frank, 2023; Binz & Schulz, 2023; Coda-Forno et al., 2024; Ying et al.,
2025). In particular, researchers have started to use cognitive science to explore the failed behaviors
in LLMs (Ku et al., 2025). Using these methods, researchers have found that LLMs sometimes
overestimate human rationality (Liu et al., 2024a), exhibit inconsistencies in probability judgments
(Zhu & Griffiths, 2024b), and perform worse as a result of engaging in reasoning (Liu et al., 2024b).
In a similar vein, our work draws upon cognitive science to design the black boxes used in our
reverse-engineering experiments.

3 REVERSE ENGINEERING

3.1 PROBLEM FORMULATION

We define a black box f∗ : X → Y as a deterministic function that maps a query x ∈ X to a response
y ∈ Y through its internal dynamics. The reverse-engineering problem is for a model to infer the
internals of a black box f∗ (such as list mapping programs, production rules of formal languages, and
math equations) from a sequence of query-response pairs O = {(x1, y1), (x2, y2), . . . , (xN , yN )} ⊂
X ×Y (Figure 1). We consider two cases of the reverse-engineering problem: observation-only and
observation-intervention. In the observation-only scenario, all the queries are randomly sampled
from X and the corresponding response yi = f∗(xi) is generated by the black box from a uniform
distribution to construct the observation set. A large language model M must generate a hypothesis
f = M(O) without further interaction with the black box. This setting assesses the model’s ability
to perform inductive reasoning (Angluin & Smith, 1983). In the observation-intervention scenario,
the LLM is first given a set of observations O obtained in the observation-only scenario and is
instructed to interact with the black box in a multi-round fashion. In each round, the LLM chooses
one of the following actions: 1) construct a new query xN+1 to query the black box and obtain the
response yN+1, 2) construct a new query-response pair (xN+1, y

′
N+1) and check its validity using

the black box (1[y′N+1 = f∗(xN+1)]), or 3) stop and conclude with a hypothesis f about the black
box. Before constructing the new query, the LLM can analyze the current oservations with strategies
such as verbalizing its current belief or describing the current hypothesis (§5.2). Before the LLM
chooses to stop or reaches the maximal number of rounds, the query-response pairs obtained during
intervention are appended to O for the next round.

3.2 BLACK-BOX TYPES

Drawing on the literature on inductive inference in cognitive science, we select tasks commonly used
to study learning of complex relationships to design our black-box systems and scale them up for
evaluation with LLMs. These three distinct black-box function classes – Program, Formal Language,
and Mathematical Equation – simulate problems encountered in scientific reverse-engineering sce-
narios. Due to space constraints, detailed black-box designs are relegated to Appendix B.

Program. We use list-mapping programs (Rule et al., 2024) for the Program black-box. Each pro-
gram implements a lambda expression (e.g., (lambda(singleton(third $0)))) in Python,
where the query is a list of integers and the response is an integer.

Formal Language. The Formal Language black-box is defined by a simple program that generates
sequences of symbols. For example, the language AnBn generates sequences consisting of some
number of As followed by the same number of Bs. The black-box allows the LLM to intervene by
validating if a string is allowable under the rule. We define 46 distinct black boxes each based on a
language from Yang & Piantadosi (2022) or McCoy & Griffiths (2023).

Math Equation. We use the Constant Elasticity of Substitution (CES) formulation from eco-
nomics (Foster et al., 2019) as the Math Equation black-box. The utility U = (

∑
i aix

r
i )

1
r is given

by the weights ai, the ratio r, and the quantities of each kind of goods xi. The LLM queries the
black box with two lists of item types with quantities. The response says which list has higher utility.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 EVALUATION PROTOCOL

A black-box can be represented in multiple ways, rendering evaluation challenging. For example,
two black-boxes can be compared through their descriptions in natural language (descriptive eval-
uation) or whether they respond similarly to the same queries (functional evaluation; see §J). In
this paper we focus on descriptive evaluation, where the black-box f∗

NL is expressed in natural
language, due to its communicative nature and real-world use (Chopra et al., 2019; Gandhi et al.,
2025). The LLM-generated hypothesis fNL is scored by an LLM judge against the black-box on a
0−10 scale based on the criteria of each black-box type (score = LM-Judge(fNL, f

∗
NL)). We use

descriptive evaluation for Program and Formal Language. As the Math Equation does not require
verbalization beyond the weights and ratio, we report the flipped root mean square error (1 - RMSE)
between the inferred parameters and ground truth.

4 EXPERIMENTS

Experimental setup. We use different versions of GPT-4o (Hurst et al., 2024) for reverse-
engineering (gpt-4o-2024-08-06, dubbed as reverse-engineer LLM) and as the judge (gpt-4o-2024-
05-13, dubbed as the judge LLM). We use greedy decoding of both the reverse-engineer and the
judge LLMs and report performance over 3 seeds. For the observation-only experiments, we re-
port performance for number of observations N = {2, 10, 15, 20, 30, 60}. For the observation-
intervention setting, the reverse-engineer LLM performs M = {5, 10, 20, 50} rounds of interven-
tions conditioned on the initial set of 10 observations (|O| = 10). In addition to GPT-4o, we report
full results for Claude-3.5-Sonnet-20241022 (Anthropic, 2024), DeepSeek-R1 (Guo et al., 2025),
Llama-3.3-70B-Instruct Grattafiori et al. (2024), GPT-5, and Claude 4 Sonnet in Appendix F, show-
ing that even the strongest models still require active intervention to achieve high performance. We
also show the reliability of using GPT-4o as a judge in Appendix I, comparing Cohen’s scores with
human annotations and with the latest LLM-as-judge results. We provide prompts for both interven-
tion and hypothesis generation in Appendix E and other evaluation approaches in Appendix J.

4.1 LLM STRUGGLES TO UTILIZE OBSERVATIONS OPTIMALLY

0 10 20 30 40 50 60

10

30

50

70

90

0 10 20 30 40 50 60

10

20

30

40

50

0 10 20 30 40 50 60

30

50

70

90

Bayesian (observation-only) LLM (observation-only)
# datapoints # datapoints # datapoints

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

Program Formal Language Math Equation

Figure 2: Observation-only results across three black-box types. We compare GPT-4o (blue) to
Bayesian inference (green). The horizontal-axis represents the number of provided (x, y) pairs. We
report 1− RMSE for Math Equation and descriptive score for Program and Formal Language.

We first establish the reference performance achievable by the Bayesian model in each setting. These
three settings were selected in part because they are all cases where previous work has defined in-
ference algorithms that make it possible to approximate the posterior distribution over hypotheses
as more observations becomes available (Rule et al., 2024; Yang & Piantadosi, 2022; Foster et al.,
2019). As shown in Figure 2, the Bayesian models (green) consistently improve with the increased
number of observations across all three tasks. On the other hand, while the LLM reverse-engineer
(blue) starts off with higher performance for Program and Formal Language, potentially leveraging
its prior knowledge, it peaks at 10 observations and struggles to use the extra observations thereby
causing performance to plateau. We also calculate repeated measures ANOVAs (Girden, 1992) for
each black-box type and found significant Model × number of datapoints interactions for Program
(F (5, 10) = 51.9, p < 0.001), Formal Language (F (5, 10) = 11.8, p = 0.001), and Math Equa-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

tion (F (5, 10) = 8.7, p = 0.002), showing that the Bayesian inference algorithms increasingly
outperformed LLMs with additional observations. Details for the ANOVAs are in Appendix D.1.

4.2 INTERVENTION IS CRUCIAL FOR THE LLM TO REFINE HYPOTHESES

0 10 20 30 40 50 60

10

30

50

70

90

0 10 20 30 40 50 60

10

20

30

40

50

0 10 20 30 40 50 60

30

50

70

90

LLM (observation-only) Bayesian (observation-only) LLM (observation-intervention) Bayesian (observation-intervention)
# datapoints # datapoints # datapoints

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

Program Formal Language Math Equation

Figure 3: Observation-intervention results across three black-box types. Red: observations and
interventions by GPT-4o. Yellow: taking the observation-intervention collected from GPT-4o as
observations for the Bayesian inference algorithms. Dashed lines: observation-only reference for
GPT-4o (blue) and Bayesian inference (green).

In Figure 3, we compare the performance of models with access to only the observations (dashed
lines) against using the data that is actively collected through intervention (solid lines). We ob-
serve that enabling the LLM to actively intervene significantly improves performance (red) over
observation-only (dashed blue). Through intervention, the LLM consistently improves as more data
becomes available across all three black-box types, consistent with prior results on passive learning
(Ostrovski et al., 2021). To assess the quality of the interventions, we provide the LLM-collected
intervention data to the Bayesian model as observations, akin to the passive yoked data studied in
Markant & Gureckis (2010; 2014). Our results indicate that while the interventions are beneficial to
the LLM, they are not universally more informative, paralleling findings in human active learning
(Markant & Gureckis, 2010; 2014). This gap was statistically significant, as shown by an ANOVA
for each black box type: Program (F (5, 10) = 23.9, p < 0.001), Formal Language (F (5, 10) = 7.9,
p = 0.003), and Math Equation (F (5, 10) = 14.9, p < 0.001).

4.3 IDENTIFYING THE VALUE OF GENERATING THE INTERVENTION DATA

0 10 20 30 40 50 60
20

30

40

50

60

0 10 20 30 40 50 60

10

20

30

40

50

0 10 20 30 40 50 60
25

35

45

55

65

GPT-4o (observation-only) GPT-4o (observation-intervention) GPT-4o (intervention-yoked)
# datapoints # datapoints # datapoints

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

Program Formal Language Math Equation

Figure 4: Comparing intervention-yoked results with observation-only and observation-intervention
across three black-box types.

The improvement in performance produced by the interventions could have two sources: it could
be that the resulting data are more informative, or that the process of generating interventions it-
self helps the model. To tease these apart, we adopt the passive-yoked design that Markant &
Gureckis (2010; 2014) used to study human learning, where the data generated via active learning
by one group of participants is presented to another group of participants as passive observations.
In Figure 4, we compare GPT-4o across three conditions: observation-only (blue), observation-
intervention (red), and intervention-yoked (purple) where GPT-4o only passively observes the
interventional data without the verbalization and analysis that are used to construct such data. Re-
sults consistently show that the intervention-yoked setting leads to lower performance compared to

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the observation-intervention setting across all three black-box types. This shows that active learning
is more beneficial than passive-yoked learning in part because it allows the LLM to dynamically
refine its hypothesis in response to its own interventions.

5 ANALYSIS

5.1 ESCAPING THE FAILURE MODES: OVERCOMPLICATION & OVERLOOKING

+12.7

+4.0

+1.7
+0.8

-0.6

+12.1

+8.0
+8.5 +8.3

+2.0

+6.7
+7.8

+9.4

Level-1 Level-2 Level-3 Level-4 Level-5Δ
 (

In
te

rv
en

ti
on

 –
 O

bs
er

va
ti
on

) Program Formal Language Math Equation

Figure 5: Descriptive scores for five different complexity levels. Averaged across three seeds for
each of the three black-box types.

To understand how intervention improves LLM performance, we analyze common failures by sam-
pling 20 failed examples (scoring below 2 out of 10 points) from the observation-only experiment,
which were inspected by human experts. We provide more details in Appendix G.1. We identify two
major failure modes: 1) overcomplication, where the LLM excessively interprets the data, resulting
in unnecessarily complex hypotheses, and 2) overlooking, where the LLM inadequately leverages
available information, leading to poorly reasoned hypotheses. We classified 20 randomly sampled
examples for each black-box into the two failure modes or “Not Applicable” by human annotation.
Results show that for Program the failures are predominantly from overcomplication (17 cases out
of 20) whereas Math Equation contains more overlooking failures (16 cases out of 20). The failures
are more evenly distributed for Formal Language, with 8 examples classified as overcomplication,
11 examples as overlooking, and 1 example as “Not Applicable”. We provide examples for these
failure mode in Appendix G.2.

Notably, we find that the impact of interventions on alleviating these two failure modes is contingent
upon the complexity of the reverse-engineering task itself. For each of the three specific domains
we study, we include a brief characterization of complexity in Appendix M. Within each domain,
we observe that the complexity of the reverse-engineering problem instance characterized by f∗

governs the extent to which interventions rectify overcomplication and overlooking. In Figure 5, we
show that performance improvements from intervention on Program diminish as task complexity
increases for black-box systems dominated by the overcomplication failure mode. In contrast, ac-
tively collected data is more beneficial when addressing challenging black-box instances dominated
by the overlooking failure mode, such as Math Equation. For Formal Language, where both failure
modes frequently occur, we observe consistent improvements across all complexity levels.

Case study. Figure 6 demonstrates how an LLM progressively updates its hypothesis through ac-
tive interventions to ultimately reverse-engineer the underlying mechanism of a black-box system
using a Formal Language black-box intervention example, where GPT-4o strategically designs sub-
sequent queries to validate its current belief about the system. In contrast, under the observation-only
scenario, the model remains trapped in identifying spurious patterns from passively observed data
and lacks a meaningful way to assess its own uncertainty. Through active interventions, the LLM
iteratively tests and revises its hypotheses after encountering failures, gradually reducing uncertainty
and converging toward an accurate understanding of the black-box mechanism.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AAAABBBBCCCCCCCC         is generated by the black box 
AAABBBCCCCCC             is generated by the black box 
{more observations}

Black-Box: Formal Language Rule = A^n B^n C^(2n)

Intervention Round N

Observations

Intervention Round N+1

Let's review the observations and tests conducted so far to refine our understanding of the black box's rules: 
- A's and B's in the generated strings is equal; C’s is exactly double the number of A's (or B's) 
- AABBBCCCC:  Not generated, indicating the number of A's and B's must be equal. [...] 
- ABCCCC:     Not generated, reinforcing the rule that C's must be exactly double the number of A's (or B's). 
- AABBCCCC:   Generated, confirming the pattern of equal A's and B's, and C's being double. 
Hypothesis: the black box generates strings that follow these rules: 
- If not empty, it consists of a sequence of 'A's followed by 'B's followed by 'C's. 
- The number of 'A's and 'B's must be equal. 
- The number of 'C's must be exactly double the number of 'A's (or 'B's). 
Let's test a string that follows this pattern with a different count of A, B, and C. 
Test: ABCC             Black-box: can be generated

Hypothesis: the black box generates strings that follow a pattern where [...] 
- If not empty, it consists of a sequence of 'A's followed by 'B's followed by 'C's. 
- The number of 'A's and 'B's can vary, but the number of 'C's tends to be larger. 
Let’s test strings with a different count of 'A's, 'B's, and 'C's to see if it is generated by the black box. 
Test: AABBBCCCC        Black-box: cannot be generated 
Test: AAABBBCCCC       Black-box: cannot be generated 
Test: ABCCCC           Black-box: cannot be generated 
Test: AABBCCCC         Black-box: can be generated 
Test: AAAABBBBCCCCCCCC Black-box: can be generated

Figure 6: Case study example. GPT-4o updates the hypothesis using intervention on Formal Lan-
guage black box. Yellow: GPT-4o states the hypothesis based on the passive observations in round
N and updates the hypothesis in round N + 1. Red: test case. Teal: black box response.

5.2 INTERVENTION STRATEGIES

Descriptive Functional Analyze-then-
Black Box Intervention Intervention Intervention Query Intervention

Program 43.4 47.6 19.2 50.8

Formal Language 24.1 28.6 22.8 34.7

Math Equation 34.8 38.8 39.9 38.0

Table 1: Comparison of the four intervention strategies.

Similar to how LLMs use
chain-of-thought reasoning
(Wei et al., 2022) to solve
complex tasks, we allow the
LLM to state its hypotheses
and analyze the observations
before constructing the query.
We investigate how different
reasoning strategies impact
the effectiveness of interven-
tion. We compare four strategies: 1) Intervention: no reasoning before constructing the query,
2) Descriptive Intervention: describing the current hypothesis about the black-box, 3) Functional
Intervention: verbalize the black-box implementation as a Python program (Li et al., 2025; Luo
et al., 2025), and 4) Analyze-then-Query: allowing the LLM to analyze data and state a hypothesis
freely. Throughout our experiments, we allow the LLM to reason once every five queries.

As shown in Table 1, allowing the LLM to reason generally improves the effectiveness of interven-
tion regardless of the strategy. However, the most effective intervention typically requires the LLM
to carefully analyze past observations and strategically plan subsequent steps to acquire more infor-
mative data from the black-box. Interestingly, while structured reasoning in functional intervention
(Li et al., 2025; Luo et al., 2025) is known to improve performance in formal reasoning tasks, it
does not produce additional improvement in the context of reverse-engineering. This suggests that
the LLM reverse-engineering abilities may differ from its formal reasoning capabilities.

5.3 TRANSFERRING TO ANOTHER LLM

We also examine whether interventional data actively collected by one LLM (GPT-4o) can effec-
tively transfer and benefit another LLM (Llama-3.3-70B-Instruct). This is relevant to whether AI
scientists can transfer their experiments and findings successfully to another AI scientist. Adopting
a similar passive-yoked design, we compare three scenarios for Llama-3.3-70B-Instruct (Grattafiori
et al., 2024): observation-only, observation-intervention, and intervention-transfer, where the
interventional data is collected by GPT-4o. As shown in Figure 7, the intervention-transfer scenario
achieves performance comparable to or slightly better than the observation-only baseline but consis-
tently underperforms Llama’s own intervention (observation-intervention). This suggests that while
the intervention data from GPT-4o is informative, the effectiveness diminishes when transferred to
a different LLM, showing that the benefit from intervention is model-specific.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60
20

30

40

50

60

0 10 20 30 40 50 60

10

20

30

40

50

0 10 20 30 40 50 60

20

30

40

50

observation-only observation-intervention intervention-yoked
# datapoints # datapoints # datapoints

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

Program Formal Language Math Equation

Figure 7: Intervention data transfer results. Red: Llama-3.3-70B-Instruct performing intervention.
Blue: Llama-3.3-70B-Instruct using observations only. Purple: using interventional data from GPT-
4o as observations for Llama-3.3-70B-Instruct.

6 LIMITATIONS AND FUTURE DIRECTIONS

In this paper, we have discussed the inabilities and failure modes of LLMs in reverse-engineering
black-boxes. However, the three black-box types we studied represent only a narrow slice of possi-
ble tasks, even within controlled settings. A more comprehensive assessment will require expanding
and scaling up the evaluation suite to probe LLMs’ reverse-engineering abilities across a broader
spectrum of scenarios. In addition, we have assumed idealized, noise-free black-boxes and fully
trustworthy data—a condition that is rarely met in real scientific practices. An important next step is
to relax this assumption and rigorously test LLM robustness in the presence of noise and uncertainty.
As our paper discuss extensively on the failure modes of LLMs, we leave open the question: “How
can we train LLMs to become effective reverse engineers?”, which includes enhancing the LLM’s
ability to perform correct inference from passive observations and to conduct optimal experiments.
In particular, what kinds of data and algorithms are needed to train such a model (for example, rein-
forcement learning using black-box environments), and can improvements in one domain generalize
to broader scientific automation tasks? Finally, we have demonstrated that the actively acquired data
by one LLM may not be useful for another LLM, pointing to the issue of experience transferability.
Just as many major scientific advances have relied on effective human collaborations, so too may
future automation of scientific discoveries depend on resolving this issue for LLM collaborations.
Understanding and quantifying the impact of this limited transferability of knowledge may be cru-
cial as multi-agent systems become prevalent, and it will be essential to design such systems with
effective communication baked in.

7 CONCLUSION

In this paper, we identified and formalized the reverse-engineering problem as a core ability and pre-
requisite for performing a reliable scientific discovery. We showed that current LLMs still struggle
to effectively leverage passive observations even on seemingly simple and controlled black-boxes.
Allowing LLMs to actively collect intervention data improves performance, but still falls short of
closing the gap with Bayesian inference, casting doubt on the promise of truly reliable AI scien-
tists. Through extensive analysis, we identified issues such as overcomplication and overlooking
and illustrate how intervention can mitigate such failures. Despite the effectiveness of intervention,
our analysis revealed that the intervention data collected by LLMs were primarily beneficial to the
models themselves, rather than being objectively informative or transferable to other models.

Altogether, our paper directly assesses the ability of LLMs to infer underlying causal structures and
mechanisms through controlled reverse-engineering experiments. This capacity mirrors the funda-
mental scientific discovery process, which relies heavily on identifying hidden relationships and
principles behind observed phenomena. Consequently, if an LLM cannot reliably reverse-engineer
even simple or controlled systems, this raises concerns regarding its dependability in addressing
more complex and ambiguous scientific challenges. Evaluating an LLM’s reverse-engineering abil-
ity provides a concrete and principled way to assess its capacity for scientific reasoning, helping us
understand whether such models possess the foundational skills required to function as dependable
AI scientists.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This work investigates how language models can reverse-engineer black-box systems in fully syn-
thetic domains such as programs, formal languages, and mathematical equations. Our study does
not involve human subjects, sensitive or proprietary data, or any real-world systems. While reverse-
engineering methods in general could raise concerns if applied to sensitive settings, our research
design deliberately avoids such cases by restricting all experiments to controlled, non-sensitive en-
vironments. We do not identify direct ethical issues beyond the standard considerations for compu-
tational research.

REFERENCES

Jacob Abernethy, Kareem Amin, Michael Kearns, and Moez Draief. Large-Scale Bandit Problems
and KWIK Learning. In International Conference on Machine Learning, pp. 588–596, 2013.

Dhruv Agarwal, Bodhisattwa Prasad Majumder, Reece Adamson, Megha Chakravorty,
Satvika Reddy Gavireddy, Aditya Parashar, Harshit Surana, Bhavana Dalvi Mishra, Andrew Mc-
Callum, Ashish Sabharwal, et al. Open-ended scientific discovery via bayesian surprise. arXiv
preprint arXiv:2507.00310, 2025.

Pranjal Aggarwal, Seungone Kim, Jack Lanchantin, Sean Welleck, Jason Weston, Ilia Kulikov, and
Swarnadeep Saha. Optimalthinkingbench: Evaluating over and underthinking in llms. arXiv
preprint arXiv:2508.13141, 2025.

Dana Angluin. Queries and Concept Learning. Machine Learning, 2:319–342, 1988.

Dana Angluin and Carl H Smith. Inductive Inference: Theory and Methods. ACM Computing
Surveys (CSUR), 15(3):237–269, 1983.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024.

Dilip Arumugam and Thomas L Griffiths. Toward Efficient Exploration by Large Language Model
Agents. arXiv preprint arXiv:2504.20997, 2025.

Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, pp.
679–684, 1957.

Marcel Binz and Eric Schulz. Using cognitive psychology to understand GPT-3. Proceedings of the
National Academy of Sciences, 120(6):e2218523120, 2023.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

Ronen I Brafman and Moshe Tennenholtz. R-MAX – A General Polynomial Time Algorithm
for Near-Optimal Reinforcement Learning. Journal of Machine Learning Research, 3:213–231,
2002.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. pp. 1877–1901, 2020.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Kathryn Chaloner and Isabella Verdinelli. Bayesian Experimental Design: A Review. Statistical
Science, pp. 273–304, 1995.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do Not Think that Much for 2+3=? On the Overthinking
of o1-like LLMs. arXiv preprint arXiv:2412.21187, 2024.

Sahil Chopra, Michael Henry Tessler, and Noah D Goodman. The first crank of the cultural ratchet:
Learning and transmitting concepts through language. In Proceedings of the Annual Meeting of
the Cognitive Science Society, volume 41, 2019.

Julian Coda-Forno, Marcel Binz, Jane X Wang, and Eric Schulz. Cogbench: A Large Language
Model Walks into A Psychology Lab. arXiv preprint arXiv:2402.18225, 2024.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

MH DeGroot. Uncertainty, Information, and Sequential Experiments. The Annals of Mathematical
Statistics, 33(2):404–419, 1962.

Marc Deisenroth and Carl E Rasmussen. PILCO: A Model-Based and Data-Efficient Approach
to Policy Search. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pp. 465–472, 2011.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or Epistemic? Does it Matter? Structural
Safety, 31(2):105–112, 2009.

Fabian Falck, Ziyu Wang, and Chris Holmes. Is in-context learning in large language models
Bayesian? A martingale perspective. arXiv preprint arXiv:2406.00793, 2024.

Adam Foster, Martin Jankowiak, Elias Bingham, Paul Horsfall, Yee Whye Teh, Thomas Rainforth,
and Noah Goodman. Variational Bayesian optimal experimental design. Advances in Neural
Information Processing Systems, 32, 2019.

Michael C Frank. Baby steps in evaluating the capacities of large language models. Nature Reviews
Psychology, 2(8):451–452, 2023.

Kanishk Gandhi, Michael Y Li, Lyle Goodyear, Louise Li, Aditi Bhaskar, Mohammed Zaman, and
Noah D Goodman. BoxingGym: Benchmarking progress in automated experimental design and
model discovery. arXiv preprint arXiv:2501.01540, 2025.

Yolanda Gil, Mark Greaves, James Hendler, and Haym Hirsh. Amplify scientific discovery with
artificial intelligence. Science, 346(6206):171–172, 2014.

Ellen R Girden. ANOVA: Repeated measures. Number 84. Sage, 1992.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, Khaled Saab, Dan Popovici,
Jacob Blum, Fan Zhang, Katherine Chou, Avinatan Hassidim, Burak Gokturk, Amin Vahdat,
Pushmeet Kohli, Yossi Matias, Andrew Carroll, Kavita Kulkarni, Nenad Tomasev, Yuan Guan,
Vikram Dhillon, Eeshit Dhaval Vaishnav, Byron Lee, Tiago R D Costa, José R Penadés, Gary
Peltz, Yunhan Xu, Annalisa Pawlosky, Alan Karthikesalingam, and Vivek Natarajan. Towards an
AI co-scientist. arXiv preprint arXiv:2502.18864, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Tay-
lor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Ra-
parthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya
Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky,
Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speck-
bacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan
Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong
Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang,
Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li,
Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, and Zoe Papakipos. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783. Accessed:
2025-05-14.

Thomas L Griffiths, Jian-Qiao Zhu, Erin Grant, and R Thomas McCoy. Bayes in the Age of Intelli-
gent Machines. Current Directions in Psychological Science, 33(5):283–291, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Zhongyuan Peng,
Zhaoxiang Zhang, Wenbo Su, and Bo Zheng. Can large language models detect errors in long
chain-of-thought reasoning? arXiv preprint arXiv:2502.19361, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Katie Kang, Amrith Setlur, Dibya Ghosh, Jacob Steinhardt, Claire Tomlin, Sergey Levine, and
Aviral Kumar. What do learning dynamics reveal about generalization in llm reasoning? arXiv
preprint arXiv:2411.07681, 2024.

Alexander Ku, Declan Campbell, Xuechunzi Bai, Jiayi Geng, Ryan Liu, Raja Marjieh, R Thomas
McCoy, Andrew Nam, Ilia Sucholutsky, Veniamin Veselovsky, et al. Using the tools of cogni-
tive science to understand large language models at different levels of analysis. arXiv preprint
arXiv:2503.13401, 2025.

Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class of context-
sensitive languages. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pp. 161–170, 2007.

12

https://arxiv.org/abs/2407.21783


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andrew Kyle Lampinen, Stephanie C Y Chan, Ishita Dasgupta, Andrew J Nam, and Jane X Wang.
Passive learning of active causal strategies in agents and language models. Advances in Neural
Information Processing Systems, 2023.

GG Landis JRKoch. The measurement of observer agreement for categorical data. Biometrics, 33
(1):159174, 1977.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation.
ACM Transactions on Software Engineering and Methodology, 34(2):1–23, 2025.

Lihong Li and Michael L Littman. Reducing Reinforcement Learning to KWIK Online Regression.
Annals of Mathematics and Artificial Intelligence, 58:217–237, 2010.

Lihong Li, Michael L Littman, and Thomas J Walsh. Knows What It Knows: A Framework for
Self-Aware Learning. In Proceedings of the 25th International Conference on Machine Learning,
pp. 568–575, 2008.

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, 27(4):986–1005, 1956.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1988.

Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling Exploration and Ex-
ploitation for Meta-Reinforcement Learning Without Sacrifices. In International Conference on
Machine Learning, pp. 6925–6935, 2021.

Ryan Liu, Jiayi Geng, Joshua C Peterson, Ilia Sucholutsky, and Thomas L Griffiths. Large language
models assume people are more rational than we really are. arXiv preprint arXiv:2406.17055,
2024a.

Ryan Liu, Jiayi Geng, Addison J Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L Griffiths.
Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking
makes humans worse. arXiv preprint arXiv:2410.21333, 2024b.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Yijia Luo, Yulin Song, Xingyao Zhang, Jiaheng Liu, Weixun Wang, GengRu Chen, Wenbo Su, and
Bo Zheng. Deconstructing long chain-of-thought: A structured reasoning optimization framework
for long cot distillation. arXiv preprint arXiv:2503.16385, 2025.

Doug Markant and Todd Gureckis. Category learning through active sampling. In Proceedings of
the Annual Meeting of the Cognitive Science Society, volume 32, 2010.

Douglas B Markant and Todd M Gureckis. Is it better to select or to receive? learning via active and
passive hypothesis testing. Journal of Experimental Psychology: General, 143(1):94, 2014.

R Thomas McCoy and Thomas L Griffiths. Modeling rapid language learning by distilling bayesian
priors into artificial neural networks. arXiv preprint arXiv:2305.14701, 2023.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. Embers
of autoregression show how large language models are shaped by the problem they are trained to
solve. Proceedings of the National Academy of Sciences, 121(41):e2322420121, 2024.

Ziqi Ni, Yahao Li, Kaijia Hu, Kunyuan Han, Ming Xu, Xingyu Chen, Fengqi Liu, Yicong Ye,
and Shuxin Bai. Matpilot: an llm-enabled ai materials scientist under the framework of human-
machine collaboration. arXiv preprint arXiv:2411.08063, 2024.

Charles O’Neill, Tirthankar Ghosal, Roberta Răileanu, Mike Walmsley, Thang Bui, Kevin Schawin-
ski, and Ioana Ciucă. Sparks of science: Hypothesis generation using structured paper data. arXiv
preprint arXiv:2504.12976, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) Efficient Reinforcement Learning via
Posterior Sampling. Advances in Neural Information Processing Systems, 26:3003–3011, 2013.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283–23295,
2021.

Martin L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 1994.

Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern Bayesian
Experimental Design. Statistical Science, 39(1):100–114, 2024.

Chandan K Reddy and Parshin Shojaee. Towards scientific discovery with generative ai: Progress,
opportunities, and challenges. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 28601–28609, 2025.

Ronald L Rivest and Robert E Schapire. Diversity-Based Inference of Finite Automata. In 28th
Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 78–87, 1987.

Ronald L Rivest and Robert E Schapire. Inference of Finite Automata Using Homing Sequences. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 411–420,
1989.

Milena Rmus, Akshay K. Jagadish, Marvin Mathony, Tobias Ludwig, and Eric Schulz. Towards
automation of cognitive modeling using large language models. arXiv preprint arXiv:2502.00879,
2025.

Joshua S Rule, Steven T Piantadosi, Andrew Cropper, Kevin Ellis, Maxwell Nye, and Joshua B
Tenenbaum. Symbolic metaprogram search improves learning efficiency and explains rule learn-
ing in humans. Nature Communications, 15(1):6847, 2024.

Amin Sayedi, Morteza Zadimoghaddam, and Avrim Blum. Trading off Mistakes and Don’t-Know
Predictions. Advances in Neural Information Processing Systems, 23, 2010.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants.
arXiv preprint arXiv:2501.04227, 2025.

Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, Uni-
versity of Wisconsin–Madison, 2009.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models. International
Conference on Learning Representations, 2025.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can LLMs generate novel research ideas? A
large-scale human study with 100+ NLP researchers. arXiv preprint arXiv:2409.04109, 2024.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To CoT or not to CoT? chain-of-
thought helps mainly on math and symbolic reasoning. arXiv preprint arXiv:2409.12183, 2024.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Alexander L Strehl and Michael L Littman. An Analysis of Model-based interval estimation for
Markov Decision Processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Malcolm JA Strens. A Bayesian framework for reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, pp. 943–950, 2000.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419, 2025.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Proceedings of the Seventh International Conference on Machine
Learning, pp. 216–224, 1990.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Richard S Sutton and Andrew G Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

István Szita and Csaba Szepesvári. Agnostic KWIK learning and Efficient Approximate Reinforce-
ment Learning. In Proceedings of the 24th Annual Conference on Learning Theory, pp. 739–772,
2011.

Sebastian B Thrun and Knut Möller. Active exploration in dynamic environments. Advances in
Neural Information Processing Systems, 4, 1991.

Thomas J Walsh, István Szita, Carlos Diuk, and Michael L Littman. Exploring Compact
Reinforcement-Learning Representations with Linear Regression. In Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, pp. 591–598, 2009.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific Discovery in the Age of
Artificial Intelligence. Nature, 620(7972):47–60, 2023.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
o1-like llms. arXiv preprint arXiv:2501.18585, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit Bayesian inference. In International Conference on Learning Representa-
tions, 2021.

Yuan Yang and Steven T. Piantadosi. One model for the learning of language. Proceedings of the
National Academy of Sciences, 119(5):e2021865119, 2022.

Lance Ying, Katherine M Collins, Lionel Wong, Ilia Sucholutsky, Ryan Liu, Adrian Weller, Tianmin
Shu, Thomas L Griffiths, and Joshua B Tenenbaum. On benchmarking human-like intelligence in
machines. arXiv preprint arXiv:2502.20502, 2025.

Cedegao E Zhang, Katherine M Collins, Lionel Wong, Mauricio Barba, Adrian Weller, and Joshua B
Tenenbaum. People use fast, goal-directed simulation to reason about novel games. arXiv preprint
arXiv:2407.14095, 2024.

Jian-Qiao Zhu and Thomas L Griffiths. Eliciting the priors of large language models using iterated
in-context learning. arXiv preprint arXiv:2406.01860, 2024a.

Jian-Qiao Zhu and Thomas L Griffiths. Incoherent probability judgments in large language models.
arXiv preprint arXiv:2401.16646, 2024b.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

B BLACK BOX DESIGNS

Program We used 100 list-mapping program instances from (Rule et al., 2024) to design the
Program black-box API. Each black-box instance represents as a symbolic program defined in a
domain-specific language (DSL). We implemented an interpreter pipeline that parses DSL expres-
sions into abstract syntax trees and compiles them into executable Python code.

Each black-box supports two modes: observation (observation-only) and intervention
(observation-intervention). In the observationmode, the black-box takes a random input list and
returns the output produced by the underlying symbolic program, generating paired observational
data:

input list → program execution → output list

In the intervention mode, the LLM queries an input or explicitly specifies an input-output pair.
The black-box generates the output list or evaluates whether the given output matches the internally
computed output and provides clear feedback:

Feedback =

{
”output ⇒ Correct”, if the provided output matches the program output,

”output ⇒ Incorrect”, otherwise.

Formal Language We followed (Yang & Piantadosi, 2022; McCoy & Griffiths, 2023) to im-
plement a collection of 46 formal language instances to construct our formal language black-box,
each instance being capable of generating strings according to specific symbolic rules (e.g. AnBn).
Each black-box instance behaves as an API from a generative model, operating in two modes:
observation and intervention.

In the observation mode (observation-only), the black-box randomly produces valid strings
from its underlying rule, explicitly labeling each as generated output, for example:

“AAAABBBB” is generated by the black-box.

In the intervention mode (observation-intervention), the LLM submits a specific string query
to the black-box, which evaluates whether the string complies with its rule. The black-box responds
clearly, indicating either acceptance or rejection:

Response =

{
“[string] is generated by the black-box”, if the strings compile with the rule,

“[string] cannot be generated by the black-box”, otherwise.

To avoid generating infinite strings, we imposed a maximum character length of 64 for all single
characters generated by the black-box.

Math Equation For the math equation, we implemented the CES utility model as the black-box,
designing it as a generative model capable of generating observational data or responding to queries
from an LLM. The utility function of CES is mathematically defined as:

U =

(∑

i

aix
r
i

) 1
r

,

where the weights ai satisfy the constraint
∑

i ai = 1, the parameter r controls the substitution
elasticity, and xi represents the quantities of goods in a basket.

CES black-box also provides two operational modes: observation (observation-only) and
intervention (observation-intervention). In the observationmode, the black-box randomly
samples two baskets (each a list of good quantities) and computes their utilities using the CES for-
mulation. It then returns the preference outcome indicating which basket is preferred based on

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

higher utility:

Preference =





Basket1, U(Basket1) > U(Basket2),

Basket2, U(Basket1) < U(Basket2),

equal utility, U(Basket1) = U(Basket2).

In the intervention mode, an external model explicitly queries the black-box by specifying two
baskets. In addition, the external model can also provide an estimated preference. The CES black-
box internally evaluates the utilities based on the specified baskets and returns the actual preference
outcome or feedback indicating whether the provided estimate was “correct” or “incorrect”.

C BAYESIAN MODELS AS THE ‘OPTIMAL’ REFERENCE

We employ Bayesian models as an oracle for optimal reverse-engineering against which we may
assess the capabilities of LLMs. Unlike LLMs, Bayesian models explicitly perform probabilistic
inference within a clearly defined hypothesis space, systematically updating posterior beliefs us-
ing the Bayes rule to identify the underlying mechanism that best explain observed data. Under
the critical assumption that the true underlying rule resides within this hypothesis space (that is,
the standard assumption of a well-specified prior), Bayesian models serve as an optimal reference
standard in our experimental setting. We hypothesize that LLMs, when provided only with passive
observational data, are unable to effectively utilize available information due to their inherent re-
liance on prior knowledge, resulting in significantly lower performance compared to the Bayesian
optimal standard. However, allowing LLMs to actively intervene and collect data can substantially
reduce the performance gap. For each of the three black-box systems evaluated, we replicated the
Bayesian models from their original studies, adapting them to closely match our experimental con-
ditions. Specifically, we provide Bayesian models with observed data generated by our black-box
systems as an ideal reference. We also provide Bayesian models with the actively collected data
from LLMs intervention to assess the informativeness of the data gathered by LLMs. To ensure
rigorous comparability, we applied identical evaluation methodologies to both the Bayesian models
and LLMs.

Program We used the Bayesian inference approach from Rule et al. (2024) to establish an optimal
reference for list-mapping program black-box. Specifically, we utilized their MetaProgram Learner,
which performs Bayesian inference over symbolic metaprograms that generate target programs from
observed data.

Given observational data D, consisting of input-output pairs generated by symbolic programs, the
MPL computes the posterior distribution over candidate hypotheses (metaprograms) H according to
the Bayes rule:

P (H | D) ∝ P (D | H) · P (H).

The prior distribution P (H) integrates two complementary sources of simplicity bias: the meta-
program prior PM(H) and the induced program prior PP(H̃). This combined prior is defined as:

P (H) ∝ exp

(
lnPM(H) + lnPP(H̃)

2

)
,

where H̃ denotes the program compiled from the metaprogram H .

The likelihood P (D | H) measures the consistency of a meta-program H with the observational
data provided, incorporating a noise model to accommodate minor discrepancies between the model
predictions and observations.

Formal Language We adopted the Bayesian inference approach from (Yang & Piantadosi, 2022)
as an optimal reference model to determine the theoretical upper bound on the learnability of for-
mal language rules from the observations generated by our black-boxes or from the interventions
queried by LLM. Specifically, we provided strings generated by our formal language black-boxes

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

as observational data to the Bayesian model, which then inferred the underlying symbolic grammar
rules.

Just as before, the Bayesian inference framework defines the posterior distribution over candidate
hypotheses conditioned on observed data using Bayes’ rule:

P (H | D) ∝ P (D | H)P (H),

where H represents a candidate hypothesis (grammar or probabilistic program), D represents the
observed string data generated by the black-box, P (H) represents the prior probability reflecting ini-
tial beliefs about the simplicity and plausibility of hypotheses, and P (D | H) denotes the likelihood
of observing data D given hypothesis H .

The Bayesian model uses a structured prior P (H), assigning higher probabilities to simpler, more
concise grammars or symbolic programs. As observational data increases, Bayesian updating sys-
tematically refines prior beliefs into posterior distributions, enhancing the probability assigned to
grammars that best explain the data. Formally, each new observed string updates the posterior, shift-
ing probability mass toward hypotheses consistent with the cumulative dataset. By leveraging this
Bayesian inference mechanism, we quantify the upper bound of the learnability of the observations,
thus providing a rigorous baseline to evaluate LLM’s effectiveness in utilizing the same observa-
tional data.

Math Equation To infer the parameters of the CES utility model from the observations provided,
we followed (Foster et al., 2019) by employing a Bayesian inference approach explicitly conditioned
on these observations. Bayesian inference integrates observed data with prior beliefs, updating
these beliefs into posterior distributions to progressively improve parameter estimates. Initially, we
specified prior distributions for the model parameters:

ρ ∼ Beta(ρ0, ρ1),
α ∼ Dirichlet(αconc),

slope ∼ LogNormal(slopeµ, slopeσ).

Given pairs of consumption bundles (d1, d2) and the corresponding observed user preferences y, the
Bayesian framework models these preferences probabilistically through a censored sigmoid-normal
likelihood:

y ∼ CensoredSigmoidNormal (slope · (U(d1)− U(d2)), slope · obs sd · (1 + ∥d1 − d2∥2)) ,
where U(d1) − U(d2) denotes the utility difference between the two bundles. Here, “censored”
refers to applying a sigmoid function to latent utility values and then truncating the results to the
observed preference interval (e.g., [0, 1]), ensuring that responses remain within these limits.

The posterior distributions are updated via Bayes’ theorem by explicitly integrating observational
data:

p(ρ, α, slope | y, d) ∝ p(y | ρ, α, slope, d) p(ρ, α, slope),

where p(ρ, α, slope) represents prior distributions and p(y | ρ, α, slope, d) represents the likelihood
function given the observations.

While some sources prefer uppercase probability notation such as P (H | D), this paper adopts
lowercase notation (p) consistently for both probability densities and random variables throughout.

Parameter estimation was performed via variational inference (Blei et al., 2017), iteratively optimiz-
ing the evidence lower bound (ELBO), defined as:

ELBO(ϕ) = Eqϕ [log p(y | ρ, α, slope, d)]−DKL (qϕ(ρ, α, slope) ∥ p(ρ, α, slope)) ,

where qϕ denotes the variational posterior distribution used to approximate the true posterior distri-
bution.

Thus, as additional observational data are incorporated, Bayesian inference continually updates prior
beliefs into posterior distributions, systematically refining parameter estimates toward their true un-
derlying values.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D STATISTICAL SIGNIFICANT TESTS

D.1 REPEATED-MEASURES ANOVA

To statistically evaluate the interaction between models (Bayesian vs. LLM) and steps, we calculated
the repeated-measures ANOVAs. Each black-box instance involved multiple repeated measurements
corresponding to different steps. Letting Yijk represent the performance score for subject i, models
j (Bayesian or LLM), and step k, the repeated-measures ANOVA model can be expressed as:

Yijk = µ+ Si +Mj + Tk + (M × T )jk + ϵijk

where µ is the mean in all measurements, Si represents the random effect of the subjects (individual
seeds), Mj denotes the main effect of the model, Tk is the main effect of steps, (M × T )jk is the
interaction between the model and the step, and ϵijk represents residual error.

The ANOVA decomposes the total variance into these distinct sources. Specifically, the significance
of the interaction of the Step Method × was determined by calculating the corresponding F-statistic:

F =
MS(M×T )

MSerror

where MS(M×T ) is the mean square for the Method × Step interaction, and MSerror is the residual
mean square. Significance was assessed using an F -distribution with numerator degrees of freedom
equal to (J − 1)(K − 1), where J is the number of method levels and K is the number of steps, and
denominator degrees of freedom equal to (I − 1)(K − 1), where I is the number of subjects.

E PROMPTS

E.1 INTERVENTION PROMPT

In this task, you are given a ``black box'' and need to determine
its inner workings.
{black box information}
You will have a series of turns to interact with the black box. On
each turn, you can either gather more information or test your
hypothesis. To gather more information, {query instruction}, and
obtain a result.
To test your hypothesis, {test instruction}. All the information
gathered across all the turns is used to reverse engineer the
black box. Throughout the process, you can decide whether the
gathered information is sufficient to correctly identify the
workings of the black box, in which case you can stop. Otherwise,
you need to continue the interaction. Concretely, you can perform
one of the following actions at each turn: 1) query, 2) test, or
3) stop.

Provide a *thorough reasoning* before performing the action.
Leverage the past observations to design your next query and make
your hypothesis as accurate as possible. Below is the format for
each action.

Query:
```query
List[int]
```

Test:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

```test
List[int]
List[int]
```

Stop:
```stop
```

Note that you should only perform one of the actions above with
one input example in your response.

Below are your past observations of the black box:
{observations}
Response:

E.2 EVALUATION PROMPTS

Program (judge):

In this task you will be given a ground truth program and
pseudocode that you need to evaluate. You will output a score for
the quality of the pseudocode based on a set of assessment
criteria.

Below is the ground truth program:
{ground_truth}

Evaluate the quality of the following pseudocode:
{response}

Score the above pseudocode against the ground truth program based
on the following criteria (total 10 points):
1. Does the provided pseudocode correctly specify the
implementation of the ground truth program and manipulate the
variables in the same way? Ignore the programming language
difference. [5 point]
2. Does the provided pseudocode specify the implementation in the
most simple and straightforward way without extra unused parts
(Occam's Razor principle) [5 point]

Explain your judgement and return the final score with the type
float and following the format below:
```judgement
YOUR JUDGEMENT HERE
```
```score
YOUR SCORE HERE
```

Response:

Formal Language (judge):

In this task, you will be given a ground truth formal language and
a proposed rule describing that formal language, which you need to
evaluate for quality. You will then output a score based on a set
of assessment criteria.

Below is the ground truth formal language:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

{ground_truth}

Evaluate the quality of the following formal language rule:
{response}
Score the above formal language rule against the ground truth
formal language based on the following criteria (total: 10
points):
1. Does the provided rule correctly generate the examples given in
the ground truth? Your score is determined by how many examples
are correctly generated out of the total number of examples. [3
points]
2. Does the provided rule correctly reverse engineer the ground
truth formal language? [5 point]
3. Is the provided rule in the most simple and straightforward way
without extra unused parts (Occam's Razor principle)? Note: If the
provided rule is completely incorrect, you should give 0 point for
this criterion. [2 point]

Explain your judgement and return the final score with the type
float and following the format below:
```judgement
YOUR JUDGEMENT HERE
```
```score
YOUR SCORE HERE
```

Response:

Math Equation (judge):

In this task, you are provided with a ground truth CES utility
function and a CES utility function predicted by a model.

Your task is to evaluate the quality of the predicted utility
function based on a set of assessment criteria and output a score.

The ground truth utility takes this form:
U(\\mathbf{{x}}) = \\left(\\sum_{{i=1}}ˆn a_i \\cdot
x_iˆ{{\\text{{rho}}}}\\right)ˆ{{1/\\text{{rho}}}}

The utility depends on the following parameters:
1. a_i: float rounded to the first decimal point and should sum up
to 1. (Note that there will be multiple a_i's.)
2. rho: float rounded to the first decimal point.

Below is the information about the ground truth utility function:
{ground_truth}

Evaluate the quality of the following predicted the parameters of
the utility function:
{response}

Score the predicted utility function against the ground truth
using the following criteria (total 10 points):
1. Is the predicted utility function has a correct rho? [2 points]
2. Compare the predicted utility function to the ground truth, how
many a_i's are correct (order matters)? This will give us an
accuracy percentage. The score for this bullet should be the
accuracy percentage times the total allocated 6 points [6 points]

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

3. In the predicted utility function, do the unknown parameters
a_i sum up to 1 and do the number of a_i's match the number of
goods? [1 point]
4. Does the predicted utility function express the function in a
simple and straightforward way without any unnecessary elements
(adhering to the Occam's Razor principle)? [1 point]

Explain your judgement and return the final score with the type
float and following the format below:
```judgement
YOUR JUDGEMENT HERE
```

```score
YOUR SCORE HERE
```

Response:

Descriptive Evaluation:

In this task, you are given a ``black box`` and need to determine
its inner workings.
{black box information}

Below are some past observations from the black box:
{observations}

Your task is to reverse engineer the rule underlying {more
detailed instructions} in the following format:
```Rule
YOUR RULE HERE
```

Response:

Function Implicit Evaluation:

In this task, you are given a ``black box`` and need to determine
its inner workings.
{black box information}
Below are some past observations from the black box:
{observations}

{More detailed instructions}

Output your generated string in the following format:
```output
YOUR RESPONSE HERE
```

Response:

F REVERSE ENGINEERING ABILITIES ACROSS DIFFERENT CATEGORIES OF
LLMS

In Figure 8, we report the results of observation-only and observation + intervention across different
LLMs: Llama-3.3-70B-Instruct, Claude-3.5-Sonnet, DeepSeek-R1, GPT-5 and Claude 4 Sonnet.
Across nearly all black-box types and models, actively intervening with iteratively refining hypothe-

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60
30
40
50
60
70

0 10 20 30 40 50 60
5

15
25
35
45

0 10 20 30 40 50 60
30
40
50
60
70

0 10 20 30 40 50 60
35
40
45
50
55

0 10 20 30 40 50 60
5

15
25
35
45

0 10 20 30 40 50 60
10
20
30
40
50

0 10 20 30 40 50 60
25
30
35
40
45

0 10 20 30 40 50 60
0
5

10
15
20

0 10 20 30 40 50 60
10
20
30
40
50

0 10 20 30 40 50 60
30
35
40
45
50

0 10 20 30 40 50 60
5

15
25
35
45

0 10 20 30 40 50 60
25
30
35
40
45

0 10 20 30 40 50 60
40
50
60
70
80

0 10 20 30 40 50 60
15
25
35
45
55

0 10 20 30 40 50 60
10
20
30
40
50

0 10 20 30 40 50 60
50
60
70
80
90

0 10 20 30 40 50 60
5

15
25
35
45

0 10 20 30 40 50 60
25
35
45
55
65

observation-only observation-intervention

# datapoints # datapoints # datapoints

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

D
es

cr
ip

ti
ve

 S
co

re

D
es

cr
ip

ti
ve

 S
co

re

1 
- 

R
M

S
E

GPT-4o (Program) GPT-4o (Formal Language) GPT-4o (Math Equation)

Llama-3.3-70B (Program) Llama-3.3-70B (Formal Language) Llama-3.3-70B (Math Equation)

Claude 3.5 Sonnet (Program) Claude 3.5 Sonnet (Formal Language) Claude 3.5 Sonnet (Math Equation)

DeepSeek R1 (Program) DeepSeek R1 (Formal Language) DeepSeek R1 (Math Equation)

GPT-5 (Program) GPT-5 (Formal Language) GPT-5 (Math Equation)

Claude 4 Sonnet (Program) Claude 4 Sonnet (Formal Language) Claude 4 Sonnet (Math Equation)

Figure 8: Results of reverse engineering abilities across different categories of LLMs. We report
Llama-3.3-70B-Instruct, Claude 3.5 Sonnet, Deepseek R1, GPT-5, and Claude 4 Sonnet on Program,
Formal Language and Math Equation.

ses consistently enhances models’ understanding of the underlying black-box dynamics. In particu-
lar, we show that DeepSeek R1, Claude 4 Sonnet and GPT-5, utilizing Long CoT reasoning, have the
potential to continuously extract informative knowledge even from passive learning scenarios. This
detailed and long reasoning allows the model to explore various potential hypotheses. However,
despite these advantages, frontier reasoning LLMs do not significantly outperform models without
explicit reasoning (e.g., GPT-4o, Llama-3.3-70B-Instruct, Claude 3.5 Sonnet) in reverse-engineering
tasks, except for Claude 4 on program. This finding highlights the inherent limitations of current
reasoning steps for existing LLMs.

G COMMON FAILURE MODES

G.1 HUMAN ANNOTATION

To systematically analyze LLM’s failure modes, we defined an LLM reverse-engineering attempt as
a failure if its descriptive score was below 2 out of 10, according to our descriptive evaluation rubric.
For each black-box type, we randomly selected 20 representative failure cases from the observation-
only setting. We have two human experts independently reviewed these examples, categorizing each

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

case based on the nature of the error. Any disagreements were resolved through discussion. Finally,
human annotators identified two common failure modes: overcomplication and overlooking.

G.2 OVERCOMPLICATION & OVERLOOKING EXAMPLES

Across the three black-box types, we find that overcomplication is a common failure mode, particu-
larly in the Program, while overlooking most often occurs in Math Equation. For Formal Language,
both overcomplication and overlooking are observed when LLMs fail at reverse engineering. In Ta-
bles 2,3 4 and 5, we show the failure examples for Program (overcomplication), Formal Language
(overcomplication & overlooking) and Math Equation (overlooking).

H COMPLEXITY CATEGORIZATION

We rank the complexity level from 1−5. Each black-box type includes multiple instances of varying
task complexity.

Program. The complexity level is determined based on the number of operations, which
ranges from 1 − 12. Instances with fewer than 2 operations are classified as complexity level 1
(complexity − 1), those with fewer than 4 operations as complexity − 2, fewer than 6 operations
as complexity − 3, and fewer than 8 operations as complexity − 4. Due to the limited number of
remaining examples, all others are grouped into the highest complexity level (complexity − 5).

Formal Language. Instead of using five complexity levels, we divided the Formal Language in-
stances into three levels, drawing on insights from (La Torre et al., 2007). Specifically, we catego-
rized regular language instances as complexity-1 black-boxes, context-free languages as complexity-
3, and context-sensitive languages as complexity-5.

Math Equation. We categorize complexity levels according to the number of goods involved,
ranging from 2 to 6. Specifically, instances with 2 goods are labeled as complexity − 1, 3 goods as
complexity − 2, and so on, with instances involving 6 goods classified as the highest complexity
level, complexity − 5.

I RELIABILITY AND ACCURACY OF USING GPT-4O AS A JUDGE

The use of LLM-as-Judge has been a common practice to evaluate model generation and GPT-4
level models have been shown to match or exceed human annotation in quality (??) for evaluating
generated text. In our experiment settings, the LLM judge takes a set of rubrics that sum to a total
of 10 points, and the description of the black-box instance to score the model response description
of the black-box instance to score the model response. Our implementation further removes the
potential vagueness by adding rubrics to evaluate the correctness in a fine-grained manner. The de-
scription of the black-box instances are also non-ambiguous to the model as we provide the context
in which they need to be interpreted. We show GPT-4o’s reliability as a judge by computing Cohen’s
kappa between GPT-4o and (i) thinking LLMs (OpenAI o3 and Claude-4-Sonnet) and (ii) human
annotations. We randomly sample 30 examples (10 for each black-box type) and collect annotations
to calculate the Weighted Cohen Kappa score (for ordinal rating). We obtain an overall Weighted
Cohen Kappa score of 0.773 for Human, 0.752 for Claude 4, and 0.734 for o3. All the results in-
dicate substantial agreement (Landis JRKoch, 1977) and show the reliability and accuracy of using
GPT-4o as a judge.

J EVALUATION OF THE REVERSE-ENGINEERING ABILITY

Unlike typical tasks used to benchmark LLMs, such as solving math problems or question answering
which are commonly evaluated using accuracies, the reverse-engineering ability is less straightfor-
ward. One can assess how well the black-box f∗ is recovered by an LLM by: 1) descriptive eval-
uation where the LLM verbalizes the hypothesis to compare to the ground truth and 2) functional
evaluation which captures how well the LLM emulates the black-box’s input-output dynamics and

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 9: Comparison of descriptive evaluation (yellow) and functional evaluation (purple) across
black-box complexity levels.

generalizes to unseen examples (Kang et al., 2024). In functional evaluation, the LLM directly pre-
dicts the response conditioned on the test query and the past observations and compute accuracy
Acc = 1

M

∑M
i=1 1[y

test
i = M(xtest

i ,O)], without generating the black-box implementation, akin to
in-context learning (Brown et al., 2020). As shown in Figure 9, descriptive and functional evalu-
ation trends align for Program across complexity levels. However, we also observe discrepancies
of trends between the two evaluations for Formal Language (complexity level 3 to 5) and Math
Equation (complexity level 1 to 3), demonstrating that the evaluation protocol and the format of the
model output may capture different strengths and weaknesses of the model. For Program, we used
the original samples from the black box of the list mapping program as test cases (Rule et al., 2024)
and ensured that none of these input–output pairs were included in the observations. For Formal
Language and Math Equation, we use our deterministic black-box randomly sample 20 test cases
per black-box instance.

K ANOTHER BLACK-BOX TYPE: BOARD GAME

K.1 BLACK-BOX DESIGN

We design a connect-n board game (2 × 2 to 9 × 9) variant following (Zhang et al., 2024). The
black-box is defined by the rules that dictate the winning condition of the game (e.g., “Win by
connecting 3 stones in a column.”). The LLM can query with a board state and an action, and the
black-box responds with the new board state and a game status (win/lose/draw/ongoing). In our
black-box design, every game instance exposes two modes—observation (observation-only)
and intervention (observation-intervention) —and uses the symbols X and O to mark the moves
of the two players.

Game definition. For a given instance, let the board be a r×c grid and let ⟨rwin, cwin, dwin⟩ denote
the required number of consecutive marks needed to win horizontally, vertically, and diagonally,
respectively. During play the black-box tracks the current board state B, the active player p ∈
{X,O}, and whether the game has ended.

In observation mode, an external LLM supplies an initial board (or leaves it empty). The black-
box generates the following as the outputs:

• the round number,
• the updated board,
• whose move it was last,
• the current game status (ongoing, draw, PlayerX wins, etc.).

If the move ends the game, the record also names the winner.

In intervention, the LLM needs to specify (i) additional pieces to place on the board, (ii) the
candidate action it wishes the black-box to take, and (iii) optionally, a predicted follow-up board.
The black-box returns the same structured record as in observation mode. If the LLM also proposed
a prediction of the next state, the black-box confirms it (“Correct”) or explains why it is invalid. For
Board Game, we do not have a Bayesian model as the optimal reference for the comparison.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

K.2 GPT-4O RESULTS

0 10 20 30 40 50 60

40

45

50

55

60

observation-only observation-intervention
# datapoints

D
es

cr
ip

ti
ve

 S
co

re

Board Game

Figure 10: Observation-only and observation-intervention results for Board Game.

In Figure 10, we do not observe the same trends seen in Programs, Formal Language, and Math
Equation black-box types. For Board Game, actively collected data does not improve the reverse-
engineering performance of the model, indicating that the data gathered is not even significantly
informative for the LLM itself. We hypothesize that this is because, to query the black-box, the
LLM must (1) generate a board state, (2) propose a next move, and (3) predict the resulting board
state, requiring a multi-step reasoning process. These compounded requirements make it challenging
for the LLM to probe edge cases or effectively reduce uncertainty about the black-box. This result
further highlights a key limitation of current LLMs: When the information signal from the black-box
is sparse, actively collected data remain of limited utility.

L FUNCTIONAL EVALUATION DETAILS

For Program, we used the original samples from the black box of the list mapping program as
test cases (Rule et al., 2024) and ensured that none of these input–output pairs were included in
the observations. For Formal Language and Math Equation, we use our deterministic black-box
randomly sample 20 test cases per black-box instance.

M COMPLEXITY CATEGORIZATION

We rank the complexity level from 1−5. Each black-box type includes multiple instances of varying
task complexity.

Program. The complexity level is determined based on the number of operations, which
ranges from 1 − 12. Instances with fewer than 2 operations are classified as complexity level 1
(complexity − 1), those with fewer than 4 operations as complexity − 2, fewer than 6 operations
as complexity − 3, and fewer than 8 operations as complexity − 4. Due to the limited number of
remaining examples, all others are grouped into the highest complexity level (complexity − 5).

Formal Language. Instead of using five complexity levels, we divided the Formal Language in-
stances into three levels, drawing on insights from (La Torre et al., 2007). Specifically, we catego-
rized regular language instances as complexity-1 black-boxes, context-free languages as complexity-
3, and context-sensitive languages as complexity-5.

Math Equation. We categorize complexity levels according to the number of goods involved,
ranging from 2 to 6. Specifically, instances with 2 goods are labeled as complexity − 1, 3 goods as
complexity − 2, and so on, with instances involving 6 goods classified as the highest complexity
level, complexity − 5.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Black-box instance: (lambda (singleton (third $0)))

Observations: Input: [97, 53, 5, 33, 65, 62, 51]; Output: [5]
Input: [61, 45, 74, 27, 64]; Output: [74]
Input: [36, 17, 96]; Output: [96]
Input: [79, 32]; Output: invalid input
Input: [90, 77, 18, 39, 12, 93, 9, 87, 42]; Output: [18]
Input: [71, 12, 45, 55, 40, 78, 81, 26]; Output: [45]
Input: [61, 56, 66, 33, 7, 70, 1, 11, 92]; Output: [66]
Input: [90, 100, 85, 80, 0, 78, 63]; Output: [85]
Input: [31, 93, 41, 90, 8, 24]; Output: [41]
Input: [28, 30, 18, 69, 57, 11, 10, 40, 65, 62]; Output: [18]
Input: [38, 70]; Output: invalid input
Input: [90, 15, 70, 42, 69]; Output: [70]
Input: [77, 70, 75, 36]; Output: [75]
Input: [11, 76, 49, 40, 73, 30, 37, 23]; Output: [49]
Input: [23, 4, 78, 84]; Output: [78]
· · ·
{More observations}
· · ·
Input: [60, 8, 11, 86, 96]; Output: [11]
Input: [19, 4, 10]; Output: [10]
Input: [87, 50, 90, 67, 35, 66, 30, 27, 86]; Output: [90]
Input: [53, 74, 35, 57, 63, 84, 82, 89, 45, 10]; Output: [35]
Input: [78, 14, 62, 75, 80, 42]; Output: [62]
Input: [31, 2, 93, 34]; Output: [93]
Input: [90, 28]; Output: invalid input
Input: [21, 42, 54, 7, 12, 100]; Output: [54]
Input: [89, 28, 5]; Output: [5]
Input: [81, 68, 77, 87, 9, 3, 15, 81, 24, 77]; Output: [77]
Input: [15, 50, 11, 47, 14, 4, 77, 2, 24, 23]; Output: [11]
Input: [61, 26]; Output: invalid input
Input: [86]; Output: invalid input
Input: [79, 12, 33, 8, 28, 9, 82]; Output: [33]
Input: [44, 55, 23, 7, 64]; Output: [23]

Model response:
(Overcomplication)

FUNCTION black box(input list):
IF length of input list ¡ 3:
RETURN ”invalid input”
ELSE:
SORT input list in ascending order
RETURN the third element in the sorted input list

Explanation:
The black box function takes a list of integers as input. If the list contains fewer than
3 elements, it returns ”invalid input”. Otherwise, it sorts the list in ascending order
and returns the third smallest element (which is the third element in the sorted
list).

Table 2: Overcomplication example of Program. Red: LLM comes up with a more complex rule of
black-box instance.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Black-box instance: AnBmAnBm (AnBmAnBm)

Observations: AAAAAAAAAAAAAA is generated by the black box
AABBBBBBAABBBBBB is generated by the black box
AAAAAAAAABBAAAAAAAAABB is generated by the black box
AAAAAAAABBBBBAAAAAAAABBBBB is generated by the black box
AAAAABBBBBBBBAAAAABBBBBBBB is generated by the black box
AAAAAAAABBBBBBBBBBAAAAAAAABBBBBBBBBB is generated by the black box
AAABBBBBBBBBAAABBBBBBBBB is generated by the black box
AAAAAAAABBBBBBAAAAAAAABBBBBB is generated by the black box
AAABBBBBBBBBAAABBBBBBBBB is generated by the black box
...

{More observations}
...

AAABBBBAAABBBB is generated by the black box
AAAABBAAAABB is generated by the black box
AAAAAAAAABAAAAAAAAAB is generated by the black box
AAAAAABBBBBBAAAAAABBBBBB is generated by the black box
AAAAAABBBBBAAAAAABBBBB is generated by the black box
AAAAAAAAAAAAAAAAAA is generated by the black box
AAAAAAAAAABBBBBBBBAAAAAAAAAABBBBBBBB is generated by the black box
AAAAAAAAAABBAAAAAAAAABB is generated by the black box
AAAAABBBBBBBBBAAAAABBBBBBBBB is generated by the black box
AAAAABBBBBBBBAAAAABBBBBBBB is generated by the black box
AAAABBBBAAAABBBB is generated by the black box

Model response:
(Overcomplication)

The formal language generates strings composed of two segments: a sequence of ’A’s fol-
lowed by a sequence of ’B’s. The number of ’A’s in the first segment must be equal to
the number of ’B’s in the second segment, or the number of ’A’s can be zero, resulting in
a string of only ’B’s. Additionally, the language allows for strings composed entirely of ’A’s
or entirely of ’B’s. The sequences of ’A’s and ’B’s can be repeated multiple times, as long as
the rule of equal counts between ’A’s and ’B’s in each segment is maintained.

Table 3: Overcomplication example for Formal Language. Red: The LLM predicts a rule that is
more complex than necessary for this black-box instance. In this example, it incorrectly reverse the
number of As to be equal to the number of Bs.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Black-box instance: XXX (three copies of the same string)

Observations: BBABBABABBABBABABBABBABA is generated by the black box
BABBABBABBABBABBAB is generated by the black box
ABBABBABB is generated by the black box
ABAAAABABAAAABABAAAAB is generated by the black box
AAA is generated by the black box
AAAAAA is generated by the black box
BBB is generated by the black box
ABAABAABAABAABAABA is generated by the black box
ABABAB is generated by the black box
ABAABAABA is generated by the black box
...

{More observations}
...

BBBBAABABABBBBAABABABBBBAABABA is generated by the black box
ABABAB is generated by the black box
AAABAABAAABAABAAABAAB is generated by the black box
ABABAB is generated by the black box
BABBBBBBBABABBBBBBBABABBBBBBBA is generated by the black box
ABBBABBBABBB is generated by the black box
BABABA is generated by the black box
BBABAABBABBABAABBABBABAABBA is generated by the black box
AAAAAA is generated by the black box

Model response:
(Overlooking)

The black box generates strings that are composed of repeated patterns or segments. Each
string can be broken down into one or more segments, where each segment is a repetition of
a smaller pattern. The patterns can be composed of the letters ’A’ and ’B’, and the repetition
of these patterns can vary in length. Additionally, the black box can generate an empty
string.

The key characteristics of the generated strings are:
1. The strings can be empty.
2. The strings can be composed of repeated patterns of ’A’ and ’B’.
3. The patterns themselves can vary in complexity and length.
4. The repetition of these patterns can be consistent or vary within the string.

Examples of patterns include:
- Single letters repeated (e.g., ”AAA”, ”BBB”).
- Simple alternating patterns (e.g., ”ABABAB”, ”BABABA”).
- More complex patterns with varying repetition (e.g., ”ABBABBABB”, ”BABBABBAB-
BABBABBAB”).

The rule can be estimated as: The black box generates strings by repeating pat-
terns of ’A’ and ’B’, where the patterns can be simple or complex, and the repetition
can be consistent or vary within the string.

Table 4: Overlooking example of Formal Language. LLM estimates a rule of the black-box instance
without utilizing the observed data to come up with the hypothesis.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Black-box instance: alpha=[0.1,0.1,0.4,0.4]; rho=0.4

Observations: Basket1: [87.79948556831374, 39.184851241810016,
22.551465649464433, 42.84633678341351];

Basket2: [66.20150946367784, 80.43281524767865,
68.02177295663886, 8.112415033884117];

Preference: Basket1

Basket1: [20.086807088533046, 79.79230548488334,
8.817190035426963, 90.22168650956948];

Basket2: [90.40796323190197, 70.51080246059688,
69.96510352125082, 48.476064999077785];

Preference: Basket2

Basket1: [8.003392409139845, 35.23615132704936,
76.3120116750855, 59.18156984237496];

Basket2: [31.278783818535036, 18.047644469275518,
21.855445800494433, 53.88293391636068];

Preference: Basket1

...

{More observations}
...

Basket1: [40.80654893485903, 14.795240036848078,
37.35074210377093, 79.44298024697972];

Basket2: [51.30239830060435, 50.0604427932334,
21.59530896237239, 36.88204913376821];

Preference: Basket1

Basket1: [75.18968775093136, 42.30088453163497,
18.388385810882728, 95.92185012513752];

Basket2: [93.37477559149177, 86.19812315165629,
49.438229718409715, 98.68538582332832];

Preference: Basket2

Basket1: [70.30309661179918, 94.48475506394722,
78.28267517818938, 70.90519145824096];

Basket2: [63.648862012782175, 99.80230448540196,
61.33979160499423, 78.38413565179029];

Preference: Basket1

Model response:
(Overlooking)

To reverse engineer the CES utility function, we need to determine the parameters ai and ρ
that best fit the observed preferences between baskets. The CES utility function is given by:

U(x) =

(
n∑

i=1

ai · xρ
i

)1/ρ

where ai are the weights for each good and ρ is the elasticity parameter.
Steps to Determine Parameters:

• Analyze Preferences: For each pair of baskets, the basket with the higher utility is
preferred.

• Estimate ρ: The parameter ρ affects the degree of substitutability between goods.
ρ = 1 is perfect substitutes, ρ = 0 is Cobb-Douglas, ρ < 0 is complementarity.

• Estimate ai: The weights ai sum to 1 and reflect the importance of each good.

• Iterative Fitting: Use optimization to adjust ai and ρ to minimize preference viola-
tions.

Estimation: After analyzing the data and testing various combinations, the following
provides a good fit for the observed preferences:
Best Fit Utility Function:

U(x) =
(
0.3x0.5

1 + 0.2x0.5
2 + 0.3x0.5

3 + 0.2x0.5
4

)2
This is derived by fitting the parameters to minimize preference violations. The weights ai

reflect the relative importance of each good, and ρ = 0.5 is selected to match substitutability.

Table 5: Overlooking example of Math Equation. Instead of explicit plug-in all observed data into
the utility function, LLM estimates α and ρ. 30


	Introduction
	Related Work
	Reverse Engineering
	Problem Formulation
	Black-Box Types
	Evaluation Protocol

	Experiments
	LLM Struggles to Utilize Observations Optimally
	Intervention Is Crucial for the LLM to Refine Hypotheses
	Identifying the Value of Generating the Intervention Data

	Analysis
	Escaping the Failure Modes: Overcomplication & Overlooking
	Intervention Strategies
	Transferring to another LLM

	Limitations and Future Directions
	Conclusion
	Ethics Statement
	Appendix
	Black Box Designs
	Bayesian models as the `Optimal' Reference
	Statistical Significant Tests
	Repeated-measures ANOVA

	Prompts
	Intervention prompt
	Evaluation Prompts

	Reverse Engineering Abilities Across Different Categories of LLMs
	Common Failure Modes
	Human Annotation
	Overcomplication & Overlooking Examples

	Complexity Categorization
	Reliability and Accuracy of Using GPT-4o as a Judge
	Evaluation of the Reverse-Engineering Ability
	Another Black-Box Type: Board Game
	Black-Box Design
	GPT-4o Results

	Functional Evaluation Details
	Complexity Categorization

