

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ASSESSING THE REVERSE-ENGINEERING ABILITIES OF LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Using AI to create autonomous researchers has the potential to accelerate scientific discovery. A prerequisite for this vision is analyzing whether an AI model can identify the underlying structure of a black-box system from its behavior. In this paper, we explore how well a large language model (LLM) learns to identify a black-box function from passively observed versus actively collected data. We investigate the reverse-engineering capabilities of LLMs across three distinct types of black-box systems, each chosen to represent different problem domains where future autonomous AI researchers may have considerable impact: programs, formal languages, and math equations. Through extensive experiments, we show that LLMs fail to extract information from observations, reaching a performance plateau that falls short of the Bayesian inference ideal. However, we demonstrate that prompting LLMs to not only observe but also intervene—actively querying the black-box with specific inputs to observe the resulting output—improves performance by allowing LLMs to test edge cases and refine their beliefs. By providing the intervention data from one LLM to another, we show that this improvement is partially tethered to the process of generating effective interventions, paralleling results in the literature on human learning. Further analysis reveals that engaging in interventions can help LLMs escape from two common failure modes: *overcomplication*, where the LLM falsely assumes prior knowledge about the black-box, and *overlooking*, where the LLM fails to incorporate observations. These insights provide practical guidance for helping LLMs more effectively reverse-engineer black-box systems, supporting their use in making new discoveries.

1 INTRODUCTION

Developing intelligent systems to accelerate scientific discovery has been a long-standing goal of artificial intelligence research (Gil et al., 2014; Wang et al., 2023). Despite rapid progress in creating large language models (LLMs) for understanding text and solving problems in math and coding, automating science poses a different kind of challenge. A core aspect of scientific discovery is *reverse-engineering* the mechanism behind a black-box system, which requires capabilities beyond responding to a one-off query. In particular, reverse-engineering often involves 1) understanding observed data in order to develop hypotheses, 2) designing experiments to actively acquire informative data from the black-box to test those hypotheses, and 3) describing and communicating the results.

Existing work using LLMs for automating scientific processes either focuses on static observational data (Rmus et al., 2025; Shojaee et al., 2025) or emulates scientific workflows using “LLM scientists” with many moving parts (Gandhi et al., 2025; Schmidgall et al., 2025). In contrast, research in related fields has used carefully controlled tasks to evaluate whether machine learning systems can perform key aspects of reverse-engineering, including inductive reasoning (Rule et al., 2024), learning causal features from passive data (Lampinen et al., 2023), and optimal experimental design (Chaloner & Verdinelli, 1995; Rainforth et al., 2024). This work is often informed by work in cognitive science, which has studied how humans engage in active learning using methods in which the source (either passive observation or active experimentation) and content of data can be differentiated (Markant & Gureckis, 2010; 2014). Such controlled methods have not been applied to state-of-the-art LLMs, leaving fundamental questions unanswered: “*How well can LLMs make inferences from passive observations?*” and “*Can they actively collect data to refine their hypotheses?*”.

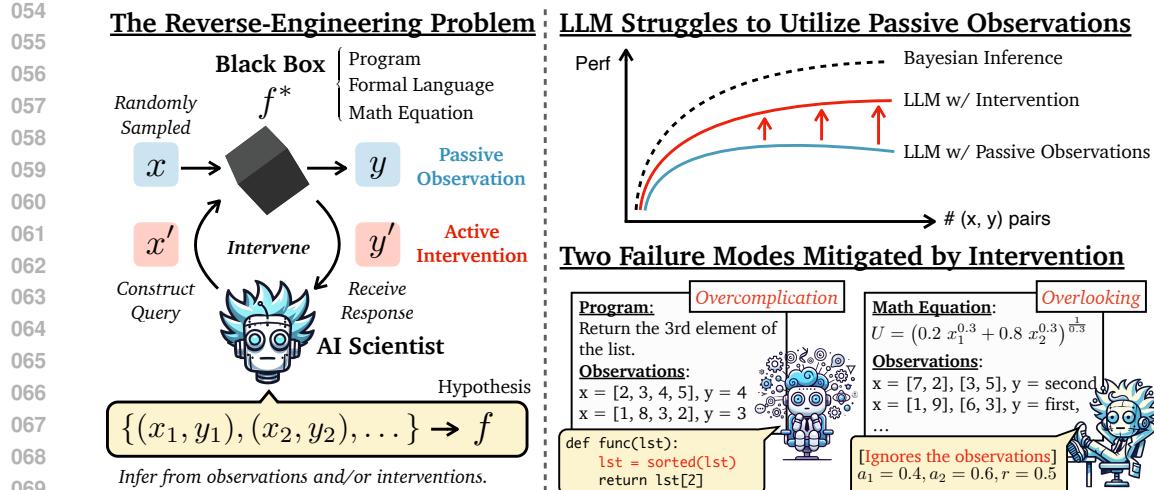


Figure 1: **Reverse-engineering tasks.** Left: Definition of the problem. The AI scientist will obtain passive observations from the black box or collect data through active intervention to construct a hypothesis. Right (top): with only passive observations, the LLM cannot make effective use of the data and lags behind Bayesian inference; allowing the LLM to intervene improves performance. Right (bottom): effective intervention can mitigate two common failure modes: (1) *overcomplication*—the program blackbox expects returning the 3rd element from a list, and the LM adds an unnecessary sorting step that are not supported by the observations, and (2) *overlooking*—the math blackbox expects choosing the higher utility list, and the LM predicts the equation parameters that are obviously incompatible with the observed data.

To answer these questions, we systematically study LLMs on three reverse-engineering tasks inspired by the cognitive-science literature and selected to mimic challenges in scientific settings: reconstructing list-mapping programs (Rule et al., 2024), formal languages (McCoy & Griffiths, 2023), and math equations (Foster et al., 2019). Through extensive experiments, we show that LLMs are limited in their ability to make inferences from observations, leading to performance plateaus compared to Bayesian models. However, allowing LLMs to perform interventions—generating test cases or queries to collect new, informative data—can significantly improve their performance.

Through further experiments where outcomes of interventions conducted by one LLM become observational data for another, we show that the benefits of intervention seem to come from the LLM testing and refining its own beliefs rather than simply collecting higher-quality data. This is similar to a phenomenon observed in human learning, where people show limited benefit from interventions generated by others (Markant & Gureckis, 2010; 2014). Further investigation reveals that generating interventions seems to help LLMs overcome two failure modes: 1) *overcomplication*, where the LLM tends to construct overly-complex hypotheses, and 2) *overlooking*, where the LLM neglects observations or draws overly-generic conclusions without careful checking.

Our contributions are as follows:

- Drawing inspiration from controlled studies of human cognition, we formalize *reverse-engineering* — generating hypotheses from observed data and collecting informative data through interventions, as a core problem for assessing the scientific discovery capabilities of LLMs and design three black-box tasks to facilitate such an assessment.
- We demonstrate empirically that frontier LLMs still struggle, relative to Bayesian inference, at reverse-engineering these black boxes from only passive observations.
- We show that LLMs can perform interventions to obtain more informative data, and that effective intervention mitigates the failure modes of *overcomplication* and *overlooking*.
- We show that performance degrades when repurposing the LLM’s intervention data as observations, pinpointing the mechanism behind the improvements it produces and highlighting a potential pitfall for exchanging knowledge among LLMs.

108

2 RELATED WORK

109

110

Inductive Inference Some of the earliest work on reverse-engineering appears under the label
111 of *inductive inference* for “hypothesizing a general rule from examples” (Angluin & Smith, 1983).
112 Classic instances of this problem include work on identifying the underlying structure of a finite-
113 state automaton through observations of its input-output behavior (Rivest & Schapire, 1987; 1989).
114 While this problem typically considers passive observations, seminal work on active learning fo-
115 cuses on analyzing the benefits of actively querying inputs to solicit the most-informative outputs
116 from the unknown function of interest (Littlestone, 1988; Angluin, 1988; Settles, 2009). The key
117 distinction between these seminal works and ours is the attention towards LLMs and assessing their
118 capacity for successfully identifying different types of black boxes from input-output examples.

119

120

Bayesian Optimal Experiment Design An adjacent line of work considers the sequential de-
121 sign of experiments which maximally yield information gain about an unknown parameter of inter-
122 est (Lindley, 1956; DeGroot, 1962; Chaloner & Verdinelli, 1995; Rainforth et al., 2024); one may in-
123 terpret these methods as studying a non-LLM-focused, Bayesian analogue of the reverse-engineering
124 problem we formulate in the subsequent section, where a learner begins with a prior distribution
125 over the black box in question and must maximally reduce epistemic uncertainty (Der Kiureghian &
126 Ditlevsen, 2009) with a given budget of experiments. To the extent that LLMs may implicitly engage
127 with an underlying approximate posterior inference scheme (Xie et al., 2021; Griffiths et al., 2024;
128 Zhu & Griffiths, 2024a; Falck et al., 2024; McCoy et al., 2024), the reverse-engineering capabilities
129 studied in this work can be tied to this Bayesian optimal experiment design problem.

130

131

Reinforcement Learning The fundamentals of the reverse-engineering problem also connect with
132 various ideas studied in the context of reinforcement learning (RL) (Sutton & Barto, 1998). Any
133 model-based RL agent (Sutton, 1990; 1991; Brafman & Tennenholtz, 2002; Strehl & Littman, 2008)
134 naturally engages with a particular instance of the reverse-engineering problem where the black-box
135 function in question is the transition function and/or reward function of a Markov Decision Process
136 (MDP) (Bellman, 1957; Puterman, 1994). The distinction explored in this work between a LLM
137 that passively observes versus actively intervenes on the black box in question has a direct connec-
138 tion to the exploration challenge in RL, which has profound impact on an agent’s ability to recover
139 an accurate model of the world (Thrun & Möller, 1991; Deisenroth & Rasmussen, 2011; Strens,
140 2000; Osband et al., 2013); while recent work (Arumugam & Griffiths, 2025) has studied how to
141 improve exploration with LLMs, this paper focuses on assessing the innate capabilities of LLMs
142 to actively query informative data. Ostrovski et al. (2021) demonstrate the ineffectiveness of pas-
143 sive learning with deep RL agents and their need to intervene so as to correct misunderstandings
144 about the world; our work provides the LLM complement to their findings. The KWIK learning
145 framework of Li et al. (2008) provides a theoretical analysis for reverse-engineering a MDP transi-
146 tion function when a learner must either confidently estimate the environment dynamics or say “I
147 don’t know” (Walsh et al., 2009; Li & Littman, 2010; Sayedi et al., 2010; Szita & Szepesvári, 2011;
148 Abernethy et al., 2013). Finally, there is a connection between intervention for effective reverse-
149 engineering and meta RL (Liu et al., 2021), with recent work showing that passive learning can be
150 effective with LLMs once there is an effective exploration strategy capable of yielding high-quality
151 observations (Lampinen et al., 2023); naturally, the latter problem is precisely what we demonstrate
152 interventions allow LLMs to solve for themselves in reverse-engineering tasks.

153

154

LLMs for Automating the Scientific Process With the rapid advances in LLMs, recent work has
155 explored using them to automate different parts of the scientific process such as ideation (Si et al.,
156 2024), assistance (Gottweis et al., 2025), writing research papers (Lu et al., 2024; Starace et al.,
157 2025), or emulating AI scientists in simulated environments (Schmidgall et al., 2025). Complement-
158 ary lines of research further examine how LLMs capture human inductive biases (Si et al., 2023),
159 elicit human preferences (Li et al., 2023), characterize distributional differences through language
160 (Zhong et al., 2023), and perform Bayesian preference elicitation (Handa et al., 2024), broadening
161 the scope of how LLMs can support scientific reasoning. Additionally, multi-modal and multi-agent
162 AI models have driven significant progress in applications such as protein science (O’Neill et al.,
163 2025), while frameworks like MatPolit (Ni et al., 2024) integrate human cognitive insights to accel-
164 erate discoveries in materials science. These works utilize the abundant knowledge stored in LLMs
165 to directly tackle real-world complexity in science (Reddy & Shojaee, 2025). Recent work also

166

162 shows that LLMs can autonomously generate and test hypotheses to advance automated scientific
 163 discovery (Agarwal et al., 2025). However, the complexity of these settings and the resulting agents
 164 make it hard to disentangle the consequences of the engineering choices that go into these systems.
 165 Our work focuses on simple and controllable black boxes to study the core capabilities of the LLMs
 166 themselves.

168 **Understanding Failure Modes in LLMs** Recently, many works have examined the failure modes
 169 (Aggarwal et al., 2025) of formal reasoning in LLMs. It has been observed that LLMs can exhibit
 170 failure modes of both “overthinking” (Chen et al., 2024) and “underthinking” (Wang et al., 2025)
 171 when tackling mathematical problems and code generation (He et al., 2025; Sprague et al., 2024)
 172 and (Cuadron et al., 2025; Sprague et al., 2024; Sui et al., 2025; Cemri et al., 2025). To under-
 173 stand LLM abilities beyond formal reasoning tasks, recent work has leveraged insights and datasets
 174 from cognitive science (Frank, 2023; Binz & Schulz, 2023; Coda-Forno et al., 2024; Ying et al.,
 175 2025). In particular, researchers have started to use cognitive science to explore the failed behaviors
 176 in LLMs (Ku et al., 2025). Using these methods, researchers have found that LLMs sometimes
 177 overestimate human rationality (Liu et al., 2024a), exhibit inconsistencies in probability judgments
 178 (Zhu & Griffiths, 2024b), and perform worse as a result of engaging in reasoning (Liu et al., 2024b).
 179 In a similar vein, our work draws upon cognitive science to design the black boxes used in our
 180 reverse-engineering experiments.

181 3 REVERSE ENGINEERING

182 3.1 PROBLEM FORMULATION

185 We define a black box $f^* : \mathcal{X} \rightarrow \mathcal{Y}$ as a deterministic function that maps a query $x \in \mathcal{X}$ to a response
 186 $y \in \mathcal{Y}$ through its internal dynamics. The **reverse-engineering** problem is for a model to infer the
 187 internals of a black box f^* (such as list mapping programs, production rules of formal languages, and
 188 math equations) from a sequence of query-response pairs $\mathcal{O} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subset$
 189 $\mathcal{X} \times \mathcal{Y}$ (Figure 1). We consider two cases of the reverse-engineering problem: **observation-only** and
 190 **observation-intervention**. In the observation-only scenario, all the queries are *randomly sampled*
 191 from \mathcal{X} and the corresponding response $y_i = f^*(x_i)$ is generated by the black box from a uniform
 192 distribution to construct the observation set. A large language model \mathcal{M} must generate a hypothesis
 193 $f = \mathcal{M}(\mathcal{O})$ without further interaction with the black box. This setting assesses the model’s ability
 194 to perform inductive reasoning (Angluin & Smith, 1983). In the observation-intervention scenario,
 195 the LLM is first given a set of observations \mathcal{O} obtained in the observation-only scenario and is
 196 instructed to interact with the black box in a multi-round fashion. In each round, the LLM chooses
 197 one of the following actions: 1) construct a new query x_{N+1} to query the black box and obtain
 198 the response y_{N+1} , 2) construct a new query-response pair (x_{N+1}, y'_{N+1}) and check its validity
 199 using the black box ($\mathbb{1}[y'_{N+1} = f^*(x_{N+1})]$), or 3) stop and conclude with a hypothesis f about the
 200 black box. Before constructing the new query, the LLM can analyze the current observations. **We**
 201 **also compare the intervention with strategies such as verbalizing its current belief or describing the**
 202 **current hypothesis** (§5.2) **and find that “Analyze-then-Query intervention” is the best intervention**
 203 **strategy. Therefore, we adopt Analyze-then-Query as the main intervention strategy for all core**
 204 **experiments.** Before the LLM chooses to stop or reaches the maximal number of rounds, the query-
 205 response pairs obtained during intervention are appended to \mathcal{O} for the next round.

206 3.2 BLACK-BOX TYPES

208 Drawing on the literature on inductive inference in cognitive science, we select tasks commonly used
 209 to study learning of complex relationships to design our black-box systems and scale them up for
 210 evaluation with LLMs. These three distinct black-box function classes – Program, Formal Language,
 211 and Mathematical Equation – simulate problems encountered in scientific reverse-engineering sce-
 212 narios. Due to space constraints, detailed black-box designs are relegated to Appendix B.

213 **Program.** We use list-mapping programs (Rule et al., 2024) for the Program black-box. Each pro-
 214 gram implements a lambda expression (e.g., `(lambda (singleton (third $0)))`) in Python,
 215 where the query is a list of integers and the response is an integer.

216 **Formal Language.** The Formal Language black-box is defined by a simple program that generates
 217 sequences of symbols. For example, the language $A^n B^n$ generates sequences consisting of some
 218 number of A s followed by the same number of B s. The black-box allows the LLM to intervene by
 219 validating if a string is allowable under the rule. We define 46 distinct black boxes each based on a
 220 language from Yang & Piantadosi (2022) or McCoy & Griffiths (2023).
 221

222 **Math Equation.** We use the Constant Elasticity of Substitution (CES) formulation from eco-
 223 nomics (Foster et al., 2019) as the Math Equation black-box. The utility $U = (\sum_i a_i x_i^r)^{\frac{1}{r}}$ is given
 224 by the weights a_i , the ratio r , and the quantities of each kind of goods x_i . The LLM queries the
 225 black box with two lists of item types with quantities. The response says which list has higher utility.
 226

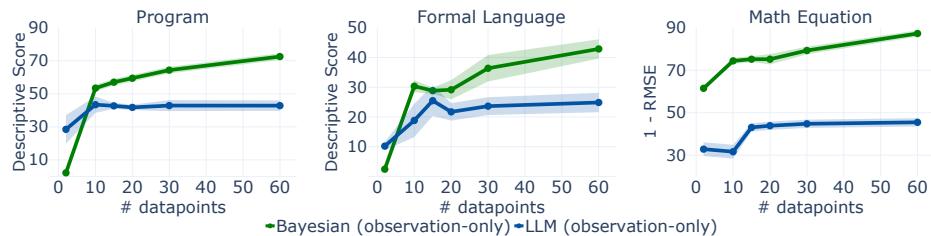
227 3.3 EVALUATION PROTOCOL

228 A black-box can be represented in multiple ways, rendering evaluation challenging. For example,
 229 two black-boxes can be compared through their descriptions in natural language (descriptive eval-
 230 uation) or whether they respond similarly to the same queries (functional evaluation; see §J). In
 231 this paper we focus on **descriptive evaluation**, where the black-box f_{NL}^* is expressed in natural
 232 language, due to its communicative nature and real-world use (Chopra et al., 2019; Gandhi et al.,
 233 2025). The LLM-generated hypothesis f_{NL} is scored by an LLM judge against the black-box on a
 234 0 – 10 scale based on the criteria of each black-box type ($\text{score} = \text{LM-Judge}(f_{NL}, f_{NL}^*)$). We
 235 use descriptive evaluation for Program and Formal Language. As the Math Equation does not re-
 236 quire verbalization beyond the weights and ratio, we report the flipped root mean square error (1 -
 237 RMSE) between the inferred parameters and ground truth. [We provide clear rubrics and an example](#)
 238 [to explain the descriptive evaluation in Appendix E and F.1](#).
 239

240 4 EXPERIMENTS

241 **Experimental setup.** We use different versions of GPT-4o (Hurst et al., 2024) for reverse-
 242 engineering (*gpt-4o-2024-08-06*, dubbed as reverse-engineer LLM) and as the judge (*gpt-4o-2024-05-13*,
 243 dubbed as the judge LLM). We use greedy decoding of both the reverse-engineer and the
 244 judge LLMs and report performance over 3 seeds. For the observation-only experiments, we re-
 245 port performance for number of observations $N = \{2, 10, 15, 20, 30, 60\}$. For the observation-
 246 intervention setting, the reverse-engineer LLM performs $M = \{5, 10, 20, 50\}$ rounds of interventions
 247 conditioned on the initial set of 10 observations ($|\mathcal{O}| = 10$). In addition to GPT-4o, we
 248 report full results for Claude-3.5-Sonnet-20241022 (Anthropic, 2024), DeepSeek-R1 (Guo et al.,
 249 2025), Llama-3.3-70B-Instruct Grattafiori et al. (2024), GPT-5, and Claude 4 Sonnet in Appendix
 250 5.4, showing that even the strongest models still require active intervention to achieve high per-
 251 formance. We also show the reliability of using GPT-4o as a judge in Appendix I, comparing Cohen’s
 252 scores with human annotations and with the latest LM judge results. We provide prompts for both
 253 intervention and hypothesis generation in Appendix E and other evaluation approaches in Appendix
 254 J.
 255

256 4.1 LLM STRUGGLES TO UTILIZE OBSERVATIONS OPTIMALLY



260 Figure 2: Observation-only results across three black-box types. We compare GPT-4o (blue) to
 261 Bayesian inference (green). The horizontal-axis represents the number of provided (x, y) pairs. We
 262 report 1 - RMSE for Math Equation and descriptive score for Program and Formal Language.
 263

We first establish the reference performance achievable by the Bayesian model in each setting. These three settings were selected in part because they are all cases where previous work has defined inference algorithms that make it possible to approximate the posterior distribution over hypotheses as more observations becomes available (Rule et al., 2024; Yang & Piantadosi, 2022; Foster et al., 2019). As shown in Figure 2, the Bayesian models (green) consistently improve with the increased number of observations across all three tasks. On the other hand, while the LLM reverse-engineer (blue) starts off with higher performance for Program and Formal Language, potentially leveraging its prior knowledge, it peaks at 10 observations and struggles to use the extra observations thereby causing performance to plateau. We also calculate repeated measures ANOVAs (Girden, 1992) for each black-box type and found significant Model \times number of datapoints interactions for Program ($F(5, 10) = 51.9, p < 0.001$), Formal Language ($F(5, 10) = 11.8, p = 0.001$), and Math Equation ($F(5, 10) = 8.7, p = 0.002$), showing that the Bayesian inference algorithms increasingly outperformed LLMs with additional observations. Details for the ANOVAs are in Appendix D.1.

4.2 INTERVENTION IS CRUCIAL FOR THE LLM TO REFINE HYPOTHESES

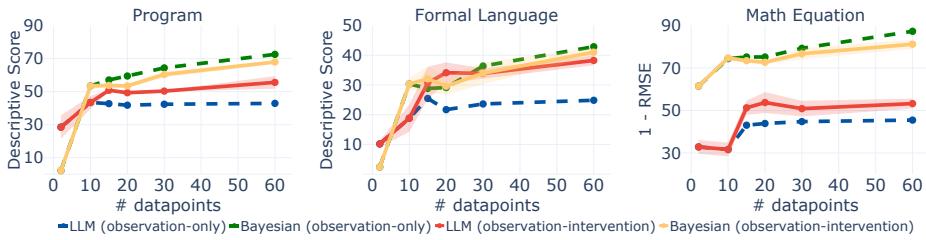


Figure 3: Observation-intervention results across three black-box types. Red: observations and interventions by GPT-4o. Yellow: taking the observation-intervention collected from GPT-4o as observations for the Bayesian inference algorithms. Dashed lines: observation-only reference for GPT-4o (blue) and Bayesian inference (green).

In Figure 3, we compare the performance of models with access to only the observations (dashed lines) against using the data that is actively collected through intervention (solid lines). We observe that enabling the LLM to actively intervene significantly improves performance (red) over observation-only (dashed blue). Through intervention, the LLM consistently improves as more data becomes available across all three black-box types, consistent with prior results on passive learning (Ostrovski et al., 2021). To assess the quality of the interventions, we provide the LLM-collected intervention data to the Bayesian model as observations, akin to the passive yoked data studied in Markant & Gureckis (2010; 2014). Our results indicate that while the interventions are beneficial to the LLM, they are not universally more informative, paralleling findings in human active learning (Markant & Gureckis, 2010; 2014). This gap was statistically significant, as shown by an ANOVA for each black box type: Program ($F(5, 10) = 23.9, p < 0.001$), Formal Language ($F(5, 10) = 7.9, p = 0.003$), and Math Equation ($F(5, 10) = 14.9, p < 0.001$).

4.3 IDENTIFYING THE VALUE OF GENERATING THE INTERVENTION DATA

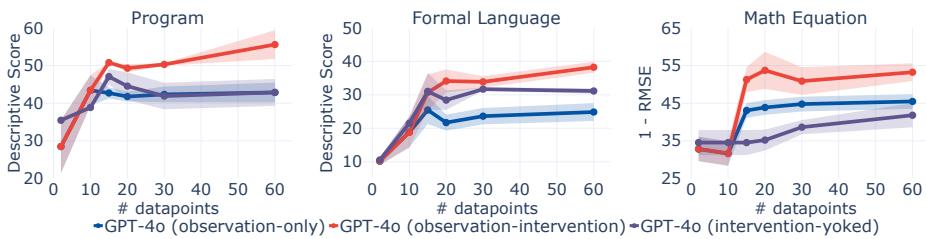


Figure 4: Comparing intervention-yoked results with observation-only and observation-intervention across three black-box types.

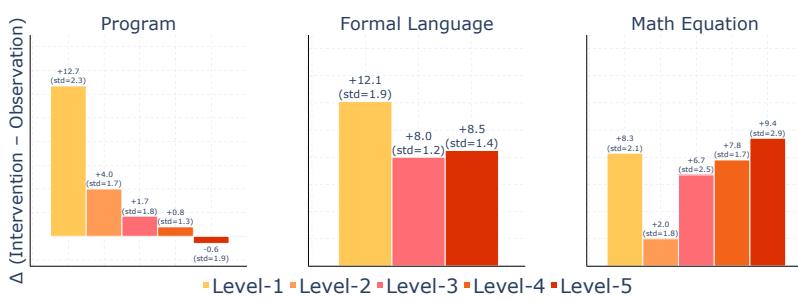


Figure 5: Descriptive scores for five different complexity levels across 3 seeds.

The improvement in performance produced by the interventions could have two sources: it could be that the resulting data are more informative, or that the process of generating interventions itself helps the model. To study this, we adopt the passive-yoked design that Markant & Gureckis (2010; 2014) used to study human learning, where the data generated via active learning by one group of participants is presented to another group of participants as passive observations. In Figure 4, we compare GPT-4o across three conditions: **observation-only** (blue), **observation-intervention** (red), and **intervention-yoked** (purple) where GPT-4o only passively observes the interventional data without the verbalization and analysis that are used to construct such data. Results consistently show that the intervention-yoked setting leads to lower performance compared to the observation-intervention setting across all three black-box types. This shows that active learning is more beneficial than passive-yoked learning in part because it allows the LLM to dynamically refine its hypothesis in response to its own interventions.

5 ANALYSIS

5.1 ESCAPING THE FAILURE MODES: OVERCOMPLICATION & OVERLOOKING

To understand how intervention improves LLM performance, we analyze common failures by sampling 20 failed examples (scoring below 2 out of 10 points) from the observation-only experiment, which were inspected by human experts. We provide more details in Appendix G.1. We identify two major failure modes: 1) *overcomplication*, where the LLM excessively interprets the data, resulting in unnecessarily complex hypotheses, and 2) *overlooking*, where the LLM inadequately leverages available information, leading to poorly reasoned hypotheses. We classified 20 randomly sampled examples for each black-box into the two failure modes or “Not Applicable” by human annotation. Results show that for Program the failures are predominantly from overcomplication (17 cases out of 20) whereas Math Equation contains more overlooking failures (16 cases out of 20). The failures are more evenly distributed for Formal Language, with 8 examples classified as overcomplication, 11 examples as overlooking, and 1 example as “Not Applicable”. We provide examples for these failure mode in Appendix G.2.

Notably, we find that the impact of interventions on alleviating these two failure modes is contingent upon the complexity of the reverse-engineering task itself. For each of the three specific domains we study, we include a brief characterization of complexity in Appendix M. Within each domain, we observe that the complexity of the reverse-engineering problem instance characterized by f^* governs the extent to which interventions rectify overcomplication and overlooking. In Figure 5, we show that performance improvements from intervention on Program diminish as task complexity increases for black-box systems dominated by the *overcomplication* failure mode. In contrast, actively collected data is more beneficial when addressing challenging black-box instances dominated by the *overlooking* failure mode, such as Math Equation. For Formal Language, where both failure modes frequently occur, we observe consistent improvements across all complexity levels.

Case study. Figure 6 demonstrates how an LLM progressively updates its hypothesis through active interventions to ultimately reverse-engineer the underlying mechanism of a black-box system using a Formal Language black-box intervention example, where GPT-4o strategically designs subsequent queries to validate its current belief about the system. In contrast, under the observation-only scenario, the model remains trapped in identifying spurious patterns from passively observed data

378	Black-Box: Formal Language Rule = $A^n B^n C^{(2n)}$	Observations
379	AAAAABBBBBCCCCCCC is generated by the black box	
380	AAABBBBCCCC is generated by the black box (more observations)	
381	Hypothesis: the black box generates strings that follow a pattern where [...] - If not empty, it consists of a sequence of 'A's followed by 'B's followed by 'C's. - The number of 'A's and 'B's can vary, but the number of 'C's tends to be larger.	
382	Let's test strings with a different count of 'A's, 'B's, and 'C's to see if it is generated by the black box.	
383	Test: ABBBBCCCC Black-box: cannot be generated	
384	Test: AAABBBCCC Black-box: cannot be generated	
385	Test: ABCCCC Black-box: cannot be generated	Intervention Round N
386	Test: AABBBBB Black-box: can be generated	
387	Test: AAAABBBBBCCCCCCC Black-box: can be generated	
388	Let's review the observations and tests conducted so far to refine our understanding of the black box's rules: - A's and B's in the generated strings is equal; C's is exactly double the number of A's (or B's)	
389	- ABBBBCCCC: Not generated, indicating the number of A's and B's must be equal. [...] - ABCCCC: Not generated, reinforcing the rule that C's must be exactly double the number of A's (or B's). - AABCCCC: Generated, confirming the pattern of equal A's and B's, and C's being double. Hypothesis: the black box generates strings that follow these rules: - If not empty, it consists of a sequence of 'A's followed by 'B's followed by 'C's. - The number of 'A's and 'B's must be equal. - The number of 'C's must be exactly double the number of 'A's (or 'B's). Let's test a string that follows this pattern with a different count of A, B, and C. Test: ABCC Black-box: can be generated	Intervention Round N+1

Figure 6: Case study example. GPT-4o updates the hypothesis using intervention on Formal Language black box. Yellow: GPT-4o states the hypothesis based on the passive observations in round N and updates the hypothesis in round $N + 1$. Red: test case. Teal: black box response.

and lacks a meaningful way to assess its own uncertainty. Through active interventions, the LLM iteratively tests and revises its hypotheses after encountering failures, gradually reducing uncertainty and converging toward an accurate understanding of the black-box mechanism. [We add another example to explain the differ between observation-only and observation-intervention in Appendix F.2.](#)

5.2 INTERVENTION STRATEGIES

Similar to how LLMs use chain-of-thought reasoning (Wei et al., 2022) to solve complex tasks, we allow the LLM to state its hypotheses and analyze the observations before constructing the query. We investigate how different reasoning strategies impact the effectiveness of intervention. We compare four strategies: 1) Intervention: no reasoning before constructing the query, 2) Descriptive Intervention: describing the current hypothesis about the black-box, 3) Functional Intervention: verbalize the black-box implementation as a Python program (Li et al., 2025; Luo et al., 2025), and 4) Analyze-then-Query: allowing the LLM to analyze data and state a hypothesis freely. Throughout our experiments, we allow the LLM to reason once every five queries¹

Black Box	Intervention	Descriptive Intervention	Functional Intervention	Analyze-then-Query Intervention
Program	43.4	47.6	19.2	50.8
Formal Language	24.1	28.6	22.8	34.7
Math Equation	34.8	38.8	39.9	38.0

Table 1: Comparison of the four intervention strategies. We use Analyze-then-Query as the main intervention strategy.

As shown in Table 1, allowing the LLM to reason generally improves the effectiveness of intervention regardless of the strategy. However, the most effective intervention typically requires the LLM to carefully analyze past observations and strategically plan subsequent steps to acquire more informative data from the black-box. Interestingly, while structured reasoning in functional intervention (Li et al., 2025; Luo et al., 2025) is known to improve performance in formal reasoning tasks, it does not produce additional improvement in the context of reverse-engineering. This suggests that the LLM reverse-engineering abilities may differ from its formal reasoning capabilities.

5.3 TRANSFERRING TO ANOTHER LLM

We also examine whether interventional data actively collected by one LLM (GPT-4o) can effectively transfer and benefit another LLM (Llama-3.3-70B-Instruct). This is relevant to whether AI scientists can transfer their experiments and findings successfully to another AI scientist. **The goal of**

Black Box	Intervention	Descriptive Intervention	Functional Intervention	Analyze-then-Query Intervention
Program	43.4	47.6	19.2	50.8
Formal Language	24.1	28.6	22.8	34.7
Math Equation	34.8	38.8	39.9	38.0

Table 1: Comparison of the four intervention strategies. We use Analyze-then-Query as the main intervention strategy.

¹This is a tunable hyperparameter. We fixed it early in the project based on a balance between performance, cost, and runtime.

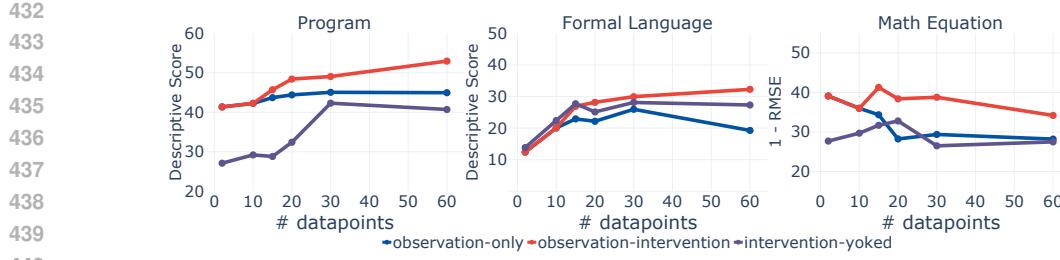


Figure 7: Intervention data transfer results. Red: Llama-3.3-70B-Instruct performing intervention. Blue: Llama-3.3-70B-Instruct using observations only. Purple: using interventional data from GPT-4o as observations for Llama-3.3-70B-Instruct.

this study is to test whether a model that cannot formulate useful queries on its own can nevertheless improve when supplied with high-quality intervention data generated by a stronger model. Adopting a similar passive-yoked design, we compare three scenarios for Llama-3.3-70B-Instruct (Grattafiori et al., 2024): **observation-only**, **observation-intervention**, and **intervention-transfer**, where the interventional data is collected by GPT-4o. As shown in Figure 7, the intervention-transfer scenario achieves performance comparable to or slightly better than the observation-only baseline but consistently underperforms Llama’s own intervention (observation-intervention). This suggests that while the intervention data from GPT-4o is informative, the effectiveness diminishes when transferred to a different LLM, showing that the benefit from intervention is model-specific.

5.4 REVERSE ENGINEERING ABILITIES ACROSS DIFFERENT CATEGORIES OF LLMs

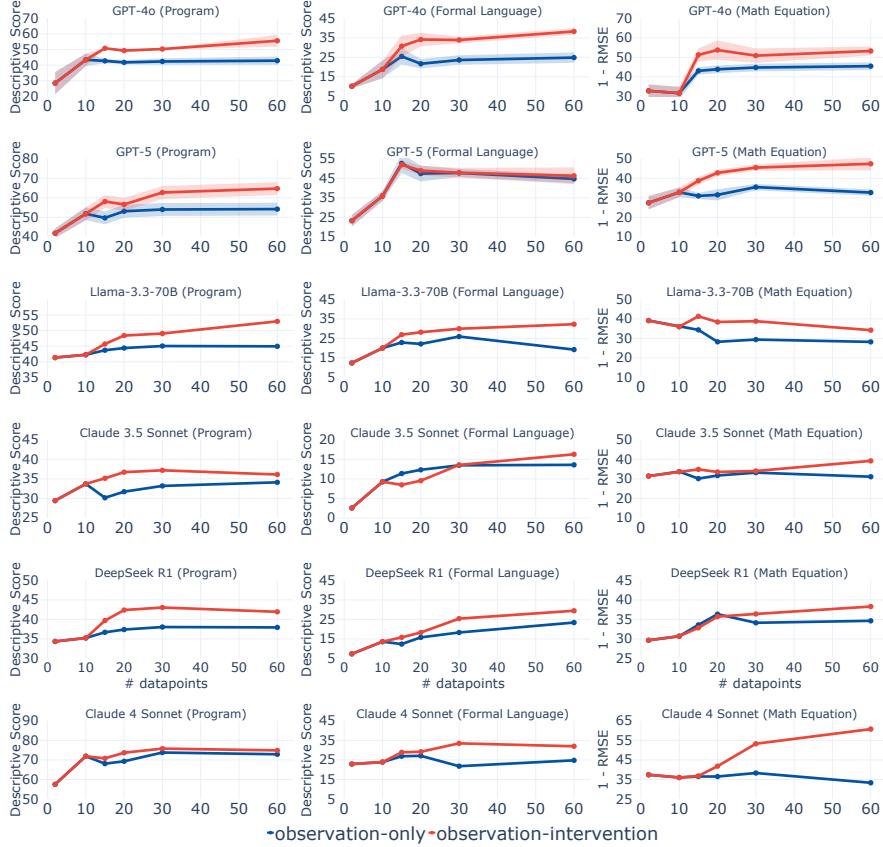


Figure 8: Results of reverse engineering abilities across different categories of LLMs. We report Llama-3.3-70B-Instruct, Claude 3.5 Sonnet, Deepseek R1, GPT-5, and Claude 4 Sonnet. Due to the cost limit, we only run 3 seeds for GPT-4o and GPT-5. We use GPT-4o to judge the results.

486 In Figure 8, we report observation-only and observation + intervention results across Llama-3.3-
 487 70B-Instruct, Claude-3.5-Sonnet, DeepSeek-R1, GPT-5, and Claude-4-Sonnet. Across nearly all
 488 black-box types and models, actively refining hypotheses through intervention consistently improves
 489 models’ understanding of the underlying dynamics. Notably, DeepSeek-R1, Claude-4-Sonnet, and
 490 GPT-5—enabled by long-form reasoning—can continue extracting useful information even in pas-
 491 sive settings by exploring a wider range of hypotheses. However, despite these advantages, frontier
 492 reasoning models do not substantially outperform non-reasoning models (e.g., GPT-4o, Llama-3.3-
 493 70B-Instruct, Claude-3.5-Sonnet), except for Claude-4 on Program, underscoring the current limits
 494 of reasoning-based approaches for reverse engineering.

495

496 6 LIMITATIONS AND FUTURE DIRECTIONS

497

498 In this paper, we have discussed the inabilities and failure modes of LLMs in reverse-engineering
 499 black-boxes. However, the three black-box types we studied represent only a narrow slice of possi-
 500 ble tasks, even within controlled settings. A more comprehensive assessment will require expanding
 501 and scaling up the evaluation suite to probe LLMs’ reverse-engineering abilities across a broader
 502 spectrum of scenarios. In addition, we have assumed idealized, noise-free black-boxes and fully
 503 trustworthy data—a condition that is rarely met in real scientific practices. An important next step is
 504 to relax this assumption and rigorously test LLM robustness in the presence of noise and uncertainty.
 505 As our paper discuss extensively on the failure modes of LLMs, we leave open the question: “*How*
 506 *can we train LLMs to become effective reverse engineers?*”, which includes enhancing the LLM’s
 507 ability to perform correct inference from passive observations and to conduct optimal experiments.
 508 In particular, what kinds of data and algorithms are needed to train such a model (for example, rein-
 509 forcement learning using black-box environments), and can improvements in one domain generalize
 510 to broader scientific automation tasks? Finally, we have demonstrated that the actively acquired data
 511 by one LLM may not be useful for another LLM, pointing to the issue of *experience transferability*.
 512 Just as many major scientific advances have relied on effective human collaborations, so too may
 513 future automation of scientific discoveries depend on resolving this issue for LLM collaborations.
 514 **We also note that different LLMs exhibit distinct but inconsistent querying behaviors during inter-
 515 action, and a more systematic characterization of these patterns is an important direction for future
 516 work.** Understanding and quantifying the impact of this limited transferability of knowledge may
 517 be crucial as multi-agent systems become prevalent, and it will be essential to design such systems
 518 with effective communication baked in.

519

520 7 CONCLUSION

521

522 In this paper, we identified and formalized the reverse-engineering problem as a core ability and pre-
 523 requisite for performing a reliable scientific discovery. We showed that current LLMs still struggle
 524 to effectively leverage passive observations even on seemingly simple and controlled black-boxes.
 525 Allowing LLMs to actively collect intervention data improves performance, but still falls short of
 526 closing the gap with Bayesian inference, casting doubt on the promise of truly reliable AI scien-
 527 tists. Through extensive analysis, we identified issues such as overcomplication and overlooking
 528 and illustrate how intervention can mitigate such failures. Despite the effectiveness of intervention,
 529 our analysis revealed that the intervention data collected by LLMs were primarily beneficial to the
 530 models themselves, rather than being objectively informative or transferable to other models.

531

532 Altogether, our paper directly assesses the ability of LLMs to infer underlying causal structures and
 533 mechanisms through controlled reverse-engineering experiments. This capacity mirrors the funda-
 534 mental scientific discovery process, which relies heavily on identifying hidden relationships and
 535 principles behind observed phenomena. Consequently, if an LLM cannot reliably reverse-engineer
 536 even simple or controlled systems, this raises concerns regarding its dependability in addressing
 537 more complex and ambiguous scientific challenges. Evaluating an LLM’s reverse-engineering abil-
 538 ity provides a concrete and principled way to assess its capacity for scientific reasoning, helping us
 539 understand whether such models possess the foundational skills required to function as dependable
 AI scientists.

540

541

540 8 ETHICS STATEMENT
541

542 This work investigates how language models can reverse-engineer black-box systems in fully syn-
543 thetic domains such as programs, formal languages, and mathematical equations. Our study does
544 not involve human subjects, sensitive or proprietary data, or any real-world systems. While reverse-
545 engineering methods in general could raise concerns if applied to sensitive settings, our research
546 design deliberately avoids such cases by restricting all experiments to controlled, non-sensitive en-
547 vironments. We do not identify direct ethical issues beyond the standard considerations for compu-
548 tational research.

549
550 REFERENCES
551

552 Jacob Abernethy, Kareem Amin, Michael Kearns, and Moez Draief. Large-Scale Bandit Problems
553 and KWIK Learning. In *International Conference on Machine Learning*, pp. 588–596, 2013.

554 Dhruv Agarwal, Bodhisattwa Prasad Majumder, Reece Adamson, Megha Chakravorty,
555 Satvika Reddy Gavireddy, Aditya Parashar, Harshit Surana, Bhavana Dalvi Mishra, Andrew Mc-
556 Callum, Ashish Sabharwal, et al. Open-ended scientific discovery via bayesian surprise. *arXiv*
557 preprint *arXiv:2507.00310*, 2025.

559 Pranjal Aggarwal, Seungone Kim, Jack Lanchantin, Sean Welleck, Jason Weston, Ilia Kulikov, and
560 Swarnadeep Saha. Optimalthinkingbench: Evaluating over and underthinking in llms. *arXiv*
561 preprint *arXiv:2508.13141*, 2025.

562 Dana Angluin. Queries and Concept Learning. *Machine Learning*, 2:319–342, 1988.

563 Dana Angluin and Carl H Smith. Inductive Inference: Theory and Methods. *ACM Computing*
564 *Surveys (CSUR)*, 15(3):237–269, 1983.

566 Anthropic. Claude 3.5 sonnet. [https://www.anthropic.com/news/](https://www.anthropic.com/news/claude-3-5-sonnet)
567 claudie-3-5-sonnet, 2024.

569 Dilip Arumugam and Thomas L Griffiths. Toward Efficient Exploration by Large Language Model
570 Agents. *arXiv preprint arXiv:2504.20997*, 2025.

571 Richard Bellman. A Markovian Decision Process. *Journal of Mathematics and Mechanics*, pp.
572 679–684, 1957.

574 Marcel Binz and Eric Schulz. Using cognitive psychology to understand GPT-3. *Proceedings of the*
575 *National Academy of Sciences*, 120(6):e2218523120, 2023.

577 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
578 cians. *Journal of the American statistical Association*, 112(518):859–877, 2017.

579 Ronen I Brafman and Moshe Tennenholtz. R-MAX – A General Polynomial Time Algorithm
580 for Near-Optimal Reinforcement Learning. *Journal of Machine Learning Research*, 3:213–231,
581 2002.

583 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
584 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
585 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
586 Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
587 Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
588 and Dario Amodei. Language models are few-shot learners. pp. 1877–1901, 2020.

589 Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
590 Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
591 systems fail? *arXiv preprint arXiv:2503.13657*, 2025.

593 Kathryn Chaloner and Isabella Verdinelli. Bayesian Experimental Design: A Review. *Statistical*
594 *Science*, pp. 273–304, 1995.

594 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuwei Liu,
 595 Mengfei Zhou, Zhuosheng Zhang, et al. Do Not Think that Much for 2+3=? On the Overthinking
 596 of 01-like LLMs. *arXiv preprint arXiv:2412.21187*, 2024.

597

598 Sahil Chopra, Michael Henry Tessler, and Noah D Goodman. The first crank of the cultural ratchet:
 599 Learning and transmitting concepts through language. In *Proceedings of the Annual Meeting of*
 600 *the Cognitive Science Society*, volume 41, 2019.

601 Julian Coda-Forno, Marcel Binz, Jane X Wang, and Eric Schulz. Cogbench: A Large Language
 602 Model Walks into A Psychology Lab. *arXiv preprint arXiv:2402.18225*, 2024.

603

604 Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
 605 Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhao Mao, et al. The danger of overthinking: Examining
 606 the reasoning-action dilemma in agentic tasks. *arXiv preprint arXiv:2502.08235*, 2025.

607

608 MH DeGroot. Uncertainty, Information, and Sequential Experiments. *The Annals of Mathematical*
 609 *Statistics*, 33(2):404–419, 1962.

610

611 Marc Deisenroth and Carl E Rasmussen. PILCO: A Model-Based and Data-Efficient Approach
 612 to Policy Search. In *Proceedings of the 28th International Conference on Machine Learning*
 (ICML-11), pp. 465–472, 2011.

613

614 Armen Der Kiureghian and Ove Ditlevsen. Aleatory or Epistemic? Does it Matter? *Structural*
 615 *Safety*, 31(2):105–112, 2009.

616

617 Fabian Falck, Ziyu Wang, and Chris Holmes. Is in-context learning in large language models
 Bayesian? A martingale perspective. *arXiv preprint arXiv:2406.00793*, 2024.

618

619 Adam Foster, Martin Jankowiak, Elias Bingham, Paul Horsfall, Yee Whye Teh, Thomas Rainforth,
 620 and Noah Goodman. Variational Bayesian optimal experimental design. *Advances in Neural*
 621 *Information Processing Systems*, 32, 2019.

622

623 Michael C Frank. Baby steps in evaluating the capacities of large language models. *Nature Reviews*
 624 *Psychology*, 2(8):451–452, 2023.

625

626 Kanishk Gandhi, Michael Y Li, Lyle Goodyear, Louise Li, Aditi Bhaskar, Mohammed Zaman, and
 627 Noah D Goodman. BoxingGym: Benchmarking progress in automated experimental design and
 628 model discovery. *arXiv preprint arXiv:2501.01540*, 2025.

629

630 Yolanda Gil, Mark Greaves, James Hendler, and Haym Hirsh. Amplify scientific discovery with
 631 artificial intelligence. *Science*, 346(6206):171–172, 2014.

632

633 Ellen R Girden. *ANOVA: Repeated measures*. Number 84. Sage, 1992.

634

635 Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
 636 Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, Khaled Saab, Dan Popovici,
 637 Jacob Blum, Fan Zhang, Katherine Chou, Avinatan Hassidim, Burak Gokturk, Amin Vahdat,
 638 Pushmeet Kohli, Yossi Matias, Andrew Carroll, Kavita Kulkarni, Nenad Tomasev, Yuan Guan,
 639 Vikram Dhillon, Eeshit Dhaval Vaishnav, Byron Lee, Tiago R D Costa, José R Penadés, Gary
 640 Peltz, Yunhan Xu, Annalisa Pawlosky, Alan Karthikesalingam, and Vivek Natarajan. Towards an
 641 AI co-scientist. *arXiv preprint arXiv:2502.18864*, 2025.

642

643 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 644 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 645 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 646 renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 647 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
 648 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 649 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 650 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 651 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 652 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco

648 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 649 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 650 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 651 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 652 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 653 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 654 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 655 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 656 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 657 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 658 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 659 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 660 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 661 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 662 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 663 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 664 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
 665 Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
 666 Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Tay-
 667 lor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh,
 668 Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Ra-
 669 parthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya
 670 Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky,
 671 Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speck-
 672 bacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
 673 Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vojeti, Vitor Albiero, Vladan
 674 Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong
 675 Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang,
 676 Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li,
 677 Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, and Zoe Papakipos. The
 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>. Accessed:
 2025-05-14.

678 Thomas L Griffiths, Jian-Qiao Zhu, Erin Grant, and R Thomas McCoy. Bayes in the Age of Intelli-
 679 gent Machines. *Current Directions in Psychological Science*, 33(5):283–291, 2024.
 680

681 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 682 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 683 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

684 Kunal Handa, Yarin Gal, Ellie Pavlick, Noah Goodman, Jacob Andreas, Alex Tamkin, and Belinda Z
 685 Li. Bayesian preference elicitation with language models. *arXiv preprint arXiv:2403.05534*,
 686 2024.

687 Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Zhongyuan Peng,
 688 Zhaoxiang Zhang, Wenbo Su, and Bo Zheng. Can large language models detect errors in long
 689 chain-of-thought reasoning? *arXiv preprint arXiv:2502.19361*, 2025.

690 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 691 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-4o system card. *arXiv preprint*
 692 *arXiv:2410.21276*, 2024.

693 Katie Kang, Amrith Setlur, Dibya Ghosh, Jacob Steinhardt, Claire Tomlin, Sergey Levine, and
 694 Aviral Kumar. What do learning dynamics reveal about generalization in llm reasoning? *arXiv*
 695 *preprint arXiv:2411.07681*, 2024.

696 Alexander Ku, Declan Campbell, Xuechunzi Bai, Jiayi Geng, Ryan Liu, Raja Marjieh, R Thomas
 697 McCoy, Andrew Nam, Ilia Sucholutsky, Veniamin Veselovsky, et al. Using the tools of cogni-
 698 tive science to understand large language models at different levels of analysis. *arXiv preprint*
 699 *arXiv:2503.13401*, 2025.

702 Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class of context-
 703 sensitive languages. In *22nd Annual IEEE Symposium on Logic in Computer Science (LICS*
 704 2007), pp. 161–170, 2007.

705 Andrew Kyle Lampinen, Stephanie C Y Chan, Ishita Dasgupta, Andrew J Nam, and Jane X Wang.
 706 Passive learning of active causal strategies in agents and language models. *Advances in Neural*
 707 *Information Processing Systems*, 2023.

708 GG Landis JR Koch. The measurement of observer agreement for categorical data. *Biometrics*, 33
 709 (1):159174, 1977.

710 Belinda Z Li, Alex Tamkin, Noah Goodman, and Jacob Andreas. Eliciting human preferences with
 711 language models. 2023. URL <https://arxiv.org/abs/2310.11589>, 2023.

712 Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
 713 Liu. Llms-as-judges: a comprehensive survey on llm-based evaluation methods. *arXiv preprint*
 714 *arXiv:2412.05579*, 2024.

715 Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation.
 716 *ACM Transactions on Software Engineering and Methodology*, 34(2):1–23, 2025.

717 Lihong Li and Michael L Littman. Reducing Reinforcement Learning to KWIK Online Regression.
 718 *Annals of Mathematics and Artificial Intelligence*, 58:217–237, 2010.

719 Lihong Li, Michael L Littman, and Thomas J Walsh. Knows What It Knows: A Framework for
 720 Self-Aware Learning. In *Proceedings of the 25th International Conference on Machine Learning*,
 721 pp. 568–575, 2008.

722 Dennis V Lindley. On a measure of the information provided by an experiment. *The Annals of*
 723 *Mathematical Statistics*, 27(4):986–1005, 1956.

724 Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
 725 rithm. *Machine Learning*, 2:285–318, 1988.

726 Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling Exploration and Ex-
 727 ploitation for Meta-Reinforcement Learning Without Sacrifices. In *International Conference on*
 728 *Machine Learning*, pp. 6925–6935, 2021.

729 Ryan Liu, Jiayi Geng, Joshua C Peterson, Ilia Sucholutsky, and Thomas L Griffiths. Large language
 730 models assume people are more rational than we really are. *arXiv preprint arXiv:2406.17055*,
 731 2024a.

732 Ryan Liu, Jiayi Geng, Addison J Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L Griffiths.
 733 Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking
 734 makes humans worse. *arXiv preprint arXiv:2410.21333*, 2024b.

735 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
 736 evaluation using gpt-4 with better human alignment (2023). *arXiv preprint arXiv:2303.16634*,
 737 12, 2023.

738 Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai sci-
 739 entist: Towards fully automated open-ended scientific discovery. *arXiv preprint arXiv:2408.06292*,
 740 2024.

741 Yijia Luo, Yulin Song, Xingyao Zhang, Jiaheng Liu, Weixun Wang, GengRu Chen, Wenbo Su, and
 742 Bo Zheng. Deconstructing long chain-of-thought: A structured reasoning optimization framework
 743 for long cot distillation. *arXiv preprint arXiv:2503.16385*, 2025.

744 Doug Markant and Todd Gureckis. Category learning through active sampling. In *Proceedings of*
 745 *the Annual Meeting of the Cognitive Science Society*, volume 32, 2010.

746 Douglas B Markant and Todd M Gureckis. Is it better to select or to receive? learning via active and
 747 passive hypothesis testing. *Journal of Experimental Psychology: General*, 143(1):94, 2014.

756 R Thomas McCoy and Thomas L Griffiths. Modeling rapid language learning by distilling bayesian
 757 priors into artificial neural networks. *arXiv preprint arXiv:2305.14701*, 2023.

758

759 R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. Embers
 760 of autoregression show how large language models are shaped by the problem they are trained to
 761 solve. *Proceedings of the National Academy of Sciences*, 121(41):e2322420121, 2024.

762 Ziqi Ni, Yahao Li, Kaijia Hu, Kunyuan Han, Ming Xu, Xingyu Chen, Fengqi Liu, Yicong Ye,
 763 and Shuxin Bai. Matpilot: an llm-enabled ai materials scientist under the framework of human-
 764 machine collaboration. *arXiv preprint arXiv:2411.08063*, 2024.

765

766 Charles O'Neill, Tirthankar Ghosal, Roberta Răileanu, Mike Walmsley, Thang Bui, Kevin Schawinski,
 767 and Ioana Ciucă. Sparks of science: Hypothesis generation using structured paper data. *arXiv
 768 preprint arXiv:2504.12976*, 2025.

769 Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) Efficient Reinforcement Learning via
 770 Posterior Sampling. *Advances in Neural Information Processing Systems*, 26:3003–3011, 2013.

771

772 Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
 773 reinforcement learning. *Advances in Neural Information Processing Systems*, 34:23283–23295,
 774 2021.

775 Martin L. Puterman. *Markov Decision Processes—Discrete Stochastic Dynamic Programming*. John
 776 Wiley & Sons, 1994.

777 Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern Bayesian
 778 Experimental Design. *Statistical Science*, 39(1):100–114, 2024.

779

780 Chandan K Reddy and Parshin Shojaae. Towards scientific discovery with generative ai: Progress,
 781 opportunities, and challenges. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 782 volume 39, pp. 28601–28609, 2025.

783 Ronald L Rivest and Robert E Schapire. Diversity-Based Inference of Finite Automata. In *28th
 784 Annual Symposium on Foundations of Computer Science (SFCS 1987)*, pp. 78–87, 1987.

785

786 Ronald L Rivest and Robert E Schapire. Inference of Finite Automata Using Homing Sequences. In
 787 *Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing*, pp. 411–420,
 788 1989.

789 Milena Rmus, Akshay K. Jagadish, Marvin Mathony, Tobias Ludwig, and Eric Schulz. Towards
 790 automation of cognitive modeling using large language models. *arXiv preprint arXiv:2502.00879*,
 791 2025.

792

793 Joshua S Rule, Steven T Piantadosi, Andrew Cropper, Kevin Ellis, Maxwell Nye, and Joshua B
 794 Tenenbaum. Symbolic metaprogram search improves learning efficiency and explains rule learn-
 795 ing in humans. *Nature Communications*, 15(1):6847, 2024.

796

797 Amin Sayedi, Morteza Zadimoghaddam, and Avrim Blum. Trading off Mistakes and Don't-Know
 798 Predictions. *Advances in Neural Information Processing Systems*, 23, 2010.

799

800 Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
 801 Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants.
 802 *arXiv preprint arXiv:2501.04227*, 2025.

803

804 Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, Uni-
 805 versity of Wisconsin–Madison, 2009.

806

807 Parshin Shojaae, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
 808 Llm-sr: Scientific equation discovery via programming with large language models. *International
 809 Conference on Learning Representations*, 2025.

810

811 Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng, Danqi Chen, and He He. Measuring inductive bi-
 812 ases of in-context learning with underspecified demonstrations. *arXiv preprint arXiv:2305.13299*,
 813 2023.

810 Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can LLMs generate novel research ideas? A
 811 large-scale human study with 100+ NLP researchers. *arXiv preprint arXiv:2409.04109*, 2024.
 812

813 Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
 814 Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To CoT or not to CoT? chain-of-
 815 thought helps mainly on math and symbolic reasoning. *arXiv preprint arXiv:2409.12183*, 2024.

816 Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
 817 Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai's ability
 818 to replicate ai research. *arXiv preprint arXiv:2504.01848*, 2025.
 819

820 Alexander L Strehl and Michael L Littman. An Analysis of Model-based interval estimation for
 821 Markov Decision Processes. *Journal of Computer and System Sciences*, 74(8):1309–1331, 2008.
 822

823 Malcolm JA Strens. A Bayesian framework for reinforcement learning. In *Proceedings of the
 824 Seventeenth International Conference on Machine Learning*, pp. 943–950, 2000.
 825

826 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 827 Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient reasoning for
 828 large language models. *arXiv preprint arXiv:2503.16419*, 2025.

829 Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
 830 ing dynamic programming. In *Proceedings of the Seventh International Conference on Machine
 831 Learning*, pp. 216–224, 1990.
 832

833 Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. *ACM Sigart
 Bulletin*, 2(4):160–163, 1991.
 834

835 Richard S Sutton and Andrew G Barto. *Introduction to Reinforcement Learning*. MIT Press, 1998.
 836 István Szita and Csaba Szepesvári. Agnostic KWIK learning and Efficient Approximate Reinforce-
 837 ment Learning. In *Proceedings of the 24th Annual Conference on Learning Theory*, pp. 739–772,
 838 2011.
 839

840 Sebastian B Thrun and Knut Möller. Active exploration in dynamic environments. *Advances in
 841 Neural Information Processing Systems*, 4, 1991.
 842

843 Thomas J Walsh, István Szita, Carlos Diuk, and Michael L Littman. Exploring Compact
 844 Reinforcement-Learning Representations with Linear Regression. In *Proceedings of the Twenty-
 845 Fifth Conference on Uncertainty in Artificial Intelligence*, pp. 591–598, 2009.
 846

847 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
 848 Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific Discovery in the Age of
 849 Artificial Intelligence. *Nature*, 620(7972):47–60, 2023.
 850

851 Yue Wang, Qizhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
 852 Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
 853 o1-like llms. *arXiv preprint arXiv:2501.18585*, 2025.
 854

855 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 856 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 857 Neural Information Processing Systems*, 35:24824–24837, 2022.
 858

859 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 860 learning as implicit Bayesian inference. In *International Conference on Learning Representa-
 861 tions*, 2021.
 862

863 Yuan Yang and Steven T. Piantadosi. One model for the learning of language. *Proceedings of the
 864 National Academy of Sciences*, 119(5):e2021865119, 2022.
 865

866 Lance Ying, Katherine M Collins, Lionel Wong, Ilia Sucholutsky, Ryan Liu, Adrian Weller, Tianmin
 867 Shu, Thomas L Griffiths, and Joshua B Tenenbaum. On benchmarking human-like intelligence in
 868 machines. *arXiv preprint arXiv:2502.20502*, 2025.

864 Cedegao E Zhang, Katherine M Collins, Lionel Wong, Mauricio Barba, Adrian Weller, and Joshua B
865 Tenenbaum. People use fast, goal-directed simulation to reason about novel games. *arXiv preprint*
866 *arXiv:2407.14095*, 2024.

867 Ruiqi Zhong, Peter Zhang, Steve Li, Jinwoo Ahn, Dan Klein, and Jacob Steinhardt. Goal driven
868 discovery of distributional differences via language descriptions. *Advances in Neural Information*
869 *Processing Systems*, 36:40204–40237, 2023.

870 Jian-Qiao Zhu and Thomas L Griffiths. Eliciting the priors of large language models using iterated
871 in-context learning. *arXiv preprint arXiv:2406.01860*, 2024a.

872 Jian-Qiao Zhu and Thomas L Griffiths. Incoherent probability judgments in large language models.
873 *arXiv preprint arXiv:2401.16646*, 2024b.

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 A APPENDIX
919920 B BLACK BOX DESIGNS
921922 **Program** We used 100 list-mapping program instances from (Rule et al., 2024) to design the
923 Program black-box API. Each black-box instance represents as a symbolic program defined in a
924 domain-specific language (DSL). We implemented an interpreter pipeline that parses DSL expres-
925 sions into abstract syntax trees and compiles them into executable Python code.
926927 Each black-box supports two modes: `observation` (observation-only) and `intervention`
928 (observation-intervention). In the `observation` mode, the black-box takes a random input list and
929 returns the output produced by the underlying symbolic program, generating paired observational
930 data:
931

932
$$\text{input list} \rightarrow \text{program execution} \rightarrow \text{output list}$$

933 In the `intervention` mode, the LLM queries an input or explicitly specifies an input-output pair.
934 The black-box generates the output list or evaluates whether the given output matches the internally
935 computed output and provides clear feedback:
936

937
$$\text{Feedback} = \begin{cases} \text{"output} \Rightarrow \text{Correct",} & \text{if the provided output matches the program output,} \\ \text{"output} \Rightarrow \text{Incorrect",} & \text{otherwise.} \end{cases}$$

938

939 **Formal Language** We followed (Yang & Piantadosi, 2022; McCoy & Griffiths, 2023) to im-
940 plement a collection of 46 formal language instances to construct our formal language black-box,
941 each instance being capable of generating strings according to specific symbolic rules (e.g. $A^n B^n$).
942 Each black-box instance behaves as an API from a generative model, operating in two modes:
943 `observation` and `intervention`.
944945 In the `observation` mode (observation-only), the black-box randomly produces valid strings
946 from its underlying rule, explicitly labeling each as generated output, for example:
947948 “AAAABBBB” is generated by the black-box.
949950 In the `intervention` mode (observation-intervention), the LLM submits a specific string query
951 to the black-box, which evaluates whether the string complies with its rule. The black-box responds
952 clearly, indicating either acceptance or rejection:
953

954
$$\text{Response} = \begin{cases} \text{“[string] is generated by the black-box”,} & \text{if the strings compile with the rule,} \\ \text{“[string] cannot be generated by the black-box”,} & \text{otherwise.} \end{cases}$$

955

956 To avoid generating infinite strings, we imposed a maximum character length of 64 for all single
957 characters generated by the black-box.
958959 **Math Equation** For the math equation, we implemented the CES utility model as the black-box,
960 designing it as a generative model capable of generating observational data or responding to queries
961 from an LLM. The utility function of CES is mathematically defined as:
962

963
$$U = \left(\sum_i a_i x_i^r \right)^{\frac{1}{r}},$$

964
965

966 where the weights a_i satisfy the constraint $\sum_i a_i = 1$, the parameter r controls the substitution
967 elasticity, and x_i represents the quantities of goods in a basket.
968969 CES black-box also provides two operational modes: `observation` (observation-only) and
970 `intervention` (observation-intervention). In the `observation` mode, the black-box randomly
971 samples two baskets (each a list of good quantities) and computes their utilities using the CES for-
972 mulation. It then returns the preference outcome indicating which basket is preferred based on

972 higher utility:
 973

$$974 \quad \text{Preference} = \begin{cases} 975 \quad \text{Basket1,} & U(\text{Basket1}) > U(\text{Basket2}), \\ 976 \quad \text{Basket2,} & U(\text{Basket1}) < U(\text{Basket2}), \\ 977 \quad \text{equal utility,} & U(\text{Basket1}) = U(\text{Basket2}). \end{cases}$$

978 In the intervention mode, an external model explicitly queries the black-box by specifying two
 979 baskets. In addition, the external model can also provide an estimated preference. The CES black-
 980 box internally evaluates the utilities based on the specified baskets and returns the actual preference
 981 outcome or feedback indicating whether the provided estimate was “correct” or “incorrect”.
 982

983 C BAYESIAN MODELS AS THE ‘OPTIMAL’ REFERENCE

984 We employ Bayesian models as an oracle for optimal reverse-engineering against which we may
 985 assess the capabilities of LLMs. Unlike LLMs, Bayesian models explicitly perform probabilistic
 986 inference within a clearly defined hypothesis space, systematically updating posterior beliefs us-
 987 ing the Bayes rule to identify the underlying mechanism that best explain observed data. Under
 988 the critical assumption that the true underlying rule resides within this hypothesis space (that is,
 989 the standard assumption of a well-specified prior), Bayesian models serve as an optimal reference
 990 standard in our experimental setting. We hypothesize that LLMs, when provided only with passive
 991 observational data, are unable to effectively utilize available information due to their inherent re-
 992 liance on prior knowledge, resulting in significantly lower performance compared to the Bayesian
 993 optimal standard. However, allowing LLMs to actively intervene and collect data can substantially
 994 reduce the performance gap. For each of the three black-box systems evaluated, we replicated the
 995 Bayesian models from their original studies, adapting them to closely match our experimental con-
 996 ditions. Specifically, we provide Bayesian models with observed data generated by our black-box
 997 systems as an ideal reference. We also provide Bayesian models with the actively collected data
 998 from LLMs intervention to assess the informativeness of the data gathered by LLMs. To ensure
 999 rigorous comparability, we applied identical evaluation methodologies to both the Bayesian models
 1000 and LLMs.

1001 **Program** We used the Bayesian inference approach from Rule et al. (2024) to establish an optimal
 1002 reference for list-mapping program black-box. Specifically, we utilized their MetaProgram Learner,
 1003 which performs Bayesian inference over symbolic metaprograms that generate target programs from
 1004 observed data.

1005 Given observational data D , consisting of input-output pairs generated by symbolic programs, the
 1006 MPL computes the posterior distribution over candidate hypotheses (metaprograms) H according to
 1007 the Bayes rule:

$$1008 \quad P(H | D) \propto P(D | H) \cdot P(H).$$

1009 The prior distribution $P(H)$ integrates two complementary sources of simplicity bias: the meta-
 1010 program prior $P_{\mathcal{M}}(H)$ and the induced program prior $P_{\mathcal{P}}(\tilde{H})$. This combined prior is defined as:
 1011

$$1012 \quad P(H) \propto \exp \left(\frac{\ln P_{\mathcal{M}}(H) + \ln P_{\mathcal{P}}(\tilde{H})}{2} \right),$$

1013 where \tilde{H} denotes the program compiled from the metaprogram H .

1014 The likelihood $P(D | H)$ measures the consistency of a meta-program H with the observational
 1015 data provided, incorporating a noise model to accommodate minor discrepancies between the model
 1016 predictions and observations.

1017 **Formal Language** We adopted the Bayesian inference approach from (Yang & Piantadosi, 2022)
 1018 as an optimal reference model to determine the theoretical upper bound on the learnability of for-
 1019 mal language rules from the observations generated by our black-boxes or from the interventions
 1020 queried by LLM. Specifically, we provided strings generated by our formal language black-boxes

1026 as observational data to the Bayesian model, which then inferred the underlying symbolic grammar
 1027 rules.

1028 Just as before, the Bayesian inference framework defines the posterior distribution over candidate
 1029 hypotheses conditioned on observed data using Bayes' rule:

$$1031 P(H | D) \propto P(D | H) P(H),$$

1032 where H represents a candidate hypothesis (grammar or probabilistic program), D represents the
 1033 observed string data generated by the black-box, $P(H)$ represents the prior probability reflecting initial
 1034 beliefs about the simplicity and plausibility of hypotheses, and $P(D | H)$ denotes the likelihood
 1035 of observing data D given hypothesis H .

1036 The Bayesian model uses a structured prior $P(H)$, assigning higher probabilities to simpler, more
 1037 concise grammars or symbolic programs. As observational data increases, Bayesian updating sys-
 1038 tematically refines prior beliefs into posterior distributions, enhancing the probability assigned to
 1039 grammars that best explain the data. Formally, each new observed string updates the posterior, shift-
 1040 ing probability mass toward hypotheses consistent with the cumulative dataset. By leveraging this
 1041 Bayesian inference mechanism, we quantify the upper bound of the learnability of the observations,
 1042 thus providing a rigorous baseline to evaluate LLM's effectiveness in utilizing the same observa-
 1043 tional data.

1044 **Math Equation** To infer the parameters of the CES utility model from the observations provided,
 1045 we followed (Foster et al., 2019) by employing a Bayesian inference approach explicitly conditioned
 1046 on these observations. Bayesian inference integrates observed data with prior beliefs, updating
 1047 these beliefs into posterior distributions to progressively improve parameter estimates. Initially, we
 1048 specified prior distributions for the model parameters:

$$1050 \rho \sim \text{Beta}(\rho_0, \rho_1), \\ 1051 \alpha \sim \text{Dirichlet}(\alpha_{\text{conc}}), \\ 1052 \text{slope} \sim \text{LogNormal}(\text{slope}_\mu, \text{slope}_\sigma).$$

1053 Given pairs of consumption bundles (d_1, d_2) and the corresponding observed user preferences y , the
 1054 Bayesian framework models these preferences probabilistically through a censored sigmoid-normal
 1055 likelihood:

$$1056 y \sim \text{CensoredSigmoidNormal}(\text{slope} \cdot (U(d_1) - U(d_2)), \text{slope} \cdot \text{obs_sd} \cdot (1 + \|d_1 - d_2\|_2)),$$

1057 where $U(d_1) - U(d_2)$ denotes the utility difference between the two bundles. Here, “censored”
 1058 refers to applying a sigmoid function to latent utility values and then truncating the results to the
 1059 observed preference interval (e.g., $[0, 1]$), ensuring that responses remain within these limits.

1060 The posterior distributions are updated via Bayes' theorem by explicitly integrating observational
 1061 data:

$$1062 p(\rho, \alpha, \text{slope} | y, d) \propto p(y | \rho, \alpha, \text{slope}, d) p(\rho, \alpha, \text{slope}),$$

1063 where $p(\rho, \alpha, \text{slope})$ represents prior distributions and $p(y | \rho, \alpha, \text{slope}, d)$ represents the likelihood
 1064 function given the observations.

1065 While some sources prefer uppercase probability notation such as $P(H | D)$, this paper adopts
 1066 lowercase notation (p) consistently for both probability densities and random variables throughout.

1067 Parameter estimation was performed via variational inference (Blei et al., 2017), iteratively optimiz-
 1068 ing the evidence lower bound (ELBO), defined as:

$$1069 \text{ELBO}(\phi) = \mathbb{E}_{q_\phi} [\log p(y | \rho, \alpha, \text{slope}, d)] - D_{\text{KL}}(q_\phi(\rho, \alpha, \text{slope}) \parallel p(\rho, \alpha, \text{slope})),$$

1070 where q_ϕ denotes the variational posterior distribution used to approximate the true posterior distri-
 1071 bution.

1072 Thus, as additional observational data are incorporated, Bayesian inference continually updates prior
 1073 beliefs into posterior distributions, systematically refining parameter estimates toward their true un-
 1074 derlying values.

1080 **D STATISTICAL SIGNIFICANT TESTS**
10811082 **D.1 REPEATED-MEASURES ANOVA**
10831084 To statistically evaluate the interaction between models (Bayesian vs. LLM) and steps, we calculated
1085 the repeated-measures ANOVAs. Each black-box instance involved multiple repeated measurements
1086 corresponding to different steps. Letting Y_{ijk} represent the performance score for subject i , models
1087 j (Bayesian or LLM), and step k , the repeated-measures ANOVA model can be expressed as:
1088

1089
$$Y_{ijk} = \mu + S_i + M_j + T_k + (M \times T)_{jk} + \epsilon_{ijk}$$

1090

1091 where μ is the mean in all measurements, S_i represents the random effect of the subjects (individual
1092 seeds), M_j denotes the main effect of the model, T_k is the main effect of steps, $(M \times T)_{jk}$ is the
1093 interaction between the model and the step, and ϵ_{ijk} represents residual error.1094 The ANOVA decomposes the total variance into these distinct sources. Specifically, the significance
1095 of the interaction of the Step Method \times was determined by calculating the corresponding F-statistic:
1096

1097
$$F = \frac{MS_{(M \times T)}}{MS_{error}}$$

1098
1099

1100 where $MS_{(M \times T)}$ is the mean square for the Method \times Step interaction, and MS_{error} is the residual
1101 mean square. Significance was assessed using an F -distribution with numerator degrees of freedom
1102 equal to $(J - 1)(K - 1)$, where J is the number of method levels and K is the number of steps, and
1103 denominator degrees of freedom equal to $(I - 1)(K - 1)$, where I is the number of subjects.
11041105 **E PROMPTS**
11061107 **E.1 INTERVENTION PROMPT**
11081109 In this task, you are given a ``black box'' and need to determine
1110 its inner workings.
1111 {black box information}1112 You will have a series of turns to interact with the black box. On
1113 each turn, you can either gather more information or test your
1114 hypothesis. To gather more information, {query instruction}, and
1115 obtain a result.1116 To test your hypothesis, {test instruction}. All the information
1117 gathered across all the turns is used to reverse engineer the
1118 black box. Throughout the process, you can decide whether the
1119 gathered information is sufficient to correctly identify the
1120 workings of the black box, in which case you can stop. Otherwise,
1121 you need to continue the interaction. Concretely, you can perform
1122 one of the following actions at each turn: 1) query, 2) test, or
1123 3) stop.1124 Provide a *thorough reasoning* before performing the action.
1125 Leverage the past observations to design your next query and make
1126 your hypothesis as accurate as possible. Below is the format for
1127 each action.
11281129 **Query:**
1130 ```query
1131 List[int]
1132 ```1133 **Test:**

```

1134     ```test
1135     List[int]
1136     List[int]
1137     ```
1138
1139     Stop:
1140     ```stop
1141     ```
1142
1143     Note that you should only perform one of the actions above with
1144     one input example in your response.
1145
1146     Below are your past observations of the black box:
1147     {observations}
1148     Response:
1149
1150     E.2 EVALUATION PROMPTS
1151
1152     Program (judge):
1153
1154     In this task you will be given a ground truth program and
1155     pseudocode that you need to evaluate. You will output a score for
1156     the quality of the pseudocode based on a set of assessment
1157     criteria.
1158
1159     Below is the ground truth program:
1160     {ground_truth}
1161
1162     Evaluate the quality of the following pseudocode:
1163     {response}
1164
1165     Score the above pseudocode against the ground truth program based
1166     on the following criteria (total 10 points):
1167     1. Does the provided pseudocode correctly specify the
1168     implementation of the ground truth program and manipulate the
1169     variables in the same way? Ignore the programming language
1170     difference. [5 point]
1171     2. Does the provided pseudocode specify the implementation in the
1172     most simple and straightforward way without extra unused parts
1173     (Occam's Razor principle) [5 point]
1174
1175     Explain your judgement and return the final score with the type
1176     float and following the format below:
1177     ```judgement
1178     YOUR JUDGEMENT HERE
1179     ```
1180     ```score
1181     YOUR SCORE HERE
1182     ```
1183
1184     Response:
1185
1186     Formal Language (judge):
1187
1188     In this task, you will be given a ground truth formal language and
1189     a proposed rule describing that formal language, which you need to
1190     evaluate for quality. You will then output a score based on a set
1191     of assessment criteria.
1192
1193     Below is the ground truth formal language:

```

```

1188 {ground_truth}
1189
1190 Evaluate the quality of the following formal language rule:
1191 {response}
1192 Score the above formal language rule against the ground truth
1193 formal language based on the following criteria (total: 10
1194 points):
1195 1. Does the provided rule correctly generate the examples given in
1196 the ground truth? Your score is determined by how many examples
1197 are correctly generated out of the total number of examples. [3
1198 points]
1199 2. Does the provided rule correctly reverse engineer the ground
1200 truth formal language? [5 point]
1201 3. Is the provided rule in the most simple and straightforward way
1202 without extra unused parts (Occam's Razor principle)? Note: If the
1203 provided rule is completely incorrect, you should give 0 point for
1204 this criterion. [2 point]
1205
1206 Explain your judgement and return the final score with the type
1207 float and following the format below:
1208   ```judgement
1209   YOUR JUDGEMENT HERE
1210   ```
1211   ```score
1212   YOUR SCORE HERE
1213   ```

1214 Response:
1215 Math Equation (judge):
1216
1217 In this task, you are provided with a ground truth CES utility
1218 function and a CES utility function predicted by a model.
1219
1220 Your task is to evaluate the quality of the predicted utility
1221 function based on a set of assessment criteria and output a score.
1222
1223 The ground truth utility takes this form:
1224 
$$U(\mathbf{x}) = \left( \sum_{i=1}^n a_i \cdot x_i^{\frac{1}{\rho}} \right)^{\frac{1}{1/\rho}}$$

1225
1226 The utility depends on the following parameters:
1227 1.  $a_i$ : float rounded to the first decimal point and should sum up
1228 to 1. (Note that there will be multiple  $a_i$ 's.)
1229 2.  $\rho$ : float rounded to the first decimal point.
1230
1231 Below is the information about the ground truth utility function:
1232 {ground_truth}
1233
1234 Evaluate the quality of the following predicted the parameters of
1235 the utility function:
1236 {response}
1237
1238 Score the predicted utility function against the ground truth
1239 using the following criteria (total 10 points):
1240 1. Is the predicted utility function has a correct  $\rho$ ? [2 points]
1241 2. Compare the predicted utility function to the ground truth, how
many  $a_i$ 's are correct (order matters)? This will give us an
accuracy percentage. The score for this bullet should be the
accuracy percentage times the total allocated 6 points [6 points]

```

```

1242 3. In the predicted utility function, do the unknown parameters
1243 a_i sum up to 1 and do the number of a_i's match the number of
1244 goods? [1 point]
1245 4. Does the predicted utility function express the function in a
1246 simple and straightforward way without any unnecessary elements
1247 (adhering to the Occam's Razor principle)? [1 point]
1248
1249 Explain your judgement and return the final score with the type
1250 float and following the format below:
1251   ```judgement
1252   YOUR JUDGEMENT HERE
1253   ```
1254   ```score
1255   YOUR SCORE HERE
1256   ```
1257
1258 Response:
1259
1260 Descriptive Evaluation:
1261
1262
1263 In this task, you are given a ``black box`` and need to determine
1264 its inner workings.
1265 {black box information}
1266
1267 Below are some past observations from the black box:
1268 {observations}
1269
1270 Your task is to reverse engineer the rule underlying {more
1271 detailed instructions} in the following format:
1272   ```Rule
1273   YOUR RULE HERE
1274   ```
1275
1276 Response:
1277
1278 Function Implicit Evaluation:
1279
1280
1281 In this task, you are given a ``black box`` and need to determine
1282 its inner workings.
1283 {black box information}
1284 Below are some past observations from the black box:
1285 {observations}
1286
1287 {More detailed instructions}
1288
1289 Output your generated string in the following format:
1290   ```output
1291   YOUR RESPONSE HERE
1292   ```
1293
1294 Response:
1295

```

1296 **F ADDITIONAL EXAMPLES**
12971298 **F.1 DESCRIPTIVE EVALUATION**
12991300 Language rule: "AAAA"1301 Language examples: "A, AA, AAA, AAAA"1302 Score of 30:1303 LM's answer: All strings consist only of the character 'A', and
1304 the lengths follow the pattern of powers of 2.1305 Score of 50:1306 LM's answer: The formal language generates all non-empty strings
1307 consisting only of the character 'A'. In other words, it generates
1308 A^n where $n \geq 1$.1312 **F.2 HYPOTHESIS REFINEMENT EXAMPLE**
13131314 In the example below, the model forms a hypothesis about the pattern and then queries the black
1315 box to test the hypothesis to mitigate its own uncertainty.1316 Language: $A^{(2^n)}$
13171318 Interventions:1319 Based on the observations provided, we can see that the black
1320 box generates strings consisting solely of the character 'A'. The
1321 strings that have been generated by the black box vary in length,
1322 but they all share the common characteristic of being composed
1323 entirely of the letter 'A'.
1324 ...1325 From these observations, it seems that the black box generates
1326 strings of 'A's of any length. To further test this hypothesis,
1327 I will query the black box with a string of 'A's of a length that
1328 has not been observed yet: AAA1329 Black box's response: AAA cannot be generated by black box.
13301332 **G COMMON FAILURE MODES**
13331335 **G.1 HUMAN ANNOTATION**1336 To systematically analyze LLM's failure modes, we defined an LLM reverse-engineering attempt as
1337 a failure if its descriptive score was below 2 out of 10, according to our descriptive evaluation rubric.
1338 For each black-box type, we randomly selected 20 representative failure cases from the observation-
1339 only setting. We have two human experts independently reviewed these examples, categorizing each
1340 case based on the nature of the error. Any disagreements were resolved through discussion. Finally,
1341 human annotators identified two common failure modes: overcomplication and overlooking.1343 **G.2 OVERCOMPLICATION & OVERLOOKING EXAMPLES**
13441345 Across the three black-box types, we find that overcomplication is a common failure mode, partic-
1346 ularly in the Program, while overlooking most often occurs in Math Equation. For Formal Language,
1347 both overcomplication and overlooking are observed when LLMs fail at reverse engineering. In Pro-
1348 gram (see Table 2), we observe that the model introduces an extra operation that never appears in any
1349 input-output pair. In the Language overcomplication example (see Table 3), the model adds restric-
tive structural conditions, such as specific block lengths or mandatory patterns that do not appear in

1350 the observation set. We also observe overlooking failures in Language (see Table 4), where the LM
 1351 outputs a rule that contradicts basic strings in the data due to not fully using the observed examples.
 1352 For Math Equation, we usually observe overlooking failures. For example, in Table 5, the model
 1353 uses only a subset of the basket comparisons and ignores combinations that directly determine the
 1354 CES parameters.

1355 We also compare the failure examples for different models. In the overcomplication example from
 1356 GPT-5 (Table 6), the model asserts that B-blocks must have lengths that are multiples of three, a
 1357 restriction that does not appear in any observed string. In the corresponding example from Claude-4
 1358 (Table 7), the model imposes broad conditions such as forbidding the substring AAA or requiring
 1359 the presence of A, even though none of these requirements are supported by the observations. For
 1360 overlooking, the GPT-5 example in Table 8 fails because the model uses only a subset of basket
 1361 comparisons and ignores pairs that uniquely identify the CES parameters. In the Claude-4 example
 1362 (Table 9), the model outputs a CES function with arbitrary parameter choices rather than checking
 1363 whether the function is consistent with the provided observations.

1364 1365 H COMPLEXITY CATEGORIZATION

1366 We rank the complexity level from 1 – 5. Each black-box type includes multiple instances of varying
 1367 task complexity.

1368 **Program.** The complexity level is determined based on the number of operations, which
 1369 ranges from 1 – 12. Instances with fewer than 2 operations are classified as complexity level 1
 1370 (*complexity* – 1), those with fewer than 4 operations as *complexity* – 2, fewer than 6 operations
 1371 as *complexity* – 3, and fewer than 8 operations as *complexity* – 4. Due to the limited number of
 1372 remaining examples, all others are grouped into the highest complexity level (*complexity* – 5).

1373 **Formal Language.** Instead of using five complexity levels, we divided the Formal Language in-
 1374 stances into three levels, drawing on insights from (La Torre et al., 2007). Specifically, we catego-
 1375 rized regular language instances as complexity-1 black-boxes, context-free languages as complexity-
 1376 3, and context-sensitive languages as complexity-5.

1377 **Math Equation.** We categorize complexity levels according to the number of goods involved,
 1378 ranging from 2 to 6. Specifically, instances with 2 goods are labeled as *complexity* – 1, 3 goods as
 1379 *complexity* – 2, and so on, with instances involving 6 goods classified as the highest complexity
 1380 level, *complexity* – 5.

1381 1382 I RELIABILITY AND ACCURACY OF USING GPT-4O AS A JUDGE

1383 The use of LLM-as-Judge has been a common practice to evaluate model generation and GPT-4 level
 1384 models have been shown to match or exceed human annotation in quality (Liu et al., 2023; Li et al.,
 1385 2024) for evaluating generated text. In our experiment settings, the LLM judge takes a set of rubrics
 1386 that sum to a total of 10 points, and the description of the black-box instance to score the model
 1387 response description of the black-box instance to score the model response. Our implementation
 1388 further removes the potential vagueness by adding rubrics to evaluate the correctness in a fine-
 1389 grained manner. The description of the black-box instances are also non-ambiguous to the model as
 1390 we provide the context in which they need to be interpreted. We show GPT-4o’s reliability as a judge
 1391 by computing Cohen’s kappa between GPT-4o and (i) thinking LLMs (OpenAI o3 and Claude-4-
 1392 Sonnet) and (ii) human annotations. We randomly sample 30 examples (10 for each black-box type)
 1393 and collect annotations to calculate the Weighted Cohen Kappa score (for ordinal rating). We obtain
 1394 an overall Weighted Cohen Kappa score of 0.773 for Human, 0.752 for Claude 4, and 0.734 for o3.
 1395 All the results indicate substantial agreement (Landis JRKoch, 1977) and show the reliability and
 1396 accuracy of using GPT-4o as a judge.

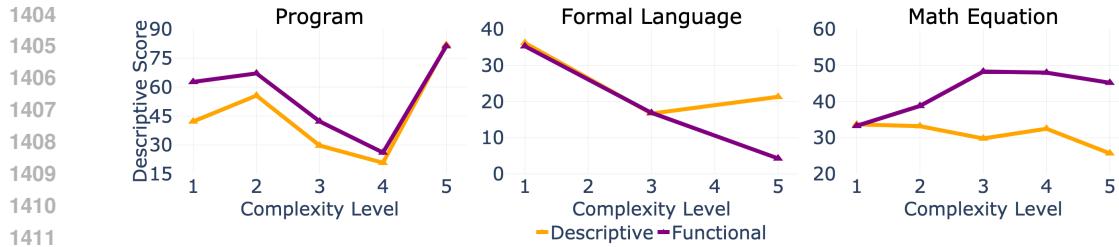


Figure 9: Comparison of descriptive evaluation (yellow) and functional evaluation (purple) across black-box complexity levels.

J EVALUATION OF THE REVERSE-ENGINEERING ABILITY

Unlike typical tasks used to benchmark LLMs, such as solving math problems or question answering which are commonly evaluated using accuracies, the reverse-engineering ability is less straightforward. One can assess how well the black-box f^* is recovered by an LLM by: 1) *descriptive* evaluation where the LLM verbalizes the hypothesis to compare to the ground truth and 2) *functional* evaluation which captures how well the LLM emulates the black-box’s input-output dynamics and generalizes to unseen examples (Kang et al., 2024). In functional evaluation, the LLM directly predicts the response conditioned on the test query and the past observations and compute accuracy $Acc = \frac{1}{M} \sum_{i=1}^M \mathbb{1}[y_i^{\text{test}} = \mathcal{M}(x_i^{\text{test}}, \mathcal{O})]$, without generating the black-box implementation, akin to in-context learning (Brown et al., 2020). As shown in Figure 9, descriptive and functional evaluation trends align for Program across complexity levels. However, we also observe discrepancies of trends between the two evaluations for Formal Language (complexity level 3 to 5) and Math Equation (complexity level 1 to 3), demonstrating that the evaluation protocol and the *format* of the model output may capture different strengths and weaknesses of the model. For Program, we used the original samples from the black box of the list mapping program as test cases (Rule et al., 2024) and ensured that none of these input–output pairs were included in the observations. For Formal Language and Math Equation, we use our deterministic black-box randomly sample 20 test cases per black-box instance.

K ANOTHER BLACK-BOX TYPE: BOARD GAME

K.1 BLACK-BOX DESIGN

We design a connect- n board game (2×2 to 9×9) variant following (Zhang et al., 2024). The black-box is defined by the rules that dictate the winning condition of the game (e.g., “Win by connecting 3 stones in a column.”). The LLM can query with a board state and an action, and the black-box responds with the new board state and a game status (win/lose/draw/ongoing). In our black-box design, every game instance exposes two modes—*observation* (observation-only) and *intervention* (observation-intervention)—and uses the symbols X and O to mark the moves of the two players.

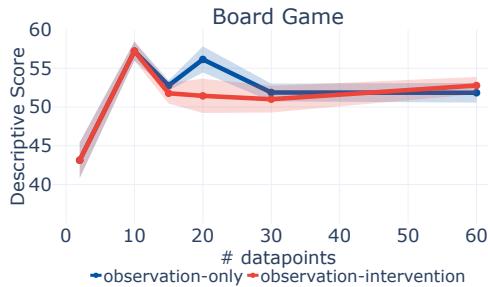
Game definition. For a given instance, let the board be a $r \times c$ grid and let $\langle r_{\text{win}}, c_{\text{win}}, d_{\text{win}} \rangle$ denote the required number of consecutive marks needed to win horizontally, vertically, and diagonally, respectively. During play the black-box tracks the current board state B , the active player $p \in \{X, O\}$, and whether the game has ended.

In *observation* mode, an external LLM supplies an *initial* board (or leaves it empty). The black-box generates the following as the outputs:

- the round number,
- the updated board,
- whose move it was last,
- the current game status (*ongoing*, *draw*, *PlayerX_wins*, etc.).

1458 If the move ends the game, the record also names the winner.
 1459
 1460 In intervention, the LLM needs to specify (i) additional pieces to place on the board, (ii) the
 1461 candidate action it wishes the black-box to take, and (iii) optionally, a predicted follow-up board.
 1462 The black-box returns the same structured record as in observation mode. If the LLM also proposed
 1463 a prediction of the next state, the black-box confirms it (“Correct”) or explains why it is invalid. For
 1464 Board Game, we do not have a Bayesian model as the optimal reference for the comparison.
 1465
 1466

K.2 BOARD GAME RESULTS



1478 Figure 10: Observation-only and observation-intervention results for Board Game.
 1479

1480 In Figure 10, we do not observe the same trends seen in Programs, Formal Language, and Math
 1481 Equation black-box types. For Board Game, actively collected data does not improve the reverse-
 1482 engineering performance of the model, indicating that the data gathered is not even significantly
 1483 informative for the LLM itself. We hypothesize that this is because, to query the black-box, the
 1484 LLM must (1) generate a board state, (2) propose a next move, and (3) predict the resulting board
 1485 state, requiring a multi-step reasoning process. These compounded requirements make it challenging
 1486 for the LLM to probe edge cases or effectively reduce uncertainty about the black-box. This result
 1487 further highlights a key limitation of current LLMs: When the information signal from the black-box
 1488 is sparse, actively collected data remain of limited utility.
 1489

L FUNCTIONAL EVALUATION DETAILS

1492 For Program, we used the original samples from the black box of the list mapping program as
 1493 test cases (Rule et al., 2024) and ensured that none of these input–output pairs were included in
 1494 the observations. For Formal Language and Math Equation, we use our deterministic black-box
 1495 randomly sample 20 test cases per black-box instance.
 1496

M COMPLEXITY CATEGORIZATION

1500 We rank the complexity level from 1 – 5. Each black-box type includes multiple instances of varying
 1501 task complexity.
 1502

1503 **Program.** The complexity level is determined based on the number of operations, which
 1504 ranges from 1 – 12. Instances with fewer than 2 operations are classified as complexity level 1
 1505 (*complexity* – 1), those with fewer than 4 operations as *complexity* – 2, fewer than 6 operations
 1506 as *complexity* – 3, and fewer than 8 operations as *complexity* – 4. Due to the limited number of
 1507 remaining examples, all others are grouped into the highest complexity level (*complexity* – 5).
 1508

1509 **Formal Language.** Instead of using five complexity levels, we divided the Formal Language in-
 1510 stances into three levels, drawing on insights from (La Torre et al., 2007). Specifically, we cate-
 1511 gorized regular language instances as complexity-1 black-boxes, context-free languages as complexity-
 3, and context-sensitive languages as complexity-5.

1512 **Math Equation.** We categorize complexity levels according to the number of goods involved,
1513 ranging from 2 to 6. Specifically, instances with 2 goods are labeled as *complexity* – 1, 3 goods as
1514 *complexity* – 2, and so on, with instances involving 6 goods classified as the highest complexity
1515 level, *complexity* – 5.
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566

1567

1568

Black-box instance: (lambda (singleton (third \$0)))

1569

Observations:

Input: [97, 53, 5, 33, 65, 62, 51]; Output: [5]
 Input: [61, 45, 74, 27, 64]; Output: [74]
 Input: [36, 17, 96]; Output: [96]
 Input: [79, 32]; Output: invalid input
 Input: [90, 77, 18, 39, 12, 93, 9, 87, 42]; Output: [18]
 Input: [71, 12, 45, 55, 40, 78, 81, 26]; Output: [45]
 Input: [61, 56, 66, 33, 7, 70, 1, 11, 92]; Output: [66]
 Input: [90, 100, 85, 80, 0, 78, 63]; Output: [85]
 Input: [31, 93, 41, 90, 8, 24]; Output: [41]
 Input: [28, 30, 18, 69, 57, 11, 10, 40, 65, 62]; Output: [18]
 Input: [38, 70]; Output: invalid input
 Input: [90, 15, 70, 42, 69]; Output: [70]
 Input: [77, 70, 75, 36]; Output: [75]
 Input: [11, 76, 49, 40, 73, 30, 37, 23]; Output: [49]
 Input: [23, 4, 78, 84]; Output: [78]
 ...
 {More observations}
 ...
 Input: [60, 8, 11, 86, 96]; Output: [11]
 Input: [19, 4, 10]; Output: [10]
 Input: [87, 50, 90, 67, 35, 66, 30, 27, 86]; Output: [90]
 Input: [53, 74, 35, 57, 63, 84, 82, 89, 45, 10]; Output: [35]
 Input: [78, 14, 62, 75, 80, 42]; Output: [62]
 Input: [31, 2, 93, 34]; Output: [93]
 Input: [90, 28]; Output: invalid input
 Input: [21, 42, 54, 7, 12, 100]; Output: [54]
 Input: [89, 28, 5]; Output: [5]
 Input: [81, 68, 77, 87, 9, 3, 15, 81, 24, 77]; Output: [77]
 Input: [15, 50, 11, 47, 14, 4, 77, 2, 24, 23]; Output: [11]
 Input: [61, 26]; Output: invalid input
 Input: [86]; Output: invalid input
 Input: [79, 12, 33, 8, 28, 9, 82]; Output: [33]
 Input: [44, 55, 23, 7, 64]; Output: [23]

1603

1604

1605

1606

1607

1608

1609

1610

```
FUNCTION black_box(input_list):
  IF length of input_list < 3:
    RETURN "invalid input"
  ELSE:
    SORT input_list in ascending order
    RETURN the third element in the sorted input_list
```

1611

1612

1613

1614

1615

1616

1617

1618

1619

Model response:
(Overcomplication)

Explanation:
 The black box function takes a list of integers as input. If the list contains fewer than 3 elements, it returns "invalid input". Otherwise, **it sorts the list in ascending order and returns the third smallest element** (which is the third element in the sorted list).

Table 2: Overcomplication example of Program. Red: LLM comes up with a more complex rule of black-box instance.

1620	
1621	
1622	
1623	
1624	
1625	
1626	
1627	
1628	
1629	
1630	Black-box instance: AnBmAnBm ($A^n B^m A^n B^m$)
1631	
1632	Observations: AAAAAAAA is generated by the black box
1633	AABBBBBBAAABBBBBB is generated by the black box
1634	AAAAAAAABAAAAAAAABB is generated by the black box
1635	AAAAAAAABBBBAAAAAAAABB is generated by the black box
1636	AAAAABBBBBBBBAAABBBBBBBB is generated by the black box
1637	AAAAAAAABBBBBBBBAAAAAAAABB is generated by the black box
1638	AAABBBBBBBBAAABBBBBBBB is generated by the black box
1639	AAAAAAAABBBBBBAAAAAAAABB is generated by the black box
1640	AAABBBBBBBBAAABBBBBBBB is generated by the black box
1641	...
1642	{More observations}
1643	...
1644	AAABBBAAABB is generated by the black box
1645	AAAABBAAABB is generated by the black box
1646	AAAAAAAABAAAAAAAAB is generated by the black box
1647	AAAAAABBBBBBAAAAAAAABB is generated by the black box
1648	AAAAAABBBBBBAAAAAAAABB is generated by the black box
1649	AAAAAAAABBBBBB is generated by the black box
1650	AAAAAAAABBBBBBAAAAAAAABB is generated by the black box
1651	AAAAAAAABBBBBBAAAAAAAABB is generated by the black box
1652	AAAAAABBBBBBAAAAAAAABB is generated by the black box
1653	AAAAAABBBBBBAAAAAAAABB is generated by the black box
1654	AAAABBBAAABB is generated by the black box
1655	
1656	Model response: (Overcomplication) The formal language generates strings composed of two segments: a sequence of 'A's followed by a sequence of 'B's. The number of 'A's in the first segment must be equal to the number of 'B's in the second segment , or the number of 'A's can be zero, resulting in a string of only 'B's. Additionally, the language allows for strings composed entirely of 'A's or entirely of 'B's. The sequences of 'A's and 'B's can be repeated multiple times, as long as the rule of equal counts between 'A's and 'B's in each segment is maintained.
1657	
1658	
1659	
1660	
1661	
1662	Table 3: Overcomplication example for Formal Language. Red: The LLM predicts a rule that is
1663	more complex than necessary for this black-box instance. In this example, it incorrectly reverse the
1664	number of As to be equal to the number of Bs.
1665	
1666	
1667	
1668	
1669	
1670	
1671	
1672	
1673	

1674	
1675	
1676	
1677	
1678	
1679	Black-box instance: XXX (three copies of the same string)
1680	
1681	Observations: BBABBABABBABBABABBABBABA is generated by the black box
1682	BABBBABBABBABBAB is generated by the black box
1683	ABBABBABB is generated by the black box
1684	ABAAAABABAAAABABAAAAB is generated by the black box
1685	AAA is generated by the black box
1686	AAAAAA is generated by the black box
1687	BBB is generated by the black box
1688	ABAABAABAABAABA is generated by the black box
1689	ABABAB is generated by the black box
1690	ABAABAABA is generated by the black box
1691	...
1692	{More observations}
1693	...
1694	BBBBAABABBBBBBAABABBBBBBAABABA is generated by the black box
1695	ABABAB is generated by the black box
1696	AAABAABAAABAABAABAAB is generated by the black box
1697	ABABAB is generated by the black box
1698	BABBBBBBBABBBBBBBABBBBBBBBA is generated by the black box
1699	ABBBABBBABBB is generated by the black box
1700	BABABA is generated by the black box
1701	BBABAABBABBABAABBABBABAABBA is generated by the black box
1702	AAAAAA is generated by the black box
1703	Model response:
1704	(Overlooking)
1705	The black box generates strings that are composed of repeated patterns or segments. Each string can be broken down into one or more segments, where each segment is a repetition of a smaller pattern. The patterns can be composed of the letters 'A' and 'B', and the repetition of these patterns can vary in length. Additionally, the black box can generate an empty string.
1706	
1707	
1708	
1709	
1710	The key characteristics of the generated strings are:
1711	1. The strings can be empty.
1712	2. The strings can be composed of repeated patterns of 'A' and 'B'.
1713	3. The patterns themselves can vary in complexity and length.
1714	4. The repetition of these patterns can be consistent or vary within the string.
1715	
1716	Examples of patterns include:
1717	- Single letters repeated (e.g., "AAA", "BBB").
1718	The rule can be estimated as: The black box generates strings by repeating patterns of 'A' and 'B', where the patterns can be simple or complex, and the repetition can be consistent or vary within the string.
1719	
1720	
1721	
1722	Table 4: Overlooking example of Formal Language. LLM estimates a rule of the black-box instance
1723	without utilizing the observed data to come up with the hypothesis.
1724	
1725	
1726	
1727	

1782
1783
1784
1785
1786**Black-box: Formal Languages**1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799**Black-box instance:** Strings over $\{A, B\}$ where no 2 A's ever appear in a row**Observations:**
BBBABBAB is generated by the black box
“ ” is generated by the black box
BA is generated by the black box
ABABABABAB is generated by the black box
...
{more observations (included the active interaction)}
...
BBBBA is generated by the black box
ABABBA is generated by the black box
BBBBA is generated by the black box1800
1801
1802**Model response:** All **nonempty** strings over $\{A, B\}$ that end with A and in which every run of consecutive B's has **length that is a multiple of 3** (i.e., B's occur only in blocks of length 3, 6, 9)1803
1804
1805
1806
1807
1808
1809
1810
1811
1812**Black-box: Formal Languages**1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826**Black-box instance:** Strings over $\{A, B\}$ where no 2 A's ever appear in a row
Observations: BAB is generated by the black box
ABBA is generated by the black box
BABBABABBABBABBBA is generated by the black box
...
{more observations}
...
ABBBABBABBBA is generated by the black box
BBBBBABA is generated by the black box
BAAB is not generated by the black box1827
1828
1829
1830**Model response:** Strings over the alphabet $\{A, B\}$ that contain at least one A and do not have three consecutive A's. In other words: The *empty string is not allowed*. *At least one A must appear*. The substring **AAA is forbidden**. All such and only such strings are generated.1831
1832
1833
1834
1835Table 6: **GPT-5 Overcomplication Example.** GPT-5 overfits tiny patterns and invents very rigid structural rules. For example, “B blocks must be multiples of 3”.

1836	
1837	
1838	
1839	
1840	
1841	
1842	
1843	
1844	
1845	Black-box instance: alpha=[0.6, 0.4]; rho=1.0
1846	Observations:
1847	Basket1: [72.39463042444831, 98.20729968864211]
1848	Basket2: [84.11368818104853, 8.275148546306013]
1849	Preference: Basket1
1850	Basket1: [62.30767597748462, 57.746856481974625]
1851	Basket2: [35.695267908460735, 98.66972480028333]
1852	Preference: Basket2
1853	Basket1: [23.473671703790554, 25.832543390568617]
1854	Basket2: [94.42505284142774, 86.51364378020297]
1855	Preference: Basket2
1856	...
1857	...
1858	{more observations}
1859	...
1860	...
1861	Basket1: [97.53278945423664, 56.50000818388516]
1862	Basket2: [21.198178991308247, 24.95045669114201]
1863	Preference: Basket1
1864	Basket1: [25.125924557631045, 80.9410265539493]
1865	Basket2: [16.473104257940324, 57.09099238116093]
1866	Preference: Basket1
1867	Basket1: [41.83258811801525, 78.58700060612355]
1868	Basket2: [51.231037581195686, 58.128202352337446]
1869	Preference: Basket1
1870	
1871	
1872	Model response:
1873	We have 2 goods (since baskets are 2-vectors). The CES utility is $U(x) = (a_1 x_1^\rho + a_2 x_2^\rho)^{1/\rho}$, with $a_1, a_2 \geq 0$, $a_1 + a_2 = 1$ (to 1 decimal), and ρ to 1 decimal.
1874	From observations: - When both goods are large in Basket 2 vs. modest in Basket 1, Basket
1875	2 is preferred (third pair). - This implies $\rho > 0$ or at least not strongly negative. - Yet in
1876	pair 1, Basket1 beats Basket2 even though Basket2 has larger x_1 but very small x_2 . - Overall
1877	pattern hints at moderate substitution.
1878	Func: $U(x_1, x_2) = (0.7 \times x_1^{-0.6} + 0.3 \times x_2^{-0.6})^{1/-0.6}$
1879	
1880	Table 8: GPT-5 Overlooking Example. GPT-5 uses a part of observed data instead of the full set
1881	of observations to identify the parameters that the data clearly imply.
1882	
1883	
1884	
1885	
1886	
1887	
1888	
1889	

1890	
1891	
1892	
1893	
1894	
1895	Black-box instance: alpha=[0.6, 0.4]; rho=1.0
1896	
1897	Claude 4
1898	
1899	Observations: Basket1: [58.01934185512253, 39.72973152295986] Basket2: [37.64385409318356, 98.0711484140796] Preference: Basket2
1900	
1901	
1902	Basket1: [96.14209674372151, 19.312222198346394] Basket2: [4.602811723537094, 3.142014475647384] Preference: Basket1
1903	
1904	
1905	
1906	Basket1: [80.27391244506391, 93.75994670581349] Basket2: [13.26562127801874, 21.847074478777998] Preference: Basket1
1907	
1908	
1909	
1910	[more observations]
1911	
1912	Basket1: [3.2554749911971794, 43.1362643647149] Basket2: [11.048521718042805, 26.732069089490366] Preference: Basket1
1913	
1914	
1915	
1916	Basket1: [22.86209786031542, 65.04564626369694] Basket2: [35.6791027722567, 18.851472251439098] Preference: Basket1
1917	
1918	
1919	
1920	Basket1: [50.86001401577884, 4.898492001384545] Basket2: [10.991202877707694, 98.8352797235276] Preference: Basket2
1921	
1922	
1923	
1924	Model response: Based on the given observations and the structure of the CES utility function, I've analyzed the data to estimate the parameters. Here's my best estimate for the utility function:
1925	$U(x) = (0.7 \times x_1^{0.9} + 0.3 \times x_2^{0.9})^{1/0.9}$
1926	This function represents my best estimate for the CES utility function that fits the given observations.
1927	The reasoning behind these estimates:
1928	1. The weights (a _i) sum to 1 as required (0.7 + 0.3 = 1).
1929	2. The preference for Basket1 in most cases where the first good has a higher quantity suggests a higher weight for the first good.
1930	3. The rho value of 0.9 indicates a high degree of substitutability between the goods, but not perfect substitutes (which would be rho = 1).
1931	4. This function satisfies most of the given observations.
1932	
1933	
1934	
1935	
1936	Table 9: GPT-5 Overlooking Example. Claude-4 jumps straight to a nice-looking observed data and assigns numbers that "feel plausible," without checking whether that function is consistent with the examples.
1937	
1938	
1939	
1940	
1941	
1942	
1943	