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ABSTRACT

We study Federated Open-Set Semi-Supervised Learning (FOSSL) under a labels-
at-server regime, where the server holds a small labeled set of in-distribution (ID)
classes while clients contribute only unlabeled, non-IID data that may include
unknown classes. This setting is practically important yet under-explored and
poses distinctive challenges: pseudo-label brittleness and intensified heterogene-
ity from diverse out-of-distribution (OOD) categories. We propose OpenFL, a
server-guided framework that stabilizes training and exploits only reliable ID sig-
nals. The server maintains a round-wise EMA (R-EMA) model to smooth round-
to-round drift, uses EMA-derived global pivots to anchor representation learn-
ing, and aggregates clients by reliability-aware weights (alignment quality) rather
than data size. Clients apply dual-gated pivot alignment, attracting only high-
confidence ID samples, while uncertain/OOD samples receive a mild angular re-
pulsion from all pivots via the normalization term. Across CIFAR-10, CIFAR-
100, and FashionMNIST with diverse inlier/outlier splits and unseen-OOD tests,
OpenFL consistently improves both ID accuracy and OOD detection (AUROC)
and remains stable where federated adaptations of strong SSL/OSSL baselines
become unstable. This work establishes labels-at-server FOSSL as a benchmark
problem and provides a principled solution framework.

1 INTRODUCTION

Modern applications—from camera apps and wearables to home sensors and vehicles—produce
privacy-sensitive data that cannot be centralized due to regulation, bandwidth, and trust (European
Union, 2016 State of Californial |2018)). Federated learning (FL) trains where data reside and shares
only model updates (McMahan et al.,|2017; Bonawitz et al.,|2019; Kairouz et al., 2021). In practice,
however, clients rarely curate labels; at best, a provider maintains a small labeled set on the server
while users contribute raw, Non-IID, open-set streams mixing in-distribution (ID) examples with
unknown out-of-distribution (OOD) classes (Yang et al., [2024)).

We study this practically common yet under-explored regime: federated open-set semi-supervised
learning (FOSSL) with labels only at the server. The server holds a small labeled ID set; each client
holds only unlabeled, Non-IID data that may include unknowns. The goal is to learn (1) an accurate
ID classifier and (2) a reliable OOD detector without any client-side labels. To our knowledge, this
labels-at-server FOSSL setting has not been systematically formulated and evaluated; see Fig.

Recent work has examined a narrower case, labels-at-server federated semi-supervised learning
(FSSL) (Zhang et al., [2021}; Diao et al., [2022; Lee et al., 2024), where client unlabeled data are
closed-set (ID-only). SemiFL (Diao et al.| [2022)) is a strong template: the server issues client
pseudo-labels and, after aggregation, fine-tunes on its small labeled set. Introducing OOD sam-
ples fundamentally changes the problem, yielding FOSSL with two key challenges: (i) Amplified
pseudo-label brittleness. Unseen classes are mapped to ID categories with high confidence, caus-
ing systematic mislabeling, class imbalance, and confirmation bias that can lead to collapse. (ii)
Intensified heterogeneity. Clients face disjoint unknowns, worsening Non-IID drift. This cor-
rupts client-side BN (making server-only statistics indispensable), destabilizes centralized OSSL
objectives such as (K +1) classification (SCOMatch (Wang et al., 2024))) and subspace-based scor-
ing (ProSub (Wallin et al., 2024))), and induces large round-to-round oscillations, especially when
OOD-heavy clients dominate.
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Figure 1: Overview of the FOSSL problem setting and our method, OpenFL.

Our organizing principle is Global Pivots, Local Unknowns: stable, server-anchored references
guide learning, while diverse local unknowns are exploited rather than discarded. Through an empir-
ical study, we confirm that server-side fine-tuning (as in SemiFL), server-only BN statistics, and dis-
joint learning with a one-vs-all (OVA) head form a practical foundation for labels-at-server FOSSL.
Building on this, we propose OpenFL with three synergistic components:

* Round-wise EMA (R-EMA): The server maintains an exponential moving average of the fine-
tuned model per communication round, smoothing trajectories and mitigating catastrophic forget-
ting. EMA is not broadcast; it underpins pivot generation.

* Pivot-guided Open-set Alignment: Using EMA-derived features, the server computes ID pivots
(class references). On clients, only dual-gated, high-confidence ID samples are attracted toward
their pivots, while uncertain/OOD samples receive a mild angular push via the normalization term,
improving ID/OOD separation and reducing inter-client divergence.

* Reliability-Aware Aggregation (RAA): Clients are weighted by their alignment quality (inverse
average alignment loss), prioritizing cleaner signals over sheer quantity. Training begins with a
short warm-up (consistency only) before enabling alignment.

Our contributions are as follows:

* We formalize and systematically study the labels-at-server FOSSL regime, identifying two core
challenges: amplified pseudo-label brittleness and intensified heterogeneity from diverse OOD
categories.

* We propose OpenFL, a server-guided framework that unifies round-wise EMA smoothing, dual-
gated pivot alignment, and reliability-aware aggregation into a coherent solution with low com-
munication overhead (EMA remains server-side).

* Through extensive evaluation on CIFAR-10, CIFAR-100, and FashionMNIST with diverse in-
lier/outlier splits and unseen-OOD tests, OpenFL achieves strong inlier accuracy and AUROC
with stable convergence, setting robust baselines for this new regime.

2 RELATED WORK

Federated learning (FL). FL trains models without sharing raw data; FedAvg (McMahan et al.}
averages client models by data size. Variants such as FedProx (Li et al., 2020) and Fe-
dOpt (Reddi et al 202T)) mitigate Non-1ID effects and accelerate convergence.
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Federated semi-supervised learning (FSSL). FSSL considers clients with limited labels, com-
monly in two regimes: (i) some labels per client, and (ii) labels-at-server, where labeled and unla-
beled data are disjoint (the harder case). Early labels-at-server methods—FedMatch (Jeong et al.|
2021), FedRGD (Zhang et al., |2021)—combine FedAvg with FixMatch-style losses (Sohn et al.,
2020). SemiFL (Diao et al.l |2022) provides a strong template: global pseudo-labeling, server fine-
tuning on a small labeled set, client static BN (Diao et al., |2021), and FedOpt. (FL)? (Lee et al.|
2024) refines selection via stage-aware thresholds and sharpness-aware consistency, still following
this pattern, but still follows the SemiFL training pattern.

From FSSL to federated open-set semi-supervised learning (FOSSL). In practice, unlabeled
client streams are open-set; unknown OOD classes appear during training. This motivates FOSSL in
the labels-at-server setting, where an ID classifier and an OOD detector must be learned without any
client-side labels. To our knowledge, this regime has not been systematically studied. The closest
work, FedoSSL (Zhang et al.,|2023), targets an open-world variant but requires client labels, making
it inapplicable here.

Centralized open-set semi-supervised learning (OSSL). Applying centralized OSSL to FL is non-
trivial. SCOMatch (Wang et al., 2024)) uses a (K +1) formulation that collapses OOD into one class;
under heterogeneous, Non-IID OOD in FL, this superclass can be inconsistently formed across
clients. ProSub (Wallin et al., [2024) estimates OOD via prototype subspaces and Beta distribution
fits, which become unstable with label-unlabeled disjointness and client heterogeneity. One-vs-
all (OVA)-based methods—OpenMatch (Saito et al., 2021), IOMatch (Li et al. 2023), SSB (Fan
et al.} |2023)—use labeled ID-vs-rest heads and are more compatible with labels-at-server, yet their
unlabeled objectives (entropy minimization and soft-consistency regularization) tend to be brittle in
the labels-at-server regime, where clients train solely on unlabeled, open-set, Non-IID streams. To
our knowledge, no prior work systematically extends OSSL to labels-at-server FOSSL, underscoring
the need for methods robust to intensified heterogeneity and strict label-unlabeled separation.

3 EMPIRICAL STUDY OF FOSSL CHALLENGES

Since no prior study has systematically examined FOSSL, we conduct the first foundational study
of its unique difficulties by adapting existing methods to this setting. We adapt representative labels-
at-server FSSL methods (SemiFL, FedFixMatch) and extend recent OSSL techniques into their fed-
erated forms (FedSCOMatch, FedProSub, and FedSSB), with full implementation details in Ap-
pendix [A.T] Experiments are conducted on CIFAR-10, designating its six animal classes as ID and
the remaining four as OOD. The server holds 40 labeled samples per ID class, while 100 clients each
contain only unlabeled data mixing ID and OOD samples. Our findings reveal a cascade of failures,
motivating the core principles of our proposed method.

Existing FSSL Degrades Under OOD Contamination. Standard FSSL frameworks may col-
lapse when exposed to OOD data. SemiFL, for instance, collapses before convergence (Figure [2
top-left) because OOD samples are confidently mislabeled as ID classes, polluting client-side train-
ing. This process amplifies pseudo-label brittleness, creating severe class imbalance and confirma-
tion bias that rapidly degenerates the model into predicting a single dominant class. While FedFix-
Match avoids total collapse (Figure [2} top-right), its OOD discrimination is nullified, rendering it
ineffective for the open-set problem.

StaticBN Becomes an Indispensable Prerequisite in FOSSL. A key struggle in FOSSL is that
client-side OOD data fatally corrupts batch normalization statistics. Our FedFixMatch experiments
(Figure [2] top-right) confirm this: performance drops significantly in the open-set scenario and
degrades further without server-only statistics (“Open-set w/o SBN”). Since alternatives like local
BN or FedBN (Li et al.| 202 1)) are also vulnerable, StaticBN (D1ao et al.,[202 I))—which uses only the
server’s clean data—is an essential prerequisite for stable training. We therefore build all subsequent
FOSSL experiments in our study upon StaticBN.

Disjoint Labels and OOD Heterogeneity Undermine Centralized OSSL Assumptions. While
OSSL methods like SCOMatch and ProSub excel centrally, their federated adaptations fail catas-
trophically. This collapse is visually stark in the t-SNE (Van der Maaten & Hinton, [2008) plots
(Figure 2] bottom), revealing a complete breakdown of the feature space structure. The reasons are
fundamental to the FOSSL setting. SCOMatch, which treats all OOD data as a single unified class,
breaks down under heterogeneous OOD distributions across clients during aggregation. ProSub’s
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Figure 2: Existing FSSL and OSSL Methods Fail in the FOSSL Setting. We adapt representative
FSSL methods (SemiFL, FedFixMatch) and federated OSSL variants (FedSSB, FedSCOMatch, and
FedProSub) to the labels-at-server FOSSL environment.

reliance on constructing clean ID subspaces and fitting distributions for OOD scoring becomes unre-
liable when the server holds no OOD examples and client pseudo-labels are noisy. Ultimately, these
methods are not robust to the disjoint-label nature and intensified heterogeneity of FOSSL.

OOD Data is a Double-Edged Sword: Useful but Destabilizing. Interestingly, exposing the
model to OOD data is not entirely negative. As suggested by FedSSB’s one-vs-all approach—
which aligns well with the disjoint setting—Ileveraging OOD samples during training can improve
OOD detection. In FOSSL, however, this benefit is offset by severe instability. Heterogeneous
OOD across clients amplifies training fluctuations (Figure 2} middle-right AUROC plot) and leads
to catastrophic forgetting of ID representations, particularly in rounds dominated by OOD-heavy
clients. Therefore, a successful FOSSL method must not discard OOD data, but rather incorporate
a mechanism to harness its benefits while mitigating the instability it introduces.

4 METHOD

Our method addresses the core challenges of FOSSL by establishing a stable, server-guided learning
framework. Building upon the server-client training structure from SemiFL 2022), we
introduce three key components that work in synergy: (1) a round-wise EMA model to provide
a stable geometric backbone, (2) pivot-guided alignment to safely leverage unlabeled client data,
and (3) reliability-aware aggregation scheme to prioritize high-quality client updates.

The training process that integrates these components begins with a brief server warm-up phase,
where the server’s small labeled ID set is used to initialize the model and server-only BatchNorm
statistics. Following this, the main federated training proceeds in rounds. A single round ¢ consists
of a carefully coordinated sequence:
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(1) Server Broadcast: The server distributes the current global model 6% and a set of global pivots
{ /ﬁc_l} (one for each ID class), generated from the stable EMA model of the previous round.

(2) Client Training: Sampled clients perform local training on their unlabeled data, guided by the
received model and pivots (Sec. [4.3).

(3) Server Update: The server aggregates client models using our Reliability-Aware Aggregation
(RAA) scheme (Sec. [4.4), fine-tunes the result, and updates its EMA model to generate new
pivots {y} } for the next round (Sec. .

This iterative process ensures that local updates are stabilized by server-side supervision, temporal
smoothing, and pivot-guided representation learning. The entire procedure is formally detailed in
Pseudo Code in the Appendix [C]

4.1 OVERALL FRAMEWORK AND LEARNING OBJECTIVES

We adopt a learning framework where the server and clients have disjoint roles. The server trains
on its small, clean labeled dataset, while clients train exclusively on their large, unlabeled open-set
data streams. The overall learning objective combines a standard closed-set classifier and an OOD
detector, with loss terms separated by data source.

¢ Server-Side (Labeled Data): On the server, we use the supervised cross-entropy loss (L) for
the ID classifier and a one-vs-all (OVA) loss (£9)*) for the OOD detector, following SSB (Fan
et al., [2023).

OVA
Lserver = £ce + /\od Eod

* Client-Side (Unlabeled Data): On clients, the learning objective is threefold. First, following
FixMatch (Sohn et al., 2020), we apply a consistency regularization loss (L.,) for the ID clas-
sifier. Second, we employ unlabeled data objectives (E”O%%’) for the OOD detector, as proposed
in OpenMatch and SSB (Saito et al.| 2021} [Fan et al., |2023). Finally, and most crucially, we in-
troduce our pivot-guided alignment loss (Lajign). The final client-side loss is a weighted sum of

these three components:
nlab
Eclient = )\conﬁcon + Aalign[:align + Aodﬁtcl)OD

where £ combines entropy minimization, soft open-set consistency regularization (SOCR),
and a pseudo-negative loss:

lab __ SOCR neg
L50b = AemLog T AsocRLeq  + AnegLod

4.2 ROUND-WISE EMA (R-EMA)

To damp round-to-round drift observed in our empirical study, the server maintains a round-wise
EMA (R-EMA) model 0g\a. After aggregating client updates and server fine-tuning at round ¢
(0% e — 0o )» We update

QEMA = aa}tET\/IlA + (1 - a) etﬁnm o€ [05 1)

Here, « controls the EMA memory horizon (larger o = slower adaptation). Unlike iteration-level
EMA in centralized SSL, R-EMA updates once per communication round, which reduces oscilla-
tion and stabilizes the feature geometry. Because each round summarizes many local steps, typical
iteration-level decays (e.g., 0.99-0.999) are overly inertial; we therefore adopt a moderate decay
and use o = 0.9 by default (see Sec.[5.3).

R-EMA serves two roles: (i) it is our final inference model—temporal smoothing improves gener-
alization; and (ii) it provides a stable backbone for class pivots used in client-side alignment. We
deliberately do not use the EMA model to emit pseudo-labels or transmit it to clients: temporal aver-
aging can damp softmax confidences (undesirable for high-threshold pseudo-labeling), and sending
an extra model substantially increases downlink bandwidth. Hence, EMA is used exclusively on the
server for pivot generation and final evaluation.
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Figure 3: Alignment loss as a strong indicator of client reliability. Each point represents a client
at an early (round 501) and late (round 2000) stage of training. The plots show a clear negative
correlation between the average alignment loss (y-axis) and pseudo-label quality, measured by the
number of correct pseudo-labels (x-axis) and accuracy (color). The marker size further reflects the
total number of accepted pseudo-labels. This empirically validates using the inverse of Lyjig,,c as a
client weight in our RAA scheme.

4.3 PIvOT-GUIDED OPEN-SET ALIGNMENT

Direct training on client-side pseudo-labels suffers from pseudo-label brittleness: under Non-IID
open-set splits, small errors are amplified across rounds, leading to severe mislabeling and rapid
error propagation. We therefore guide local representation learning with server-anchored signals so
that only trustworthy evidence shapes the global model. Following prototype-based alignment (Chot
et al.,2025), we adapt it to the federated labels-at-server setting, where clients lack labeled anchors,
confidence is unstable, and heterogeneous OOD distributions further complicate selection.

Global pivots. From the server’s small labeled set and its round-wise EMA (R-EMA) model, we
compute global pivots {1} once per round and distribute them to clients as stable class references.

Dual-gate selection. A client sample is aligned only if both the closed-set classifier and the OOD de-

tector agree it is a high-confidence ID. For an embedding z; with predicted label k= arg maxy, pi i,
we use

o, = ]l(pi,ff >T, A goig > ip).

Here, p; i is the classifier’s softmax posterior for class k, and goil,g is the OOD detector’s inlier score
(OVA positive-class probability). The thresholds 7, ,,7,, € (0, 1) control gate strictness; in practice
we set 17,, = 0.9 for reliability and use a high-confidence softmax threshold 7;, € [0.95,0.99],
a range commonly adopted for confidence-based pseudo-labeling (e.g., FixMatch). The gate is
computed once by the server each round and held fixed during a client’s local steps to avoid drift.

Alignment loss and its effect. Passing samples (®;=1) are attracted toward their pivots, while
non-passing ones (®;=0) receive a mild angular repulsion from all pivots via the normalization
term:

. K
Lanen() = —, TREIE) L 1o 3 exp (nts). (M
T =

Here, sim is cosine similarity and 7" is a temperature. Thus, confident ID embeddings are selectively
pulled toward global references, whereas uncertain/OOD embeddings are discouraged from prema-
ture commitment. Moreover, with unit-normalized features, maximizing cosine to p, is equivalent to
minimizing ||v. — i || for client class means v,; since Dy, = & 3 [ve—[|? < & 2. [ve— |,
optimizing Eq. [[|reduces an upper bound on inter-client variance.

4.4 RELIABILITY-AWARE AGGREGATION (RAA)

Standard federated averaging weights clients by their data quantity (n.), but in semi-supervised set-
tings the quality of updates is more critical. We therefore introduce Reliability-Aware Aggregation
(RAA), a quality-over-quantity scheme.

RAA uses the client’s average alignment loss Laign, as an inverse proxy for reliability, grounded
in the structure of Eq. [I| For a correctly gated ID sample, the attractive term largely cancels the



Under review as a conference paper at ICLR 2026

normalization term, yielding a small loss; by contrast, (i) a misclassified ID sample retains a large
normalization term (dominated by its true pivot), and (ii) a mis-gated OOD sample has no matching
pivot, so the cancellation fails—both cases produce much larger losses. Thus Lyjign, tracks pseudo-
label quality.

Formally, for client ¢ with pseudo-label accuracy q.,
]E[Ealign,c] = QC]E[Ealign,clcorreCt] + (1 - QC) E[‘calign,c | Wrong] ~ (1 - QC) A> A > 0,
s0 lower Lyjign  indicates higher reliability. We then set the aggregation weights 7. and update 671

agg
RS QI VS KL @
’ £align,c +¢€ ass ZCES} e ,
where S; is the set of participating clients at round ¢, and x (scale) and e (stability) are constants.
RAA up-weights clients with cleaner pseudo-labels and down-weights noisy ones, curbing confir-
mation bias over rounds. The inverse relationship between Lyjign . and pseudo-label quality is borne
out empirically in Figure

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluation Protocol and Baselines. We evaluate models on inlier classification accuracy (Acc.)
and OOD detection AUROC. To assess generalization, we report results on both seen OODs (present
during client training) and a diverse set of unseen OOD datasets, and we summarize with an overall
AUROC defined as the unweighted mean of the seen AUROC and the average AUROC over all
unseen OOD sets. Baselines include FedSSL methods (SemiFL and FedFixMatch) and federated
versions of centralized OSSL methods (FedSCOMatch, FedProSub, and FedSSB).

Datasets and backbones. We adopt open-set semi-supervised splits with few labels per ID class.
On FashionMNIST (Xiao et al.,2017), we use 6 clothing classes as ID and 4 accessories as OOD,
with 40 labeled samples per ID class; the backbone is a lightweight CNN with three convolutional
blocks. On CIFAR-10 (Krizhevsky et al.,[2009), we use 6 animals as ID and 4 vehicles as OOD,
evaluating with 20 and 40 labeled samples per ID class. On CIFAR-100, we consider two ID/OOD
ratios (55/45 and 80/20), using 40 labeled samples per ID class in both settings. For CIFAR-10/100,
we employ WRN-28-2 (Zagoruykol [2016)) for both the classifier and OOD detector heads. For un-
seen OOD evaluation, we use cross-dataset pairs (CIFAR-10—CIFAR-100, CIFAR-100—CIFAR-
10) and additionally SVHN (Netzer et al.l [2011), LSUN (Yu et al.| 2015), ImageNet (Deng et al.,
2009) (resized), and Gaussian noise.

Federated Setting and Implementation. We simulate a cross-device FL scenario with 100 clients
and a 10% participation ratio per round, under IID and Non-IID partitions (Dirichlet label skew with
a € {0.3, 0.1}). Training consists of a server warm-up followed by federated rounds: FashionM-
NIST uses a 300-epoch warm-up and 1100 rounds; CIFAR-10/100 use a 500-epoch warm-up and
2500 rounds. Experiments are implemented on Flower (Beutel et al.| [2020); full hyperparameters
and implementation details are provided in the Appendix

5.2 MAIN RESULTS

As shown in Table |1} OpenFL delivers state-of-the-art performance on the challenging CIFAR-
10/100 benchmarks across IID and Non-IID partitions, improving both closed-set accuracy and
overall AUROC. FedSSL baselines (SemiFL, FedFixMatch) achieve reasonable accuracy but weaker
OOD detection, whereas federated versions of centralized OSSL methods (FedSCOMatch, FedPro-
Sub) tend to be unstable under Non-IID splits. FedSSB remains the strongest AUROC competitor
yet consistently trades off inlier accuracy. Training dynamics further show smooth convergence
with reduced oscillation (Appendix Fig. [5)), consistent with the stabilizing effects of R-EMA
and pivot-guided alignment.

On FashionMNIST, SemiFL and FedFixMatch slightly leads overall. This dataset offers a relatively
easy ID/seen-OOD separation (clothing vs. accessories), so pseudo-labels are already reliable and
classic SSL objectives (e.g., FixMatch-style consistency) excel. Even so, OpenFL stays competi-
tive and remains robust under stronger heterogeneity (e.g., Dir(0.1)), while on CIFAR-10/100 the
advantage widens as Non-IID skew increases.
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Table 1: Performance comparison of OpenF L against baselines on all datasets and client parti-
tioning schemes. We report closed-set classification accuracy (Acc., %) and overall OOD detection
performance (overall AUC). All results are the mean 4 standard deviation over 3 runs with different
random seeds. The best results are in bold, and the second-best are underlined.

Client | SemiFL | FedFix | FedSCO | FedProSub | FedSSB | OpenFL
Partitioning | Acc.  AUROC | Acc. AUROC | Acc. AUROC | Acc. AUROC | Acc. AUROC | Acc.  AUROC
CIFAR-10 6/4,1b120 (20 Labels/Class)

389 453 | 771 455 |652 444 | 246 395 |8l4 915 |839 931
11D +9.7 +7.4 +2.1 +59 +52 +49 +12.3 +32 +3.3 +34 +22 +1.7
274 503 |61.8 49.1 |540 458 | 172 406 |644 792 |673 189
Dir(0.3) | £185 77 +22 426 +4.7 +6.2 +0.6 +5.7 +1.1 +8.6 +36 456
167 499 |509 487 |[452 512 |229 472 |5L6 712 |551 745
Dir(0.1) | +00 +3.7 +20  £638 +26 423 +5.6 +8.6 +28  £13 +35 +3.0

CIFAR-10 6/4, 1b240 (40 Labels/Class)

503 381 |875 667 |731 459 |380 272 |877 917 |883 927
11D +31.0 +14.2 +0.2 +7.5 +1.3 +3.4 +3.1 +1.9 +1.1 4 +0.3 +0.5
51.9 515 | 733 541 |616 483 |328 341 |748 878 |768 883
Dir(0.3) | 4307 496 | £18  +43 | £11 +3.1 +7.6 +52 | £30 434 | £33 +38
167 441 |628 688 [543 517 |312 411 |655 749 |675 13.1
Dir(0.1) +00  +118 | £07 +44 +24 +36 +135 +37 +22 +18 +13 +5.7

CIFAR-100 55/45, 1b2200 (40 Labels/Class)

631 683 |664 680 |625 721 |252 497 |681 755 |69.0 74.8
11D +0.4 +0.6 +0.38 +1.1 +0.4 +3.0 +2.7 +35 +0.6 +23 +0.7 +36
61.2 676 |63.6 653 |586 70.6 27.6 483 | 654 750 |661 75.0
Dir(0.3) | 05 +0.3 +10 428 +04 403 +1.9 +1.8 +07 420 +06 423
595 652 |603 657 |556 704 |285 500 |618 715 |62.8 745
Dir(0.1) | 11 +1.7 +12 407 +0.1 +0.2 +2.9 +0.8 +12 426 +05 +3.0

CIFAR-100 80/20, 1b3200 (40 Labels/Class)

568 661 |597 622 |573 663 |230 497 [596 756 |611 74.6
IID +1.0 +1.2 +0.3 +0.6 +0.3 +0.3 +0.4 +0.3 +0.6 +0.9 +0.8 +2.4

541 647 |53 605 |532 652 |215 509 |[550 7114 |s580 754
Dir(0.3) | 05 +02 | £05 409 | £05  +14 +4.4 +14 | £33 439 | £07  +£12
524 612 |528 607 |493 668 |233 503 |534 718 |s550 727
Dir(0.1) +0.6 +18 +0.6 +238 +0.2 +14 +12 +0.2 +0.4 +09 +0.5 +34

FashionMNIST, 1b240 (40 Labels/Class)

815 592 |[807 860 |767 477 |757 145 |785 936 |783 86.6
11D +0.0 +25.8 +£2.5 +26 +2.1 +9.6 +0.7 +4.6 +26 +22 +6.7 +10.8
76.1 65.5 1.9 86.9 74.5 46.5 74.1 17.8 76.2 81.6 79.2 86.1
Dir(0.3) | +00 +5.9 +14 432 +33 +5.8 +1.3 +2.0 +22 215 | £10  £136
731 555 | 755 839 |[723 489 | 722 127 |751 819 |753 953
Dir(0.1) | £00  +38 | £1.6  =£3. +32  £108 | £19 21 +36  £02 | £31  £13

Table 2: Effect of R-EMA and pivot source. Results on CIFAR-10 (6/4, 1b240) and CIFAR-100
(80/20, 1b3200) comparing: w/o EMA (a = 0), EMA with « € {0.95,0.9,0.85}, and a variant that
keeps EMA (a0 = 0.9) but computes pivots from the fine-tuned (non-EMA) server model used for
the current training.

w/o EMA EMA EMA EMA non-EMA
Dataset

a=0 a=0.95 a=0.9 a=0.85 Pivots
| Acc. AUROC | Acc. AUROC | Acc. AUROC | Acc. AUROC | Acc. AUROC

CIFAR-10 6/4, 1b240 75.9 90.0 76.6 934 77.6 92.3 74.6 91.4 76.3 93.0
CIFAR-100 80/20, 1b3200 | 58.1 71.2 59.2 72.3 59.7 76.4 58.2 73.7 59.3 723

5.3 ABLATION

Ablation on Round-EMA and Pivot Source. We ablate two factors—temporal smoothing via
EMA and the source of class pivots. Enabling R-EMA consistently improves AUROC and typically
boosts closed-set accuracy, indicating that per-communication-round smoothing stabilizes represen-
tations under federated noise. Among decay values, a moderate setting (o« = 0.9) offers the best
balance, whereas a higher decay (0.95) is overly inertial and a lower one (0.85) under-smooths.
Keeping EMA at o = 0.9 but deriving pivots from the non-EMA (fine-tuned) model weakens per-
formance on the harder CIFAR-100 split and introduces a mild Acc—AUROC trade-off on CIFAR-
10, suggesting that EMA-derived features provide better-calibrated anchors. We therefore adopt
o = 0.9 with EMA-derived pivots by default.
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Figure 4: Sensitivity of Pivot-Guided Alignment. Accuracy (blue) and AUROC (red) versus (a)
Aalign and (b) p under Dirichlet splits (CIFAR-10 6/4, Dir 0.3; CIFAR-100 55/45, Dir 0.1).

Table 3: Effect of reliability-aware aggregation. Comparison with FedAvg on CIFAR-10 (6/4;
1b120/1b240) and CIFAR-100 (55/45; 162200, 80/20; 1b3200); FashionMNIST (6/4; 1b240) included.
CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100 FashionMNIST
‘ 6/4,1b120 ‘ 6/4, 1b240 ‘ 55/45, 1b2200 ‘ 80/20, 1b3200 ‘ 6/4,1b240
| Acc. AUROC | Acc. AUROC | Acc. AUROC | Acc. AUROC | Acc. AUROC

FedAvg 65.6 83.2 74.9 91.1 62.2 71.6 59.1 74.8 78.2 92.3
RAA 71.5 83.9 77.7 92.3 62.9 71.2 59.7 76.4 79.1 95.1
15.9 10.7 12.8 112 10.7 104 10.6 11.6 10.9 12.8

A natural question is whether simply adding EMA to a strong baseline suffices. Applying the same
R-EMA to FedSSB improves stability and AUROC (Appendix Fig. [6) and yields higher numbers
than plain FedSSB (Appendix Table [); however, OpenFL still outperforms SSB with R-EMA
on both accuracy and overall AUROC across the evaluated splits, including the more challenging
CIFAR-100 (80/20). This indicates that our gains do not stem from EMA alone—the combination
of EMA-stabilized pivots, pivot-guided open-set alignment, and RAA is needed to attain the final
performance.

Sensitivity of Pivot-Guided Alignment (\,jign, 71p)- Figure studies the two knobs of our pivot-
guided alignment. Any A, > 0 improves Acc. and AUROC over Ayign = 0. On CIFAR-10,
accuracy peaks near Agign ~ 0.5 while AUROC keeps rising to 1.0; CIFAR-100 prefers a smaller
weight (about 0.1). For the ID gate nyp, stricter gating increases AUROC on both datasets with only
a mild accuracy trade-off on CIFAR-10. Both knobs exhibit a broad stability plateau, with modest
variation for Aajign € [0.1,1.0] and nip € [0.7,0.9]. Although the OOD detector’s natural decision
boundary is 0.5, we set a high ID gate (np ~ 0.9) to ensure reliable alignment; this mainly changes
the quantity, not the quality, of aligned samples. We use Ajign = 0.5 and n;p = 0.9 by default.

Effect of Reliability-Aware Aggregation. We ablate reliability-aware aggregation (RA-Agg),
which reweights clients by the inverse of their average alignment loss Lyjign, ., against FedAvg. On
CIFAR-10, RA-Agg consistently improves both accuracy and AUROC, indicating that emphasizing
clients with cleaner pseudo-labels benefits the global model. On CIFAR-100, gains are smaller or
mixed: with many classes, dual-gated positives are sparser and the log-sum-exp term dominates,
compressing the across-client spread of Lyjign S0 the reweighting approaches near-uniform averag-
ing; class coverage also becomes more critical. Overall, RA-Agg is most impactful when inter-client
pseudo-label quality varies widely, while remaining a safe, sometimes positive modification in the
100-class regime.

6 CONCLUSION

We presented, to our knowledge, the first systematic study of FOSSL in the labels-at-server set-
ting, revealing pseudo-label brittleness on clients and amplified instability under OOD heterogene-
ity. Building on these findings, we proposed OpenFL, combining Round-wise EMA, Pivot-guided
Open-set Alignment, and Reliability-Aware Aggregation. Across datasets and partitions (IID and
Non-IID), OpenFL achieves strong inlier accuracy and overall AUROC with stable convergence.
Limitations. Our method still relies on globally fixed hyperparameters (e.g., Trp, Mrp» @, Aatign);
future work includes adaptive client-/round-aware tuning and stronger robustness to adversarial or
non-stationary clients.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 BASELINES

For a fair comparison, we implemented all baselines in the federated learning setting by incorporat-
ing commonly used techniques, such as alternative training and pseudo-labeling from SemiFL Diao
et al.[ (2022) and static batch normalization (StaticBN) from HeteroFL |Diao et al.| (2021). SemiFL
is implemented directly based on the original code from the authors, while the other baselines are
re-implemented on top of the Flower framework Beutel et al.|(2020) to ensure consistency with ours.
The implementation details of each baseline are described as follows.

SemiFL. Server: trains on its small labeled dataset with supervised cross-entropy loss. Clients:
receive the global model and optimize consistency loss using pseudo-labels from the server model,
following the original SemiFL design.

FedFixMatch. Server: minimizes supervised cross-entropy loss on the labeled ID set. Clients:
apply FixMatch logic with weak/strong augmentations. For each unlabeled sample, if the weakly-
augmented prediction exceeds a confidence threshold 7, the client enforces a consistency loss on
the strongly-augmented view: Leons = 1(max p(y|z®) > 7) - CE(p(y|2?®), ). Thus, FedFixMatch
pairs server-side supervision with client-side consistency training on pseudo-labeled data.

FedSCOMatch. Server: trains with cross-entropy loss on labeled ID data. Clients: Clients adapt
a dual-stream strategy: the open-set stream applies pseudo-labeling over K + 1 classes, while the
close-set stream applies pseudo-labeling over only K ID classes. An OOD memory queue stores
low-MSP samples for (K + 1)th class.

FedProSub. Server: The Server maintains ID class prototypes and minimized supervised cross-
entropy loss on labeled data. Subspace scores are computed via QR decomposition, and only the
Beta distribution parameters for the ID distribution (a1, 31) are updated. Although the prototypes
are described as EMA-updated. Clients: Each client computes subspace scores through QR decom-
position and applies FixMatch-style pseudo-labeling weighted by p(ID|subspacescore). Clients
optimize tree losses: Lgep(cross-entropy pseudo-label loss), Lg,p(subspace separation loss), and
L, s(unsupervised similarity loss). Unlike the server, clients update the Beta distribution parameters
for both ID (0417 ,81) and OOD (042, ,82)

FedSSB. Server: jointly trains the classifier with cross-entropy loss and an auxiliary one-vs-all
(OVA) classifier with OVA loss, enabling OOD-aware supervision. Clients: generate pseudo-
labels with the server model. The classifier head is trained with consistency loss, while the OVA
head is optimized with soft consistency loss, entropy minimization, and negative mining (following
SkipAlign). This combination improves OOD discrimination under open-set federated conditions.

A.2 HYPER PARAMETER DETAILS

Across all CIFAR settings, the server and clients adopt SGD as the optimizer with momentum fixed
at 0.9 and weight decay at 0.0005. Training is conducted for a total of 2500 communication rounds.
On the server side, every setting involves 500 warmup epochs followed by 3 fine-tuning epochs,
while clients perform 5 local training epochs. The client participation ratio is consistently set to 0.1,
with a total of 100 clients available. A cosine-style scheduler is enabled in all cases, though the
minimum learning rate varies depending on the dataset.

CIFAR-10, 6/4,1b120 and CIFAR-10, 6/4, 1b240 Both the server and clients use a learning rate of
0.01. The scheduler lowers the rate to a minimum of 0.001. The server employs a batch size of 30
for training and 200 for testing, while the client batch size is 32.

CIFAR-100, 55/45, 1b2200 and CIFAR-100, 80/20, 1b3200 The learning rate is increased to 0.03
for both server and clients, with the cosine scheduler reducing it to a minimum of 0.005. The server’s
batch sizes are larger, namely 100 for training, while the client uses a batch size of 64.

12
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For both CIFAR-10 and CIFAR-100 datasets, he weak augmentation includes resizing, random crop-
ping with reflection padding, random horizontal flipping, and normalization. The strong augmenta-
tion follows the same procedure but additionally applies RandAugmentMC with two operations and
magnitude 10. For evaluation, we only use resizing and normalization.

fashionmnist, 6/4, 1b240 Both server and clients use SGD with a learning rate of 0.01 and a cosine
scheduler with minimum 0.001. Training runs for 1100 rounds, the server runs 300 warmup epochs
and 3 fine-tuning epochs, while clients train for 5 local epochs. The server batch size is 30 for
training, and the client batch size is 32. The client participation ratio is consistently set to 0.1, with
a total of 100 clients available.

For the implementation of other baselines, we aligned general settings such as batch size and the
number of rounds with those of OpenFL whenever applicable, while applying minor adjustments
when baseline-specific requirements were necessary.

B EXTENDED EXPERIMENTAL RESULTS

B.1 TRAINING DYNAMICS AND STABILITY

Figure [5 plots per-round closed-set accuracy and overall AUROC on CIFAR-100 (80/20) under 11D
and Dirichlet partitions. Across all splits, OpenFL converges smoothly with low oscillation; Non-
IID primarily slows accuracy growth, while AUROC remains robust and keeps improving, finishing
on par with—or slightly above—the IID case. These dynamics are consistent with the stabilizing
effects of R-EMA and pivot-guided alignment described in Sec. 4]

70
;\360
)
3 50
>
3 — D
< 40 — Non-IID, Dir(0.3)

—— Non-IID, Dir(0.1)
30 55
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Round Round

Figure 5: Training dynamics on CIFAR-100 (80/20). Accuracy (left) and overall AUROC (right)
vs. round under IID and Dirichlet partitions. R-EMA and pivot-guided alignment yield stable con-
vergence; heterogeneity mainly slows Acc., while AUROC remains robust and continues to improve.

B.2 APPLYING ROUND-WISE EMA TO FEDSSB

To test whether gains come merely from temporal smoothing, we apply the same round-wise EMA
(R-EMA, a=0.9) to FedSSB. As shown in Fig.[f] EMA reduces oscillation and modestly improves
both Acc. and overall AUROC. Quantitatively (Table[d), FedSSB with R-EMA outperforms vanilla
FedSSB, yet OpenFL still achieves higher accuracy and AUROC across the evaluated splits, in-
dicating that EMA alone is insufficient without our pivot-guided alignment and reliability-aware
aggregation.
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Figure 6: FedSSB with vs. without Round-wise EMA (R-EMA, a=0.9). CIFAR-100 55/45
(Dir(0.3)) training dynamics: accuracy (left) and overall AUROC (right) vs. round. R-EMA re-
duces round-to-round oscillation and yields smoother, higher curves. All other settings are identical;
only EMA is toggled.

Table 4: FedSSB, FedSSB with R-EMA, and OpenFL. Accuracy (Acc.) and overall AUROC on
CIFAR-10 (6/4, 1b240) and CIFAR-100 (80/20, 1b3200) under IID and Dirichlet partitions. Round-
wise EMA consistently improves FedSSB, but OpenFL remains best in both Acc. and AUROC.
Results are mean = std over three seeds.
\ 1D | Dir0.3) |  Dir(0.1)

Acc. AUROC | Acc. AUROC | Acc. AUROC

CIFAR-10 6/4 1b240
87.7 91.7 74.8 87.8 65.5 74.9

SSB +1.1 +1.4 +3.0 +3.4 +22 +1.8
87.9 92.1 75.5 87.8 66.4 73.6

SSB EMA | +o0s5 +1.3 4038 +0.6 +14 +1.8
88.3 92.7 76.8 88.3 67.5 73.1

OpenFL +0.3 +0.5 +33 +3.8 +1.3 +57

CIFAR-100 80/20 1b3200
59.6 75.6 55.0 71.4 53.4 71.8

SSB +0.6 +0.9 +33 +3.9 +0.4 +0.9
60.1 75.3 57.3 72.6 54.5 70.6

SSB EMA | +os6 +1.9 +0.2 +1.7 +0.9 +1.2
61.1 74.6 58.0 75.4 55.0 72.7

OpenFL +038 +24 +0.7 +12 +0.5 +34
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C ALGORITHM PSEUDO CODE

Algorithm 1: OpenFL (Main Process and Client Procedure)

Input: Labeled server data D;; Local unlabeled data of client ¢ D,, ; Total communication
rounds 7; Client sampling fraction &; Total clients C'; Initial model parameters
84, 0E0 4; Warmup epoch E,,; EMA momentum co; Round to start applying alignment
loss Talign
Output: Final trained global model parameters HgT
System executes:
// Phase 1: 1Initial Server Warmup
09,0% 04 1° < ServerWarmup (6, 0 4)
// Phase 2: Federated Learning Rounds
for roundt =0,1,...,T —1do
// Step 2.1: Client Selection & Training
St < (Randomly sample £ - C clients from C clients)
for each client ¢ € Sy in parallel do
Distribute global model ] and global pivots " to client ¢
Request local training: (057!, Latign,c) < ClientUpdate(c, 0", 1", t)

// Step 2.2: Reliability-Aware Aggregation
Receive updated models {62!} and align loss {La1ign,c} from clients in S;
04t! «+ ServerAggregation({(0."", Latign.c)})

04 04 T < ServerFineTune(64™, 6%, o, ut, t 4 1)

Procedure ClientUpdate(c, 0}, ", )

// Stage 1: Pre-computation of Masks (inference mode)

for x € D, . do
h « F(z) // Extract features
p < Softmax(Classi fier(h)) // ID classifier head
w <+ OD(h) // 00D detector head

| Compute masks: odual < (p > 7rpand prp > nrp), P79 < (voop > Theg)

// Stage 2: Local Training
for epoch =1 to E. do

Sample a batch B from D, .
Let Bayal < {1’ eB | (I)gual = 1}
Let Breg <+ {x € B| 29 =1}
Calculate consistency regularization L., on Bgya;
Calculate pseudo-negative loss £]57 on By,eq
Calculate other losses (L7, LIPCR) on the full batch B
‘C%?%%) — Aemﬁzgl + ASOCR‘CdeCR + Anegﬁggg
if t > Th5n then
Calculate alignment loss L;34» on the full batch B
»Cclient — )\con»ccon + )\align»calign + /\od»cgréjlan
else
L ['client — )\con‘ccon + Aodﬁénol(bb

| Update 0. by minimizing L j;ent

return updated model 0. and align loss Layign
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Algorithm 1: OpenFL: (Server Procedure)

Procedure ServerWarmup(0,,0g4)

for epoch = 1 to E,, do
Calculate supervised 108s Lgerper < Lee + )\OdﬁngA
Update 6, by minimizing Lerver on data from Dy
Oprma < - 0ppa+ (1—a)- 6

Update BN statistics of 0, using D,
Calculate initial pivots 4 using features from the trained ¢,
return 99, QEJWA, M

Procedure ServerAggregation({(6.™", Lajign.c)})
for each client c € Sy in parallel do
L Calculate aggregation weights 7. < —*

align,c“rﬁ
~ pt4+1
t+1 ZcESt Ao,
Update aggregated server model 6,7 «— =<<t——

ceSy Ne
return 0;“

Procedure ServerFineTune(0,,0pn 4, 1)
Freeze BN layers of 0,
for epoch = 1to E; do
L Calculate supervised 108s Lserver < Lee + Aoa LSy A
Update 6, by minimizing Lcyer 0n data from Dy
Opnma o -Oppya+(1—a)-6,
Update BN statistics of 0, using D,
1 < PivotUpdate(0gpsa)
return 0, 0gara,

Procedure PivotUpdate(0g pr4)
h < F(Dy;0pna)
z < Proj(h)
for k =1t K do
| =mean(z | y = k)
return p
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