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Abstract

We introduce Riemannian Black Box Variational Inference (RBBVI) for scenar-
ios lacking gradient information of the model with respect to its parameters. Our
method constrains posterior marginals to exponential families, optimizing varia-
tional free energy using Riemannian geometry and gradients of the log-partition
function. It excels with black-box or nondifferentiable models, where popular
methods fail. We demonstrate efficacy by inferring parameters from the SIR
model and tuning neural network learning rates. The results show competitive
performance with gradient-based (NUTS) and gradient-free (Latent Slice Sam-
pling) methods, achieving better coverage and matching Bayesian optimization
with fewer evaluations. RBBVI extends variational inference to settings where
model gradients are unavailable, improving efficiency and flexibility for real-
world applications.

1 Introduction
Bayesian Inference focuses on updating beliefs about hypotheses based on newly available evidence.
Previously too costly, it is now more feasible thanks to Markov-Chain Monte Carlo (MCMC) algo-
rithms that can sample from difficult posterior distributions and Variational Inference methods that
can directly optimize an approximate posterior distribution. However, widely used MCMC meth-
ods, such as the No-U-Turn Sampler (NUTS) [12] and well-known variational inference methods
such as Automatic Differentiation Variational Inference (ADVI) [17] or Stochastic Variational In-
ference (SVI) [11] require that the gradient of the log-probability density function with respect to
the parameters be computable.

Gradient-free methods, such as Ensemble Slice Sampling (ESS) [14], propose a way to sample
from the posterior distribution over parameters even when the gradient is unavailable. Although
these methods are gradient-free and nonparametric, they require significant evaluations of the log-
probability density function, which may be computationally expensive.

This paper introduces Riemannian Black Box Variational Inference (RBBVI) for approximating
posterior marginal distributions, addressing computational challenges in two ways: by constraining
the posterior to a predefined exponential family [13], we balance approximation accuracy with com-
putational cost; optimizing variational free energy allows for early stopping, potentially reducing
function evaluations compared to sampling methods.
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RBBVI is particularly well-suited for approximate inference in probabilistic models with black-
box components. This makes the proposed method ideal for scenarios where nondifferentiable and
computationally expensive operations are frequent or for hyperparameter tuning, where gradients
might not be easily accessible. To demonstrate this, we address the problem of inferring the optimal
learning rate of gradient descent while training a neural network. In this situation, the gradient of
the loss function with respect to the learning rate is not directly available. Since training a neural
network is costly, it is crucial to minimize the number of executions during hyperparameter tuning.

2 Riemannian Variational Inference
We are concerned with Bayesian inference in a generative model p(θ, y) with θ unobserved parame-
ters and y observed data. We are interested in the inference task of determining p(θ|y). In this paper,
we assume a factorizable generative model with independent priors over (θ1, . . . , θn)

p(y, θ1, . . . , θn) = p(y|θ1, . . . , θn)
∏
i

pi(θi), (1)

where p(y, |θ1, . . . , θn) is a generative process that is possibly not differentiable with respect to θ.

Variational inference addresses this by introducing an approximate posterior distribution q on which
we want to maximize the evidence lower bound (ELBO) or equivalently minimize the Free Energy

F[q, p](y) =
∫

q(θ) log
q(θ)

p(y, θ)
dθ, (2a)

where the goal is to compute
q∗ = argminF [q, p](y), (2b)

for a given observation y.

The problem (2b) is a nonparametric one. To cast it into a parametric optimization problem, we
assume the following functional form of q(θ1, . . . , θn) to be a factorized posterior

∏
i qi(θi), where

each constrained qi(θi) to be a known exponential family

qλi
(θi) = exp(λT

i Ti(θi)−Ai(λi) + κi(θi)), (3)

with natural parameters λi, sufficient statistics Ti, a base measure κi, and known log-partition func-
tion Ai. This turns the problem (2b) into the following parametric problem

λ∗ = argmin
λ=(λi,...,λn)

F

[∏
i

qλi
(θi), p

]
(y). (4)

The fruitful idea is to apply gradient-based methods to the Free Energy objective F with respect to
the parameters λ. This approach was first proposed by Amari [2] with the following gradient update

λk+1 = λk −F−1(λk)∂λF |λ=λk , (5)

where F is the Fisher information matrix. The update rule (5) has gained further popularity, and
Khan [15] has developed extensions to the rule. The typical challenge in applying the rule (5) is that
λ usually lies within an open constraint set, so the update may not always meet the constraints. Lin
[20] addresses this issue for positive-definite constraints (e.g., Gamma, Gaussian) using Riemannian
gradient descent. It is crucial to note that even when the gradient of p(y, θ1, . . . , θn) with respect
to (θ1, . . . , θn) does not exist or is intractable, the gradient ∂λF can still exist and be tractable,
depending on the specific choice of q.

Similarly to Lin’s approach, we assume that each λi belongs to a constraint set Λi that forms a
Riemannian manifold with Fi as its metric. For readers interested in a comprehensive treatment of
these concepts, we recommend the book by Absil et al. [1]. For readers new to manifold theory,
a manifold M can be thought of as a set that, at any point x ∈ M can be approximated by a
vector space. This vector space is called the tangent space TxM. An important detail is that the
dimensionality of TxM remains constant for each point x in the manifold. A Riemannian manifold
is equipped with a Riemannian metric, which defines a smooth inner product on each tangent space,
allowing us to measure distances and angles between tangent vectors. The Riemannian gradient
∂f(x) at a point x onM is the unique tangent vector in TxM that satisfies ⟨∂f(x), ξ⟩x = Df(x)[ξ]
for all ξ ∈ TxM, where ⟨·, ·⟩x denotes the Riemannian metric in x. To move along the manifold in
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the direction of a tangent vector, we use a retraction Rx : TxM →M. Specifically, for a tangent
vector ξ ∈ TxM, the curve γ(t) = Rx(tξ) satisfies γ(0) = x and γ̇(0) = ξ.

We equip each Λi with a Riemannian metric Fi and a known closed-form retraction Ri. We treat
Λ =

⊗
i Λi as a product manifold with the product retraction Rλ(ξ) = (R1

λ1
(ξi), . . . , R

n
λn

(ξn)),
leading to the following update rule

λk+1 = Rλk

(
−F−1(λk)∂λF |λ=λk

)
, (6a)

where

F(λ) =

F1(λ1) 0 0

0
. . . 0

0 0 Fn(λn)

 . (6b)

The problem in implementing the scheme (6a) then boils down to a fast computation of ∂λF .

3 Gradient computation

To compute ∂λF , we employ the integration by parts as described in [21, Appendix: The Gradient
of the ELBO] for the Euclidean case, the proof can be trivially extended to the Riemannian setting
via [7, Proposition 8.59]. The integration by parts yields the following expression for the gradient
of the Free Energy

∂λF

[∏
i

qλi
(θi), p

]
(y) = E∏

i qλi
(θi)

[
log

∏
i qλi(θi)

p(y, θ1, . . . , θn)

[
T1(θ1)− ∂λ1

A(λ1)
. . .

Tn(θn)− ∂λn
A(λn)

]]
. (7)

The form of ∂λF given in the equation (7) leads to an important observation: the differentiabil-
ity of F (both in the Euclidean and Riemannian senses) does not depend on the properties of
p(y, θ1, . . . , θn) with respect to (θ1, . . . , θn). Instead, it depends solely on the existence of ∂λi

A(λi).
When p(y, θ1, . . . , θn) is differentiable in terms of (θ1, . . . , θn), a Monte Carlo method with favor-
able convergence properties is used to estimate the gradient (6a) with the reparameterization trick
[16]. This approach can be extended to nondifferentiable functions by approximating the nondiffer-
entiable function with a differentiable surrogate (smooth approximation), as in the RELAX method
[10] and then applying the reparameterization trick.

The key observation of our study is as follows: we can construct a first-order approximation to ∂λF
using the form (7) without an explicit smooth approximation of p(y, θ1, . . . , θn) via

∂λF ≈


Eqλ1

(θ1)

[
log

qλ1
(θ1)

p(y,θ1,µ2,...,µn)
(T1(θ1)− ∂λ1A1(λ1))

]
...

Eqλn (θn)

[
log

qλn (θn)
p(y,µ1,...,θn)

(Tn(θn)− ∂λn
An(λn))

]
 , (8)

where µj = Eqλj
(θj)[θj ].

The error term for the approximation (8) can be obtained from Theorem 1 provided in Appendix E
applied to each component of the gradient. For each i, we define a function hi that depends on all
variables except θi

hθi(θ1, . . . , θi−1, θi+1, . . . , θn) = p(y, θ1, . . . , θi−1, θi, θi+1, . . . , θn) (9)

Applying Theorem 1 to each hθi , we get

E∏
j ̸=i qλj

(θj)[hθi(θ1, . . . , θi−1, θi+1, . . . , θn)] ≈ hθi(µ1, . . . , µi−1, µi+1, . . . , µn), (10)

where the approximation error is the limit expression from Theorem 1.
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To estimate the right-hand side of equation (8) we employ REINFORCE estimator [25] corrected on
the exponential family sufficient statistics (for details see Appendix C)

Θi, . . . ,ΘN ∼ qλi
(θi) (11a)

hi(λi, θi) = log
qλi

(θi)

p(y, µ1, µ2, . . . , θi, . . . µn)
(Ti(θi)− ∂λi

Ai(λi)) (11b)

fi(λi, θi) = Ti(θi)− ∂λiA(λi) (11c)

A[h] =
1

N

∑
i

hi(λi,Θi) (11d)

Cov[h, f ] =
1

N

∑
i

(hi(λi,Θi)−A[h])
T
fi(λi,Θi) (11e)

Eqλi
(θi)[hi(λi, θi)] ≈ ∂̃λi

F =
1

N

∑
i

hi(λi,Θi)− Cov[h, f ]Fi(λi)
−1fi(λi,Θi). (11f)

Algorithm 1 in Appendix D presents the complete implementation of the procedure described in
Equation (6a). This algorithm integrates all key components of our method, offering a comprehen-
sive description of RBBVI.

4 Experimental Results
Experiments presented in this section were implemented in Python [23] and Julia [6]. The code
is publicly available at https://github.com/biaslab/GradientFreeVI. For the SIR model
experiments in Subsection 4.1, we utilized the model implementation from Frost’s SIR repository1,
integrating their Turing.jl [9] model specification. This integration allowed us to compare with the
NUTS [12] and LSS (Latent Slice Sampling) [19] samplers using the Turing.jl framework.

4.1 Parameter Inference for a SIR Model

To evaluate our method, we use the Susceptible-Infected-Recovered (SIR) epidemiological model
[4]. This provides a benchmark in an “ideal” scenario where gradients are readily available, allowing
comparison against gradient-based and gradient-free approaches. The SIR model dynamics are
governed by the following system of ordinary differential equations

dS

dt
= −βc I

N
S

dI

dt
= βc

I

N
S − γI

dR

dt
= γI

dC

dt
= βc

I

N
S

(12)

where S, I , and R represent the susceptible, infected, and recovered populations respectively, C
tracks cumulative cases, N = S+ I +R is the total population, β is the infection rate, c = 10 is the
contact rate, and γ = 0.25 is the recovery rate. We simulate daily infections by solving this system
numerically with a population size of 1000 and observe infections through a Poisson distribution.
Our task is to estimate the infection rate β and the initial proportion of infected i0 = I(0)

N given only
observed data, with uniform priors on both parameters.

We simulate daily infections using known parameters and model observed infections with a Poisson
distribution. Our task is to estimate the infection rate β and the initial proportion of infected i0 given
only observed data, with uniform priors. Our generative model is

i0 ∼ Uniform(0, 1) β ∼ Uniform(0, 1)

Ct =

∫ t

0

βc
I(τ)

N
S(τ)dτ Xt = Ct − Ct−1 Yt ∼ Poisson(Xt).

(13)

For our approximate posterior, we use Beta distributions for i0 and β, as they represent proportions
in [0, 1].

1https://github.com/epirecipes/sir-julia
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We compared RBBVI with NUTS [12] and LSS samplers [19]. Table 1 (the table is provided in Ap-
pendix A) reveals distinct trade-offs between the methods. Under limited computational resources,
our approach demonstrates strong performance, achieving superior coverage compared to nonpara-
metric alternatives. The result highlights the key advantage of our parametric approach: efficient
uncertainty quantification with restricted computational resources. However, as computational bud-
gets increase, gradient-based methods like NUTS show their strengths through superior MSE values,
while LSS also achieves excellent coverage. These results position our method as particularly valu-
able when computational efficiency is crucial or gradient information is unavailable. Meanwhile, we
acknowledge that gradient-based methods like NUTS should be preferred when gradient information
and substantial computational resources are available.

4.2 Inferring Neural Network training hyperparameter

In this experiment, we tune the learning rate for training a simple neural network on the MNIST
dataset [18]. We cast this as an inverse problem, defining our forward generative model as training
the network with a given learning rate ε

p(y,X, ε) = p(y|X, ε)p(ε)p(X)

with p(X) uniform and
p(y|X, ε) ∝ exp(−L(yv, fε(Xv))), (14)

where
fε = fw(ε), w(ε) = argmin

w
L(yt, fw(Xt)). (15)

Here, L is the loss function, Xv, Xt, yv, yt are validation and training splits, and fw is the neural
network with parameters w. The function fε represents the trained neural network, where the op-
timal parameters w(ε) depend on the learning rate ε used during training. Crucially, each forward
model evaluation requires training a network with the given learning rate.

We compare our method against several hyperparameter optimization techniques: Bayesian Opti-
mization with Gaussian Processes (GP) [22] using different kernels: Radial Basis Function (RBF)
and Matérn kernel [24] with ν = 1.0 and ν = 2.5, Tree-structured Parzen Estimator (TPE) [5]; and
running inference over the same probabilistic model with LSS sampler [19].

The results in Table 2 (the table is provided in Appendix A) show that our method achieves com-
parable or better performance than advanced Bayesian optimization techniques with significantly
fewer tuning steps. It provides direct uncertainty quantification for the optimal learning rate, en-
abling effective ensemble training. Our approach balances exploration and exploitation better than
other methods, achieving high accuracy for individual models and ensembles. The detailed analysis
of the experiment is provided in Appendix B.

5 Conclusion

In this work, we introduced RBBVI and demonstrated its application in two key areas: obtaining a
posterior distribution over the unknown parameters of an ordinary differential equation (ODE) and
tuning the learning rate of a neural network. Future research could investigate the assumption of a
joint prior distribution over the parameters as mentioned in Equation 1. Additionally, our method
could be utilized as a subroutine within larger probabilistic models. Notably, our algorithm was used
as an inference subroutine in RxInfer.jl [3] in our experiments.
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A Tables

Method β Coverage i0 Coverage MSE β MSE i0
* RBBVI 0.21 ± 0.13 0.80 ± 0.13 0.45 ± 0.03 0.31 ± 0.05
NUTS 0.12 ± 0.07 0.0060 ± 0.0027 0.0011 ± 0.0002 0.18 ± 0.06
LSS 0.61 ± 0.06 0.013 ± 0.007 0.077 ± 0.014 0.36 ± 0.05
◦ RBBVI 0.84 ± 0.11 0.50 ± 0.14 0.094 ± 0.031 0.17 ± 0.00
NUTS 0.87 ± 0.02 0.84 ± 0.03 0.00001 ± 0.00000 0.0067 ± 0.0051
LSS 0.99 ± 0.00 0.76 ± 0.09 0.0025 ± 0.0019 0.092 ± 0.057
⋆ RBBVI 0.83 ± 0.12 0.80 ± 0.13 0.055 ± 0.036 0.064 ± 0.040
NUTS 0.94 ± 0.02 0.92 ± 0.02 0.00001 ± 0.00000 0.0054 ± 0.0040
LSS 0.98 ± 0.01 0.94 ± 0.02 0.0002 ± 0.0002 0.0089 ± 0.0063

Table 1: Coverage statistics and mean squared error (MSE) for inference in the SIR model. The symbols *,
◦, and ⋆ represent low, medium, and high computational budgets, respectively. These budgets are defined by
the maximum number of calls to an ODE solver: up to 50,000 for low, 300,000 for medium, and 2,500,000
for high. Coverage is calculated as the proportion of times the true parameter value falls within the 95%
Bayesian credible interval of the estimated posterior distribution. Higher coverage indicates that the method’s
uncertainty quantification is more reliable. Our RBBVI demonstrates particularly strong performance under
low computational budgets, achieving superior coverage for both parameters compared to nonparametric al-
ternatives and comparable MSE. This highlights RBBVI’s ability to provide reliable uncertainty quantification
even with limited computational resources. While NUTS shows better MSE due to its gradient-based nature,
and LSS performs well with higher budgets, RBBVI’s parametric approach offers a compelling advantage in
resource-constrained scenarios. As computational budgets increase (◦ and ⋆), all methods show improved per-
formance, with RBBVI maintaining competitive coverage and MSE values. This comparison demonstrates that
our parametric method offers a robust alternative to nonparametric approaches, particularly excelling in scenar-
ios where computational resources are limited while maintaining competitive performance at higher budgets.
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Method Mean Mode Acc Acc @ 50 # Tuning steps
Gamma 0.00291 0.00103 97.7% 98.6% 210
Inverse Gamma 0.00332 0.00111 97.3% 98.7% 330
TPE - 0.00048 97.2% - 3000
GP(RBF) - 0.00194 97.0% - 1000
GP(Matern(1)) - 0.00418 97.3% - 1000
GP(Matern(2.5)) - 0.00652 97.6% - 1000
Cubature 0.00332 ⋆ 97.7% 98.6% 210
LSS 0.0939 ⋆ 39.3% 98.5% 310

Table 2: Results of tuning the learning rate for a neural network trained on MNIST. The table shows the mean
and mode of the posterior distribution over the learning rate, the test accuracy using the mode (Acc), the test
accuracy of an ensemble of 50 models trained with learning rates sampled from the posterior (Acc @ 50),
and the number of tuning steps. Our method (Gamma, Inverse Gamma) provides uncertainty estimates and
competitive performance with fewer tuning steps than Bayesian optimization methods (TPE, GP variants). GP
methods provide uncertainty estimates of validation loss but not of optimal learning rate. Further analysis is
provided in Appendix B.

B Convergence of learning rate experiments
This section will elaborate on the number of tuning iterations needed in the experiments of sub-
section 4.2. To tune the learning rate, we train neural networks on a subset of the MNIST training
dataset of size 3000. In addition to our method, we tuned the learning rate using Bayesian optimiza-
tion with a Gaussian Process (GP) maximizer [22] and a tree-structured Parzen Estimator (TPE) [5].
Bayesian optimization methods do not have access to gradients. They are, therefore, prone to ex-
ploring low-probability regions of the search space, resulting in more iterations of training the neural
network with candidate learning rates, which is very costly [8]. On the other hand, our method will
search for a high-probability region of the search space and explore this region. The advantage is that
we need fewer neural network training iterations to find a candidate learning rate, but the disadvan-
tage is that we do not explore the entire search space. For every method, performance is evaluated
on the validation dataset, a split of 1000 samples from the test dataset. The proposed learning rates
are used in the Adam optimizer [16]. All experiments are run on a MacBook Pro 2021 M1 CPU,
and none of the individual experiments take longer than 2 hours of CPU time.

B.1 Tuning the learning rate with variational inference
With our method, we have to choose the functional form of the posterior distribution. To this ex-
tent, we choose three different distributions from the Exponential family: Exponential, Gamma, and
Inverse Gamma Distributions. We run 100 iterations of variational inference for each distribution,
each taking 30 samples. The total number of neural networks trained will be 3000 for every distribu-
tion. However, since we expect the Variational Free Energy to decrease and converge gradually, we
employ an early stopping criterion that stops the tuning procedure when the difference between the
Variational Free Energy of two iterations is less than 0.029. The choice for this stopping criterion
was based on empirical results, and different values can be considered.

Since we know that the learning rate is typically a small number, we set the prior for every method
to a distribution with the expected value at 1

300 . For the shape parameter of the Gamma distributions,
we choose 1 as this corresponds to an Exponential distribution.

B.2 Tuning the learning rate with Bayesian Optimization
We tune the learning rate with Bayesian optimization using a GP maximization procedure and a
TPE. For the GP, we have to choose the kernel that is used. We run the tuning procedure with three
different kernels: The Radial basis function (RBF) kernel and two variants of the Matern kernel with
hyperparameters 1 and 2.5 [24]. The loss in the validation data set is optimized for these Bayesian
optimization methods.

However, unlike our method, Bayesian optimization methods do not incrementally improve their
estimate of the best learning rate. Instead, they explore a predefined search space to find the optimal
learning rate. Therefore, the best learning rate seen so far in terms of the number of neural networks
trained is a piecewise linear function with no guarantee of finding a better learning rate at a later
stage. For this reason, employing a stopping criterion is impossible, as the best learning rate estimate
is not adjusted incrementally.
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Figure 1: Convergence plots for the different methods. On the left-hand side, we see the convergence of the
Variational Free Energy using our variational inference method. Here, the crosses indicate when our stopping
criterion hit and which corresponding learning rate is used in subsection 4.2. On the right, we see the validation
loss of the optimal learning rate found so far plotted over the number of neural networks trained. The optimal
value so far is visualized because both the GP optimizers and the TPE explore the entire search space instead
of incrementally improving their suggestions. This emphasizes that we cannot employ a stopping criterion for
the convergence of these methods since some training curves remain constant for hundreds of iterations before
finding a new optimal value. We use the optimal found learning rate for the experiments of subsection 4.2.

The GP maximization procedure explores the space of log-learning rates between −7 and 1. This
means a learning rate between 0.0009 and 1 is considered.

Maximizing the validation loss with a GP brings a significant disadvantage: fitting a GP has a
computational cost of O(n3), with n being the number of samples. To iteratively fit a GP every
time we train a new neural network and determine the optimal learning rate, therefore, it has a
computational cost ofO(n4+nc) with n the number of tuning iterations and c is the cost of training
a neural network. This contrasts with the O(nc) run-time cost of variational inference. Because of
this, we were able to run only 1000 iterations of the GP.

For the TPE, we describe the configuration space with a log-normal density with parameters µ = −5
and σ = 3 .

B.3 Experimental results

Since our method and the Bayesian Optimization methods optimize a different performance metric,
we report them separately. In Figure 1, we see the curves of both methods. We see the Variational
Free Energy over the number of neural networks trained, and we see the validation loss of the optimal
learning rate found after n neural networks trained. In addition, in Figure 1a, we can see the point
at which our early stopping criterion triggers.

As we can see, our method gradually improves its suggestions for the optimal learning rate before
converging. Although we cannot directly do gradient steps to improve our performance metric, this
suggests that our method does not explore low-probability regions of the Bayesian posterior since
the Variational Free Energy never spikes up to the value of the initial guess. In addition, because of
this behavior, we can employ a stopping criterion in our method since we do not need to explore the
entire search space.

C Gradient estimator
We are interested in the estimation of the ∂λi

F (8), rephrasing we are interested in the expectation
of the following function

hi(λi, θi) = log
qλi

(θi)

p(y, µ1, µ2, . . . , θi, . . . µn)
(Ti(θi)− ∂λi

Ai(λi)), (16)

for that we employ the REINFORCE estimator [25] with a control variate . Specifically, we use the
score function of the variational approximation as a control variate, which for exponential family
distributions has the following form

fi(λi, θi) = ∇λi
log qλi

(θi) = Ti(θi)− ∂λi
A(λi). (17)

9



This choice maintains the generic nature of our algorithm while allowing us to easily compute the
expectation and the covariance matrix of the control variate

Eqλi
(θi)[fi(λi, θi)] = 0 (18a)

Eqλi
(θi)[fi(λi, θi)

T fi(λi, θi)] = Fi(λi) (18b)

which results in the following estimator

Θi, . . . ,ΘN ∼ qλi(θi) (19a)

A[h] =
1

N

∑
i

hi(λi,Θi) (19b)

Cov[h, f ] =
1

N

∑
i

(hi(λi,Θi)−A[h])
T
fi(λi,Θi) (19c)

Eqλi
(θi)[hi(λi, θi)] ≈

1

N

∑
i

hi(λi,Θi)− Cov[h, f ]Fi(λi)
−1fi(λi,Θi). (19d)

D Main Algorithm
Our RBBVI approximates posterior distributions without requiring gradients of the log-probability
density function. The algorithm implements an iterative optimization procedure that leverages Rie-
mannian geometry and a gradient-free estimator based on the REINFORCE estimator [25] with
a control variate. This approach enables optimization even for nondifferentiable forward models.
Algorithm 1 provides a detailed implementation, synthesizing all key components into a compre-
hensive approach. For conciseness, we denote the Riemannian metrics on each Λi as

⟨v, w⟩iλi
= vTFi(λi)w. (20)

E Taylor Expansion of the Smooth Approximation
Before formally stating the main result, let us introduce a technique for smoothing continuous func-
tions, which can be particularly useful for nondifferentiable processes. Consider a continuous func-
tion h : Rn → R. We can define a smoothed version of this function as follows

h̃σ(x) = EN (x,σI)[h(x
∗)] (21)

where σ > 0 is a smoothing parameter. This new function h̃σ is differentiable even if the original
function h is not. Moreover, as σ → 0, h̃σ converges to h.

To illustrate this technique, let us consider the Wiener process (also known as Brownian motion)
as an example of a continuous but nowhere differentiable function. Let {W (t)}t≥0 be a standard
Wiener process defined in a probability space (Ω,F ,P). Although we will not explore its full
properties, it is worth noting that W (t) is almost surely continuous but not differentiable at any
point.

Now, let us apply our smoothing technique to a sample path of the Wiener process. Figure 2 shows
a realization of W (t) in the interval [−1, 1], together with three smoothed approximations W̃σ(t)
for different values of σ. In this figure, we observe the original Wiener process W (t) (black line),
which is highly irregular and nondifferentiable, alongside three smoothed approximations W̃σ(t) for
decreasing values of σ. The green line (σ = 0.707) shows a very smooth approximation that captures
the general trend but misses fine details, the red line (σ = 0.224) presents a moderately smooth
approximation that captures more detail while remaining differentiable, and the blue line (σ =
0.095) offers a closer approximation that nearly overlaps with the original process while maintaining
differentiability. As σ decreases, we observe that W̃σ(t) approaches W (t) more closely, illustrating
how our smoothing technique can approximate nondifferentiable functions with differentiable ones.
This example provides intuition for the more general result we are about to present, which extends
this idea to expectations over arbitrary continuous functions.

Let f : Rn → R be a smooth function and q be a continuous probability distribution with support
on an open subset U ⊆ Rn. We are interested in computing Eq(x)[f(x)]. Using a Taylor expansion

10



Algorithm 1 Riemannian Black Box Variational Inference

Input: Initial priors pi(θi), observed data y, forward model F , maximum iterations N , approximate
families Qi, Riemannian exponential family manifolds ∗i, retractions Ri from T∗⟩ to Λi, step
size sequence αk, initial points λi ∈ Λi, gradient tolerances εk, running average window W ,
overall tolerance ε

Output: Approximate posterior distributions q(θi) for i = 1, . . . , n
1: Initialize q0(θi) = pi(θi) for i = 1, . . . , n
2: for t = 1 to N do
3: for i = 1 to n do
4: µi ← Eqt−1(θi)[θi]
5: end for
6: for i = 1 to n do
7: λ0 ← parameters of qt−1(θi)
8: for k = 0, 1, 2, . . . do
9: for s = 1 to S do

10: Θ[s] ∼ qλk
(θ)

11: hi[s] = Ti(Θ[s])− ∂λiAi(λi)
12: fi[s] = (log qλi(Θ[s])− log pi(y, µ1, . . . ,Θ[s], . . . , µn))hi[s]
13: end for
14: Estimate Cov[h, f ] (11e)
15: Estimate ∂̃λk

F (11f)
16: Update: λk+1 = Rλk

(−αk∂̃λk
F )

17: if ⟨∂̃λk
F, ∂̃λk

F ⟩iλi
⩽ εi (20) then

18: break
19: end if
20: end for
21: qt(θi) = hi(θi) exp(Ti(θi)

⊤λk+1
i −A(λk+1

i ))
22: end for
23: for i = 1 to n do
24: µi ← Eqt(θi)[θi]
25: end for
26: L[i] = log p(y, µ1, . . . , µn)
27: if Running Average Improvement with window W of L < ε then
28: break
29: end if
30: end for
31: return qN (θi) for i = 1, . . . , n

with Residual Term, we know that for any point x∗ in which one f is analytic, exists such x̂ ∈ Rn

that the following property identity holds

f(x) = f(x∗) +∇xf(x)|x=x∗(x− x∗) + (x− x∗)TH(x̂)(x− x∗). (22)

Using the fact (22) assuming that f is analytic in µ = Eq(x)[x], we obtain the following identity

Eq(x)[f(x)] = f(µ) + Eq(x)

[
(x− µ)TH(x̂)(x− µ)

]
, (23)

it means that first order approximation to the expectation Eq(x)[f(x)] is f(µ).
Theorem 1. Let

h : Rn → R (24)
be a continuous function and q be a continuous distribution over an open set U ⊆ Rn. Consider the
following function

h̃σ(x) = Ex∗∼N (x,σI)[h(x
∗)] . (25)

Then for µ = Eq[x] there exists a x̃ ∈ U such that the following identity holds

Eq[h(x)] = h(µ) + lim
σ→0

Eq

[
(x− x̃)T

∇2
x∗ h̃σ(x

∗)
∣∣
x∗=x̃

2
(x− x̃)

]
. (26)
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Figure 2: A sample path of the Wiener process and its smoothed approximations

Proof. Let h : Rn → R be a continuous function and q be a continuous distribution over an open
set U ⊆ Rn. Define h̃σ(x) = Ex∗∼N (x,σI)[h(x

∗)] and let µ = Eq[x].

First, note that h̃σ(x) is infinitely differentiable for all σ > 0.

By the definition of expectation and the properties of h̃σ(x), we have

Eq[h(x)] = lim
σ→0

Eq[h̃σ(x)]

For any fixed σ > 0, we can apply Taylor’s theorem to h̃σ(x) around µ. There exists a point x̃σ on
the line segment between x and µ such that

h̃σ(x) = h̃σ(µ) +∇h̃σ(µ)
T (x− µ) +

1

2
(x− µ)T∇2h̃σ(x̃σ)(x− µ)

Taking the expectation with respect to q(x) on both sides

Eq

[
h̃σ(x

)
] = h̃σ(µ) + Eq

[
∇h̃σ(µ)

T (x− µ)] +
1

2
Eq[(x− µ)T∇2h̃σ(x̃σ)(x− µ)

]
Note that Eq[(x− µ)] = 0, so the second term on the right-hand side vanishes.

Now, let σ → 0. We know that limσ→0 h̃σ(x) = h(x) pointwise, so

lim
σ→0

h̃σ(µ) = h(µ)

By the continuity of h and the boundedness of the Gaussian kernel, we can apply the dominated
convergence theorem to swap the limit and the expectation

lim
σ→0

Eq

[
h̃σ(x)

]
= Eq[h(x)].

For the Hessian term, there exists a subsequence σk → 0 such that x̃σk
converges to some x̃ ∈ U .

This is because U is open and contains the line segment between x and µ.

Combining all these results, we obtain the statement of the theorem

Eq[h(x)] = h(µ) + lim
σ→0

1

2
Eq[(x− µ)T∇2h̃σ(x̃σ)(x− µ)].
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