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ABSTRACT

Mamba, an architecture with token mixers of state space models (SSM), has been re-
cently introduced to vision tasks to tackle the quadratic complexity of self-attention.
However, since SSM’s memory is inherently lossy and precedent vision mambas
struggle to compete with advanced ConvNets or ViTs, it is unclear whether Mamba
has contributed new advances to vision. In this work, we carefully align the macro
architecture to facilitate direct comparisons of token mixers which are the core
contribution of Mamba. Specifically, we construct a series of Gated ConvNets
(GConvNets) and compare VMamba’s(Liu et al., 2024) token mixers with gated
7×7 depth-wise convolutions. The empirical results clearly demonstrate the superi-
ority of VMamba’s token mixers in both image classification and object detection
tasks. Therefore, it is not useless to introduce SSM for image classification on
ImageNet. Furthermore, we compare two types of token mixers within hybrid
architectures that incorporate a few self-attention layers in the top blocks. The
results demonstrate that both VMambas and GConvNets benefit from incorporating
self-attention and we still need Mamba in this case. Interestingly, we find that
incorporating self-attention layers has opposite effects on them, mitigating the
over-fitting in VMambas while enhancing the fitting ability of GConvNets. Finally,
we assess natural robustness of pure and hybrid models in image classification,
revealing stronger robustness of VMambas and hybrid models. Our work provides
credible evidence for the necessity of introducing Mamba to vision and shows the
significance of architecturally aligned comparisons for evaluating different token
mixers in sophisticated hierarchical models.

1 INTRODUCTION

For a considerable time, convolutional neural networks (CNNs)(LeCun et al., 1989; 1998) have been
the primary neural networks in the vision domain. Notably, the success of AlexNet(Krizhevsky
et al., 2012) in 2012 ushered in an era of deep learning in computer vision. Since then, various
CNN architectures have been proposed, with representative networks such as VGG(Simonyan &
Zisserman, 2014), GoogLeNet(Szegedy et al., 2015), ResNet(He et al., 2016), DenseNet(Huang et al.,
2017; 2019), ResNeXt(Xie et al., 2017) and Xception(Chollet, 2017) having a significant impact on
subsequent CNN architecture design. The success of convolutions can be attributed to their inherent
inductive biases (locality and translation equivariance) and the sliding window strategy, which makes
them robust to image resolution.

The dominance of CNNs in image recognition was not challenged until the introduction of Vision
Transformers(Dosovitskiy et al., 2020). Inspired by the scalability of Transformers(Vaswani et al.,
2017) in natural language processing (NLP), Dosovitskiy et al. apply a standard Transformer directly
to images. Although ViTs lack some of the inductive biases inherent to CNNs, they attain excellent
results when pre-trained on large-scale datasets such as ImageNet-21k, learning transferable features.
Subsequent works improve the data efficiency(Touvron et al., 2021) and introduce image-related
inductive biases, such as multi-scale(Wang et al., 2021; Fan et al., 2021; Liu et al., 2021; Wu et al.,
2022) and locality(Liu et al., 2021; Wu et al., 2021; Yuan et al., 2021). These improved ViTs not only
achieve state-of-the-art results on large-scale image recognition benchmarks but also significantly
improve the performance of downstream tasks, such as detection and segmentation, compared to
previous CNN based methods.
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Figure 1: Results of architecturally aligned comparisons.
Every result is the average result of models in three
sizes.

The success of ViTs draws researchers’ at-
tention to the underlying reasons for their
effectiveness. Intuitively, this success is
attributed to larger receptive fields and the
dynamic feature modeling provided by self-
attention mechanism. However, Yu et al.
(2022) emphasize the importance of macro
architecture, specifically the token mixer
followed by the MLP. They show that the
token mixer can be implemented as depth-
wise convolutions or even non-parametric
average pooling. Meanwhile, ViTs face
challenges from ConvNets with larger ker-
nel sizes(Liu et al., 2022; Ding et al., 2022).
The resurgence of ConvNets and the evo-
lution of ViT architectures underscore the
significance of inductive biases in convolu-
tions.

Recently, Mamba(Gu & Dao, 2023), an
RNN-like model, achieves highly compet-
itive performance compared to Transformers in NLP while maintaining linear complexity relative
to the number of tokens. Subsequently, several pioneering works migrate Mamba from language to
vision, resulting in Vision Mamba models(Zhu et al., 2024; Liu et al., 2024; Li et al., 2024b; Huang
et al., 2024). Nevertheless, the performance of Vision Mambas is often underwhelming compared
to convolutional and attention-based models, prompting Yu & Wang (2024) to question whether we
really need Mambas for vision. They conclude that Mambas are not needed for image classification,
asserting “Mamba out”. They argue that Mamba is ideally suited for tasks with long-sequence and
autoregressive characteristics while image classification does not align with either characteristic.
However, it remains puzzling why MambaOut outperforms VMamba(Liu et al., 2024) in image
classification while significantly lagging behind in object detection and semantic segmentation.
Importantly, we note that there are two architectural differences between the MambaOut models
and the compared VMamba models, as illustrated in Fig. 2. Therefore, it is unclear whether the
superiority of MambaOut models arises from their macro architecture or the gated 7×7 convolution.
While contemporary Vision Mambas achieve superior accuracy or efficiency(Shi et al., 2024; Xiao
et al., 2024; Hatamizadeh & Kautz, 2024), variations in architectural hyper-parameters, increasingly
complex modules, and mixtures of self-attention layers leave the answer still unclear.

In light of the rapid increase in research in this area, we believe that an aligned comparison between
Vision Mambas and their counterparts is urgently needed. Our focus is on hierarchical models, which
have been shown to be more suitable for vision tasks than plain models. In this work, we conduct
architecturally aligned comparisons between ConvNets and Vision Mambas, giving a credible answer
to the question, “Do we really need Mamba for vision?” We select VMamba(Liu et al., 2024) as
our reference model as it is one of the earliest works to adapt Mamba for the vision domain and
serves as the main reference in MambaOut(Yu & Wang, 2024). To control architectural variables,
we maintain the macro architecture of VMamba(Liu et al., 2024) while introducing GConvNet in
different sizes, where the 2D Selective Scan (SS2D)(Liu et al., 2024) modules are replaced with
gated 7×7 depth-wise convolutions. Our comparisons reveal a different conclusion than that of Yu &
Wang (2024); our experimental results suggest that VMambas consistently outperform GConvNets
on the ImageNet-lK benchmark with similar sizes or GFLOPs, as shown in Fig. 1. We hypothesize
that this superiority is due to the stronger expressivity of VMamba’s token mixers, which can be
observed from training losses on ImageNet-1K. In object detection and instance segmentation tasks,
VMambas significantly outperform GConvNets, highlighting the advantage of Mamba’s token mixers
in long-sequence modeling. To identify what makes MambaOut models superior to GConvNet and
VMambas, we conduct further comparative experiments, showing that the MLP classifier is key to
MambaOut’s enhanced performance.

Furthermore, we demonstrate that incorporating a few self-attention layers in the top blocks improves
the performance of both GConvNets and VMambas while the improvements on VMambas are
relatively small, as shown in Fig. 1. Notably, VMamba-Hybrid clearly outperforms GConvNet-
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Hybrid on COCO datasets, indicating that we still need Mamba in the presence of a few self-attention
layers. Thanks to strictly aligned comparisons, we can take a deeper look. Specifically, we find
that self-attention plays opposite roles in enhancing the performance of GConvNets and VMambas
on ImageNet-1K: while adding self-attention layers enhances the fitting ability of GConvNets, it
reduces over-fitting in VMambas. Finally, we compare GConvNet, VMamba, GConvNet-Hybrid,
and VMamba-Hybrid in natural robustness of image classification, revealing stronger robustness of
VMambas and hybrid models.

Our main contributions can be summarized as follows:

(i) We provide credible evidence for the necessity of introducing Mamba to vision, revealing the
better performance of VMamba’s token mixers on ImageNet-1K and COCO datasets, their
stronger expressivity, and superior robustness compared to gated 7×7 depth-wise convolutions.

(ii) We show that incorporating a few self-attention layers cannot bridge the gap between ConvNets
and Vision Mambas and the latter can also benefit from hybrid architectures. We further
find that incorporating self-attention can mitigate the over-fitting in VMambas on ImageNet,
providing evidence for the improved scalability of Vision Mamba-Transformer models.

(iii) We demonstrate the significance of architecturally aligned comparisons for evaluating different
token mixers in sophisticated hierarchical models, a perspective often overlooked in previous
research on model comparisons.

2 PRELIMINARIES

2.1 STATE SPACE MODELS

The mathematical foundations of Mambas’ token mixers are state space models(Gu et al., 2021). The
discrete forms of SSM can be expressed by:

ht = Aht−1 + Bxt,

yt = Cht,

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B,

(1)

where xt represents the input, ht is the hidden state, yt indicates the output, and A,B,C are
parameters of the continuous system. To improve the expression ability, Mamba(Gu & Dao, 2023)
introduces the selective SSM where ∆,A,B,C in Equation 1 are input-dependent parameters.

2.2 VISUAL STATE SPACE MODELS

The causal constraints of Mambas’ token mixers render them unsuitable for processing images. To
this end, Zhu et al. (2024) propose the bidirectional state space model and Liu et al. (2024) propose
the 2D selective scan module which indeed comprises two bidirectional scanning: H-first scanning
and W -first scanning. Subsequent works introduce the window-based local scanning strategy(Huang
et al., 2024) and the continuous 2D scanning(Yang et al., 2024). In the context of this work, we
consider VMamba(Liu et al., 2024) as a representative of Vision Mambas due to its prescience and
influence.

3 METHOD

3.1 GCONVNET

The necessity of Mamba for vision should depend on the token mixer rather than other factors.
Inspired by MambaOut(Yu & Wang, 2024), we investigate whether the token mixers in VMambas can
be replaced by gated 7×7 depth-wise convolutions without degrading performance. A key distinction
from Yu & Wang (2024) is our strict control over other architectural variables. Specifically, we
replace the SS2D modules in VMamba(Liu et al., 2024) with gated 7×7 depth-wise convolutions,
creating a fully convolutional network called GConvNet. The macro architectures of VMamba, our
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GConvNet, and MambaOut are illustrated in Fig. 2. The model configurations for VMamba and
GConvNet are detailed in Table 1, where we control for irrelevant variables such as the number of
parameters, FLOPs, and depth-width trade-off. We compare six models in different sizes, from 8M to
50M parameters. Note that increasing network depth while reducing width typically yields better
performance on ImageNet-1K, which we carefully control in our configurations.
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Figure 2: The macro architectures of VMamba, our GConvNet, and MambaOut are outlined with key
variables highlighted in bold. To clarify how we control architectural variables, we divide the model
architecture into four parts: the meta block (a)(b)(c), the stem layer (d), the downsample layer (e), and
the classifier (f)(g). We present detailed structures of different meta blocks while omitting reshape
operations. The VMamba block shown is from VMambaV9(Liu et al., 2024), consistent with that in
MambaOut(Yu & Wang, 2024). There are two significant uncontrolled variables between VMamba
and MambaOut: the structure of the meta block and the classifier. Note that in a MambaOut block,
token mixers and channel mixers are arranged in parallel rather than sequentially. By contrast, the
differences between VMamba and GConvNet are limited to the token mixers and the gated branch.
While Liu et al. (2024) remove the gated branch as the SS2D module already provides dynamic
modeling capabilities, we retain it in the GConvNet block. To control parameters and computation of
point-wise linear layers, we reduce the expand ratio of FFN from 4.0 to 3.0.

Table 1: The model configurations of GConvNet and VMamba. Due to the alignment of meta blocks,
we can adopt similar depth-width configurations to VMamba. Since the SS2D module has more
parameters and computation than 7×7 depth-wise convolutions with the same width, we slightly
increase the depths of GConvNet models to control the overall parameters and computation.

Model Layers Dims Params GFLOPs

VMamba-Pico [2, 2, 5, 2] [48, 96, 192, 384] 7.9M 1.27G
VMamba-Tiny [2, 2, 5, 2] [96, 192, 384, 768] 30.7M 4.86G
VMamba-Small [2, 2, 15, 2] [96, 192, 384, 768] 50.1M 8.72G

GConvNet-Pico [2, 2, 6, 2] [48, 96, 192, 384] 8.0M 1.27G
GConvNet-Tiny [2, 2, 6, 2] [96, 192, 384, 768] 30.8M 4.88G
GConvNet-Small [2, 2, 17, 2] [96, 192, 384, 768] 50.8M 8.79G

3.2 HYBRID MODELS WITH A FEW TRANSFORMER BLOCKS

Previous works have shown that performing convolutions in the bottom blocks to extract local
information while applying self-attention layers in the top blocks to model global relationships, can
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Figure 3: Two kinds of mixing strategies. “Hybrid1” ensures that there is at least one self-attention
layer at resolution 1/16 while “Hybrid2” is more economically.

yield superior performance(Dai et al., 2021; Yu et al., 2023). Recently, Dao & Gu (2024) demonstrate
that a mixture of Mamba-2 token mixers and attention layers outperforms the pure Mamba-2 or
Transformer architecture, indicating the complex principles behind hybrid models. This inspires us to
investigate the effect of integrating a few self-attention layers with GConvNets and VMambas and
compare these hybrid models. We emphasize the limited number of self-attention layers because our
goal is to compare convolutions and SSM which are two economical substitutes for self-attention
in vision. We follow Dao & Gu (2024) to replace approximately 10-20% GConvNet or VMamba
blocks with Transformer blocks. Specifically, pico models and tiny models include 2 Transformer
blocks while small models incorporate 4 Transformer blocks. We examine two mixing strategies
to understand the principles of this integration. The first involves replacing the top VMamba or
GConvNet blocks in the last two stages proportionally, while the second replaces blocks from top to
bottom. The former generally results in more self-attention layers at resolution 1/16 compared to the
latter. We illustrate these two strategies in Fig. 3. The vanilla Transformer block with CPE(Chu et al.,
2023) is employed, which can be expressed as:

x = DWConv3×3(x) + x

x = MSA(LayerNorm(x)) + x,

x = FFN(LayerNorm(x)) + x,

(2)

where MSA denotes the multi-head self-attention and FFN represents the feed forward network
made up of two linear layers and a GELU activation. The expand ratio of FFNs is set to 4.

4 EXPERIMENTAL SETUPS

We primarily conduct experiments on ImageNet-1K(Deng et al., 2009) and COCO(Lin et al., 2014)
datasets. The former is used to evaluate the performance in image classification tasks while the
latter assesses transferability in object detection and instance segmentation tasks. Both are widely
recognized benchmarks. For ImageNet-1K, we adopt the same training and test protocols as VMamba,
with the sole difference being the absence of EMA(Polyak & Juditsky, 1992), which does not improve
performance. Thus, our protocols align with those of Swin(Liu et al., 2021). For COCO, we use the
same codebase based on MMdetection(Chen et al., 2019) and directly replace backbone networks.
For robustness evaluation in image classification, we follow previous works(Zhou et al., 2022;
Bhojanapalli et al., 2021) and assess models across three datasets: ImageNet-A(Hendrycks et al.,
2021b), ImageNet-R(Hendrycks et al., 2021a), and ImageNet-C(Hendrycks & Dietterich, 2019).
Detailed experimental setups are provided in the Appendix.
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Figure 4: Training loss of VMamba and GConvNet. For higher efficiency, we evaluate GConvNet
every three epochs during training.

5 RESULTS AND ANALYSES

5.1 DO WE REALLY NEED MAMBAS FOR VISION?

It is not useless to introduce SSM for image classification on ImageNet. As shown in Fig and
Table 2, VMamba clearly outperforms GConvNet on both ImageNet-1K and COCO datasets. This
suggests that in image classification tasks, the well-designed SSM can be superior to gated 7×7 depth-
wise convolutions which advance ConvNets for the 2020s. The advantage is even more pronounced
in smaller models. Consequently, we challenge a critical hypothesis of MambaOut(Yu & Wang,
2024): it is not useless to introduce SSM for image classification on ImageNet. These results provide
credible evidence supporting the recent advancements in Mambas for vision. We hypothesize that
this superiority is due to the stronger expressivity of Mambas’ token mixers. It can be observed from
training loss curves in Fig. 4 where VMambas exhibit lower training losses on ImageNet compared
to GConvNets.

Table 2: Performance comparisons between GConvNets and VMambas on ImageNet-1K and COCO.
The results of VMambas are obtained by the best checkpoints rather than the last checkpoints
following the original paper(Liu et al., 2024). We present the results of the last checkpoints in
parentheses. ∗: our reproduced result is slightly better than the result (82.5) reported by Liu et al.
(2024).

Model Top-1 accuracy APb APm

VMamba-Pico 79.1 (79.0) 43.4 39.7
GConvNet-Pico 78.4 40.8 37.5

VMamba-Tiny 82.6 (82.5)∗ 47.1 42.6
GConvNet-Tiny 82.2 44.7 40.5

VMamba-Small 83.6 (83.1) 49.0 43.7
GConvNet-Small 83.1 46.1 41.5

Vision Mambas have more potential in lightweight object detection models. Lightweight models
usually suffer from limited expressivity and receptive fields, which are crucial for more difficult
downstream tasks including detection and segmentation. The strong expressivity and truly global
receptive fields of Vision Mambas probably make them excel in lightweight object detection. In Table
3, we show that without tuning depth-width configurations or specific designs, VMamba-Pico with
fewer parameters can compete with state-of-the-art lightweight models that combine convolutions and
self-attention. The best-performance EfficientMod-s(Ma et al., 2024) utilizes 4 vanilla transformer
blocks at resolution 1/16 and 4 vanilla transformer blocks at resolution 1/32, which will suffer from
the quadratic complexity of self-attention when the input resolution is very large.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Performance of lightweight backbones on COCO.

Arch. Backbone Params APb APm

Conv. ResNet-18 (2016) 31.2M 34.0 31.2
Pool PoolF.-S12 (2022) 31.6M 37.3 34.6
Attn. PVT-Tiny (2021) 32.9M 36.7 35.1
Conv-attn. EfficientF.-L1 (2022) 31.5M 37.9 35.4
Conv-attn. PVTv2-B1 (2022) 33.7M 41.8 38.8
Conv-attn. EfficientF.V2-S2 (2023) 32.2M 43.4 39.5
Conv-attn. EfficientMod-s (2024) 32.6M 43.6 40.3
Mamba VMamba-P 27.6M 43.4 39.7

5.2 WHAT MAKES MAMBAOUT EXCEL IN IMAGE CLASSIFICATION?

The MLP classifier is key to the superior performance of MambaOut on ImageNet. We have
disassembled the network architecture in Fig. 2. We then exclude the MLP classifier and use the
MambaOut block (or Gated CNN block) to construct local MambaOut models. Note that once the
MLP classifier is replaced by the linear classifier, we adjust the dimension of the last stage to a
conventional value of 768, instead of the original 576 in MambaOut-Tiny. This change results in
more model parameters and computation. The results of our local MambaOut model are shown
in the second line from the bottom of Table 4. It can be seen that the MLP classifier, rather than
the block structure, is crucial for the superior performance of MambaOut on ImageNet-1K. The
comparison between GConvNet-Tiny and MambaOut-Tiny without the MLP classifier suggests that
our GConvNet block is not an inferior structure. At last, we apply the MLP classifier to VMamba
and reduce the dimension of the last stage similarly to MambaOut, which also leads to improved
performance and reduced computation. Since the MLP classifier essentially increases non-linearity
and improves expressivity, the performance gain on VMamba is not as pronounced as that on
MambaOut.

Table 4: An ablation of the macro architecture of MambaOut. ∗: we can reproduce the result of
MambaOut-Tiny using our environments.

Model Params GFLOPs Top-1 accuracy APb APm

VMamba-Tiny 30.7M 4.86G 82.6 47.1 42.6
GConvNet-Tiny 30.8M 4.88G 82.2 44.7 40.5
MambaOut-Tiny 26.5M 4.47G 82.7∗ 44.6 40.4
MambaOut-Tiny w/o MLP classifier 30.6M 4.81G 82.1 44.9 40.8
VMamba-Tiny w/ MLP classifier 26.2M 4.50G 82.9 47.3 42.8

5.3 DO WE NEED MAMBAS IN THE PRESENCE OF A FEW SELF-ATTENTION LAYERS?

Incorporating a few self-attention layers in the top blocks improves the performance of both
GConvNets and VMambas. Introducing SSM remains beneficial even in the presence of a few
self-attention layers, particularly for downstream long-sequence tasks. We first examine two
mixing strategies in Fig. 3 using pico and tiny models. From Table 5, we observe that incorporating
self-attention layers in GConvNet consistently improves performance on ImageNet-1K and COCO
datasets. Additionally, GConvNet-Hybrid1 outperforms GConvNet-Hybrid2 overall, suggesting
that applying self-attention at a higher resolution yields greater benefits, akin to the findings in
BotNet(Srinivas et al., 2021). Nonetheless, our research focuses on more advanced ConvNets with
larger kernel sizes and gated mechanisms rather than vanilla ResNets. In contrast, both mixing
strategies yield minimal gains for VMamba-Pico and VMamba-Tiny on ImageNet-1K, with slight
improvements on COCO. For subsequent fair comparisons, we adopt the first mixing strategy by de-
fault and train larger models. The performance of GConvNet-Hybrid-Small meets expectations while
VMamba-Hybrid-Small shows significant improvement on ImageNet-1K. Although GConvNets-
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Hybrid can achieve performance comparable to VMambas on ImageNet-1K, they still lag behind
in object detection and instance segmentation tasks. Comparing GConvNet-Hybrid and VMamba-
Hybrid, we believe it is still useful to introduce SSM in the presence of a few self-attention layers,
especially for downstream long-sequence tasks.

Table 5: Performance of hybrid models on ImageNet-1K and COCO. We show how the performance
of hybrid models varies compared to pure counterparts in the parentheses.

Model Top-1 accuracy APb APm

VMamba-Pico 79.1 43.4 39.7
GConvNet-Hybrid1-Pico 78.9 (+0.5) 41.6 (+0.8) 38.3 (+0.8)
GConvNet-Hybrid2-Pico 78.4 (+0.0) 41.3 (+0.5) 38.2 (+0.7)
VMamba-Hybrid1-Pico 79.1 (+0.1) 43.6 (+0.2) 39.8 (+0.1)
VMamba-Hybrid2-Pico 79.0 (-0.1) 43.6 (+0.2) 39.9 (+0.2)

VMamba-Tiny 82.6 47.1 42.6
GConvNet-Hybrid1-Tiny 82.8 (+0.6) 45.9 (+1.2) 41.7 (+1.2)
GConvNet-Hybrid2-Tiny 82.9 (+0.7) 45.6 (+0.9) 41.3 (+0.8)
VMamba-Hybrid1-Tiny 82.6 (+0.0) 47.7 (+0.6) 43.0 (+0.4)
VMamba-Hybrid2-Tiny 82.7 (+0.1) 47.3 (+0.2) 42.8 (+0.2)

VMamba-Small 83.6 49.0 43.7
GConvNet-Hybrid1-Small 83.5 (+0.4) 47.3 (+1.2) 42.5 (+1.0)
VMamba-Hybrid1-Small 84.2 (+0.5) 49.1 (+0.1) 43.8 (+0.1)

Incorporating self-attention layers in the top blocks reduces the over-fitting in VMambas while
enhancing the fitting ability of GConvNets. The unexpected gain of VMamba-Hybrid-Small
prompts us to investigate the reason behind the superiority of SSM-attention hybrid models on
ImageNet-1K. Our intriguing finding reveals that the advantages of GConvNet-Hybrid and VMamba-
Hybrid compared to their pure counterparts stem from opposite effects. Specifically, adding self-
attention layers in the top blocks reduces over-fitting in VMambas while enhancing the fitting ability
of GConvNets. We present the training losses of VMamba, VMamba-Hybrid, GConvNet, and
GConvNet-Hybrid on ImageNet-1K in Fig. 5. It can be seen that VMambas-Hybrid exhibit higher
training losses than VMambas while GConvNets-Hybrid achieve lower train losses compared to
GConvNets. Furthermore, we plot the curves of Top-1 (EMA) accuracy on ImageNet-1K against
epochs for VMamba and VMamba-Hybrid in Fig. 6. The EMA accuracy curve of VMamba-Tiny
hints at slight over-fitting as the performance peaks at epoch 242 and then slowly declines. This issue
is more pronounced for VMamba-Small. Comparing the EMA accuracy curves of VMamba and
VMamba-Hybrid also confirms that the over-fitting issues are mitigated. Importantly, the use of EMA
itself can help reduce over-fitting in large models. Notably, without EMA, VMamba-Hybrid-Small
surpasses VMamba-Small by 0.9 % in Top-1 accuracy. The over-fitting problems of Vision Mambas
are also suggested by previous works(Zhu et al., 2024; Liu et al., 2024; Li et al., 2024a) where larger
models may achieve inferior performance compared to smaller models. We clearly demonstrate
that incorporating self-attention layers presents a promising architectural strategy for improving the
scalability of Vision Mambas. Our finding also provides practical insights into when and how to
incorporate self-attention layers effectively on ImageNet:

• For well-designed lightweight Vision Mamba models in under-fitting, it is unnecessary to
incorporate self-attention layers.

• Self-attention layers should be added in the top blocks and incorporating more self-attention
layers may not bring more performance gain, which involves a balance of fitting and
generalization.

5.4 DO WE NEED MAMBA IN ROBUSTNESS?

VMambas are generally more robust than GConvNets and incorporating self-attention layers
typically enhances robustness. In this section, we evaluate model robustness in image classification
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Figure 5: Training losses on ImageNet-1K vs epochs.
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Figure 6: Top-1 (EMA) accuracy on ImageNet-1K vs epochs.

using three benchmarks. We focus on natural robustness, specifically, robustness to real-world images
that can deceive pre-trained classifiers (indicated by Top-1 accuracy on ImageNet-A), robustness to
various artistic renditions (indicated by Top-1 accuracy on ImageNet-R), and robustness to natural
corruptions (indicated by mCE on ImageNet-C). We leave adversarial robustness for future work.
Note that our goal is not to achieve leading results but to provide insights through aligned comparisons.
All the results are presented in Fig. 7, which includes 12 contrasts. More detailed results are in the
Appendix. From Fig. 7, we draw two key observations. Firstly, VMambas generally demonstrate
greater robustness than GConvNets except for GConvNet-Tiny on ImageNet-A. Similarly, VMambas-
Hybrid are more robust than GConvNets-Hybrid with the same exception for GConvNet-Tiny on both
ImageNet-A and ImageNet-R. Notably, VMambas and VMambas-Hybrid consistently achieve lower
mCE than their GConvNet counterparts on ImageNet-C, indicating stronger robustness of Vision
Mambas to natural corruptions. Secondly, hybrid models typically exhibit greater robustness than
their pure counterparts with the sole exception being VMamba-Hybrid-Tiny on ImageNet-R. Overall,
incorporating self-attention layers improves the robustness of both VMambas and GConvNets.
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Figure 7: Robustness comparisons on ImageNet-A (IN-A), ImageNet-R (IN-R), and ImageNet-C
(IN-C). Note that for mCE(Hendrycks & Dietterich, 2019), the lower is better. For fair comparisons,
all the hybrid models adopt the first mixing strategy.

6 CONCLUSION

In this work, we conduct architecturally aligned comparisons between ConvNets and Vision Mambas,
providing credible evidence for the necessity of introducing Mamba to vision. We reveal the
better performance of VMamba’s token mixers on ImageNet and COCO datasets, their stronger
expressivity, and superior robustness compared to gated 7×7 depth-wise convolutions. We also
show that incorporating a few self-attention layers cannot bridge the gap between ConvNets and
Vision Mambas and the latter can also benefit from hybrid architectures. Additionally, we find that
incorporating a few self-attention layers in the top blocks can mitigate over-fitting in VMambas
on ImageNet, presenting a promising architectural strategy for improving the scalability of Vision
Mambas. Considering that more token mixers from other fields such as NLP may be introduced into
vision in the future, our work emphasizes the importance of aligned comparisons when combining
them with sophisticated hierarchical models.
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A APPENDIX

A.1 RELATED WORKS

Transformers have become standard components of high-performance vision backbones(Dosovitskiy
et al., 2020; Fan et al., 2021; Liu et al., 2021; He et al., 2022; Shi, 2024). However, the quadratical
complexity of self-attention layers makes vanilla ViTs struggle with high-resolution image processing.
Consequently, many works propose various efficient self-attention mechanism by incorporating
the inherent inductive biases of convolutions or images(Wang et al., 2021; Liu et al., 2021; Wu
et al., 2022; Shi, 2024). Meanwhile, ConvNets for the 2020s emerge, sharing the block structure of
Transformers while utilizing depth-wise convolutions with larger kernel sizes(Liu et al., 2022; Ding
et al., 2022; Liu et al., 2023), achieving highly competitive performance compared to state-of-the-art
ViTs.

To address the computational challenge of Transformers in processing long sequences, numerous
works in the NLP field have explored various approaches, including RNN-like methods(Katharopoulos
et al., 2020; Peng et al., 2023; Gu & Dao, 2023). Consequently, in addition to designing vision-specific
efficient self-attention mechanisms, transferring these efficient token mixers with global modeling
capacity to vision is also a promising direction. Recently, researchers have quickly introduced Vision
Mambas(Zhu et al., 2024; Liu et al., 2024; Li et al., 2024b; Huang et al., 2024; Shi et al., 2024;
Hatamizadeh & Kautz, 2024; Xiao et al., 2024), which incorporate SSM and Mambas(Gu & Dao,
2023) into vision backbones. Unlike previous works on Vision Mambas that focus on proposing
novel modules, Yu & Wang (2024) present MambaOut models made up of simpler gated CNN blocks,
comprehensively outperforming VMambas(Liu et al., 2024) on ImageNet-1K. However, there may
be unfair comparisons that lead to an underestimation of Vision Mambas. In this work, we conduct
aligned comparisons between ConvNets and Vision Mambas for the first time, provides credible
evidence for the necessity of introducing Mamba to vision.

A.2 EXPERIMENTAL SETUPS

ImageNet-1K For VMamba-Hybrid, the training protocols are identical to those of VMamba(Liu
et al., 2024). For GConvNet and GConvNet-Hybrid, we remove the EMA(Polyak & Juditsky, 1992)
as it does not improve the performance. All the models are trained from scratch for 300 epochs,
with a warm up of 20 epochs, using a batch size of 1024. We utilize the AdamW optimizer with a
momentum of 0.9, an initial learning rate of 0.001, and a weight decay of 0.05. The cosine scheduler
is utilized to decay the learning rate. The drop path rate of pico, tiny, and small models are 0.025, 0.2,
and 0.03.

COCO We follow VMamba(Liu et al., 2024) and Swin(Liu et al., 2021) to utilize the well-established
Mask R-CNN framework(He et al., 2017) for evaluating the performance of object detection and
instance segmentation. We also utilize the MMdetection(Chen et al., 2019) toolbox and all the
hyper-parameters are identical to those of VMamba. Specifically, we employ the AdamW optimizer
with an initial learning rate of 0.0001, load pre-trained weights of ImageNet-1K, and fine-tune the
models for 12 epochs. Automatic Mixed Precision (AMP) is employed to accelerate training. The
drop path rate of pico, tiny, and small models are 0.025, 0.2, and 0.03.

ImageNet-C This dataset(Hendrycks & Dietterich, 2019) totally contains 19 corrupted ImageNet-
1K val sets. We evaluate the performance of models pre-trained on ImageNet-1K to benchmark
robustness to natural corruptions. We primarily report mCE(Hendrycks & Dietterich, 2019) following
previous works. The detailed Top-1 accuracy is shown in Section A.3. More details about the
calculation of mCE can be found in its original paper.

ImageNet-A This dataset(Hendrycks et al., 2021b) is made up of real-world adversarially filtered
images that can fool pre-trained classifiers on ImageNet. We evaluate the performance of models
pre-trained on ImageNet-1K and report Top-1 accuracy following previous works.

ImageNet-R This dataset(Hendrycks et al., 2021a) comprises various artistic renditions of 200
classes from ImageNet-1K. We evaluate the performance of models pre-trained on ImageNet-1K and
report Top-1 accuracy following previous works.
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A.3 DETAILED RESULTS ABOUT ROBUSTNESS

We present numerical results of robustness evaluation in Table 6 and detailed results on ImageNet-C
in Table 7.

Table 6: Performance on ImageNet-A, ImageNet-R, and ImageNet-C.

Model IN IN-A IN-R IN-C ↓
GConvNet-Pico 78.4 8.9 39.9 66.9
GConvNet-Tiny 82.2 27.0 45.5 57.8
GConvNet-Small 83.1 32.2 47.4 53.7

VMamba-Pico 79.1 11.8 40.0 64.0
VMamba-Tiny 82.6 25.7 45.8 55.5
VMamba-Small 83.6 32.8 49.3 50.6

GConvNet-Hybrid-Pico 78.9 12.9 40.1 66.7
GConvNet-Hybrid-Tiny 82.8 29.7 46.3 56.3
GConvNet-Hybrid-Small 83.5 36.6 48.3 52.1

VMamba-Hybrid-Pico 79.1 13.0 40.6 63.3
VMamba-Hybrid-Tiny 82.6 28.1 45.5 54.9
VMamba-Hybrid-Small 84.2 38.7 49.7 49.3

Table 7: Detailed results on ImageNet-C. “Aver” is the average Top-1 accuracy under 19 abnormal
conditions.
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GConvNet

Pico 49.0 45.7 38.8 27.4 42.4 46.6 44.7 45.1 50.9 67.5 58.4 49.0 69.7 43.3 53.2 50.2 48.7 36.1 44.6 58.8
Tiny 56.1 52.6 45.5 31.5 48.0 56.3 56.5 54.7 60.2 63.6 72.6 63.7 58.3 74.5 50.9 58.1 57.6 45.6 50.2 64.8
Small 59.2 56.7 48.6 34.3 50.6 61.5 61.0 59.6 63.7 67.3 74.3 65.8 58.1 75.8 53.3 63.6 60.8 49.0 54.1 67.0

VMamba

Pico 51.3 46.8 42.4 27.0 45.1 50.6 48.4 48.6 54.0 58.8 69.3 60.6 51.9 71.3 45.3 55.5 51.9 38.6 47.2 60.3
Tiny 58.0 52.4 47.8 33.2 50.5 59.3 58.6 50.0 63.4 65.4 73.9 66.2 56.3 75.6 53.5 62.7 59.4 45.3 53.2 66.4
Small 61.6 58.4 52.5 37.1 54.8 62.8 62.1 61.3 66.1 68.3 75.4 67.8 61.8 76.9 57.7 67.4 61.7 51.8 57.4 69.4

GConvNet-Hybrid

Pico 49.2 46.0 39.7 27.0 43.0 46.6 45.2 44.2 50.9 56.7 68.6 59.4 45.9 70.7 44.6 55.2 51.2 36.4 45.2 59.0
Tiny 57.3 52.8 46.7 31.5 49.1 58.3 58.2 56.7 62.1 64.3 73.5 64.6 57.2 75.4 52.7 62.8 59.0 45.4 51.9 67.2
Small 60.4 58.1 50.0 34.1 52.1 61.8 62.6 59.6 63.9 67.6 74.9 66.8 60.1 76.7 55.4 68.0 62.5 50.0 54.2 68.6

VMamba-Hybrid

Pico 51.8 45.4 42.9 28.4 45.9 50.8 50.0 48.8 54.2 60.6 69.3 60.5 52.7 71.5 47.7 55.9 52.7 37.8 48.2 60.9
Tiny 58.4 53.6 48.8 33.3 51.4 58.8 58.9 57.1 62.3 65.1 74.1 66.0 58.4 75.6 55.1 64.4 59.9 46.7 53.0 67.1
Small 62.5 60.6 53.1 38.1 55.3 64.4 64.4 62.1 66.0 67.9 75.9 68.7 64.2 77.3 57.9 68.8 62.6 53.3 57.4 69.8
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