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Abstract
Recurrent Neural Networks (RNNs) are general-
purpose parallel-sequential computers. The pro-
gram of an RNN is its weight matrix. How to
learn useful representations of RNN weights that
facilitate RNN analysis as well as downstream
tasks? While the mechanistic approach directly
looks at some RNN’s weights to predict its behav-
ior, the functionalist approach analyzes its overall
functionality—specifically, its input-output map-
ping. We consider several mechanistic approaches
for RNN weights and adapt the permutation equiv-
ariant Deep Weight Space layer for RNNs. Our
two novel functionalist approaches extract infor-
mation from RNN weights by ‘interrogating’ the
RNN through probing inputs. We develop a the-
oretical framework that demonstrates conditions
under which the functionalist approach can gener-
ate rich representations that help determine RNN
behavior. We release the first two ‘model zoo’
datasets for RNN weight representation learning.
One consists of generative models of a class of
formal languages, and the other one of classifiers
of sequentially processed MNIST digits. With
the help of an emulation-based self-supervised
learning technique we compare and evaluate the
different RNN weight encoding techniques on
multiple downstream applications. On the most
challenging one, namely predicting which exact
task the RNN was trained on, functionalist ap-
proaches show clear superiority.

1. Introduction
For decades, researchers have developed techniques for
learning representations of complex objects such as images,
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text, audio and video with deep neural networks (NNs). This
expertise has significantly advanced the field by enabling
models to convert data into formats useful for solving prob-
lems. In particular, recurrent NNs (RNNs) have been widely
adopted due to their computational universality (Siegelmann
& Sontag, 1991). Low-dimensional representations of the
programs of RNNs (their weight matrices) are of great in-
terest as they can speed up the search for solutions to given
problems. For instance, compressed representations of RNN
weight matrices have been used to evolve RNN parame-
ters (Koutnı́k et al., 2010) for controlling a car from raw
video input (Koutnı́k et al., 2013), using Fourier-type trans-
forms, e.g., the coefficient of the Discrete Cosine Transform
(DCT) (Srivastava et al., 2012), without using the capabili-
ties of NNs to learn such representations. Recent work has
seen a rise of representation learning techniques for NN
weights using NNs as encoders (Eilertsen et al., 2020; Un-
terthiner et al., 2020; Schürholt et al., 2021; Dupont et al.,
2022; Faccio et al., 2022b). However, there is a lack of
methods for learning representations of RNNs.

This paper introduces novel techniques for learning RNN
representations using powerful NNs, which may be RNNs
themselves. Just like representation learning in other fields,
such as computer vision, facilitates solutions of specific
tasks, such techniques can facilitate learning, searching, and
planning with RNNs. We show that by employing gen-
eral RNN weight encoder architectures and self-supervised
learning methods, it is possible to learn representations that
capture diverse functionalities of RNNs. We differentiate
between encoders that treat the weights as input data (mech-
anistic) and those that engage only with the function defined
by the weights (functionalist). Within the functionalist ap-
proach, the non-interactive probing method uses learnable
but fixed probing sequences as input to the RNN and ob-
serves the corresponding outputs. In contrast, interactive
probing adapts the probing sequences dynamically based on
the input RNN in order to extract the most relevant informa-
tion. We provide empirical and theoretical evidence of the
effectiveness of interactive probing for complex tasks, de-
spite occasional training stability issues. For simpler tasks or
when interactive properties are not required, non-interactive
probing or mechanistic encoders might be more suitable.
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Our contributions are summarized as follows:

(1) We introduce the challenge of learning useful represen-
tations of RNN weights and propose six neural network
architectures for processing these weights. We define
the difference between mechanistic and functionalist
approaches, adapt Deep Weight Space Nets (DWSNets,
Navon et al. (2023); Zhou et al. (2023)) to RNNs, and
introduce novel probing architectures, including the
concept of interactive probing.

(2) We develop a theoretical framework for analyzing the
efficiency of interactive and non-interactive probing en-
coders. We prove that interactive probing encoders can
be exponentially more efficient for certain problems.

(3) We create and release two comprehensive RNN “model
zoo” datasets. Each dataset consists of the weights
of thousands of LSTMs (Hochreiter & Schmidhuber,
1997), trained on hundreds of different but related tasks.
One dataset focuses on formal languages, while the
other on tiled sequential MNIST. 1

(4) We conduct empirical analyses and comparisons across
the different encoder architectures using these datasets,
showing which encoders are more effective.

2. Related Work
The concept of learning representations for the weights
of feedforward NNs, also sometimes called hyper-
representations, has been explored in studies by Eilertsen
et al. (2020) and Schürholt et al. (2021). Various methods
for processing NN weights have been proposed. Schürholt
et al. (2021); Eilertsen et al. (2020); Faccio et al. (2020);
Herrmann et al. (2022) suggest flattening the weights and
using them as input data for simple encoders or predic-
tors. Unterthiner et al. (2020) and Tang et al. (2022) use
permutation-invariant layers to extract high-level weight
features. Navon et al. (2023) and Zhou et al. (2023) develop
weight processing layers that are equivariant to neuron per-
mutation, leading to the creation of DWSNet architectures,
which can universally approximate functions of the weight
space. Other approaches include probing NNs with learn-
able inputs and analyzing the network based on the gener-
ated outputs, as proposed by Schmidhuber (2015); Harb et al.
(2020) and Faccio et al. (2022a;b). For processing implicit
neural representations, Dupont et al. (2022) employ normal-
izing flows and diffusion models, while Xu et al. (2022)
use higher-order spatial derivatives. All mentioned works,
except for Schmidhuber (2015) and Herrmann et al. (2022),
focus solely on the processing of feedforward (including
convolutional) NNs.

Emulation as an objective for learning representations
was proposed by Raileanu et al. (2020), but their

1https://github.com/vincentherrmann/
rnn-weights-representation-learning

focus was on policy trajectories rather than on NN
weights. For self-supervised representation learning of
NN weights, reconstruction-based approaches have been ex-
plored (Schürholt et al., 2021; Dupont et al., 2022). Ramesh
& Chaudhari (2021) employ populations of models trained
on diverse tasks for continual learning. Both Eilertsen et al.
(2020) and Schürholt et al. (2022) have released datasets of
trained convolutional NNs. To our knowledge, there are no
public datasets of diverse trained RNNs.

3. RNN Weight Encoders
When using NN weights as input for another network, two
main challenges arise. First, the number of weights can
quickly become very large. Second, the weight space ex-
hibits symmetries, particularly with respect to the permuta-
tion of hidden neurons (Hecht-Nielsen, 1990). Rearranging
the order of hidden neurons in a network does not change the
computation it performs2. An effective NN weight encoder
should recognize these symmetries.

We consider an RNN, fθ : RX × RH → RY ×
RH ; (x, ht−1) 7→ (y, ht), t ∈ 1, 2, . . . , parametrized by
θ ∈ Θ, which maps an input x and hidden state ht−1 to
an output y and a new hidden state ht. In the following,
we assume that all RNNs are multi-layer LSTMs3. An
RNN weight encoder is a function Eϕ : Θ → RZ ; θ 7→ z,
mapping RNN weights θ to Z-dimensional representation
vectors z = Eϕ(θ). The encoder’s parameters are ϕ ∈ Φ.

We differentiate between two approaches for encoding RNN
weights: (1) Mechanistic encoders “look” at the weights θ
directly, treating them as typical input data. (2) Functional-
ist encoders, instead, interact with the function fθ without
direct access to the weights themselves. These encoders still
map RNN weights to representations, but focus on a func-
tional interpretation of the RNN. We discuss and compare
six encoder architectures for representing RNN weights, as
depicted in Figure 1.

Layer-Wise Statistics This approach, successfully used
in previous studies (Unterthiner et al., 2020) to predict prop-
erties of CNNs, involves creating, for each weight matrix, a
vector consisting of mean, standard deviations, and five
quantiles (0, 0.25, 0.5, 0.75, 1). For LSTMs, each layer
yields twelve distinct vectors, for each of the four gates
corresponding to the input-to-hidden weights, hidden-to-
hidden weights, and the bias vector. These vectors are then
concatenated and given to a multi-layer perceptron (MLP).

2With piece-wise linear activation functions like ReLU, there is
also invariance to certain types of weight scaling. However, this is
not a focus here as RNNs usually use different activation functions.
There is another symmetry with respect to sign flips.

3Generalizing our framework to other RNN architectures
should be straightforward.
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Figure 1: RNN weight encoder architectures taking weights θ as input and producing a representation E(θ). The two groups
of four weight matrices symbolize the four gates of two LSTM layers. The last matrix represents the output projection.

The architecture is inherently invariant to permutations of
hidden neurons. It efficiently scales with RNN size due to
its reliance on high-level features. However, this invariance
extends to many transformations beyond those that preserve
the RNN functionality. Consequently, RNNs with identical
layer-wise statistics may behave differently, preventing the
encoder’s ability to approximate all functions of the weight
space.

Flattened Weights In this approach, all RNN weights are
flattened into a single vector before being fed into an MLP.
Unlike the previous architecture, this one is not invariant to
hidden neuron permutations. As a result, it faces a different
challenge: numerous RNNs might appear different to the
encoder yet perform identical computations. This impedes
generalization, as the MLP has difficulty learning these sym-
metries (empirically demonstrated in Appendix E.2). An-
other issue is the very large size of the input vector. Let N
represent the number of hidden neurons in fθ. The number
of parameters in the input layer of the MLP is proportional
to N2. However, with an adequately large MLP, this archi-
tecture can approximate any function in the weight space4.
This follows immediately from the universal approximation
property of MLPs (Hornik, 1991).

Parameter Transformer Schürholt et al. (2021) intro-
duced an attention-based architecture. This design treats
the weights of individual neurons (specifically, the rows of
weight matrices along with their corresponding bias values)
as a sequence. These sequences are then processed by an
encoder-only transformer model (Vaswani et al., 2017). A
learned positional encoding ensures that the transformer has
the information which weights correspond to which neuron.

4When mentioning universality of weight space functions Θ →
RZ , we imply the regularity conditions of Navon et al. (2023),
Proposition 6.2.

This also makes it not invariant to neuron permutation. The
attention mechanism within the transformer enables asso-
ciative retrieval of information from other neurons, which
could be a beneficial inductive bias when handling NN
weights. The size of both the neuron sequence and the input
transformation parameters scale linearly with N . Given
that transformers are known to be universal sequence-to-
sequence function approximations (Yun et al., 2019), the
parameter transformer can theoretically approximate any
function of the weight space.

DWSNet Both Navon et al. (2023) and Zhou et al. (2023)
proposed architectures for processing the weights of feed-
forward NNs, closely related in design. These architectures
are invariant precisely to permutations of hidden neurons
and are capable of universally approximating functions of
the weight space. We refer to this architecture as DWSNet,
following Navon et al. (2023), and extend its application
to LSTM networks. The central concept of DWSNet is
to construct layers that are equivariant to the hidden neu-
ron permutation group. These layers process the weights,
where each weight is represented by a feature vector. A
final pooling layer across all weights ensures invariance to
neuron permutation. The mechanisms for adapting DWS-
Nets to LSTMs, along with arguments for their universality,
are presented in Appendix B. Appendix E.2 validates the
implementation by demonstrating that DWSNets maintain
invariance only to correctly permuted weights in LSTMs.

Non-Interactive Probing In the context of Reinforcement
Learning and Markov Decision Processes, policy finger-
printing has emerged as an effective method to evaluate
feedforward NN policies (Harb et al., 2020; Faccio et al.,
2022a;b). In policy fingerprinting, a set of learnable probing
inputs is given to the network. Based on the set of corre-
sponding policy outputs, a function (policy) representation
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Figure 2: Comparison of non-interactive and interactive
procing encoders.

is produced. This functionalist approach, which we refer to
as non-interactive probing in this paper, is easily adaptable
to RNNs by employing sequences of probing inputs (see
Figure 2, top).

The probing sequence length, denoted as L, is a fixed hy-
perparameter. A non-interactive probing encoder uses a
sequence of learnable embeddings, Si, 1 ≤ i ≤ L. At each
probing step i, the embedding Si is transformed by EI , an
MLP followed by a reshaping operation that outputs a set
of M probing inputs x̂im ∈ RX ∀m ∈ {1, . . . ,M}. M
represents the number of parallel probing sequences. These
inputs are processed as a batch by the RNN fθ, resulting
in a batch of probing outputs ŷim = fθ(x̂im) ∈ RY 5. The
probing outputs are concatenated and further transformed
by another MLP EO, resulting in a vector oi. The sequence
of vectors oi is processed by an LSTM network ER, which
then outputs the RNN representation E(θ).

Interactive Probing The probing sequences for non-
interactive probing are static, i.e., at test time, the probing
sequences do not depend on the specific RNN being eval-
uated. The alternative is to make the probing sequences
dynamically dependent on the given RNN. Each new prob-
ing input, x̂i, should depend on the previous probing outputs
ŷ<i. This dynamic adaptation is achieved by feeding the
output of the previous step’s LSTM ER(o<i) into EI (Fig-
ure 2, bottom). A similar concept has been proposed by

5For fθ , the recurrence of the hidden states over sequence steps
is implied.

Schmidhuber (2015) for extracting algorithmic information
from recurrent world models.

Both types of probing encoders retain the invariance prop-
erties of fθ. However, functionalist encoders have limi-
tations in differentiating between weight space functions;
they cannot discern mechanistic differences in functionally
equivalent RNNs. Consequently, two RNNs performing
exactly the same function will look identical to a probing
encoder, even if they use different algorithms to compute
the function. This means probing encoders are not universal
in the sense that some of the mechanistic approaches are.
Table 1 summarizes key properties of the different encoder
architectures.

3.1. Theoretical Aspects of the Functionalist Approach

We introduce a theoretical framework for analyzing probing
encoders and the distinctions between interactive and non-
interactive settings. In practice, any RNN weight encoder
is trained on a finite number of distinct RNNs. For each
of them, it should output a unique representation. In this
section, we study the related task of uniquely identifying
a function from a given set by interacting with it. Rather
than using RNNs, we examine total computable functions,
which are functions that halt and produce an output for every
input. This is a minor limitation, since in practical scenarios,
RNNs are almost always given a finite runtime.

Let D represent a set of n total computable functions
{fi : N → N|i = 1, 2, . . . , n}. In other words, D com-
prises n Turing machines that halt on every input, with no
pair being functionally equivalent. Let ID denote another
Turing machine, which we call the Interrogator. ID has
access to the function set D (e.g., the corresponding Turing
numbers might be written somewhere on its tape). More-
over, ID is given access to one function fC ∈ D as a black
box. ID can interact with fC by providing an input x ∈ N
and subsequently reading the corresponding output fC(x).
The task of ID is to identify which member of D corre-
sponds to function fC , while minimizing interactions with
fC . Specifically, ID must return i ∈ {1, . . . , n} such that
fC = fi. This setup is depicted in Figure 3. It should be
mentioned that RNNs of finite size and precision are not
universal computers (Merrill, 2019; Delétang et al., 2022).
However, the following propositions depend mainly on the
relative computational ability of ID and the functions in
D. Hence we choose this simple abstract framework of
distinguishing total computable functions and believe that it
transfers well into realistic RNN settings. The proofs of the
following propositions can be found in Appendix A.

Proposition 3.1. Any function fC from a set D can be
identified by an interrogator through at most |D| − 1 inter-
actions.
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Table 1: Properties of the different RNN weight encoder architectures. N is the
number of hidden neurons in fθ.

Encoder Permutation
Invariant

Universal
Approx. #Params Type

Layerwise Statistics Yes No const. Mechanistic
Flattened Weights No Yes O(N2) Mechanistic
Parameter Transformer No Yes O(N) Mechanistic
DWSNet Yes Yes const. Mechanistic
Non-Interactive Probing Yes No const. Functionalist
Interactive Probing Yes No const. Functionalist

ID

fC

f1f1f1f1 i

⏟D

x fC(x)

Figure 3: Interrogator ID has access to
a set D of functions and interacts with
function fC , which it has to identify.

An Interrogator is called interactive if the value xj of the jth
probing input depends on fC(x1), . . . , fC(xj−1), i.e., the
outputs corresponding to the previous probing inputs. This
implies that the probing inputs generally depend on the spe-
cific function fC given to I . Conversely, a non-interactive
Interrogator can only provide a fixed set of probing inputs
to fC , and their values do not depend on the outputs of fC .
In the proof of Proposition 3.1, the probing inputs given to
fC do not dynamically depend on fC . This means that the
theorem holds for non-interactive Interrogators. A natural
question arises: Can interactive Interrogators identify a func-
tion using fewer interactions? Although there are instances
where they need exponentially fewer interactions, in the
worst-case scenario, both methods necessitate an equivalent
number of interactions:

Proposition 3.2. The upper bound for probing interactions
required to identify a function from a given function set D is
|D| − 1 for both interactive and non-interactive Interroga-
tors.

Proposition 3.3. There exist function sets for which an inter-
active Interrogator requires exponentially fewer probing in-
teractions to identify a member than does a non-interactive
one.

Section 6 demonstrates that these theoretical concepts are
mirrored in empirical results. In one dataset (formal lan-
guages), interactive probing significantly outperforms non-
interactive probing. However, in another dataset, both meth-
ods show similar performance.

4. Self-Supervised Learning of RNN Weight
Representations

We propose a general-purpose method for learning repre-
sentations of RNN weights. It is based on the idea that the
RNN weight representation should contain all the informa-
tion necessary in order to emulate the RNN’s functionality.
A very similar technique is used by Raileanu et al. (2020)
to learn representations of (non-recurrent) policies based on
their trajectories.

The RNN fθ interacts with a potentially stochastic environ-
ment, E , that maps an RNN’s output y to a new input x. The
environment may have its own hidden state η. By sequen-
tially interacting with the environment, the RNN produces a
rollout defined by:{

xt, ηt = E(yt−1, ηt−1)

yt, ht = fθ(xt, ht−1),

with fixed initial states y0, η0 and h0. For instance, fθ might
be an autoregressive generative model, with E acting as a
stochastic environment that receives a probability distribu-
tion over some language tokens, yt—the output of f at time
step t—, and produces a representation (e.g., a one-hot vec-
tor) of the new input token xt+1. When the environment
is stochastic, numerous rollouts can be generated for any
θ ∈ Θ. A rollout sequence of a function fθ in environment
E has the form Sθ = (x1, y1, x2, y2, . . . ).

To train an RNN weight encoder Eϕ, we consider an Emula-
torAξ : RX×RB×RZ → RY×RB ; (x, bt−1, z) 7→ (ỹ, bt),
parametrized by ξ ∈ Ξ. The Emulator is an RNN with hid-
den state b that learns to imitate different RNNs fθ based on
their function encoding z = E(θ).

We consider a dataset D = {(θi, Sθi)|i = 1, 2, . . . } com-
posed of tuples, each containing the parameters of a different
RNN and a corresponding rollout sequence. We assume that
all RNNs have the same initial state h0 but have been trained
on different tasks. The Encoder Eϕ and the Emulator Aξ
are jointly trained by minimizing a loss function L. This
loss function measures the behavioral similarity between an
RNN fθ and the Emulator Aξ, which is conditioned on the
function representation z = Eϕ(θ) of θ as produced by the
Encoder Eϕ (see Figure 4). Put simply, the Emulator uses
the representations of a set of diverse RNNs fθ to imitate
their behavior:6

min
ϕ,ξ

E(θ,S)∼D
∑

(xi,yi)∈S

L
(
Aξ(xi, Eϕ(θ)), yi

)
. (1)

In the case of continuous outputs y, the mean-squared error

6The recurrence of Aξ is omitted for simplicity.
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Figure 4: Emulation-based self-supervised training. The
encoder E is trained to generate embeddings of θ that allow
A to emulate fθ.

provides a suitable loss function L. For categorical outputs,
we employ the reverse Kullback-Leibler divergence because
of its mode-seeking behavior.

If we are interested only in the RNN weight encoder Eϕ,
the emulator Aξ can be discarded after training. However,
there might be potential applications for the emulator, for
example, in the context of imitation learning (Zare et al.,
2023), behavior cloning (Torabi et al., 2018), or consolidat-
ing the knowledge from many different models (Joseph &
N Balasubramanian, 2020).

5. Datasets
To evaluate the methods described and foster further re-
search, we develop and release two “model zoo” datasets
for RNNs. The first dataset focuses on modeling formal
languages, while the second is centered around predicting
digits in a tiled Sequential MNIST format. Both datasets
share a similar structure. We train 1000 LSTMs (each with
two layers and a hidden state size of 32) on various tasks.
The weights θ of each model are saved at 9 fixed training
steps, along with 100 rollouts Sθ and additional data, such as
the current performance on its task. The datasets are divided
into training, validation, and out-of-distribution (OOD) test
splits, with tasks in each split being non-overlapping. The
tasks in the OOD set are structurally slightly different.

5.1. Formal Languages

The models are auto-regressive language models, trained on
different formal languages using teacher forcing and the
standard cross-entropy language modelling objective. Let
a, b, c and d be the four tokens of a language. We define a
language as Lmb,mc,md :=

{
anbn+mbcn+mcdn+md |n ≥

−min{0,mb,mc,md}
}

. This means that, in a string
from such a language, the number of appearances of the
tokens, relative to each other, is determined by mb,mc and
md. For example, the strings from the language L1,−1,2

are {{abbddd}, {aabbbcdddd}, {aaabbbbccddddd}, . . . }.
Each model is trained on one language from the set

GL := {Lmb,mc,md |mb,mc,md ∈ {−3,−2, . . . , 2}}.
Note that these languages are essentially ones used also
in the proof of proposition 3.3. In GL, there are a total of
63 = 216 different languages.

All models are trained on sequences of length 42, includ-
ing one begin-of-sequence (BOS) and one end-of-sequence
(EOS) token. The maximum value of n is 10. If a language
string is shorter than 42, it is padded at the end with EOS
tokens. The OOD test set contains the RNNs trained on
languages where the sum of the absolute values of mb,mc

and md is the smallest.

5.2. Tiled Sequential MNIST

The models of this dataset are trained to classify MNIST
digits presented in a sequential format. Unlike the typical
pixel-wise sequence, each digit is represented as a sequence
of 49 4× 4 tiles (plus BOS and EOS tokens). This approach
improves computational efficiency for both RNN training
and weight representation experiments. After each tile of the
sequence, the model predicts the digit. The loss is the mean
cross-entropy of all predictions in the sequence. However,
the accuracy of each model is assessed based on the final
prediction, i.e., when the model has seen the entire digit.
The dataset’s task involves rotating MNIST digits. Each
model is exposed to the entire MNIST dataset, with images
rotated by a unique random angle. For the training and
validation sets, the rotations range from 0 to 311 degrees,
while for the OOD test set, they range from 312 to 360
degrees.

6. Experiments and Results
Our empirical investigation involves two experimental
phases. In the first phase, we apply the emulation-based
representation method described in Section 6.1 to learn
representations for RNNs from Formal Languages and the
Sequential MNIST dataset. The second phase is dedicated
to predicting properties of the RNNs. These predictions are
either based on representations learned in the first phase or
derived from fully supervised models trained from scratch.
We conduct the main experiments using 15 different ran-
dom seeds for each model. The outcomes are presented
as bootstrapped means with 95% confidence intervals. For
RNNs trained on the Formal Languages dataset, perfor-
mance is measured by the proportion of correctly generated
strings (i.e., strings belonging to the language on which it
was trained). For the Sequential MNIST dataset, we assess
performance using standard digit classification validation
accuracy. For the Flattened Weights and the Parameter
Transformer encoders, the training data is augmented by
randomly permuting the neurons of the input RNN.

6



Learning Useful Representations of Recurrent Neural Network Weight Matrices

Table 2: Self-supervised validation losses.

Encoder Formal Languages Sequential MNIST

Layer-Wise Statistics 0.051 (0.050,0.053) 0.039 (0.038,0.039)

Flattened Weights 0.045 (0.045,0.046) 0.024 (0.024,0.024)

Parameter Transformer 0.043 (0.042,0.044) 0.067 (0.067,0.067)

DWSNet 0.046 (0.046,0.046) 0.024 (0.023,0.025)

Non-Interactive Probing 0.023 (0.019,0.029) 0.017 (0.016,0.017)

Interactive Probing 0.015 (0.008,0.022) 0.017 (0.017,0.018)

6.1. Representation Learning
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Figure 5: fθ’s original performance on formal language
generation vs. the performance of Aξ’s emulation based on
Eϕ(θ) (validation data).

The six different encoder architectures are trained according
to Objective 1. The hyperparameters of these encoders
are selected to ensure a comparable number of parameters
across all models. Each encoder generates a 16-dimensional
representation z. An LSTM with two layers functions as
the emulator Aξ. The conditioning of Aξ on an RNN fθ
is implemented by incorporating a linear projection of the
corresponding representation z to the BOS token of the
input sequence of Aξ. More details and hyperparameters
can be found in Appendix D.

Table 2 displays the emulation losses for the different en-
coder types on both the Formal Languages and the Sequen-
tial MNIST validation datasets. For Formal Languages, the
interactive probing method outperforms the others. In the
case of Sequential MNIST, the performance of both probing
encoders is quite similar and superior to that of the mechanis-
tic encoders. Figure 5 shows the emulation effectiveness of
various RNNs from the Formal Languages dataset. We com-
pute 16 equally spaced target performance values between
the best and the worst performances in the datasets. For
each target performance, we select the 15 RNNs with perfor-
mances closest to each target. The x-position of each point

represents the mean of the original performances, and the y-
positions represent the mean of the emulated performances
(the shaded areas give the 95% confidence intervals). The
variance of the original performances for each point is rela-
tively low, as can be seen from the shaded area around the
identity line. For this dataset, only the interactive probing
encoder yields representations that enable Aξ to effectively
emulate the original RNN. Figure 11 in the Appendix shows
the analogous results also for the Formal Languages training
and test set, Figure 12 for the Sequential MNIST datasets.

Figure 6 (top) examines the structure of the embedding
space created by the interactive probing encoder for the
Formal Languages validation set. It visually demonstrates
that our method successfully learns coherent representation
spaces of RNN weights. Each point represents an RNN, re-
duced from Z to two dimensions using principal component
analysis. Each language forms its own cluster, with each
cluster exhibiting a gradient representing the generation ac-
curacy of the RNNs. We highlight one cluster, correspond-
ing to the language L−2,2,−2. In contrast, t-SNE dimension-
ality reduction (bottom) fails to represent such structures
in RNN weights. In t-SNE reductions, the weights of the
RNN models for a single language are scattered across the
entire space. Similarly, Figure 7 shows the embedding space
for the Sequential MNIST dataset, where the task involves
rotating MNIST digits. This rotation, a continuous scalar, is
evident in the embedding space, alongside the classification
accuracy of each model. In the t-SNE plot, although small
clusters are noticeable for the nine snapshots of each run, the
overall embedding space lacks a coherent structure. Visual-
izations of embedding spaces for all encoder architectures
and OOD test sets are presented in Appendix E.4.

6.2. Downstream Property Prediction

To assess the effectiveness of representations learned
through self-supervised learning, we evaluate them in pre-
dicting various properties of RNNs. We train an MLP as
a supervised prediction model using these representations,
obtained from a fixed, pre-trained encoder Eϕ. The prop-
erties to be predicted are stored as metadata for each RNN
within the datasets. For RNNs from the Formal Languages
dataset, the properties are task and accuracy. For RNNs
from the Sequential MNIST dataset, the properties are task
(i.e., the rotation of the digits), accuracy, training step, and
generalization gap. The formal language task is represented
as a three-hot vector (for values mb, mc, and md), and the
predictor is trained using binary cross-entropy. For all scalar
properties like accuracy, Sequential MNIST task, and gen-
eralization gap, the predictor is trained using mean squared
error loss. The Sequential MNIST training step prediction
is framed as a 9-way classification problem, using cross-
entropy loss.
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Figure 6: Visualization of embeddings of RNNs from the
Formal Languages validation set.

t-SNE Embeddings

Interactive Probing Embeddings

Figure 7: Visualization of embeddings of RNNs from the
Sequential MNIST validation set.

For comparison, we also trained models for property pre-
diction in a purely supervised manner. The setup is the
same as for the pre-trained scenario, consisting of an RNN
weight encoder followed by an MLP predictor. However,
in this case, the encoder is not pre-trained but is randomly
initialized and trained end-to-end with the predictor. Our
primary interest lies in the generalization capabilities of
the pre-trained Eϕ, rather than the predictor itself. Conse-
quently, the training data for the predictor in both supervised
and pre-trained settings includes half of the OOD test set.
We place particular emphasis on task prediction (specifi-
cally, the type of formal language or the rotation of the
MNIST dataset). This is because it demands a genuine
understanding of the RNN’s function, which goes beyond
mere high-level statistical analysis of the weights. Figure 8
(top) demonstrates that for task prediction in the Formal
Languages dataset (OOD split), the pre-trained represen-
tations from an interactive probing encoder significantly
outperform those from other encoders, as well as purely
supervised models. For the Sequential MNIST dataset (Fig-
ure 8, bottom), both types of probing encoders surpass other
architectures. In the supervised scenario, the non-interactive
probing encoder excels, but the interactive version does not
perform as well. We hypothesize that this is due to the
limited information provided by supervised training com-
pared to self-supervised pre-training, which does not offer
sufficient feedback for the interactive encoder to develop ef-
fective probing sequences. Complete results for downstream
predictions, both supervised and pre-trained, on validation
and OOD test data are shown in Figures 19 and 20 in the
Appendix. Although these results do not definitively favor
any single encoder architecture, they can be summarized

as follows: for the Formal Languages dataset, on both task
and performance prediction, interactive probing generally
yields the best results, particularly in the pre-trained setting.
For the Sequential MNIST dataset, non-interactive probing
performs best in the supervised setting, while both probing
architectures are effective when pre-trained. In all other
property predictions (accuracy, generalization gap, training
step), DWSNet performs most consistently.
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Figure 8: Downstream performance of pre-trained and
purely supervised model on task prediction for the Formal
Languages and Sequential MNIST OOD test set.
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7. Discussion
To effectively learn useful representations of RNN weights,
three key components are necessary. First, datasets com-
prising a variety of trained RNNs are essential. The two
datasets presented in this study, based on formal languages
and tiled Sequential MNIST, are designed to support rapid
experimental cycles and evaluations. Despite their scale,
they offer sufficient complexity and challenge to analyze
various approaches to the representation learning problem.
These datasets address distinct facets of potential RNN ap-
plications: generative modeling of formal languages, which
suits RNNs due to its precise, algorithmic nature, and digit
classification, a less precise perceptual task.

Second, a pre-training method is required. We suggest a
method rooted in the understanding that only those repre-
sentations of RNN weights that can accurately emulate the
original RNN possess meaningful information about the
network. However, this is a necessary but not sufficient
condition for effective representations. If the RNNs in the
dataset used to train the encoder differ only superficially
(and not algorithmically), then the derived representations
would only reflect these superficial properties. Therefore,
the task family from the training data must be complex
enough to necessitate extracting complex information from
the RNNs, but still be learnable by some method. Our
experiments demonstrate that only an interactive probing
encoder can adequately capture the formal language task
family. The Sequential MNIST task family (digit rotation) is
simpler to learn, although the embedding visualizations sug-
gest that Layer-wise Statistics and Parameter Transformer
approaches fall short (see Figure 22).

Third, an encoder architecture capable of handling the com-
plex structure of RNN weights as input is crucial. Except
for Layer-Wise statistics, mechanistic encoders can approx-
imate any function within the weight space. Nonetheless,
in practice, functionalist approaches outperform them both
in self-supervised training objectives and task prediction.
Our findings confirm the theoretical prediction that inter-
active probing is more efficient for certain datasets (Propo-
sition 3.3), as evidenced by the results on the Formal Lan-
guages datasets. However, interactive probing may suffer
from training stability issues in some instances. This issue
might be mitigated in the future through different training
methods, loss functions, or regularizations. When the in-
teractive property is unnecessary or too complex to train,
such as with the Sequential MNIST dataset, non-interactive
probing may yield better results. Additionally, functionalist
encoders offer the advantage of being agnostic to the pre-
cise architecture of fθ. In more straightforward tasks like
supervised property prediction, mechanistic encoders like
or Layer-Wise Statics or DWSNet excel.

To date, our work is limited to relatively small RNNs. All

approaches presented here can in principle be adapted
in a straightforward way to other architectures, such as
state space models (Gu et al., 2021), deep equilibrium
models (Bai et al., 2019), or transformers (Vaswani et al.,
2017). For scaling to larger models, we see the greatest
potential in functionalist probing approaches. These are,
in principle, agnostic to the architecture and size of the
RNN (or any general sequence model), provided it is
differentiable. By employing policy gradient methods,
we could even process models that are impossible or
prohibitively expensive to differentiate.

8. Conclusion and Future Work
We have proposed a framework that uses self-supervised
learning to derive useful representations of RNN weights.
Through this framework, we have trained and evaluated
various weight encoder architectures. Notably, our newly
proposed interactive probing approach is the only method
capable of learning suitable representations for formal lan-
guage tasks. This finding corroborates our theoretical re-
sults, demonstrating that interactive probing can, in certain
situations, outperform non-interactive probing.

This work establishes a foundation for numerous future ap-
plications. For instance, the techniques introduced here can
be applied in the context of reinforcement learning within
partially observable environments, where they can facilitate
policy representation and improvement (see e.g., Raileanu
et al. (2020); Faccio et al. (2020; 2022b)), as well as explo-
ration and skill discovery (Herrmann et al., 2022). Addi-
tionally, RNN weight representations could be beneficial
in meta-learning and few-shot learning scenarios. Another
field where our work might be useful is the mechanistic in-
terpretability of sequence models (e.g., (Weiss et al., 2018;
Olsson et al., 2022)). Typically, it involves a lot of labor-
intensive reverse engineering. Training models to create
meaningful representations of RNN (or general sequence
model) weights may assist or even partially automate these
efforts. Our functionalist probing approaches have the po-
tential to extract information not only from populations of
small models but also from large foundational models. This
can be achieved by conditioning either the encoder or the
foundational model itself on a specific task, a concept that
aligns with discussions in previous research (Schmidhuber,
2015; Zeng et al., 2022; Zhuge et al., 2023).
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Figure 9: A binary tree constructed as described in the proof of Theorem 3.1. Giving the inputs xj corresponding to all
branching nodes to a function allows to uniquely identify it.

A. Theoretical results
Lemma A.1. Given any subset G ⊆ D, |G| ≥ 2, there exists an input x that can be computed for which fa(x) ̸= fb(x)
with fa, fb ∈ G.

Proof. This follows immediately from the fact that all functions in G are total computable and functionally distinct.

Proposition A.2. Any function fC from a set D can be identified by an interrogator through at most |D| − 1 interactions.

Proof. According to Lemma A.1, it is possible to split any set G ⊆ D, |G| ≥ 2 into two nonempty, non-overlapping subsets:
Ga := {f ∈ G|f(xj) = fa(xj)} and Gb := {f ∈ G|f(xj) ̸= fa(xj)} for some fa ∈ G and xj ∈ N. Any resulting subset
that has at least two members can be split again using the same procedure with a different probing input xj+1. Starting from
the full set D, it is possible to construct a binary tree (see Figure 9) where the leaves are subsets of D containing exactly
one uniquely identified function. The branching (i.e., non-leaf) nodes correspond to the splitting operation, which involves
observing the output of a specific probing input xj .

The Interrogator can identify a given function fC ∈ D by providing it with all inputs xj corresponding to the branching
nodes in the binary tree and observing the outputs. Since any binary tree with n leaves has exactly n− 1 branching nodes,
any function fC ∈ D can be identified using |D| − 1 interactions.

Of course, there are ‘easy’ function sets in the sense that their members can be identified using much fewer interactions.
Consider, for example, the set {n 7→ i ∀n|1 ≤ i ≤ L}. Here, only one (any) probing input is necessary, since the identity of
the function can be directly read from the output.

Proposition A.3. The upper bound for probing interactions required to identify a function from a given function set D is
|D| − 1 for both interactive and non-interactive Interrogators.

Proof. It is easy to construct function sets D for which the members cannot be identified in less than |D| − 1 interactions,
even by an interactive Interrogator.

One such function set is {ξi|1 ≤ i ≤ L} with ξi : n 7→
{
0 if n = i,

n else
. In the worst case, there is no way around trying all

inputs 1, . . . , L− 1.

Proposition A.4. There exist function sets for which an interactive Interrogator requires exponentially fewer probing
interactions to identify a member than does a non-interactive one.

Proof. We construct a concrete set of functions that an interactive Interrogator can identify exponentially faster than a
non-interactive one. Consider the family of context-sensitive languages

Lm2,m3,...,mk := {an1an+m2
2 an+m3

3 . . . an+mkk |n ∈ N}, (2)
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with m2, . . . ,mk ∈ N and a1, . . . , ak being the letters or tokens of the language. The parameters mi define the relative
number of times different tokens may appear. As an example, one member of the language L2,1 is the string a1a2a2a2a3a3.

LetGL := {Lm2,...,mk |m2, . . . ,mk ∈ {1, . . . ,M}}, i.e., a set of such languages with different parametersmi. GL contains
M (k−1) languages. To each language Lm2,...,mk , we can assign a unique generative function gm2,...,mk . This function,
given a partial string from the language, returns a list of the allowed tokens for the next step. If the input string is not a
prefix of string from the language, it returns the empty string ϵ. For example, g2,1(a1) = (a1, a2), g2,1(a1a2a2) = (a2),
and g2,1(a1a2a2a3) = ϵ. Our function set DL is a set of such generative functions, DL := {gm2,...,mk |m2, . . . ,mk ∈
{1, . . . ,M}}.

For an interactive Interrogator, there is a simple strategy to identify a given function gC ∈ DL using M · (k− 1) interactions:
The first input is the string a1a2. From there on, the Interrogator acts as an autoregressive generative model—it appends the
allowed token returned by gC to the string and uses it as the new input. Only one valid token will be returned by gC for all
probing input strings that are generated using this approach since the n is determined to be 1 from the first input string. This
is repeated until ϵ is returned, which is after a maximum of M · (k − 1) calls to gC . The last probing input string will be of
the form a1a

r2
2 . . . arkk , from which the language can easily be inferred to be Lr2−1,...,rk−1.

The non-interactive Interrogator cannot use this strategy, since every probing input except the first depends on gC’s output
for the previous probing input. We can show that in the non-interactive setting, exponentially many calls to gC are needed to
identify it. Assuming n = 1, there are Mk−2 unique prefixes for the first token ak. Each of these prefixes is only allowed in
M languages Lm2,...,mk−1,·, namely the ones with fixed m1, . . . ,mk−1. Remember that gC returns ϵ whenever it is given a
substring that is not part of its language. That means, to determine mk, Mk−2(M − 1) different inputs have to be given to
fC . Only then it is guaranteed that the only informative string about the unknown value of mk, namely a1am2

2 . . . amkk , is
among the probing inputs. It follows that to determine all values m2 . . . ,mk and identify the exact language of gC , a total
of

∑k−2
b=2 M

b(M − 1) =Mk−1 −M2 inputs are needed.

In short, to identify a function from the set DL described above, an interactive Interrogator needs O(Mk) probing inputs,
whereas a non-interactive one needs O(Mk).

B. DWSNet Details
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Figure 10: All connections from and to a single weight of an RNN in an input-to-hidden weight matrix (left) or hidden-to-
hidden weight matrix (right). They must all be taken into account to ensure the equivariance of DWSNets for RNN weights.

The implementation of our permutation equivariant weight space layer for RNNs is based on the work of Zhou et al. (2023).
Unlike feedforward networks, RNNs feature two distinct types of weight matrices: those mapping inputs to hidden states
(W l

ii for layer l) and those mapping hidden states to other hidden states (W l
hh). To ensure the equivariance of weight space

feature maps, it is crucial to consider all incoming and outgoing connections for both types of matrices (as illustrated in
Figure 10). We define an equivariant linear function Hi for the input to hidden weights as:
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The learnable parameters are aih, bih, cih, dih, eih, fih and gih. For hidden to hidden weights, the equivariant linear function
Hh is:

Hh(Whh)
l
jk =

(∑
s

al,shh(W
l
ih)∗,∗ + bl,shh(W

l
hh)∗,∗

)
+ cl,lhh(W

l
hh)∗,k + cl,l−1

hh (W l−1
hh )k,∗ + dl,lhh(W

l
hh)j,∗ + dl,l+1

hh (W l+1
ih )∗,j

+ el,lhh(Wih)
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∗,k + el,l+1

hh (Wih)
l+1
k,∗ + f l,lhh(W

l
hh)j,∗ + f l,l+1

hh (W l+1
hh )∗,j

+ glhh(W
l
hh)jk,

with learnable parameters ahh, bhh, chh, dhh, ehh, fhh and ghh. In LSTMs, the weight matrices for the input, output, forget,
and cell gates are treated as four channels of the weight space input feature map.

Given that an RNN is characterized by the mapping from input and hidden states to output and updated hidden states by
a single RNN cell, the universality proofs by Navon et al. (2023) are applicable. Consequently, under similar regularity
conditions, our adapted DWSNets can approximate any function within the weight space.

C. Dataset Details
The process for creating the Formal Languages and Sequential MNIST RNN weight datasets is consistent across all instances.
In each of the 1000 training iterations, a new LSTM network is initialized, and a task is chosen at random. This model
undergoes training for a total of 20000 steps using the AdamW optimizer (Loshchilov & Hutter, 2017), with a weight
decay of 10−4 and a batch size of 32. We implement a piece-wise linear learning rate schedule that adjusts the learning
rate between [0.01, 0.003, 0.0003] at steps [0, 10000, 20000]. The model weights are saved as a datapoint at the training
steps [0, 100, 200, 500, 1000, 2000, 5000, 10000, 20000], along with 100 rollout sequences and various attributes (such as
the task, training step, and performance metrics, including Sequential MNIST validation and training loss).

D. Experiment Details
All experiments, both pre-training and downstream property prediction tasks, are run for 100k training steps with an early
stopping criterion based on validation loss performance. All MLPs use ReLU activation functions within their hidden
layers. The hyperparameters for the self-supervised pre-training phase are detailed in Table 3, the additional settings for
the prediction phase are listed in Table 4. Tables 5-10 report the hyperparameters for six distinct RNN weight encoder
architectures, in addition to specifying the total encoder model sizes for both the Formal Languages and Sequential MNIST
studies. The probing encoders use a probing sequence length of 22 for Formal Languages and 51 for Sequential MNIST.
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Table 3: Pre-Training Hyperparameters

Hyperparameter Value

A Hidden Size 256
A #Layers 2
z Size 16
Batch Size 64
Optimizer AdamW
Learning Rate 0.0001
Weight Decay 0.01
Gradient Clipping 0.1

Table 4: Additional Downstream Hyperparameters

Hyperparameter Value

Predictor MLP Size 128
Predictor MLP #Layers 2

Table 5: Layer-Wise Statistics Hyperparameters

Hyperparameter Value

MLP Hidden Size 768
MLP #Layers 3
#Parameters Formal Languages 1248016
#Parameters Sequential MNIST 1248016

Table 6: Flattened Weights Hyperparameters

Hyperparameter Value

MLP Hidden Size 128
MLP #Layers 3
#Parameters Formal Languages 1797264
#Parameters Sequential MNIST 1978000

Table 7: Parameter Transformer Hyperparameters

Hyperparameter Value

Size 128
Transformer MLP Hidden Size 512
#Layers 6
#Heads 2
#Parameters Formal Languages 1276688
#Parameters Sequential MNIST 1278480

Table 8: DWSNet Hyperparameters

Hyperparameter Value

# Channels 48
# Layers 4
#Parameters Formal Languages 1279736
#Parameters Sequential MNIST 1282400

Table 9: Non-Interactive Probing Hyperparameters

Hyperparameter Value

ER Hidden Size 256
ER #Layers 2
EI & EO Hidden Size 128
EI & EO #Layers 1
#Parameters Formal Languages 1241718
#Parameters Sequential MNIST 1254016

Table 10: Interactive Probing Hyperparameters

Hyperparameter Value

ER Hidden Size 256
ER #Layers 2
EI & EO Hidden Size 128
EI & EO #Layers 1
#Parameters Formal Languages 1235830
#Parameters Sequential MNIST 1240960
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E. Additional Results
Figure 11 shows the emulation performance of different emulators Aξ on the Formal Languages datasets. We observe
overfitting on the training data of the non-interactive probing and parameter transformer encoders. Note, however, that this
occurs despite the use of early stopping, meaning the models evaluated are those with the lowest validation loss.

Figure 12 shows the emulation performance on the Sequential MNIST datasets. There we can observe an interesting
effect: in the Parameter Transformer setup, Aξ always classifies the digits with high accuracy, even when conditioned on
low-performing RNNs. We suggest the following explanation: from Figures 20, 22 and 23 it is clear that for Sequential
MNIST, the parameter transformer fails to learn informative representations. What does the emulator Aξ learn in this case?
For Sequential MNIST, the target distributions y typically assign a high probability to the correct digit. Therefore, the
emulator is incentivized to learn a rotation-invariant MNIST classifier that will perform well on any input, regardless of the
conditioning. However, there is an additional nuance: the reverse KL divergence loss function prefers high entropy output
distributions from the emulator. This means that while the emulator’s performance in terms of classification loss would be
poor (since high entropy distributions generally result in high losses), its performance in terms of classification accuracy can
still be good even with a high entropy distribution, as long as the correct digits have a probability that is at least slightly
higher than the other ones.
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Figure 11: Formal Languages original performance vs. emulated performance. Training (left), validation (middle), and
OOD test data (right).
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Figure 12: Sequential MNIST original performance vs. emulated performance. Training (left), validation (middle), and
OOD test data (right)
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E.1. Probing Sequence Number and Length

The probing encoders presented in this work can utilize a fixed number of parallel probing sequences. If not specified
otherwise, 8 probing sequences are used. Figures 13 and 14 demonstrate that using more probing sequences correlates with
lower loss. Interactive probing proves highly effective for RNNs applied to the Formal Languages dataset, though it faces
challenges with training stability. In principle, one probing sequence is sufficient to solve the task, as evidenced by the
top-performing model among 15 seeds achieving very low loss regardless of the number of probing sequences. Nonetheless,
training stability improves with an increase in probing sequences.

For RNNs analyzing the Sequential MNIST dataset, the optimal length for probing sequences is 51 (49 plus BOS and EOS),
matching the number of tiles representing a full digit. In the case of Formal Languages, a probing sequence length of 22 is
sufficient for interactive probing to identify all languages of the dataset. Figure 15 illustrates that shorter probing sequences
yield poorer results, while longer ones do not increase performance and can even harm training stability. Therefore, the
length of the probing sequence should be as long as necessary but no longer.

Figure 16 displays the probing sequences generated by different Interactive Probing encoders for a specific RNN that
produces strings from languages L−3,−1,1 (the encoders for this figure learn only one probing sequence). A length of 7 is
notably insufficient, failing to learn any meaningful probing sequence. However, at sequence lengths of 12, 22, and 42, the
encoder successfully learns to probe actual strings of varying lengths from L−3,−1,1. Note that while there is a string of
length less than 12 for this particular language, this does not apply to all languages in the dataset.
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Figure 13: Formal Languages valida-
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Figure 15: Formal Languages valida-
tion loss vs. length of probing se-
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Figure 16: Learned interactive probing sequences for a formal language
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Figure 17: Various encoder architectures, with respect to
either complete or incomplete permutation of hidden neu-
rons, are analyzed. A black cell indicates that the output
remains unchanged, whereas a bright cell signifies that the
output changes to a similar extent as it would have with
completely different weights. These results pertain to un-
trained encoders.
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Figure 18: Invariance properties of the input LSTM fθ and
of fully trained encoders. Although the general invariance
properties of the architectures remain unchanged, we ob-
serve that DWSNet becomes more sensitive to incorrect or
incomplete permutations.

E.2. Hidden Neuron Permutation Invariance

Figures 17 and 18 illustrate the invariance of different encoder architectures towards correct (first column) and incorrect
(other columns) hidden neuron permutations. Ideally, invariance should be present only in the first column. However, the
Layerwise Statistics encoder shows invariance to both correct and incorrect permutations. In contrast, the Flattened Weights
and Parameter Transformer encoders exhibit no invariance, neither before (Figure 17) nor after training (Figure 18). During
training, DWSNet becomes less invariant to wrong and incomplete permutations. The methodology of the plot is explained
below.

An LSTM consists of four gates: input gate, output gate, forget gate, and cell gate. These gates process the input data (from
the previous layer) and the incoming hidden state. For a correct hidden neuron permutation in an LSTM, which preserves
accuracy, all of the following elements must undergo the same permutation:

• the rows of the four input-to-hidden weight matrices

• the rows of the four hidden-to-hidden weight matrices

• the four input-to-hidden bias vectors

• the four hidden-to-hidden bias vectors

• the columns of the four input-to-hidden weight matrices of the next layer

• the columns of the four hidden-to-hidden weight matrices

In Figure 18, the top row labeled ‘Input LSTM’ shows ||fθ̂(x)−fθ(x)||2
||fψ(x)−fθ(x)||2 , where θ ∈ Θ represents the original weights, θ̃

is the (correct or incorrect, depending on the column in the figure) permutation of θ and ψ ∈ Θ is an entirely different
set of weights. The other rows show ||E(θ̂)−E(θ)||2

||E(ψ)−E(θ)||2 for different encoders E. A bright cell indicates that the permutation

significantly changes the result. A black cell means that the result for θ̂ is unchanged compared to the original result for θ.
The encoders used in Figure 18 have been trained on the Formal Languages dataset, which also provides θ and ψ. Layerwise
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statistics features are invariant to all neuron permutations. The Flattened Weights Encoder and the Parameter Transformer
show no signs of permutation invariance, even after training. DWSNet is, due to its construction, invariant only to complete
permutations. During training it gets more sensitive to wrong and incomplete permutation. The probing encoders naturally
inherit the invariance properties directly from the RNN f .

E.3. Downstream Performance

Table 11 shows the Pearson correlation coefficients between pre-training validation loss, as defined in Equation 1, and the
downstream prediction losses for different properties, across all encoder architectures and random seeds. This analysis
offers insight into the alignment between the pre-training objective and downstream applications. There is a high correlation
with formal language task prediction and with Sequential MNIST performance prediction as well as in-distribution task
prediction. A lower correlation does not necessarily imply that pre-training is less effective; it may simply indicate that
moderate emulation performance is sufficient for good downstream prediction results. Figures 19 and 20 provide the
complete results of downstream predictions for Formal Languages and Sequential MNIST data.

Table 11: Correlation of pre-training validation loss with downstream prediction performance

Downstream Prediction Validation OOD Test

Formal Languages
Performance 0.509 0.505
Task 0.985 0.987
Sequential MNIST
Performance 0.883 0.872
Task 0.864 0.521
Generalization Gap 0.776 0.642
Training Step 0.762 0.486
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Figure 19: Formal Languages downstream performance on task and performance prediction.
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Figure 20: Sequential MNIST downstream performance on task prediction, performance prediction, generalization gap, and
training step prediction.
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E.4. Learned Embedding Spaces
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Figure 21: Visualization of the embedding spaces for Formal Languages.
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Figure 22: Visualization of the embedding spaces for Sequential MNIST (colored by task and return).
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Figure 23: Visualization of the embedding spaces for Sequential MNIST (colored by training step and generalization gap).
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