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Abstract

A curious phenomenon observed in some dynamical generative models is the
following: despite learning errors in the score function or the drift vector field,
the generated samples appear to shift along the support of the data distribution
but not away from it. In this work, we investigate this phenomenon of robust-
ness of the support by taking a dynamical systems approach on the generating
stochastic/deterministic process. Our perturbation analysis of the probability flow
reveals that infinitesimal learning errors cause the predicted density to be different
from the target density only on the data manifold for a wide class of generative
models. Further, what is the dynamical mechanism that leads to the robustness
of the support? We show that the alignment of the top Lyapunov vectors (most
sensitive infinitesimal perturbation directions) with the tangent spaces along the
boundary of the data manifold leads to robustness and prove a sufficient condition
on the dynamics of the generating process to achieve this alignment. Moreover, the
alignment condition is efficient to compute and, in practice, for robust generative
models, automatically leads to accurate estimates of the tangent bundle of the data
manifold. Using a finite-time linear perturbation analysis on samples paths as
well as probability flows, our work complements and extends existing works on
obtaining theoretical guarantees for generative models from a stochastic analysis,
statistical learning and uncertainty quantification points of view. Our results apply
across different dynamical generative models, such as conditional flow-matching
and score-based generative models, and for different target distributions that may
or may not satisfy the manifold hypothesis.

1 Introduction

Given samples from a target distribution, a generative model (GM) outputs more samples (approxi-
mately) from the target. Most generative models accomplish this task using a dynamical formulation
of probabilistic measure transport. They solve an optimization problem for a vector field or a drift
term of a deterministic or stochastic process that produces the desired target samples in finite time.
Flows under the learned vector field transports probability densities between some source density
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Figure 1: Robustness of the support under perturbations of SGMs. Columns 1 and 2: score vector
field (lines) and the density (contours) near the start time and toward the end respectively. Notice
that the score field is nearly orthogonal to the target support. Column 3: generated target density.
Column 4: Leading finite-time Lyapunov vectors at the end, which are noticeably aligned with the
target support. Column 5: kernel density estimate of the distribution generated by a process corrupted
by large errors in the score. The density is shifted primarily tangent to the data manifold.

and the target. For instance, in diffusion models or score-based generative models (SGMs) and their
variants [52} |51} [11]], the vector field corresponds to a score of a noising process (e.g., an Orstein-
Uhlenbeck process starting initialized with the given target samples) and the source density is that
achieved at the end of the noising process. On the other hand, in conditional flow matching variants
[37,156L 57, 155]], stochastic interpolants and Schrodinger bridge-based variants [18 3] 2] and using
Neural ODE:s [61) [14], the learned vector field is constructed by specifying a path (e.g., straight line
path or optimal transport paths) on sample space, between samples according to a fixed source density
and the given target samples. In every case, there are inevitably errors incurred in learning the vector
field as a neural network for multiple reasons, including optimization errors, approximation errors,
discretization errors during time integration (of the underlying deterministic or stochastic process)
and finite sample errors. These errors will propagate through the generating process and therefore be
reflected in the predicted target samples. However, when are the predicted target samples close to
high density regions of the target? How can we formalize this error propagation? Further, how can we
determine the robustness of a given GM to these errors in the vector field? In this work, we provide
answers to these questions by taking a dynamical systems approach to GMs. Even as the use of GMs
proliferates (see e.g., [60] for a review), their utility in critical applications, e.g., in climate predictions
[40] especially hinges on theoretical guarantees for their practical implementations. Significant
research progress has been achieved in obtaining convergence guarantees (see e.g., [[17, 34]; section
[3) for SGM-variants under minimal assumptions on the target as learning errors in the score vanish.
But rather than convergence to the distribution, a property that may be more pertinent to practical
applications across engineering and data science is the robustness of support, which is the subject of
this work. In other words, since learning errors are inevitable, a characterization of when a generative
model will still be able to capture the high-density regions, or produce physically relevant or plausible
samples, would be enormously useful.

Our definition of robustness is motivated by many empirical and theoretical studies on the feature
learning and generalization of SGMs under the manifold hypothesis [47, [13]]. Figure[I]depicts these
observations for a two-dimensional two-moons target density (supported almost on a 1D curve),
generated by an SGM using analytical scores, shown in the third column. When at each step of
the generating process, we make a deterministic error in the score estimation, we observe that
the generated distribution shifts along the support, as illustrated in Figure [T] (rightmost column).
Surprisingly, the errors in the score estimation, even when large, do not cause the generated samples
to move to zero probability regions of the target, which are off the moons for the target shown in
Figure|ll A natural question that arises is when such a robustness of the support may be expected.
To answer this question, we formally analyze this behavior of the time-inhomogeneous Markov
chain that generates the samples as a random dynamical system. As a byproduct of our analysis, we
characterize precisely how geometric information about the support is extracted by robust generative
models. Our main contributions are as follows:

Robustness of support. Under mild regularity assumptions on the generating dynamics, we show
that an infinitesimal change in the predicted target is only supported where the target density is
supported as the perturbation size tends to 0. This explains our observed robustness of support even
in high-dimensional data distributions (see Appendix [G.4]for response to score perturbations on the
CIFAR10 distribution).



Alignment. When the leading finite-time Lyapunov vectors (LVs; see section[d]for precise definitions),
which represent the principal directions of deformation of the sample space at the final time, have a
negligible component normal to the target support, we show that the generating process learns the
support. This is evident in Figure [[(column 4), where the leading LVs (shown as black lines) are
tangent to the support, and robustness of the support holds.

Dynamical mechanism for alignment. We prove sufficient conditions that characterize when the
generating dynamics has LVs that align with the support of the data distribution. One sufficient
condition, intuitively, turns out to be that the vector field acts as an attracting force to the support,
which is satisfied for the SGM dynamics in Figure I] (columns 1 and 2).

Practical implications. Note that there are many efficient, numerically stable algorithms, which can
be implemented with automatic differentiation, to compute these finite-time Lyapunov vectors. Thus,
we can efficiently obtain the tangent spaces to the data manifold using any aligned GM. Finally, we
show that if a GM has the alignment property, so does the same GM under learning errors. Since our
analyses do not assume a specific dynamics, our results apply to all practical implementations (e.g.,
using predictor-corrector integration or ODE integration) and across different dynamical generative
models (e.g., SGMs or conditional flow matching).

2 Preliminaries: generative models as random dynamical systems

Let pgata be the data (target) distribution with a compact support M C RP. The distribution pgata is
singular under the manifold hypothesis, i.e., dim(M) = d < D. Let pg be a given source probability
density in R”. Fixing po and a density that approximates pqata, there can be infinitely many couplings
between them. That is, for many sequences of functions {F; }o<;<,, sample paths X, = F;(X;_1)
can have the same starting and ending distributions, i.e., Xg ~ pg and X ~ Dgata. What enables a
given sequence {F}} to have the robustness of support property? To study this question, we treat the
sequence F} as a (random) dynamical system.

In score generative models or diffusion models [52], the dynamics, F}, on path space is the stochastic
reverse process. At each time ¢ = 0,1,---,7 — 1, the map F= on sample space represents the
dynamics under an instance of the noise path, denoted by =. This noise path is a sequence = =
{&, - ,&r—1} of independent Gaussian random variables, which must be viewed as a (scaled) time
discretization of a Brownian motion. Since, with a known score, a deterministic, time-dependent
process (time-integrated solution of a probability flow ODE) can effect the same dynamics on
probability space, for simplicity, we consider deterministic, non-autonomous maps F; throughout.
However, note that the perturbation analysis both on probability space and tangent space in the
remainder of this paper applies pathwise (for each =) (see [3[29] for a rigorous treatment of Lyapunov
vectors and exponents for random dynamical systems), even if we consider F} as a stochastic process.

In a dynamical formulation of a GM, F; is typically partially represented by a neural network. In
general, Fy(z) = x + 0t v,(z), where the drift vector field v; (a neural network) is learned using
samples from pg,¢, and 9t is a small timestep. For instance, in a score-based generative model based
on an Ornstein-Uhlenbeck noising (forward) process, F}, the dynamical system representing the
reverse process can be written as v;(x) = 6 = + 02s,(x),t < 7, where the score functions of the
OU process , sy = V log p;, are represented using a neural network. With no learning errors, we
may write that 7 po = p-, where the pushforward notation (#) for probability densities means the
following: Typ = m implies that if  ~ p, T'(x) ~ 7. Explicitly, the pushforward operator is a
linear operator on densities, and in the context of dynamical systems, called the Frobenius-Perron
or the transfer operator: L;p := p o F; ' /|det dF;| o F,"!, assuming that F; € C'(R”). We use
exponential notation, F7! := F,. o F™, with F* = Id, to denote 7 iterations of the process.

Tangent space. From here on, we will be considering the evolution of infinitesimal perturbations
along sample paths of F;. These will represent small learning errors that will perturb the evolution of
sample paths. Roughly speaking, at each point z € RP, the directions of infinitesimal perturbation
are also in R”. More precisely, at each point x, we have a tangent space (isomorphic to R”) denoted
by T, RP that represents all possible infinitesimal perturbations or tangent vectors at x. A vector
field, say v : RP — TRP  is a function that maps a base point 2 € R” to a tangent vector v(z) in
T,RP. We refer the reader to Appendix [C|for further background on tangent spaces.



3 Why GMs sample along the support even under learning errors

In this section alone, we assume that pq,¢, is absolutely continuous (i.e., d = D) and its density is
pr: 1.e., the generative model F'™ is exact/convergent (ignoring errors on O(dt)). Consider now the
perturbed dynamical system, F; ((x) = © + 0t vi(x) + € x¢(x), where the vector field x; represents
a time-dependent perturbation, and the original model F; is recovered with e = 0. It is important to
note that rangent perturbation does not mean perturbation along the tangent space 7, M, but rather
just a perturbation (a tangent vector) in 7, R”. In other words, the perturbation () at an = can be
in any direction in R .

Perturbations to the dynamics here are models for statistical errors in the learned drift, v;. That is,
we define a parameterized family of maps € — F} . at each time ¢, with Fet =F_q1.e0 Fetfl. The
corresponding dynamics on probability densities is given by p; . = L+ ¢pt—1,¢, With the corresponding
Frobenius-Perron/transfer operator, £; .. We omit the subscript € to refer to the unperturbed system,
e = 0. For instance, £; . and L, are respectively the Frobenius-Perron operator at time ¢ of the
perturbed and unperturbed systems. Using exponential notation for £; . as well, fixing the source
density po we write the perturbed density, pr = L7 po.

Recall that for a vector field u, and a differentiable scalar function f, its directional derivative is given
by the scalar field defined as u(f)(z) := limeo(f(z + eu(x)) — f(x))/e. Now let u be a vector
field such that the directional derivative of p, with respect to u, denoted by u(p ), is the perturbation
in the predicted density due to the e perturbation of the dynamics. That is, let the vector field u be
such that u(p;) = Oc|c=0 LT po. Intuitively, the derivative . |.—o LT gives the statistical response after
time 7 of the dynamics { F\'}. We refer to u as the target response field, since it is a vector field that
measures the direction and magnitude of the perturbation to the target density. We now understand the
target response field, u, through explicit expressions for the statistical response operator, O, |e—o LI .

For a given test function f : M — R, E,,_f(z) := (f,p:) = (f,L7po) = (f o F7,po),
from a change-of-variables in the integration (one can view this as a conservation principle for
probability mass). Here, (-,-) refers to an L? inner product with respect to Lebesgue measure
on RP. Now for any observable f, we define its time-dependent response, 7(f), to be a scalar
field that denotes the change in its value along a path due to the perturbation to the dynamics.
More precisely, let r(f) := lim._,o(1/€) (f o F! — f o F'), so that, by taking adjoints, we have
(fy Ocle=0LIpo) = (f,u(p™)) = (r-(f), po). Now, using the definition of r,(f), for any f and ¢, we
can derive the following recursive relationship,

r¢(f) = lim 1 [(foF!—foF, 1 coF )+ (foF_1.oF"™ " —foF")]

e—0 €

=r_1(foF_1)+ (VfoFi 'thl)OFt71~ (D

Here, we have used the definition of the perturbation vector field y; at time ¢ by x:(z) :=
lim,_,o(1/€)(F},e(x) — Fy(z)), which isolates the error made due to the perturbation to the dynamics
at time ¢. Since both F° and F are the identity, we have ¢ (f) to be the zero function for all f. Apply-
ing the recursive relationship (TJ), we obtain r;(f) = Z:;é (V(foFi_10---0F;11)oF;-x;)oF".
Substituting this explicit expression for the response of f, we obtain the following expression for
the statistical response, (f, Oc|e=0 L po) = (f,u(ps)) = (r+(f), po) = Z:;g(V(f oFr_jo0--:0
Fyy11) o Fi™1 .y, 0o F po). Upon integration by parts and change of variables, we obtain for test
functions f that vanish on the boundary O M,
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The above expression indicates that the statistical response is the product of the target density, p,,
with a scalar field. In other words, when pqa¢, is non-singular and Fj is continously differentiable on
R we obtain that the statistical response is supported only where the target density is non-zero, in
the limit e — 0. See Appendix [B for an extension of the above computation to stochastic processes
and singular pqata-
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Figure 2: The finite-time Lyapunov vectors shown in green at two samples of the predicted distribution.
The sample path of a diffusion model starting at the red dot is shown in blue. The leading backward
Lyapunov vector (BLV), shown in a darker green, shows alignment with the data manifold. See
Appendix [G.2]for more details on this two-dimensional example.

4 A dynamical mechanism for robustness

In the previous section, we looked at statistical response to learning errors for non-singular targets.
Here, we propose a mechanism for the robustness of the statistical response by looking at infinitesimal
perturbations along sample paths (dynamics on the tangent bundle) for both singular and non-singular
target distributions. To do this, we carry out a pathwise analysis that elucidates how learning errors
propagate when we apply the dynamics. This is an adaptation of linear perturbation theory from
dynamical systems theory (see [28] for a textbook exposition), and we illustrate the required concepts
below.

Fixing a sample path, we deduce sufficient conditions on the stability of the sample path that is
consistent with the robustness of support. To this end, we must define a notion of sample path
stability. We say that a path initialized with x¢ ~ pg is robustness-consistent if at its end point, x,
the directions of accumulated infinitesimal perturbations point along the data manifold and not away
from it. To explain the reasoning behind this notion and define it more precisely, we provide a brief
primer on tangent dynamics.

Dynamics on tangent space. Fix a sample path x; = Fj(z;—1). Now, consider applying an
infinitesimal perturbation (similar to in section|[3) at time 0. Then, after one step, F.! (zo) = F'' (z0) +
edFy(xo) xo(z0) + O(€?). Hence, after one step, in the limit € — 0, we have (Fl(zg) — x1)/e =
dFo(xo) xo(xo) =: x1(x1), which we may define as a new vector field x; evaluated at the point
x1 (a tangent vector at x;). Iterating this definition, we can define a linear dynamical system,
dF' = dF,_, o F'~1 ... dF, that acts on the tangent bundle and evolves an infinitesimal perturbation
along a vector field applied at time O to the corresponding vector field at time ¢. Considering these
linear evolutions, we can define the principal directions of deformation (the most sensitive directions
of perturbation) by considering the leading eigenvectors of (dF"*)(dF*"), which we will call the
finite-time Lyapunov vectors. The eigenvalues are generally arranged in decreasing order, with at
least one positive eigenvalue indicating expanding directions or diverging infinitesimal perturbations.
The time-asymptotic properties of these matrix are well-studied via the classical Furstenberg and
Oseledets ergodic theorems (see [3] for a textbook exposition). However, we are only concerned with
finite-time dynamics here, since GMs considered here are only defined for 0 < ¢ < 7.

By definition, the least stable Lyapunov subspace is aligned with the most sensitive directions of
(infinitesimal) perturbations in the dynamics. In Figure[2] we illustrate the two Lyapunov vectors
(two one-dimensional Lyapunov subspaces) computed along a two-dimensional sample path (in blue).
Here the data manifold (the support of the data distribution) is a one-dimensional curve shown in
red. For more details on this experiment, including pqat., Which is singular here, we refer the reader
to Appendix [G.2] The leading/least stable Lyapunov vector is shown in green, and interestingly, it
appears tangent to the data manifold. Intuitively, this means that the direction where most errors will
result along the sample path is aligned with the data manifold. In other words, the direction of the
most stable Lyapunov vector, where any error made along the sample path decays quickest, is away
from the data manifold. This means that the sample path is attracted to the data manifold, even under
(small) errors. We formalize this intuition in the proposition below for convergent generative models
[34].



For now, assume that the support of pgata is @ compact d-dimensional subset of RP, which d < D.
On the boundary of the support of the data (target) distribution, intuitively, the score is orthogonal
to the support. This is because pgats iS zero outside of the data manifold, and non-zero on it;
thus the gradient log or score points in the direction of this sharp change in pgat.. We will define
robustness-consistency as the condition where the least stable d-dimensional Lyapunov subspace
is orthogonal to the score. When the target score has a small (or zero) component along the least
stable Lyapunov subspace, this means that the tangent directions most sensitive to perturbations are
along the data manifold (as in the example in Figure[2)). In this section, we give sufficient conditions
for the robustness-consistency of sample paths. We will show how this improves our qualitative
understanding of why some generative models are robust. Moreover, we will provide a computable
criterion for verifying the robustness of a given generative model. Before this, we first describe the
most sensitive subspaces or constructive approximations of the least stable Lyapunov subspaces of
the tangent spaces associated with sample paths.

Most sensitive subspaces. Let {x;} be a fixed sample path (trajectory) of the generative model F.
When we have an exact generative model, if xg ~ pg, then ;. ~ pqata. Recall that the set M € RP
is the support of pgata, and the effective dimension of the support is d <= D. We define E¢ to be a
randomly chosen d dimensional subbundle (a D x d orthogonal matrix at each ). We can consider the
orthogonal decomposition of T}, M (which is isomorphic to R?) to be T,, M = E(xo) ® Ed* (o).
Now, the evolution of these subspaces under the time-dependent Jacobian matrix field, dF, gives the
tangent dynamics: dF; B = Ef_H R;. By construction, since Ef“ (x) at each x is orthogonal, the
above tangent equation is simply a QR decomposition of the D x d matrix dF; E{. The diagonal
elements of R; represent stretching or contraction factors under the linearization dF;. We refer to E¢
constructed this way as the most sensitive subbundle because as ¢ — oo, this converges to the top
d-dimensional Oseledets subbundle (backward Lyapunov vector bundle). See Appendix

Proposition 4.1. [Predicting the support with convergent and aligned generative models.] For any
§ > 0, let €9 > 0 be such that a convergent generative model (see Appendix|D), F™, produces n
samples, {y;}, 1 € [n], such that with probability > 1 — § /2 over the generated samples, ||T (y;) —
Yill < €0 and T(y;) ~ Pdata- Additionally, let F'™ be such that the most sensitive d-dimensional
subspace of the tangent space, E(z), spans T,,0M with probability > 1—§ /2. Then, for some ¢ > 0,
there exists a binary function f : RP — {+1,—1} such that, B, p,... 1r<o(x) < cn~'logn +
n~1log(n?/26), with probability > 1 — 4.

Proof. (Sketch) Given n predicted samples, y;, let ©; = T(y;) ~ Pdata be samples from pgata
obtained by applying the L2-optimal transport map. Let f(z) = sgn(w - ®(x) + b) be a one-class
kernel-based classifier trained on x;, % € [n]. Then, f satisfies the margin-based generalization bounds
(see e.g., Theorem 3 of [58]; [49]) in the statement of the proposition. By assumption, with probability
> 1 —§/2, we have, since the samples y; are of the form, y; = x; + egv;, where v; € T,,0M, the
predictions f(y;) = f(x;) and therefore the confidence margin of f does not change . Taking union
bound, we obtain the result, with ¢ = O(1/margin). See Appendix [D]for an elaboration. O

The above lemma therefore says that the alignment with the data manifold of the least stable directions
is crucial for robustness of the support, as defined in section[3] We formally define this alignment as
follows.

Definition 4.2. We say that a generative model '™ has the alignment property if, £%(z), the top
d-dimensional Lyapunov subspace (spanned by the top d least stable Lyapunov vectors) is orthogonal
to the target score, s, (z), at each z € 9M, the boundary of the support of p..

First, we provide some intuition for the definition of alignment. We claim that a robust predicted
distribution (in the sense of robustness of the support) has a highly anisotropic score near the
data manifold (the true support of the target). More precisely, for a robust distribution, the score
components along the data manifold are smaller than the components normal to it. Thus, it is
reasonable to conclude that when a robust distribution shows such an anisotropicity along E¢ & F-+
the most sensitive directions E¢ are aligned with (the tangent bundle along) the data manifold. Before
we state our main result, which provides a sufficient characterization of generative models that have
the alignment property, we define anisotropic derivatives.

Tangent and normal derivatives. We consider the orthogonal decomposition of the vector field (drift
term) v; on the tangent bundle TR? = E¢ @ E¢L. That is, we write v,(z) = Ed(z)veq(z) +
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Figure 3: Top row (Column 1): noise image from source distribution. (Column 2): an MNIST [19]]
digit generated by a score-based generative model. See Appendix |G for training details. (Column 3):
generated image corrupted by the most sensitive Lyapunov vector. See Appendix [A]for details on the
computation of these vectors. (Column 4): generated image corrupted by the 100th most sensitive LV
at the same noise level. This shows that moving along very stable LVs, for indices greater than the
intrinsic dimension, results in leaving the data manifold. Bottom row: finite time Lyapunov exponents
associated with the generating process in an SGM, with a small gap at an index close to the intrinsic
dimension, signifying superstability off the data manifold.

Edt(z)vg 41 (z), defining the components, v 4(z) = EIT(x)vi(r) € R? and vy g4 (z) =
BT (x)v,(z) € RP=? of the vector v;(z). Let V, 4 indicate the differential “along the subspace
Etdv”7 ie., vt,df(z) = [limeﬁo(f(eree%,d(x)) —f(@)/e- -, hms—)O(f(ereegd(x)) —f(x))/€l,
where e; () is the ith column of E{. The differential, V; 4, is defined similarly as the directional

derivatives along the subspace E¢. Finally, we also define the contraction factors a; := || R¢||oo
and 3 := ||dF; B3|, where the 0o norm over the scalar field is the supremum over = € M. By
definition, 1 > a4 > (5, at all ¢.

Theorem 4.3. [Alignment of generative models.] Let M C RP be the compact set where the
target distribution pqata is supported. When the support M of the target is a d-dimensional manifold
with d < D, for an exact generative model that is compressive, the alignment property holds
under the following conditions: for some 6 € (0,1), there exists a time t* € [0,7] such that

i) licnern = (L+0)770t > %5 di) |(Id + 6t Vi qvea) Vi gvrallee < 67077, for all
t € [t*, 7]; and, iii) the cross derivatives |V g1 Ve dll, [|Vi,ave,ar|| = 0, for t € [t*, 7). Intuitively
this means that the generating dynamics may include an expansive phase and the vector field v; is a

uniform “attracting force” at the end.

Proof. Recall the covariance of E{ in the sense that dF; Ef = EthRt, where R; is an upper
triangular matrix in d dimensions. At each time ¢, for some J; > 0, we choose local coordinates
on a d;-neighborhood of z; such that z; maps to 0 in R and E¢ maps to the standard basis of R?
under the differential. If M is a smooth embedding in R”, we may define derivatives of all orders
of these local coordinates. We now analyze the behavior of the Jacobian dF} and the score vector
field, s, in the two distinct phases of the dynamics: for ¢ < ¢* and at the end, when ¢ > t*. In local
. _ Id + ot Vt,dvt,d(l‘> ot vt7dJ_Ut7d($)

coordinates, we have, dF;(z) = 5t Vi qvr a1 (@) Id + 66V g1 Dr.u. (2)
the behavior of the scores, s, consider the change of variables formula for probability densities.
Differentiating after taking the logarithm of the change of variables for probability densities, we
have that St+1(17t+1) = St(iEt)(dFt(It))il - tr(dFt(xt)’ldQFt(zt))(dFt(zt))’l. We now define

. Now, to analyze



the evolution of the score components along E', : Using the covariance of EZ, we get,
(st41 B 1) o Fy = s, B Ry — tr((dFy 'd*Fy) E{R; . 3)

Since E? is covariant, we may interpret (3) as an operator acting on score component functions,
st+1Eg+1, (d-dimensional row vectors at each x) at each time,

Gi(p)oFy=pR;" —w, B} R, )

where, for convenience, we have defined, w;(x) = tr((dFy(z) " *d*F;(z)) € RP. At the start, since
E¢ is random, we may assume that p is a zero vector field. Since the dynamics is compressive overall,
mins<, o¢ < 1, and further, Ht a; < 1. However, at small ¢, the vector field Eg is random, and
by assumption, v; is uniformly contractive in all directions. Thus, d?v; has a small norm. Thus,
we assume that [|w|| < ¢ Jt. Thus, in the starting phase we have, Y, .. |[w,EZR; ' --- R7Y| <
ct* 8t [1,<. ;. Then, from (i)-(iii), ||w; EZ|| < 6Y/7=1) 5t, (see Appendix for any ¢ > t*,
and so, ||w,EIR; - R7Y|| < 8t ey 6Y/0778 (1 4 6)~"**. Now, applying (@) recursively, we
obtain that [|G*(0) o F'|| = (|G (0)| = [| 2, <, we B Ry Ry - Ry < ct” 6t [cr 0 +
Ster Dyaye 0V (14 6)77H = O(60). O

Implications for manifold learning. The above theorem outlines sufficient conditions for the align-
ment of the most sensitive directions with the data manifold. There are two important consequences
of this result. First, for an aligned and convergent generative model, we expect that any small learning
errors in v; will result in probability mass redistributed on approximately the same support. In other
words, the predicted density will have the approximately the same support as the target, since the
directions orthogonal to the support are superstable (very large finite-time LEs). This is observed in
Figure 3| where a generated digit (second column) is perturbed in the direction of the 1st LV (3rd
column) to obtain another recognizable digit. On the other hand, when the 100th LV (shown in the 4th
column of Figure [3) is added, we obtain artifacts that represent leaving the data manifold. In practice,
the Lyapunov vectors may be computed using standard algorithms akin to iterative algorithms for
eigenvectors (see [20,[7,132]). Thus, an aligned generative model can effectively be used to compute
the tangent bundle of the data manifold. In other words, an aligned generative model can learn the data
manifold with the same sample complexity as the generative model, which is stronger than thought in
previous works [54,147], which have only shown that generative models learn the dimension of the
manifold.

Regularity of alignment. Secondly, the alignment property itself is robust, i.e., when a generating
process has the alignment property, under small perturbations, this property is retained, as we show
next. This implies that, even an approximate generating process can be used for manifold learning.

Lemma 4.4. The alignment property is regular.

Proof. Let F{ be a continuously differentiable generating process (i.e., F] € C'(M)) for which
alignment holds. Now, consider a sequence ¢, — 0, as k — oo, and a sequence of C'! generating
processes, I/, that converge to F{ in the C' ! norm. Let E¢ be differentiable (on some open set

containing M in RP). Starting with the same E¢, we may define the most sensitive subspaces, E‘TiM

for each map F_as per the construction in this section. Then, from the continuity of dF7, the
covariance of £, and the continuity of R™ (see Appendix , each element of the sequence E;‘.lm is
locally continuous (we need to also assume the non-degeneracy of the stretching/compression factors,
see Appendix E) Since M is compact, from the Arzela-Ascoli theorem, we can conclude that Eiek
contains a converging subsequence, which retains the alignment property.

Justification for sufficient conditions. We now describe the type of dynamics of the generating
process that would satisfy the sufficient conditions in the theorem above. In the beginning, in the
absence of information about the target score, the vector field v; could be uniformly compressive,
e.g., in an SGM with the source density being nearly a Gaussian [47, [16]]. Then, as information
about the target is used, the score acquires an anisotropic behavior, and our sufficient conditions
imply that correspondingly an anisotropicity must emerge in the vector field as well. Further, this
anisotropicity in the vector field must be such that the vector field has small cross-derivatives. That is,
while Vy qv; 4 and V 41 v; 41 can have large norms, the cross-derivatives, V 41 v, g and Vy qv; g1



must be negligible at the end. An SGM typically satisfies this condition, as one can visually see in
Figure[I] In the leftmost image in Figure[I] which represents an intermediate time, the score vector
field (which is equivalent to v; in an SGM) appears to stretch/compress differential volumes (i.e., it is
anisotropic), while at the end (second image in Figure[)), there is very large compression toward the
data manifold (the two moons) and the cross-derivatives (in local coordinates) are evidently small.
The large compression toward the data manifold has been described from many perspectives before:
[[13} 26] use Fourier analysis, [47] uses stochastic analysis, [54} 41]] take the statistical learning
and uncertainty quantification perspective. Consistent with these results, our sufficient conditions
(Theorem [4.3), when applied to SGMs, imply that the attraction/compression in volumes normal
to the data manifold leads to robustness of the support. Notice that under this attraction condition,
and (i)-(iii) of Theorem 4.3} we cannot control the norm of the orthogonal component of the score,
s¢ B¢, This is due to two self-reinforcing effects: the compression factor matrices along E¢ have
a smaller norm and hence a larger inverse compared to ;. Secondly, the components of w; do
not become small along £ because the vector field may have non-negligible second derivatives,
Vf’ 4. V¢,dL (one can observe this visually for an SGM in the second column of Figure .

Remark 4.5 (Without the expansion assumption (i)). If min; a; > 1, notice that G; o F} in the proof
above is a linear contraction in R?. In this case as well, the score component along E¢ decreases and
becomes negligible. However, in practice, generating processes are compressive dynamics, as they
acquire more information about the score when ¢ increases. Hence, we allow expansion for some part
of the dynamics but assume compression overall. We need not assume any expansion at all, if an
observed phase transition [1] occurs, wherein F} becomes linear for ¢ > ¢*, in which case, w; is the
zero vector field.

5 Related Work

Tremendous progress has been achieved in the past few years to explain the empirical success of
generative models. Several works, such as [[15/112} 134,135 [10] have established theoretical guarantees
for the convergence of diffusion models under different metrics (such as Wasserstein, reverse KL,
total variation), including proving that they achieve minimax rates for learning the target [43]], without
demanding any functional inequalities (log-concavity) of the target. We do not tackle the question of
generalization or convergence in this paper; instead, for small perturbations of generative models
that indeed converge, we focus on the related but different question of when the predicted support is
still close to the support of the target. Since our approach is dynamical, it applies to any other path
on probability space that leads to the target. Hence, our analysis also applies to normalizing flows
[45,/46] and flow matching variants [37} 56]], which can be interpreted as easier-to-train models with
specified probability paths.

Our sufficient conditions in Theorem 4.3 are consistent with observations made from several different
angles on the generative process. For instance, [36]] finds the emergence of linear behavior when the
diffusion model starts to generalize, which is consistent with second derivatives of the vector field
being small. Other works such as [8| [1,162]] study phase transitions in the dynamics or regularization
effects [6] that leads to generalization.

Our work is most closely inspired by analyses and empirical evidence in [47,|13]], which suggest the
robustness of the support in score-based generative models in the context of the manifold hypothesis
[48]]. Here, we analyze the dynamics of the reverse process in a way that applies even to non-
singular distributions. Further, our splitting in the Lyapunov directions suggests that there is more
quantitative geometric information in the generating process about the data manifold beyond just
the data dimension [54]]. Although we do not focus on the unboundedness of the score (since our
analysis applies also to targets with density) [47139], our results are consistent with unbounded score
components along E9*, normal to the data manifold (see section E]) We remark that finite-time
Lyapunov analysis has been classically used for perturbation analysis of fluid flows in the geophysical
fluids literature [50, 21} [33]]. The eigenvectors of the Cauchy-Green deformation tensor, which in our
notation is dF'” dF™ T, are our Lyapunov vectors; in fluids, these have been used to understand the
deformation in the current velocity field due to perturbations/strains in the past. Interestingly, the
application of this analysis technique to generative modeling reveals insight into stability to errors in
probability flow ODE:s.

Finally, even though we do not explicitly discuss class-conditional generation and guided diffusions
[60, 24], our work can potentially guide algorithms for learning projected scores or diffusions on



a lower-dimensional latent space [27, 9. Our results establish a theoretical foundation for such
projections of the vector field by uncovering the connection between the dynamics and the directions
where accurate learning of the vector field is not necessary.

6 Numerical Results

Apart from the two-moons example we show in Figure|l} we collect many other two-dimensional
examples that help with visualizing the vector field and the sufficient conditions in Theorem [4.3]
In Appendix [G.5] we give an example of a non-robust generating process. We observe that when
using flow-matching [37, 56], with a source density being the 8 Gaussian density, we do not have the
robustness property (see Appendix [G.3]for more details, including the Lyapunov vector field). Among
high-dimensional examples, we consider MNIST digit generation in Figure [3] but further examples
are deferred to|G} Using a pretrained model from a score-generative model repository [Github link],
we find that adding perturbations of even large norm (when compared to the supremum norm over
the pixel values) leads to high-quality images with comparable likelihood scores. Thus, consistent
with observations in [47], we find that SGMs satisfy the robustness property. Finally, we describe an
empirical observation that qualitatively confirms our manifold learning results from section4] For an
aligned generative model like the MNIST SGM (see Appendix [G.3|for training details), we find that
the Lyapunov exponents also provide geometric insight into the data manifold. A small gap arises in
the LEs (Figure [3| Bottom) at an index consistent with previous estimates of the effective dimension
of the MNIST data distribution [48]]. Beyond index O(20), the LEs along the more stable directions
appear to be continuous, while the top LEs are degenerate, depicting the deformations/perturbations
of the most sensitive subspace of the underlying feature space.

7 Conclusion and limitations

Overall, we study the robustness of the support of the density predicted by a generative model, when
the underlying vector field (score/drift) is learned with errors. Our results suggest that the tangent
spaces of the support being aligned with the most sensitive Lyapunov subspaces leads to robustness
(Proposition 4.1 and Theorem [4.3)). Since the Lyapunov vectors are efficient to compute, aligned
generative models can be used for manifold learning. The computation of LVs can also help us
quantitatively distinguish between generative models based on their robustness property. Our proof
techniques involve a novel combination of statistical learning with the finite-time perturbation theory
of non-autonomous dynamical systems, which could be independently applicable in other settings.
Here are some specific practical impacts of our results.

Preserving invariances: for singular targets in science, the support is often defined by some
invariances (conservation laws) and group symmetries. Our results imply that ensuring alignment
yields predicted targets that obey these known physical laws.

Controlling GMs: the most sensitive subspaces we introduce in this work can help design controllers
for generative models to bias the target distribution for downstream applications, such as rare event
sampling or unlearning. While we defer the details to future work, consider a vector field, u;,
representing a control neural network. Given an orbit, say, x;, that leads to an unwanted sample at
time 7, our goal will be to train u; such that x; + u.(x) is a desired orbit. To do this in reduced
dimensions, we only need to determine the components u; F¢ in the most sensitive directions.

The wider implication of our results is that the theory of dynamical systems (including perturbation
theory and the operator theoretic view) can advance our understanding of as well as provide principled
algorithmic improvements to generative modeling and more broadly of probability flow dynamics.

Limitations. We only provide a sufficient condition and not a necessary condition for alignment and
hence robustness. More extensive experimentation with various different generative models is needed
to determine the most common scenario where alignment occurs. More advanced and extensive
experiments are also needed to understand the prevalence of alignment and therefore robustness in
practice. Further, our method of detecting tangent spaces of the data manifold hinges on there being
alignment and our results do not explicitly reveal insight into memorization.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: any assumption or proof step that was too long for the main paper is placed in
its own appendix section and referenced.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code necessary to replicate the low dimensional results does not require
any training, and is included in the supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We do not provide any new datasets. Access to the code that reproduces the
figures is provided in the supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The low dimensional computations are via numerical methods and do not
need neural network training. The MNIST training and architecture is described in the
supplement.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: our paper does not perform statistical tests, but probability distributions and
uncertainty estimates are shown accurately.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Training and architecture details are provided in appendix F. Experiments were
performed on available hardware.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Since this is a theoretical study on the behavior of generative models under
perturbation, our methods cannot be directly used to cause harm.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical study of the behavior of generative models. This paper
aims to further our understanding of the dynamics of generative modeling. Our results
impacts society only indirectly, through the potential improvements that follow as a result of
our understanding.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our code only serves to justify the theory and our models are only trained on
benchmark datasets. We do not foresee it used in a dangerous manner.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and codes are cited and used in accordance to their license
agreements.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: the datasets generated and the code for computing Lyapunov vectors is included
in the supplementary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This study does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This is not a study with human participants.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were sometimes used superficially, to understand technical concepts,
and generate standard implementation.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Background on the random dynamical systems view of diffusion models

In the main text, we define the generating process of any generative modeling algorithm as a random
dynamical system. In particular, dynamical generative models like normalizing flow, rectified flow,
conditional flow matching-variants, stochastic interpolants [46, [37, |56/ [38] etc can be viewed as
nonautonomous (forced in a time-dependent manner) and deterministic dynamical system. On the
other hand, diffusion models or score-based generative models [[18, 60, [10} 42| 52] have stochastic
generating processes (reverse or denoising process). However, in the main text, we argued that, for the
purpose of analyzing the probability flow, we may ignore the noise in the reverse process, and thus,
also consider SGMs to be nonautonomous but deterministic systems. Here, we present a more general
dynamical systems definition applicable to both deterministic and stochastic nonautnomous systems.
These, so-called random dynamical systems have been classically studied as part of dynamical
systems theory, while undergoing parallel development in the probability and stochastic analysis
communities (see e.g., [5] and [31] for textbook expositions of random dynamical systems from the
dynamical systems/ergodic theory and probabilistic/stochastic analysis perspectives respectively).

The unifying random dynamical systems framework to represent generative models is as follows.
Consider an instance of a time-discretized Wiener path, = = {&o, - -+ ,&r—1}, where &; are indepen-
dent standard normal variables. These provide stochastic forcing to the dynamics , FtE7 at time ¢,
which is now extended with a superscript = to indicate a fixed noise path. For a fixed noise, =, F' mE
is defined as a composition (time 7-dynamics) as expected, F™'= = F= | o FT~L= with FO-F = 1d,
for all =.

Example: score-based diffusion [51},/52] In score-based diffusion models, the generating process
is an Ito process of the form: dX; = fi(X;) dt + dW;, where f; is a deterministic score term
that is represented as a neural network, and W, is a Wiener path/Brownian noise. Given a time-
integration scheme for this stochastic process, we can define F; = as the stochastic flow over a
short time. For instance, using Euler-Maruyama time-integration with a fixed timestep, ¢, we have
X1 =X+ fir(Xy) ot + V5t &. Then, FF(x) = x + 6tfi(x) + Vot &. In summary, we view a
stochastic generating process as a one-parameter family of random diffeomorphisms, F-, for (almost)
every time sampling, =, of the underlying Brownian path. For the existence of this one-parameter
family, we refer to classical works on stochastic flows [31,130]. With this RDS view, the stochastic
process (a continuous-state discrete-time Markov chain) has a time-dependent transition kernel that
can now be written in terms of F'= as:

Pi(Xi1 € A|X; =) =P(¢: FF(z) € A).

Substituting for F=(z) = 2 + 6t f;(x) + /6t &, and using the fact that & has a normal distribution,
we get, P, (Alz) = [, e~ lly=2=3tf:(@)I”/(25) gy for this example process. The usual equation for
the evolution of the probability measures, say i, is the Kolmogorov forward equation, which is given
by,

pea(4) = [ PA)da(o) = [ B(& s FE@) € 4) dyuto). )

On the right hand side of the above equation, notice the transition kernels written in terms of the
RDS. Moreover, beyond i, we can also define a sequence of sample-path measures, i, which are
obtained for fixed Brownian paths via pushforwards or the Frobenius-Perron operator,

= = = E_ =1

Hipr = Fyghg o= pg o By (©6)

Since we start the process with X ~ i, we take u5 = pq for all paths =. We note that since 1
typically has a density (with respect to Lebesgue R%), say, po, f as well as the sample path measures,
i also have densities up to a finite time, even when FF is anon-volume preservmg dlffeomorphlsm

We denote these densities as p; and pF respectively corresponding to pi; and ;5. With the density pF
defined, we can use the change-of-variables formula in @) to obtain,

p; o F
|detVEE|o F~ Y

where we define £ to be a time-dependent linear operator that transforms densities through a
deterministic system. Combining with the Kolmogorov forward equation in (), we also have,

pr+1(y) = E=LE 7, ()

PtE+1 =Lipr =

@)
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provided py = pg, where we have used Ez to denote expectation with respect to the independent
standard Gaussian RVs, =2 = [£p, -+, &—1].

For a fixed noise Z, the deterministic dynamics F ™= is a coupling between pg and a noise path-
dependent density p=, i.e., L= py = p=. Here, the operator L™= is called the Frobenius-Perron or
transfer operator, which describes the evolution of probability densities through the map, F'™=. The
Frobenius-Perron operator £7°= is also defined as a composition of per-iteration operators, which
we denote by £Z, so that £LZpF = pF, . Specifically, we define LEp = (p Avol;) o FE | where
Avoly(z) = |det(dF7)|~! indicates the change of differential volume under the application of the
map FtE. Note that, since the noise = is independent of the state, Avol, is not a function of =. In
the standard stochastic analysis literature, we generally refer to Ez£Z as the Kolmogorov forward
operator, which is described in (3) when p; are absolutely continuous with respect to Lebesgue.
By definition, EzLFp; = pi41. Classically, we may write, pi1(z) = [, 5e(2,y) pe(y) dy,
where x.(z,y) is the conditional density of the transition kernel, P;(y, dx), which represents the
conditional density of the state at time ¢ 4+ 1 being x conditioned on the state at time ¢ being y. This
assumes the kernel is absolutely continuous in both arguments, which is typical for diffusion-based
models (e.g., the transition probability measure in (3)) is absolutely continuous). When the target
measure, (.- = Pdata 1S Singular, making p, undefined, the probability density p,_a for a small A
approximates a notion of density associated with the target. For simplicity, p, in this case should be
interpreted as p,_a, which is a convolution of the target measure, pg,ta, With a Gaussian of variance

A.1 Diffusion models

Our paper treats the reverse process of a diffusion model as a random dynamical system. While we
presented this view in the main text and the previous section, here we review the more standard view
through SDEs. Diffusion models generate samples from an unknown target probability distribution
7 € P(RP) from which we only have access to samples. The general setup [52] is to consider a
diffusion process, which will be referred to as the forward process, that transforms the target into
a distribution that is easy to sample from. Typically, the forward process is chosen from a class of
Ornstein-Uhlenbeck processes

dXt = _/GtXt dt + \/ QﬂtdB7 XO ~ Tr. (9)

It is assumed that (3, is positive and integrable such that the integral fot Bsds — oo ast — oo. It
follows that (9) is a time-rescaling of the standard Ornstein-Uhlenbeck process, through the time

change of variables 7 = fot Bsds and the marginals p; converge geometrically to the standard

multivariate normal distribution N (0, Ip) € P(RP). Since (@) has linear drift, it follows that the
solutions can be solved analytically, yielding the formula for the marginals in terms of the target
pt(z) = Exynr|pt (2| X0o)] with the conditional density given by the kernel

putiza) = N (oo (- [ 5, s ) s (1= exp (-2 5, ))im). o

We note here that the above kernel is smooth in the space variable, implying the C'*° smoothness for
the marginals for all ¢ > 0.

The forward process is ergodic, with the marginals converging to the standard normal at rate
exp (f fot Bs ds) . After a finite large time 7" samples are assumed to be approximately normal.

Once T is chosen, define the time-reversed process Y; := Xr_¢,t € [0,T). It it is known ([22], [4])
that Y; is a Markov process and that it is a weak solution to the following stochastic integral

dYy = Br—i (Ye +2Vlog pr—(Yy)) dt + \/2Br—1dBi, Yo ~ pr. 1D

From the smoothness of the marginals p; — and hence smoothness of the drift term y 4+ 2V log p;(y)
— it follows that (TT)) admits a strong solution for times ¢ < T'. It follows from weak uniqueness of the
backward process [44] that the law of Y7, coincides with that of X,;. Hence, generating trajectories
from the reverse process provides a way of sampling from the target distribution as ¢t — 7.

The backward process is only defined for times ¢ < 7. In order to extend the backward process to the
full time interval ¢ € [0, T, one needs the assumption on the initial density that V log pg = V log 7
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exists in a weak L? sense [22]. However, in practice this is almost never satisfied as the target density
is typically singular. This implies a singularity in the score s; that grows as m ast — 0. To
o Bs

overcome this issue, the backward process is typically only sampled up to time ¢ = T" — A, which is
responsible for the characteristic noise typically present in image models.

B Response of the predicted density to learning errors

In the main paper, we argued that we may ignore the noise term £ for a fixed path in probability
space, and simply consider the deterministic nonautonomous system. Here we show how to extend
the perturbation response result in section 3 to random dynamical systems. Using the framework
presented in section[A] we may go through the same derivation as in section 3 pathwise, by replacing
L; with L. Again, the density pZ, is close to the target (on averaging with respect to the noise paths,
=), but not exactly equal. In case the target density with respect to Lebesgue does not exist, we can
perform integration by parts and treat p= as a genuine density due to the convolution of the target
measure with Gaussians that describes the pZ in the discrete time algorithm (DDPM).

As before, we consider f to be constant functions on the data manifold that are differentiably extended
to R?. The pathwise responses derived in this way contain pathwise score functions, s= which are not
the same as the score functions, s. While Ep= = p, we do not get the score by taking expectations
of the pathwise scores. In order to compute s= however, we may recursively apply the log gradient
of the change of variables through the map, F=, i.e., £Z. The above pathwise statistical response,
if uniformly bounded over the Wiener paths, due to dominated convergence, allows us to exchange
limits, and thus, the overall statistical response can still be computed pathwise via,

(f,0cle=oB= LI =po) = (f,Ez 0L =|c—0p0)- (12)

C Tangent dynamics: evolution of infinitesimal perturbations

The primary objective of this work is to study the effect of learning errors on the dynamics. For
stochastic generative processes, we can extend the linear perturbation analysis in the main text to
each noise realization of an RDS. As before, to model the effect of score learning errors, we consider
evolving F; = with perturbed scores of the form, s; + €x;, where ; is a time-dependent vector field
that indicates the direction of the error in the score. The perturbed dynamics, for a fixed noise path,
is represented as, F'F = FE,LE o---0---F& and correspondingly, the perturbed densities, by

F:f po = pEe, leading to the perturbed predicted density, p- ., when we take an expectation over

noise realizations =. We can set (; := 9. F"= to represent a time-dependent vector field that gives
the perturbation in the state (sample) at time ¢ due to the learning error field. Taking ¢ — 0, we can
obtain the following recursive relationship for (; :

Ga10 FF =dFF G+ xi0 Fr, (13)

simply by applying chain rule. Unrolling this recursion, and since (§ = 9. F>= = 9Jd = 0
identically as a vector field, we obtain,

t
(GoFi=Y dF,dF,_yoF Y ---dFy0F o o F X (14)
n=0
A vector field can be evaluated at a specific point, say 2 € R to give a tangent vector, that indicates
the direction of infinitesimal change at . An interpretation of this infinitesimal change when viewed
through differentiable scalar fields is the following. If g : R” — R is a scalar function on the
domain, then, at x, a vector field represents one among the possible directions of an infinitesimal
change in g. In other words, tangent vector fields can be thought of as (linear) operators which when
acting on differentiable functions produce their directional derivatives at each point. As an example,
¢¢(z) € RP is a tangent vector that can be used to produce the directional derivative of any g, as
dg(x) - () = lime0(g(z + €(¢(x)) — g(x))/e. In this sense, there is a natural interpretation for
the sequence of vector fields defined in (I3). Let us fix an orbit/sample path, {z; = F=(z:—1)}. The
tangent vectors (;(z;) € R” can be applied to a scalar function g to obtain the overall infinitesimal
change in g along the sample path due to infinitesimal learning errors. More precisely,

de(g 0 F"Z)(xo) = dg(xy) - (). (15)
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Rewriting (T4) to make (;(x;) explicit along a fixed sample path,

t—1
Glz) =D dF_1(zi-1) -+ dFop1 (Tng1) X (Tn1)- (16)
n=0

Each term in the above sum consists of multiplication by a sequence of matrices. Let us define
Ay = dFy(z;) € RP*P and the product Apgi=A A1 -+ Ay, for 0 <n < ¢ — 1, for the sake
of shorter notation. That is, the perturbation vector (;(z;) can now be written as

t

Ct+1(96t+1) = Z An+1,t Xn($n+1)~ an
n=0

To analyze the effect of infinitesimal errors on infinitely long sample paths, we can let n — —oo in
the above equation. In this case, the asymptotic behavior of the product of random matrices comes
into play. Oseledets theory (see e.g., [15]) is a collection of classical results on random matrix products
as applied to cocycles defined on dynamical systems. Essentially, assuming that max{0, log || A.||} is
summable for almost all paths, one can define Lyapunov exponents (for each =) to be the logarithms
of the set of eigenvalues of the matrix, lim,,_, (A,TL,tA,,L,t)l/ 2(t=n) _Corresponding to the Lyapunov
exponents (LE), there is a decomposition of the tangent space at each ¢ in the characteristic directions
called Oseledets subspaces, i.e., directions in which the perturbation norms grow at an exponential rate
corresponding to a given LE. Thus, to analyze the growth/decay of the norms in the time-dependent
linear dynamical system (I3)), these characteristic directions form a natural basis. Here, since our
dynamical system is defined only over a finite time interval, we consider a computational proxy for
the Oseledets spaces, which are described in the main text (section 4). In the remainder of this section,

we let n — —oo and review Oseledets theorem.

Ignoring the control or forcing (inhomogeneous) term in [I3] to isolate the time-asymptotic
growth/decay on an exponential scale, we can consider the following homogeneous tangent equation,

Wi41 = At Wt. (18)

If we are only interested in growth/decay on an exponential (in t) scale, finite sums for n close to
t in (I7) are not significant. Moreover, the vectors X, (1) are path-dependent and perturbation-
dependent, and they are not fundamental directions characteristic of the dynamics. Thus, by consider-
ing a decomposition (as in section 4) of x;(z;) along Oseledets spaces, we can provide a pessimistic
analysis, since a random vector x(z;) will, with probability 1, have a non-zero component in the
leading Oseledets space at x;.

The homogeneous tangent equation gives the evolution of infinitesimal perturbations in the initial
conditions, i.e., w; := dF*= wy.. This equation gives the most general evolution of infinitesimal
perturbations along a generic sample path {z;}. When x; is invariant, i.e., a fixed point, A; is also
invariant, and this reduces to linear stability analysis. When x; is a periodic orbit, the matrices A, are
classically studied with Floquet theory and corresponding exponents. In more generality, the random
matrix product A,, ;(z,) : T, RP? — T,,RP known as the tangent propagator [32]), is studied as
n — —oo under Oseledets multiplicative ergodic theorem.

When the dynamics F; is invertible, we consider the limit

- . —T 4—1\/@2(t—n))

W (t) - ngrzloo (An,t An,t) .
The eigenvectors ¢;(t) of W™ (t) are called the backward Lyapunov vectors (BLVs), and the negative
log of the singular values A\; = — log o; are called the Lyapunov exponents. Conventionally, the LEs
are still deterministic and are defined by taking expectations with respect to the noise paths =. The
vectors ¢;(t) form a basis for the tangent space at x; are defined for P-a.e. (for almost every noise
realization). For an exposition on the ergodic theory for RDS, see [29]. When the distribution P does
not depend on time, the Backward Lyapunov vectors can also be defined in a deterministic manner
P—a.e.

D Robustness of the support upon alignment

Proposition 4.1 shows that with high probability an aligned and convergent generative model can be
used to learn the support of the data distribution accurately. First, by convergence, we mean that the
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generating process enjoys a theoretical convergence result in Wasserstein metric. For instance, we
can consider a convergence result from [34] for denoising diffusion probabilistic model (DDPM), a
time-discrete diffusion model. For any general target with compact support, as we have assumed,
suppose the score is learned with a L? error O(¢), uniformly over time ¢ < 7. Then, [34] show that
the Wasserstein-2 distance between the predicted density, p,. . and the target pgata is O(e!/*®). Note
that, by definition of Wasserstein-2 distance, if T’ is the optimal transport map between pqat, and
pr.c, then, Epp || T(x) — z||? < C¢', where T'(x) ~ p,... Now since | T'(z) — || is a random
variable with a small mean and variance, we can get an ¢y (applying Chebyshev’s inequality e.g.)
in the statement of Proposition 4.1 given any § > 0, such that with probability (over n independent
draws from pqata) > 1 — §/2, we have that ||T'(x;) — 2;|| < €, forall i < n.

Next we examine the alignment property. In Proposition 4.1, we assume alignment with high
probability. That is, with probability > 1 — /2 over independent draws from pgata, alignment holds,
i.e., at the generated samples, T'(z;), the most sensitive Lyapunov subspace E? is tangent to the
support of Paata. In other words, the generated samples T'(z;) = x; + €h;, where h; is along TOM.
Now consider a one-classifier trained to predict 1 if a data point is on the support and -1 otherwise.
A kernel-based classifier is always realizable for a discrete data distribution [49]. It is a one-class
classifier because for all the data points z;, the output label is 1 and we do not have negative samples.

A key observation is that the confidence margin of a (one-class) hyperplane classifier trained using
x; is the same as that trained using 7'(z;). Therefore, we can apply a known generalization result,
and going further, even data-dependent upper and lower bounds for classification using the true data
distribution to now the predicted distribution, provided the prediction is aligned (margin does not
change). This is the essence of the proof. In summary, we pose learning the support as estimating a
one-class classifier. Then, we use the fact that the margin does not change when we move data points
along the separating hyperplane.

E Alignment proofs

In the proof of Theorem 4.3, we make assumptions about the dynamics of the vector field v;, whose
time-discretized flow is our dynamics, F'*. Mainly, toward the end, when ¢ > ¢*, we assume specific
anisotropic behavior of the vector field. It is helpful to think of the anisotropy by considering local
coordinates that align the first d coordinates with the most sensitive subspaces, £¢. In other words,
consider local coordinates, ®; : RP — RP around ;, such that, ®;(0) = z; and d®;(0) maps the
first d standard basis vectors to E¢.

Recall assumptions (i)-(iii) in the statement of Theorem 4.3. Consider the Jacobian matrix at time

N - Id + 6t Vt,dvt,d(x) 5tVt,dlvt7d(x)
t, dFy(x) in block form, dFy(z) = { 6t Viavear(z)  Id+6tVigiveal ()

ot V?,ddvt,d(x) ot V%,du“md(l“) and
at Vtz,ddvt,dL(x) at v?,ddlvt,dl(x)

] , and the second

derivative d?F} can be written as two block tensors: {

5t V3 gqrvea(®)  6tV7 4 41 vea(x)

ot V?,ddLvt,dL(l’) at vtz,de_UtdL(x)
first observe that using assumptions (ii)-(iii), the Schur complement of the first dxd block of dF;
reduces to Id + 6t V¢ 41 v; g1 . Using this Schur complement and assumption iii, we obtain that
the first block of wy, which is w; E{ is given by 8t tr((Id + 0t V qv.q) ™ Vf’ddvt,d). Then, using
assumption ii, we obtain the estimate in the main text.

} . To obtain an estimate of w; := tr((dF})~! d*F}), we

F Regularity of alignment

Lemma 4.4 shows a notion of regularity of the alignment property. We show this by using the Arzela-
Ascoli theorem on the space of functions E¢, for some ¢ perturbation of the dynamics. Applying
Arzela-Ascoli gives the existence of a converging subsequence on this space. This subsequence
consists of most sensitive subspaces of perturbed systems, which from convergence, will also be
closely aligned with the data manifold if the original dynamics is aligned. To apply Arzela-Ascoli,
one sufficient condition is to assume F; . € C I+a since we then obtain that Ef is Holder continuous.
This is because E¢ is by construction an orthonormal basis for the column space of dF?, which is
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C*. For the Holder continuity of £¢, we also need the eigenvalues of dF* to be nondegenerate. With
uniform Holder constants and exponents, since M is compact, we get the needed equicontinuity.

G Additional numerical experiments

Our numerical results using score-based diffusions indicate robustness of support in all cases; further,
they also show alignment, qualitatively validating the dynamical mechanism for robustness that
we show in the main text. We report on the numerical methods, implementation details and our
experiments in this section. The supplementary material also contains the code needed to reproduce
the figures in the main text.

G.1 Sampling via reverse diffusion

In the case of score-based diffusions, our dynamics F'" refers to the Euler-Maruyama discretization
of the reverse diffusion (II). There are various noise schedules 3; used in practice. In terms of
the continuous time SDE (9), choosing §; is tantamount to reparameterizing the time variable in

the standard Ornstein-Uhlenbeck process via 7 = fg Bs ds. From a mathematical perspective, the
density evolutions are therefore the same. Practically, however, the process has to be discretized
and some noise schedules are more robust against time-discretization errors [23]]. For the purpose
of this study, we therefore fix the noise schedule to be the cosine noise schedule from [42] that was
shown empirically to yield good FID and NLL scores. We observe that our experimental results
on alignment and robustness do not change when using different noise schedules. The cosine noise
schedule from [42] translates to the formula for 3; given by

: T t+d

5 ™ s (5'115)
;= . .
(140 cos (5-445)

2
This comes from the formula for @; = f(t)/f(0), f(t) = cos (%‘g . g) given in [42] and noting
that o; = exp (— fot Bs ds).

Once a suitable approximation to the score is acquired, the backward equation (I1J) is discretized to
yield the random dynamical system

Yn+1 = Fn(}/ny fn) =Y, + BT—tn (Yn + 25T—tn (Yn)) ot + gn V 2BT—tn5t7 Yy ~ N(07 1)-
We also study solutions the perturbed system

Yn+1 = Fn (Yru gn) = Yn + ﬁT*t” (Yn + ZSTftn (Yn) + EXT—t, (Yn)) ot + gn V 2BT7tn ot.
The perturbation vector x;, specifying the error between the original dynamical system F, (-, &,) =
F,(-,&,;0) and the perturbed dynamical system F,(-,&,;¢€), and € measures the strength of the
perturbation (see[A). The timesteps ¢, is chosen equispaced with 0 < tg < ---t, =T —A=1—-A,
with A controlling the early stopping time to avoid singularities. This corresponds to solving the
backward SDE fromt =T — t; backward to t = A.

G.2 Two dimensional examples

We perform a number of experiments on two-dimensional domains with one or two-dimensional
support of the target. We show our experiments with the 2 moons distribution in Figures 1(main
paper), [8land[7] We also visualize the Lyapunov vectors on a different example in Figures 4] and
[2l Throughout, LVs and LEs are computed using the QR algorithm (a finite-time version of the
Gram-Schmidt process from [20]) described in section 4.

In these planar experiments, we represent the manifold as a curve (or a collection of curves as in the
half-moon example) I' = {T'(¢) : ¢t € [0,1]} C R2. The target measure is given by dpgata = q dy
where d~ is the arc-length measure for the curve I'(¢), and ¢ some smooth density. We can compute
expectations against 7 via the parameterization as

Elg(X)] Z/Q(x)p(x)dSZ/o g(T@))p(T(&)T'(t) dt.

r
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Figure 4: Score-based diffusion with numerical estimates of the score. Top row: starting density,
po and the density at time 0.9. Bottom row: predicted target, p1_a. In each figure, the red curve
represents the analytical data manifold.

The Ornstein-Uhlenbeck process[9]is a linear SDE with additive noise. The density p; can therefore
be solved analytically [44] via the integral equation

pi(z) = / pr(l0) (o )ds.

The kernel p;(z|zo) is the Green’s function to the associated Fokker-Planck equation and is given by

(o) 1 |z — e~ 2|2

rlrg) = —exp| ——————F7 | -

Pt 0 Zt p 2(1 _ e_t)

The score s; = V log p; can also be solved for in terms of the one dimensional integral

si(z) = Jr Vape(x|z0)q(xo)ds
t Jr pe(x]z0)q(z0)ds

Our paper focuses on the propagation of score errors through the dynamics. To validate our theoretical
results on the robustness of the support in a stylized setting, and since the integrals involved are
tractable in the low-dimensional setting, we estimate the score via quadrature rather than training
a neural network. This is done to maintain explicit control of the errors involved in our motivating
examples and experiments.

G.3 MNIST training details

Here we present additional details on the MNIST results from the main paper. We showed that
MNIST generation with diffusion models tends to have robustness of the support. Further, we
also observed that our proposed mechanism of alignment holds even in this higher dimensional
setting. Specifically, we showed that the leading O(20) (approximately the intrinsic dimension of the
support/data manifold) LVs span the tangent spaces to the data manifold. As empirical proof of this,
we saw that moving along an LV of a higher index (indices are, by convention, in decreasing order of
LEs) takes us off the data manifold. This is shown in more detail in Figure[3]

These images are produced by a DDPM where the score model is trained by minimizing the simplified
conditioned score matching loss from [23]:

Esimple(e) = ]Et,xg,e [”E - 60(\/0715330 + V1= e, t)”Q] y
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Figure 5: Top: Denoising diffusion trajectory sampled by approximating the score using a U-Net
architecture trained on the MNIST digit dataset. Middle: The Lyapunov vectors of indices 1, 2, 20, 50
and 100 (from left to right) calculated along the sample trajectory. Notice that the principal Lyapunov
vectors recover meaningful features of the sampled digit. The is in contrast to the lower Lyapunov
vectors (higher indices indicate smaller LEs), which become progressively more noisy. Bottom: The
sample image perturbed in the direction of the Lyapunov vectors in the same column. The Lyapunov
vectors represent the principal directions in which errors in the sampling algorithm influence the
sampled image. Notice that the principle Lyapunov vectors morph the shape of the sample without
destroying image fidelity, whereas the lower Lyapunov vectors destroy image structure. This is
consistent with our claim that errors propagate the image tangent to the data manifold.

where t ~ U(omin,T), To ~ Pdara and € ~ N (0, ). Once again we note that in the continuous
setting we have oy = exp (— f(f Bsds ). Training is done in batches of 64 for 30 epochs. The

backward process consists of 4000 steps, generating a trajectory of (11) from time 7" = 0.9 down to
A = T/4000. We use an Adam optimizer with learning rate 2e-5.

Once trained, the score approximation is given by sg(x,t) = \/Ilia@(:c, t). The neural network €
— Gt

is a U-Net, that was implemented in PyTorch by [59]. The U-Net consists of two down-sampling
stages, one mid-level stage, and two up-sampling stages, where the 28 x 28 image is down-sampled
to an array of 7 x 7 images and up-sampled again. Each downsampling stage consists of two ResNet
layers with SiLU nonlinearity and an Attention layer. The mid-level consists of a ResNet layer
followed by an Attention layer followed again by a ResNet layer, before up-sampling in a symmetric
fashion.

G4 CIFAR-10

Our perturbation experiments on the CIFAR-10 data distribution also confirm the robustness of the
support property exhibited by score-based diffusion models. In Figure [6] (left), we show images
sampled by a pretrained generative model from [53] Github| On the right hand side of Figure[6] we
show images generated by the same model with a score perturbation of size 0.1 (L, norm) added
to F; for each t. These samples look visually no different and produce similar likelihood scores,
~ 3.7 bits/dim, compared to the predicted samples using the original pretrained score model even for
perturbation size up to 1. As expected, this behavior of robustness of the support is reproduced with
any stable time-integration scheme, e.g., using predictor-corrector or probability flow ODE:s.
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Figure 6: Left: images predicted by a pre-trained score-generative model by Song et al 2021
[Github link] on CIFAR-10 training images. Right: Predicted images by the model when a size 0.1
perturbation is added to the score vector field.

G.5 Conditional flow matching

So far, all our numerical experiments were carried out with diffusion models. Here we compare the
robustness of the support across other conceptually different generative models. Specifically, we
consider experiments with conditional flow matching variants [38} [37] and stochastic interpolants
[3]], and all our experiments are based on the implementation by the TorchCFM package |Github.
At their core, these dynamical generative models interpolate samples from a source density po and
samples from the target pqa.t,. For instance, a variance-preserving interpolation is used in stochastic
interpolants [3]] and a straight line interpolation is proposed in rectified flow sampling [38]]. In these
generative models, a stochastic path such as X; = (1 — )Xo + tX1 + o(t)&, with Xy ~ po,
X1 ~ Pdata 1s predetermined, while the probability flow path is computed. This is in contrast to
SGMs, where the probability path is predetermined for the reverse process by choice of the forward
process. The score approximation is performed for Brownian/OU paths in SGMs, while for other
paths in flow matching. Thus, it is natural to ask if the learned dynamics for these different probability
paths also possess the robustness property.

Less robust flow matching models. Following TorchCFM tutorials [56], we learn vector fields
v, with an MLP and 256 training samples per epoch from the 2 moons data distribution. The
generated probability density is quite accurate for all of these models. In Figure [/| (top left), we
show the generated density from Optimal Transport-Conditional Flow matching [56]. Next, we add a
perturbation of size 0.5 and 1.0 in the L norm to the learned vector field v;. The predicted densities
for OT-CFM (first row) and stochastic interpolants (third row) seem to show the most robustness to
the support, while for non-rectified flow matching the densities do not seem to exhibit robustness of
the support, in comparison. Visually, all of these models seem to be less robust (c.f. Figure 1) than
score-based diffusions. It is noteworthy that this is not due to the effect of the noise in the diffusion
process, as the same robustness is visible even for deterministic time-integration (probability flow
ODE?5) using the scores. Thus, the robustness seems to be dynamical, with different dynamics on
probability space and the loss function/formulation together dictating specific dynamics on sample
space.

To understand the effect of the dynamics further, we compute the LVs and LEs as before using an
iterative QR algorithm. Recall that the LEs are recovered as the time-average of the log diagonal
elements of R; (see section 4 of the main paper). We observe that some paths (i.e., with non-zero
probability with respect to the source distribution) may have positive leading LEs, while SGMs were
always observed to have stable LEs. We take the source density to be 8 Gaussians, but essentially
similar results were obtained with a standard Gaussian source density.

In Figure[8] we show the leading LV (in blue) calculated for three different GMs in the top row. Also
plotted is the score of the approximate 2 moons density (shown in red) in each case. The model
OT-CFM seems to be most consistent with Theorem 4.3, showing most orthogonality with the score,
or alignment, among the flow-matching models, but much less compared with diffusion models. To
quantify the alignment, we plot the histogram of the absolute value of the dot product between the
normalized score vectors. The generative model using optimal transport appears to have the best
alignment since the histogram has a faster decay and a sharper peak at O (orthogonality between the
score and the leading LV). Although Theorem 4.3 only proves that the orthogonality is a sufficient
condition for the robustness of the support, it seems to agree qualititatively with the observations
in Figure[7] The most aligned model, being OT-CFM, also exhibits most stability of the predicted
support to perturbations. Moreover, none of these models are as robust or as aligned as diffusion
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Figure 7: Top row: (Left) Two moons data distribution generated by an optimal transport-conditional
flow matching (OT-CFM) algorithm [56]. OT-CEM dynamics perturbed by errors in the vector field of
L norm 0.5 (center) and 1 (right). Middle row: densities predicted by non-rectified flow matching
model with perturbations of size 0.5 (left) and 1.0 (right). Bottom: densities predicted by perturbed
stochastic interpolant models.

models for the same target. These interesting results can open up avenues to pinpoint the most
prevalent cause of robustness or lack thereof of the support. Furthermore, our results can be a starting
point to understanding the deep connection between the dynamics on sample space that leads to
robustness and the dynamics on probability space (which does not uniquely determine the sample
space dynamics).
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Figure 8: Top row: the target score vector field (blue) and the top LV (red) computed using unperturbed
GMs: OT-CFM (left), CFM (center) and stochastic interpolant (right). Bottom row: the histograms of
the dot products (absolute value) between the normalized target score and the leading LV (red) over
40,000 points. We see that the stochastic interpolant model and CFM are less aligned than OT-CFM

according to our definition in this case.
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