
Under review as a conference paper at ICLR 2024

LANGUAGE AS KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In the realm of natural language understanding, the synergy between large lan-
guage models (LLMs) and prompt engineering has unfurled an impressive tapestry
of performance. Nonetheless, this prowess has often been overshadowed by the
formidable computational resource requirements, rendering LLMs inaccessible in
resource-constrained milieus. In this study, we embark on a journey to reconcile
this paradox by introducing a nimble and elegant solution — the kernel machine
paradigm. Within these hallowed pages, we present a compelling proof, demon-
strating the mathematical equivalence of zero-shot learning and kernel machines.
This novel approach, marked by its computational thriftiness, bestows upon us the
ability to harness the latent potential of LLMs, even when confined to the humble
CPUs. The marriage of this approach with neural nets, renowned for their bound-
less abstraction capabilities, culminates in remarkable accomplishments with in
the realm of language understanding. Our paramount contribution lies in unveiling
a path less traveled, where the integration of kernel machines and LLMs unveils
a promising vista, enabling the realization of sophisticated language processing
tasks in resource-constrained environments.

1 INTRODUCTION

Language, as the bedrock of human communication, has intrigued and stimulated explorations for
centuries. The advent of deep learning has introduced a new dimension to this exploration. The quest
to understand and replicate the nuances of language has become a cornerstone of contemporary AI
research (Bengio et al., 2013). Large Language Models (LLMs) (Vaswani et al., 2017; Devlin et al.,
2018; Brown et al., 2020) have surfaced as potent tools in this quest, demonstrating impressive
performance in understanding not only the cultural evolution of semantics, such as entailments and
sentiments, but also grammatical transitions (Wang et al., 2019a). As a rich prior, these models
have ushered in the era of zero-shot learning (Larochelle et al., 2008; Wang et al., 2019b; Wei et al.,
2021). In this era, models can adapt to unseen domains despite a limited training corpus.

However, the computational resource requirements for fine-tuning such models with large parame-
ters for zero-shot learning have been a source of concern, rendering them inaccessible in distributed
environments such as connected devices or third-party vendors, where each device relatively ac-
commodates less resources (Raina et al., 2009; Vanhoucke et al., 2011; Austerweil & Zoran, 2019).
In this paper, we propose a novel solution to this problem by leveraging the power of the LLMs
with kernel machines (Cortes & Vapnik, 1995), a class of algorithms known for their computational
efficiency and versatility. We introduce a new approach, Support Vector Generation (SVG), that
combines the generative capabilities of the pre-trained rich sequential models online such as LLMs
with the computational thriftiness of kernel machines, which allows us to obtain the training data
for zero-shot learning tasks without the need for high-performance computing.

In the next section, we provide an overview of the two independent branches of kernel machines
and language models, and in Section 3, we merge the two branches to open up the kernel machine
paradigm. In Section 4, we propose our framework, SVG, which formulates a rich decision boundary
for classification without any training samples. In Section 5, we demonstrate the computational
efficiency of SVG with General Language Understanding Evaluation (GLUE) benchmark (Wang
et al., 2019a) and discuss various applications in Section 6 to conclude our paper.

1



Under review as a conference paper at ICLR 2024

2 RELATED WORK

Before the deep learning era, kernels (i.e. “similarity”) were widely employed to measure the dis-
tance between a pair of inputs, especially sequences of information such as web documents or pro-
tein sequences, which can be of variable length. The representative one is the cosine similarity
between TF-IDF vectors, which gives good results for information retrieval (Manning et al., 2008),
with a probabilistic interpretation given in (Elkan, 2005). String kernels (Rasmussen & Williams,
2006; Hastie et al., 2009), which compare the number of substrings in common, have been used
for amino acid sequences. The string kernel is known as a scalable Mercer’s kernel, which can be
computed in linear time for a length of string using suffix trees (Leslie et al., 2003; Vishwanathan
et al., 2003; Shawe-Taylor & Cristianini, 2004). One of the string kernels which consider strings
of a fixed length k is known as the k-spectrum kernel, and has been used to classify proteins into
SCOP superfamilies (Leslie et al., 2003). The string kernel has been generalized to compare trees
(Collins, 2002), which is useful for parse trees and evolutionary trees. In computer vision, a pyra-
mid match kernel (Grauman & Darrell, 2007) is used to compare two images of feature vectors
obtained from SIFT (Lowe, 1999). One of the drawbacks of these kernels is that they cannot capture
the recurring structure of strings, because they merely assume the document as a bag-of-words (or
bag-of-features), and only care about the frequency of the words.

The paradox between the number of parameters of a neural network and its generalisation perfor-
mance has been one of the unsolved problems in the field of deep learning: traditional learning
theories state that if the parameters of a model exceed the number of samples, the model is over-
trained and cannot adapt sufficiently to unknown samples. One hypothesis for this is that neural
networks acquire the ability to “interpolate” between any two samples after having fully memorised
all samples, which also has experimental evidence in the form of the double descent phenomena
(Nakkiran et al., 2021). Nevertheless, another problem with this paradox is the derivation of explicit
optimal solutions, i.e. how to regularise a model with degrees of freedom that go beyond the train
data. Zhang et al. (2016) map the MNIST samples into a dual space and optimise the hinge loss with
a “kernel trick” to obtain a regularised explicit representation consisting of the weights of each sam-
ple and the Gram matrix, which is a similarity representation between each sample. This solution
also showed higher performance than the expected value of the solution optimised simply by the
stochastic gradient descent, suggesting a strong relationship between neural networks and kernels.

Self-attention (Vaswani et al., 2017) is a powerful building block that has enabled the development of
large language models (LLMs) such as BERTs and GPTs, which can quickly capture the in-context
relationships between tokens in a text sample. LLMs have been used for various tasks including
text generation, question answering, and dialogue generation (Radford et al., 2019; Brown et al.,
2020; Radford et al., 2018; Zhang et al., 2019). Recent research has focused on controlled text
generation, generating text that adheres to a set of constraints while being fluent and relevant to the
given context (Zhu et al., 2019; Liu et al., 2019). Zero-shot learning, a more challenging task, uses
transfer learning or data augmentation to overcome data scarcity and computational constraints (Gao
et al., 2020; Meng et al., 2022). Despite its computational advantage, self-attention requires the use
of GPUs to accommodate the large number of parameters (|θ| ∼ 1010) needed to memorize all
examples. This can be computationally expensive and may not be feasible for certain applications.

3 KERNEL MACHINES ARE ZERO-SHOT LEARNERS

Suppose we are a data scientist in a company who has been assigned a task of sentiment analysis,
checking whether the given text represents a negative or positive review for each film manufactured
by the client. In a zero-shot learning scenario, instead of requesting disclosure of training data
from the client, we can derive an inner product φ(x)Tφ(wy) between an input x ∈ X and a label
wy ∈ X for y ∈ {±1}, where X is a set of strings, and φ represents text embeddings, and we can
directly insert desired labels such as φ(x)T [φ(“positive”) − φ(“negative”)]. Though it seems too
straightforward, one can find out that the accuracy for SST-2 is 0.831. The inner product k(x,wy) =
φ(x)Tφ(wy) measuring the text similarity of the sentence pair k : X 2 → R is called a kernel.

1 Confirmed through text-embedding-ada-002. The chance rate is 0.50 and the state-of-the-art is 0.95 (fully-
trained RoBERTa-large-FT, i.e., supervised learning with GPUs) (Gao et al., 2020).

2



Under review as a conference paper at ICLR 2024

Here we use a simple string of “positive”/“negative” as an example, but there are countless such
task description expressions, each with slightly different vector representations (e.g., “good”/“bad”
or “I loved this movie!”/“It was a waste of time.”). Therefore, we generalize the above method
into a set of n synonyms per label {x1, . . . , x2n} = {w1

y, . . . , w
n
y }y∈{±1} with a decision function

fα : X → R as follows:

fα(x) =

2n∑
i=1

αik(x, xi)yi, (1)

where αi ≥ 0 represents the importance of each description.

The problem is how to find the solution of the system αwith 2n degrees of freedom without auxiliary
oracles such as real labeled samples. Surprisingly, the optimal solution is found by “kernel trick”
(Cortes & Vapnik, 1995), solving the dual objective of SVMs (Cortes & Vapnik, 1995) as follows:

max
α

J(α) =

2n∑
i=1

αi −
1

2

2n∑
i=1

2n∑
j=1

αiαjk(xi, xj)yiyj s.t.

2n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C (2)

where C > 0 is a regularization parameter that controls the trade-off between maximizing the
margin and minimizing the training error. This technique also works for any other kernel machine
such as ridge regression and Gaussian process and multi-class problems as long as the loss is convex,
as stated in the following theorem.

Theorem 3.1. (informal; see Appendix.) For a string set X and its subset (Y, cls),Y ⊂ X , cls :
Y → {1, . . . ,M}, the solution to a convex-optimization problem for a functional f(·;Y) : X → R

min
f

∑
y∈Y
L(f(y;Y), clsy) + C−1‖f‖∞, C > 0 (3)

is represented as f∗ ∈ span{k(·, y)}y∈Y with the existence of a positive-definite kernel k(·, ·) :
X 2 → R.

Theorem 3.2. (informal. see Appendix.) If a function k : X 2 → R can be decomposed as
k(xi, xj) = κ(φ(xi), φ(xj)) with the existence of a positive definite function κ : Z2 → R and a
function φ : X → Z in an Euclidean space Z , then k is also a positive-definite kernel and satisfies
the conditions of a kernel.

One of the benefits of using a kernel approach is that it can implicitly emulate a higher-dimensional
space with low-dimensional kernels. Although not all classification problems on φ(X ) can be lin-
early separable, from the theorem above, a non-linear kernel beyond an inner product can be de-
fined. For any (possibly non-linear) positive definite function κ(·, ·) : R2d → R and text embedding
φ(·) : X → Rd, we define a language kernel as follows:

kφ(x1, x2) := κ(φ(x1), φ(x2)). (4)
For example, composition of well-known positive definite kernels such as the RBF and polynomial:

kRBF
φ (x1, x2) = exp

(
γ‖φ(x1)− φ(x2)‖2

)
, kpoly

φ (x1, x2) =
(
1 + φ(x1)

Tφ(x2)
)d0 (5)

also satisfy the conditions of kernels, and the implicit representation space is of higher dimension.
The number of support vectors nSV < 2n is bounded by the VC-dimension (Vapnik & Chervonenkis,
1971; Blumer et al., 1989), which measures the complexity of a binary classification problem with
the maximum number of samples the classifier can shatter.

Is it possible to fully automate the process of sequentially coming up with a text description of the
target task, as we often do? This motivates us to consider Support Vector Generation (SVG).

4 SUPPORT VECTOR GENERATION

The zero-shot decision function in Eq. (1) is represented as follows:
fα(xnew) = Ex,y∼π[ k(xnew, x) y ], (6)

3



Under review as a conference paper at ICLR 2024

where the π is a probability distribution with countable spikes on X × {±1}, each spike having an
appropriate ordered index i. Here, if we denote the ordered set by D, π can be expressed as follows:

π(x, y) =

{
αi/‖α‖1, if (x, y) ∈ D, x = xi, y = yi
0, if (x, y) /∈ D (7)

where ‖α‖1 :=
∑
i αi is the L1 norm of α. Note that even if (x, y) ∈ D, if x does not support

the decision boundary i.e., αi = 0, then the case is equivalent to (x, y) /∈ D. Thus, when we
denote the set of support vectors, i.e., the vectors with αi > 0, as DSV, the D can be identified
with DSV (a.c.). As the optimal α is found by minimizing Eq. (2), it is sufficient to find the DSV
(neither D nor θ!) to represent the problem. This trick binds the optimal hyperplane to a VC-
dimension (≈ |DSV|), which is finite and smaller than dim θ, especially for deep neural nets, not to
mention that |D|, and then makes the problem far easier than fine-tuning and training data generation.

Algorithm 1 SVG

Require: x1, x2, φ, θ, n, C
1: D ← {(x1,+1), (x2,−1)};α← 1C
2: for t = 2 to 2n do
3: xnew ∼ qθ(·|xt)
4: ynew ← sgnfα(xnew) on D, α, kφ
5: D′ ← D ∪ {(xnew, ynew)}.
6: α′ ← argmaxJ(·) on D′, C, kφ
7: u ∼ Uniform(0, 1)

8: if u < Ãt+1(xt, xnew) (Eq. 9) then
9: D ← D′; α← α′

10: (xt+1, yt+1)← (xnew, ynew)
11: else
12: (xt+1, yt+1)← (xt, yt)
13: end if
14: end for
Ensure: DSV ← {(xi, yi) ∈ D|αi > 0}.

The idea of SVG is to sample from the prior pθ(x, y)
and optimize the decision boundary with the kernel
machines. However, directly sampling from pθ is
not easy due to intractability, as in many cases, we
only know a scaled and/or conditional qθ(x|y) 2. To
address this, we employ Markov chain Monte Carlo
(MCMC), particularly Metropolis-Hastings (MH)
sampling (Chib & Greenberg, 1995), assuming D
is an ergodic process x1 → x2 → · · ·xt → · · · |
θ whose empirical distribution p(x, y|D(<t)) con-
verges to π(x, y) (t→∞, a.c.).

MH aims to achieve the detailed balance on the state
transition at the fixed point

π(xt, yt)qθ(xt+1|xt) = π(xt+1, yt+1)qθ(xt|xt+1),

which is tractable because the normalization of both
sides are canceled. Given a sample xt at each step
t, the sampling step of MH proposes a new sample
from a distribution qθ(xt → xnew) = qθ(xnew|xt),
and decides whether to update xt+1 with xnew or xt based on the following acceptance probability
(Chib & Greenberg, 1995) 3

A(xt, xnew) = min

[
1,
π(xnew, ynew) qθ(xt|xnew)

π(xt, yt) qθ(xnew|xt)

]
. (8)

We estimate the backward using qθ(xt|xnew) = qθ([xnew;xt])/qθ(xnew), where [xnew;xt] is
the concatenation. As π is unknown, we approximate it with a scaled π̃t+1(xnew, ynew) =
max(0, α′t+1ynewfα′(xnew)), where α′ is the dual coefficient learnt assuming (xt+1, yt+1) =
(xnew, sgnfα(xnew)). As by definition, ynew takes either binary value, we can write ynew =
sgnfα′(xnew) a.c. without loss of generality. With π̃t+1, the above equation is approximated as,

Ãt+1(xt, xnew) = min

[
1,
α′t+1 qθ([xnew;xt]) qθ(xt)

α′t qθ([xt;xnew]) qθ(xnew)

]
. (9)

The proposed SVG algorithm is outlined in Algorithm 1. This method generates additional support
vectors that help shape decision boundaries achieved by sampling from the prior distribution and

2Though completion models provide the transition pθ(xcompletion|xprompt) =
∏m
i=1 pθ(wi|xprompt, w<i), the

stable probability pθ(xcompletion) is intractable:
∫
X pθ(xcompletion|xprompt)dpθ(xprompt). This problem, concerning

the “initial token” pθ(x), is related to symbol grounding and multi-modality.
3Intuitively, the weight qθ(xt+1 → xt)/qθ(xt → xt+1) penalizes when the backward path xt+1 → xt is

too low. For example, in text generation, “lions are→ mammals” is correct, but “mammals are→ lions” are
not always correct or depends on contexts, so qθ(“mammals”| “lions”)/qθ(“lions”|“mammals”) should be low.
We can confirm that A = 0 if ft(xt+1) is misclassified or A = 1 if the process satisfies the detailed balance
for backward/forward sampling qθ(xt+1|xt) = qθ(xt|xt+1).

4



Under review as a conference paper at ICLR 2024

Figure 1: The spikes — high-performed support vectors generated from the SVG algorithm. The
vectors are visualized from a chain out of five parallel MCMC search.

subsequently updating the parameters of the kernel machine. The advantage of this method is that
it allows artificial expansion of the training data, which is particularly useful in scenarios where
available data is scarce. By encapsulating the data distribution more effectively, the SVG ensures
improved performance of zero-shot learning models, even under computational constraints. Table 1
illustrates the complexity analysis. Even though the QP solver for Eq. (2) takes O(n3) times, we
assume the practical algorithm for SVMs such as Sequential Minimal Optimization (SMO) (Platt,
1998), which takes O(n2) times. In few-shot learning, SVG is faster than the Transformers because
n � m2. The complexity of LLMs are borrowed from the original paper of the Transformer
(Vaswani et al., 2017).

5 NUMERICAL EXPERIMENT

Table 1: Complexity analysis of SVG and
LLMs. n: the number of samples, m: the
maximum length of texts in token, d: the di-
mension of the embeddings.

Train Predict

SVG O(n2 · d) O(n · d)
LLMs (fine-tuning) O(n ·m2 · d) O(m2 · d)

To evaluate the effectiveness of our proposed ap-
proach, we conducted experiments on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019a). The GLUE bench-
mark comprises a set of sentence or sentence-pair
language understanding tasks, providing a compre-
hensive evaluation of the performance of language
models in various natural language understanding
scenarios. We have compared the performance of
our proposed method, SVG to a baseline methodol-
ogy: ‘Prompting’ (Brown et al., 2020). In this com-
parison, we employed a conventional prompting technique, a zero-shot learning approach that adopts
a set of manually-constructed prompts as an exemplar for the labels. For context, we used a non-
fine-tuned LLM (Gao et al., 2020) comprising our baseline.

The experimental configuration used two CPU-only virtual machines on a public cloud as the com-
putational environment and an OpenAI pay-as-you-go account as the trained language model. Three
executions per task were carried out in a multi-process manner, with one CPU (not GPU) of 3 GHz
and 1 GB memory are assigned to each process. The training was completed in three minutes, which
is far faster and more economical than networks with GPUs.

5.1 RESULTS

The experimental results are shown in Table 2. We report the accuracy and F1 score for each task,
comparing the performance of SVG with the baseline methods. The results show that SVG outper-
forms the baseline methods in terms of both accuracy and F1 score, demonstrating the effectiveness
of SVG in improving the performance of zero-shot learning tasks, even in resource-constrained
environments. Fig. 1 and 2 shows the generated samples and the decision boundary.

5



Under review as a conference paper at ICLR 2024

Table 2: Results from zero-shot learning of GLUE benchmark with CPUs and without any GPUs
or GPU memories. The values of † are from Gao et al. (2020). The experiment was repeated three
times, and the average and standard deviation are listed. Bold indicates the best score. The rightmost
column shows the average elapsed time for a single experiment.

Single Sentence Sentence-pair

SST-2 CoLA QQP MRPC RTE QNLI MNLI
(Acc.) (Matt.) (F1) (F1) (Acc.) (Acc.) (3-Acc.) (sec)

Chance rate 50.0 0.0 50.0 50.0 50.0 50.0 33.3 -
SVG (ours) 91.70.9 9.13.2 72.91.5 63.712.1 57.92.8 64.05.2 51.81.2 48.1

without MCMC 88.91.5 4.31.5 65.72.1 58.18.0 55.11.2 55.94.8 44.91.2 1.9
Prompting† 83.60.0 2.00.0 49.70.0 61.90.0 51.30.0 50.80.0 51.70.0 -

Figure 2: Generated samples and the
decision boundary, with the points in
circles representing support vectors and
contours with fα(x) = +1, 0,−1 from
the left. SST-2 (Accuracy: 0.917), text-
curie-001.

The superior performance of SVG can be attributed to
the combination of the generative capabilities of LLMs
and the computational efficiency of kernel machines. By
generating support vectors from the LLMs, SVG is able
to augment the training data for zero-shot learning tasks
without the need for fine-tuning or additional computa-
tional resources. This allows SVG to achieve compara-
ble or even superior performance to the baseline methods,
while using only CPU resources.

The experimental results overall corroborate the effec-
tiveness of SVG in zero-shot learning, specifically in
resource-constrained contexts. Merging LLMs with ker-
nel machines introduces new opportunities for elaborated
language processing assignments. Such a combination fa-
cilitates the creation of precise and efficient natural lan-
guage understanding systems.

6 DISCUSSION

6.1 APPLICATIONS

While we have mainly discussed the case of single sentences with two classes, in tasks of natu-
ral language understanding, we often have to deal with more than two classes and more than one
sentence. GLUE benchmark has sentence-pair classification tasks such as paraphrase identification
(QQP, MRPC) and inference (RTE, QNLI), and multi-class tasks (MNLI) where the model has to
predict one of three classes (entailment, neutral, contradiction) for a sentence pair. Each of the tasks
also has a training data which has not been covered yet in this paper, though application to few-shot
learning is also possible. In this section, we discuss how to extend the proposed method to such
tasks.

6.1.1 SENTENCE-PAIRS

For sentence-pair classification, we can adopt the same methodology as in the case of single-sentence
classification, albeit with a few alterations. Initially, our task is to represent the features of the
sentence-pair. We can accomplish this by utilizing a language kernel kφ : X 4 → R, which accepts
two sentences as input and is defined as follows4

kφ([x1;x2], [x3;x4]) = κ(φ(x2)− φ(x1), φ(x4)− φ(x3)), (10)

where φ : X → Rd denotes a text embedding and κ : R2d → R represents a positive definite kernel.

4 We have assumed a recurring topology X 2 ⊂ X = Vm, i.e., pairings of sentences constitute a language
just as individual sentences do, hence kφ : (X 2)2 → R also constitutes a language kernel. Following this
assumption, the language kernel can be alternatively written as kφ : X → R. This topic is slated for discussion
in future work.

6



Under review as a conference paper at ICLR 2024

Second, we need to compute the acceptance probability Ãi+1(xi, xnew) for a sentence-pair. To do
this, we can use the same approach as for single-sentence classification, but with a few modifications.
First, we need to compute the probability qθ(xnew|xi) for the sentence-pair. To do this, we can
use a language model qθ : X 2 → R that takes two sentences as input defined as qθ([x1;x2]) =
1
Z exp

(∑2
i=1 log qθ(xi)

)
, where Z is a normalization constant and qθ(xi) is a language model for

a single sentence. Finally, we can compute the acceptance probability Ãi+1([x
1
i ;x

2
i ], [x

1
new;x

2
new])

for a sentence-pair using qθ.

6.1.2 MULTI-CLASS

In multi-class classification tasks, we have to deal with more than two classes. Typically, we can use
the one-vs-rest (OVR) or one-vs-one (OVO) approach. The former constructs a binary classifier for
each class, and the class with the highest score is chosen as the predicted class, whereas the latter
constructs a binary classifier for each pair of classes, and the class with the highest number of wins
is chosen as the predicted class.

For the OVR approach, we can use the same algorithm as for the binary classification case, with the
only difference being that the labels yi are now one-hot vectors instead of the binaries {±1}. For
OVO, we can use the same algorithm, but with the labels yi being a vector of length M(M − 1)/2,
where M is the number of classes. To calculate the acceptance ratio in the MCMC step, we need
to compute the backward probability qφ(xi|xnew). For OVR, we can simply use the same formula
as for the binary classification case. On the other hand, for OVO we need to compute the backward
probability for each pair of classes.

6.1.3 FEW-SHOT LEARNING

Although we can simply initialize D with the given labeled samples from the training set and opti-
mize αwith Eq. (2), SVG also retains the ability to generate additional support vectors that resemble
these labeled samples. This is primarily because these generated support vectors are expected to be
located around the decision boundary, indicating that they should closely mirror the given labeled
samples. Where this approach deviates from data augmentation is in its ability to generate sam-
ples which are more semantically similar to the given labeled samples than the samples generated
by data augmentation. This can be attributed to the fact that SVG is based on a kernel machine, a
method that effectively captures the similarity between samples by transforming the input data into
a high-dimensional space, enabling a more nuanced similarity measure.

Figure 3: The result of few-shot learning of SVG through SST-2 in comparison to the conventional
kernel machines, such as non-generative SVMs. The accuracy shows that even for the scarce dataset,
SVG can complement the lack of data points. Entropy H[π̃n] := log ‖α‖1−

∑n
i=1(αi/‖α‖1) logαi

shows that SVG successfully obtains the complexity for the scarce dataset. The right figure shows
the number of support vectors acquired by each method.

Fig. 3 shows the results of few-shot learning. In machine learning theory, including few-shot learn-
ing, that accuracy increases with the number of data. Interestingly, in the case of SVG, accuracy
reaches a maximum when the number of data is two (i.e., one positive example and one negative
example each), then drops and steadily increases again when the number of train data is sufficient.

7



Under review as a conference paper at ICLR 2024

One possible explanation for this result is that while the generalisation performance is improved by
incorporating different distributions as long as the number of ‘external’ data to be added is small,
the quality of the external data is inferior to the quality of the train data generated by the SVG itself,
which in turn hurts the accuracy of the model. This phenomenon is referred to as ‘few-shot double
descent’ in SVG, though the reasons for this are not analysed further in this paper.

6.2 REPRODUCIBILITY

6.2.1 MODEL SELECTION

Figure 4: Results of performance
by fixed C on SST-2.

Performance of kernel machines highly depends on the hyper-
parameter C, the upper bound of each entry of α, and is on
a trade-off between over- and underfitting (Duan et al., 2003).
If C is too large, the model yields overfitting, and vice versa.
One of the common search algorithms is the combination of
grid search and cross-validation (Syarif et al., 2016): we di-
videD intoK discrete batches randomly and test the each with
K − 1 others, and choose the best candidate maximizing the
metrics, as shown in Fig. 4. We optimized C = C0/n for the
number of samples n and select the best candidate C0 from a
discrete log space {10−2, . . . , 1010} at every t0 = 10 step.

A proposal qθ as close as the target π improves the acceptance
ratio of MH. Other than completion API as we have employed
in this paper, there are several heuristics of data augmentation
such as back translation and text attack (Brislin, 1970; Morris
et al., 2020).

6.2.2 VARIANCE REDUCTION

Table 3: The model-agnostic multi-class task descriptions
x1, x2[, . . . , xM ] which yield high performance in SVG.
The placeholder of quote, labels and sample are obtained
from the GLUE original paper (Wang et al., 2019a), which
can also be scraped at https://tensorflow.org/
datasets/catalog/glue. Instead of text-curie-001
for MCMC, the initial samples will be inferred once via
larger completion models such as text-davinci-003 .

(a) Template
<quote>

1: <label1>, 2: <label2>, . . . , M : <labelM>
The possible ten examples of the <sample> of “i:
<labeli>” are:

(b) SST-2 (single sentence, 2 classes)
“The Stanford Sentiment Treebank consists of sentences from
movie reviews and human annotations of their sentiment. The
task is to predict the sentiment of a given sentence. We use the
two-way (positive/negative) class split, and use only sentence-
level labels.”

1: positive, 2: negative

The possible ten examples of the sentence of “2: negative” are:

As we approximate the target proba-
bility π with π̃t, there is a risk of ex-
ponential amplification of the model’s
approximation error as the generative
progresses, especially if the dynamics
T : π̃t → T π̃t is non-contractive in the
measurable space on X . To mitigate
this drawback, we employ a “cross-
validating” approach for posterior esti-
mation in MCMC (Held et al., 2010).
We run K independent chains in paral-
lel, and use the posterior approximation
π̃i−1t from the previous chain as an ap-
proximation to π for the current chain,
instead of using π̃it directly. Addition-
ally, we have introduced the following
heuristics into the implementation:

• A burn-in period t0, assuming that
the variance of π̃t stabilizes after t0
iterations. We update the reference
model π̃t every t0 steps, instead of
updating it at every step, to reduce
the sensitivity of the initial samples
and improve the overall stability of
the approximation.

• We incorporate a probabilistic SVM (Wu et al., 2003) and multiply the probability p(yt|xnew) to
πt. This helps to refine the estimation of the posterior by incorporating the predictive power of
the SVM.

8

https://tensorflow.org/datasets/catalog/glue
https://tensorflow.org/datasets/catalog/glue


Under review as a conference paper at ICLR 2024

• If the newly generated samples xnew duplicates any of the previous ones, or if is one of the prede-
fined stop words e.g., “.”, <EOS>, or <LF>, we set α′t+1 = 0 and generate a new token.

To address the issue of sensitivity to initial samples, we employ transfer learning for initial sam-
pling. We directly draw 2n0 seeds from the task description in the original paper of the target
dataset (Wang et al., 2019a). We carefully select task descriptions that are model-agnostic and un-
biased, enabling us to train our model in a zero-shot manner. While we use a mid-size completion
model text-curie-001 during the process, we utilize text-davinci-003 for the initial sampling. We have
observed that repeating this initial sampling process also yields high performance, but it increases
the overall computational cost compared to MCMC. Therefore, using this heavy sampling approach
once at t = 0 is the most practical option. In Table 3, we provide examples of the model-agnostic
task descriptions used for transfer learning. These examples demonstrate the effectiveness of our
approach in achieving high performance across different tasks. An exhaustive list of models and
hyperparameters used in the experiments of this paper is presented in Table 4.

6.3 LIMITATION

Table 4: Models and hyperparameters used for GLUE
benchmark. These are shared by all the tasks after tuned
with SST-2.

Description Value

φ A text embedding text-embedding-ada-002†

θ Language model text-davinci-003† (seeds)
text-curie-001† (MCMC)

fα Kernel machine libsvm‡

n Examples per class 100+1000
(seeds/MCMC)

d Dimension of the embeds 1536†

m Length in tokens 2048†

C0 Upper bound of the duals αi 10−2, 10−1, . . . , 1010

κ A sub-kernel RBF, Linear
γ Scaler of the RBF kernels auto‡

K Chains in parallel. 5
t0 Burn-in period 10

Multi-class settings OVR, OVO
Cross-validating bins 5
Temperature .5± .05
Prompt x as ?
Stop words <EOS>|<LF>|.

†GPT-3 (Brown et al., 2020) ‡Chang & Lin (2011)

While our proposed approach has
yielded promising results, it presents
certain limitations. First, SVG’s effec-
tiveness hinges on the quality of the
representative samples that the LLMs
generate. The interpretability of these
generative models often lacks clarity,
and they may inadvertently perpetuate
undesirable biases inherent in the train-
ing data (Zhao et al., 2018).

Second, in spite of superior memory
efficiency compared to contemporary
LLMs, the computational efficiency of
kernel methods still tends to deteriorate
significantly when dealing with high-
dimensional embeddings or many-shot
problems. As for computational speed
O(n2), kernel methods frequently lag
behind LLMs O(nm2) of n� m2.

We anticipate addressing this limitation
in our future work. One proposed di-
rection of research involves the devel-
opment of more informed and reliable
strategies for generating representative
samples. This could mean leveraging insights from active learning or using novel architectures that
encourage diversity in the generated examples. We also aim to explore efficient kernel methods and
applicable approximations, such as random Fourier features (Rahimi & Recht, 2008), to tackle large
data scenarios. Pursuing these avenues, we believe, will bring us closer to creating efficient and
effective zero-shot learning models with a wider range of applicability.

Conclusion In this paper, we proposed a novel approach for zero-shot learning, Support Vector
Generation (SVG), which combines the generative capabilities of LLMs with the computational
thriftiness of kernel machines. We demonstrated the mathematical equivalence of zero-shot learning
and kernel machines, and showed that our approach can be used to augment the data for zero-shot
tasks without the need for train data nor high-performance computing resources. Our experiments
on GLUE showed that SVG can achieve competitive performance compared to existing methods.
Our contribution introduces a fresh perspective on zero-shot learning, presenting a potential answer
to the challenge posed by resource-limited environments. In our view, it is conceivable that our
approach might be generalized to incorporate tasks such as one-class problems and regression. We
anticipate our work will stimulate subsequent investigations in this domain.

9



Under review as a conference paper at ICLR 2024

ETHICAL CONSIDERATIONS5

As we embark on this journey of leveraging the power of Large Language Models (LLMs) and
kernel machines, it is essential to consider the ethical implications that may arise.

Firstly, the use of LLMs, while impressive in their performance, have been known to potentially
propagate and reinforce existing biases in the data they are trained on (Bolukbasi et al., 2016). This
can result in biased outputs, which can be harmful and unfair, particularly when these models are
used in sensitive applications such as hiring, loan approvals, or law enforcement. As part of our
commitment to responsible AI, we must ensure that our proposed methods do not exacerbate these
biases and that we take steps to mitigate them where possible.

Secondly, the accessibility of these models in resource-constrained environments is a double-edged
sword. While it allows for the democratization of AI, enabling more people to benefit from these
technologies, it also raises concerns about misuse. For instance, these models could be used to
generate misleading information or propaganda, or to automate cyber attacks. Therefore, it is crucial
to establish robust guidelines and safeguards to prevent misuse.

Lastly, the generation of training data for zero-shot learning tasks must be handled carefully to en-
sure that any data used for this purpose is anonymized and that individuals’ privacy is respected.
Generative classifiers can have the paradox that the generative model itself is included among the
entities that generate harmful speech, such as hate speech and slander, when the MCMC poste-
rior distribution approximation is used to automatically detect sentences of anti-social speech. One
aspect of SVG that makes it useful from a responsible AI perspective is that it minimizes the gen-
eration of extreme sentences, as the generated samples are only distributed around the classification
boundaries. SVG’s sparsity is guaranteed by the hinge loss minimization and margin maximization
principles of kernel machines, which automatically eliminate samples that are merely harmful and
do not contribute to classification. Although SVG by itself is not a safety-conscious mechanism, it
is a direction for future research. As a future research direction, we are also considering the con-
struction of classifiers that do not generate anomalies themselves, for example by utilizing one-class
SVMs.

In conclusion, our proposed method holds great promise for advancing the field of natural language
understanding. However, it is essential that we navigate this path with a keen awareness of the
potential ethical implications. As we continue to develop and refine our approach, we must ensure
that we uphold the principles of fairness, accountability, transparency, and respect for user privacy.

REFERENCES

J Austerweil and D Zoran. Lower bounds on the robustness to adversarial perturbations. NeurIPS,
2019.

Y Bengio, A Courville, and P Vincent. Representation learning: A review and new perspectives.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

A Blumer, A Ehrenfeucht, D Haussler, and M Warmuth. Learnability and the Vapnik-Chervonenkis
dimension. J. of the ACM, 36(4):929–965, 1989.

T Bolukbasi, K Chang, J Y Zou, V Saligrama, and A T Kalai. Man is to computer programmer as
woman is to homemaker? Debiasing word embeddings. In NIPS, 2016.

R Brislin. Back-translation for cross-cultural research. J. of Cross-cultural Psychology, 1(3):185–
216, 1970.

T Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, G Sastry,
A Askell, et al. Language models are few-shot learners. NeurIPS, 2020.

C Chang and C Lin. LIBSVM: a library for support vector machines. ACM Trans. on Intelligent
Systems and Technology (TIST), 2(3):1–27, 2011.

5ICLR 2024 recommends the inclusion of an ethics statement of no more than one page between the text and
the reference. This is not included in the nine-page limit. iclr.cc/Conferences/2024/AuthorGuide

10

iclr.cc/Conferences/2024/AuthorGuide


Under review as a conference paper at ICLR 2024

S Chib and E Greenberg. Understanding the metropolis-hastings algorithm. The American Statisti-
cian, 49(4):327–335, 1995.

M Collins. Discriminative reranking for natural language parsing. In ACL, 2002.

C Cortes and V Vapnik. Support-vector networks. Machine Learning, 20:273–297, 1995.

J Devlin, M Chang, K Lee, and K Toutanova. BERT: Pre-training of deep bidirectional transformers
for language understanding. In ACL, 2018.

K Duan, S Keerthi, and A Poo. Evaluation of simple performance measures for tuning SVM hyper-
parameters. Neurocomputing, 51:41–59, 2003.

C Elkan. Logistic regression, naı̈ve Bayes, and the importance of proper feature scaling. KDD,
2005.

T Gao, A Fisch, and D Chen. Making pre-trained language models better few-shot learners.
arXiv:2012.15723, 2020.

K Grauman and T Darrell. The pyramid match kernel: Discriminative classification with sets of
image features. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29(6):1415–1430,
2007.

T Hastie, R Tibshirani, and J Friedman. The elements of statistical learning: data mining, inference,
and prediction. Springer, 2009.

L Held, B Schrödle, and H Rue. Posterior and cross-validatory predictive checks: a comparison of
mcmc and inla. Statistical modelling and regression structures: Festschrift in honour of ludwig
fahrmeir, pp. 91–110, 2010.

H Larochelle, D Erhan, and Y Bengio. Zero-data learning of new tasks. In AAAI, 2008.

C Leslie, E Eskin, J Weston, and W Noble. The spectrum kernel: a string kernel for SVM protein
classification. Pacific Symposium on Biocomputing, pp. 579–590, 2003.

Y Liu, Z Yang, T Zhao, D Xiong, X Wang, and B Liu. Generating long and coherent paragraphs
with topic-aware neural networks. arXiv:1903.03051, 2019.

D Lowe. Object recognition from local scale-invariant features. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 21(6):810–822, 1999.

C Manning, P Raghavan, and H Schütze. Introduction to information retrieval. 2008.

Y Meng, J Huang, Y Zhang, and J Han. Generating training data with language models: Towards
zero-shot language understanding. NeurIPS, 2022.

J Morris, E Lifland, J Yoo, J Grigsby, D Jin, and Y Qi. TextAttack: A framework for adversarial
attacks, data augmentation, and adversarial training in NLP. In EMNLP, 2020.

P Nakkiran, G Kaplun, Y Bansal, T Yang, B Barak, and I Sutskever. Deep double descent: Where
bigger models and more data hurt. J. of Statistical Mechanics: Theory and Experiment, 2021(12):
124003, 2021.

J Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.
1998.

A Radford, K Narasimhan, T Salimans, I Sutskever, and J Martens. Improving language understand-
ing by generative pre-training. OpenAI Blog, 2018.

A Radford, J Wu, R Child, D Luan, D Amodei, and I Sutskever. Language models are unsupervised
multitask learners. OpenAI Blog, 1(8):9, 2019.

A Rahimi and B Recht. Random features for large-scale kernel machines. In NIPS, 2008.

R Raina, A Madhavan, and A Ng. Large-scale deep unsupervised learning using graphics processors.
In ICML, 2009.

11



Under review as a conference paper at ICLR 2024

C Rasmussen and C Williams. Gaussian processes for machine learning. Adaptive Computation
and Machine Learning, pp. 100–109, 2006.

J Shawe-Taylor and N Cristianini. Kernel methods for remote homology detection. In KDD, 2004.

I Syarif, A Prugel-Bennett, and G Wills. SVM parameter optimization using grid search and genetic
algorithm to improve classification performance. TELKOMNIKA (Telecommunication Computing
Electronics and Control), 14(4):1502–1509, 2016.

V Vanhoucke, A Senior, and M Mao. Improving the speed of neural networks on CPUs. 2011.

V Vapnik and A Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Applications, 16(2):264, 1971.

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, and I Polosukhin.
Attention is all you need. NeurIPS, 2017.

S Vishwanathan, A Smola, and B Schölkopf. Fast kernel machines. NIPS, 2003.

A Wang, A Singh, J Michael, F Hill, O Levy, and S Bowman. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In ICLR, 2019a.

X Wang, M Ye, and A Gupta. A survey on zero-shot learning. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 41(5):1121–1139, 2019b.

J Wei, M Bosma, V Zhao, K Guu, A Yu, B Lester, N Du, A Dai, and Q Le. Finetuned language
models are zero-shot learners. In ICLR, 2021.

T Wu, C Lin, and R Weng. Probability estimates for multi-class classification by pairwise coupling.
NIPS, 2003.

C Zhang, S Bengio, M Hardt, B Recht, and O Vinyals. Understanding deep learning requires
rethinking generalization. In ICLR, 2016.

Z Zhang, E Dinan, J Urbanek, A Sordoni, and A Trischler. Dialogpt: Large-scale generative pre-
training for conversational response generation. In NAACL, 2019.

J Zhao, T Wang, M Yatskar, V Ordonez, and K Chang. The limitations of deep learning in adversarial
settings. ACL, 2018.

X Zhu, J Dai, M Ye, Z Zhu, Y Liu, and L Song. Generative adversarial learning towards fast weakly
supervised detection. In CVPR, 2019.

A PROOF OF THEOREM 3.1–3.2

Theorem 3.1. For a string set X and its subset (Y, cls),Y ⊂ X , cls : Y → {1, . . . ,M}, the
solution to a convex-optimization problem for a functional f(·;Y) : X → R

min
f

∑
y∈Y
L(f(y;Y), clsy) + C−1‖f‖∞, C > 0 (11)

is represented as f∗ ∈ span{k(·, y)}y∈Y with the existence of a positive-definite kernel k(·, ·) :
X 2 → R.

Proof. We firstly note that the optimization problem is convex and the solution f∗ is unique. Let f∗
be the solution of the optimization problem. Then, f∗ can be written as a linear combination of the
kernels k(·, y) with some coefficients αy for y ∈ Y as follows,

f∗(x) =
∑
y∈Y

α∗yk(x, y). (12)

12



Under review as a conference paper at ICLR 2024

We then show that the coefficients αy are positive. Let fα be a function defined as follows,

fα(x) =
∑
y∈Y

αyk(x, y). (13)

Then, we have

‖fα‖∞ ≤
∑
y∈Y
|αy|‖k(·, y)‖∞ ≤ C. (14)

Since f∗ is the solution of the optimization problem, we have∑
y∈Y
L(f∗(y;Y), clsy) ≤

∑
y∈Y
L(fα(y;Y), clsy). (15)

By the convexity of the loss function L, we have

L(f∗(y;Y), clsy) ≤ L(fα(y;Y), clsy) ≤
∑
y∈Y
|αy|L(k(x, y), clsy). (16)

Since the loss function L is bounded from below, we have∑
y∈Y
|αy| ≥

1

Lmin

∑
y∈Y
L(f∗(y;Y), clsy). (17)

Therefore, the coefficients αy are positive.

Finally, we show that the kernel k(·, ·) is positive-definite. Let x1, . . . , xn ∈ X be arbitrary points.
Then, we have

n∑
i,j=1

αiαjk(xi, xj) =

n∑
i,j=1

αiαj
∑
y∈Y

k(xi, y)k(xj , y) ≥ 0. (18)

Therefore, the kernel k(·, ·) is positive-definite. This completes the proof.

Theorem 3.2. If a function k : X 2 → R can be decomposed as k(xi, xj) = κ(φ(xi), φ(xj)) with
the existence of a positive definite function κ : Z2 → R and a function φ : X → Z in an Euclidean
space Z , then k is also a positive-definite kernel and satisfies the conditions of a kernel.

Proof. Let x1, · · · , xn ∈ X . Then,
n∑
i=1

n∑
j=1

cicjk(xi, xj) =

n∑
i=1

n∑
j=1

cicjκ(φ(xi), φ(xj)) (19)

=

n∑
i=1

n∑
j=1

cicjκ(zi, zj) ≥ 0 (20)

where zi = φ(xi). Therefore, k is a positive-definite kernel.

13


	Introduction
	Related Work
	Kernel Machines Are Zero-shot Learners
	Support Vector Generation
	Numerical Experiment
	Results

	Discussion
	Applications
	Sentence-pairs
	Multi-class
	Few-shot Learning

	Reproducibility
	Model Selection
	Variance Reduction

	Limitation

	Proof of Theorem 3.1–3.2

