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Joint Learning of Fully Connected Network Models
in Lifting Based Image Coders

Tassnim Dardouri, Student Member, IEEE, Mounir Kaaniche, Senior Member, IEEE, Amel Benazza-Benyahia,
Gabriel Dauphin, and Jean-Christophe Pesquet, Fellow, IEEE,

Abstract—The optimization of prediction and update operators
plays a prominent role in lifting-based image coding schemes. In
this paper, we focus on learning the prediction and update models
involved in a recent Fully Connected Neural Network (FCNN)-
based lifting structure. While a straightforward approach consists
in separately learning the different FCNN models by optimizing
appropriate loss functions, jointly learning those models is a
more challenging problem. To address this problem, we first
consider a statistical model-based entropy loss function that yields
a good approximation to the coding rate. Then, we develop a
multi-scale optimization technique to learn all the FCNN models
simultaneously. For this purpose, two loss functions defined across
the different resolution levels of the proposed representation
are investigated. While the first function combines standard
prediction and update loss functions, the second one aims to
obtain a good approximation to the rate-distortion criterion.
Experimental results carried out on two standard image datasets,
show the benefits of the proposed approaches in the context of
lossy and lossless compression.

Index Terms—Lifting schemes, adaptive wavelets, image cod-
ing, neural networks, joint learning, optimization.

I. INTRODUCTION

Lifting Scheme (LS), also known as the second generation
of wavelets, was found to be a powerful tool in image
and video processing [1], [2]. LS has been retained in the
JPEG2000 image compression standard [3] due to its many
advantages with respect to classical methods for constructing
wavelets based on a discrete filter bank implementation. These
advantages include implementation simplicity and perfect re-
construction property. Since the inclusion of LS in JPEG2000
image compression standard, several research publications
have shown the benefit of LS for the coding of other types
of data like video, stereo images, holograms, etc [4], [5], [6].
Recently, invertible neural networks inspired by the lifting
scheme have been developed for various image processing
tasks such as classification [7], denoising [8], and coding [9],
[10]. The latter will be the focus of this paper.
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Lifting schemes are basically composed of prediction and
update steps that aim to generate detail (i.e., high frequency)
and approximation (i.e., low frequency) wavelet subbands,
respectively [11], [12]. For instance, for image decomposition,
two-dimensional non separable lifting structures can be used
to better capture the 2D characteristics of the input image.
A typical non separable LS consists of three prediction steps
followed by an update step. This yields three detail subbands
oriented diagonally, vertically, and horizontally as well as
one approximation subband [13], [14]. Generally, the coding
performance of these LS depend on the design of the pre-
diction and update operators. As a result, many efforts have
been devoted to optimizing such operators while making the
wavelet decomposition adaptable to the image contents [14],
[15], [16], [17]. In fact, the optimization of the prediction
operator is often achieved by minimizing the `2-norm of the
detail coefficients [18]. To further promote sparsity of the
wavelet coefficients, `1 and weighted `1-based minimization
techniques have also been investigated in [19]. In addition, an
entropy measure has also been used in [16], [20] for the same
purpose. The corresponding optimization problem is solved
empirically using the Nelder-Mead simplex algorithm. While
the optimization of the predictor has been widely studied,
optimizing the update filter is less obvious and few studies
have pursued this direction [18], [21], [22]. These studies rely
on two main techniques. The first one consists in minimizing
the reconstruction error while synthesizing the reconstructed
image from the approximation coefficients [18], [21]. How-
ever, this technique results in a complex linear system of
equations. To overcome this issue, the second technique aims
to minimize the error between the approximation subband and
the decimated version of the output of an ideal loss-pass filter
applied to the input image [22].
Motivated by the success of neural networks and their ad-
vantages in achieving accurate nonlinear approximation, the
prediction and update lifting stages have been recently im-
plemented using Convolutional Neural Network (CNN) [23],
[24] and Fully Connected Neural Network (FCNN) [10],
[25]. These neural networks-based lifting architectures will be
further described and discussed in Section II. In addition to this
class of methods, other studies have sought to improve DCT
(Discrete Cosine Transform) and Discrete Wavelet Transform
(DWT)-based coding schemes [26], [27], [28]. In fact, in [26],
a CNN architecture is exploited to develop a DCT-like trans-
form for image coding. In [27], the authors apply a DWT
to the original image, and the generated wavelet subbands
are fed into a CNN to produce the final detail coefficients.
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Other research efforts have been devoted to intra-prediction
coding techniques using both CNN and FCNN [29], [30],
[31]. For instance, in [30], the authors proposed to apply the
FCNN to small image blocks and the CNN to large blocks.
Moreover, most of the remaining existing NN-based image
compression methods follow the same kind of procedure. First,
a nonlinear analysis transform is applied to the input image.
The generated feature maps are then quantized and entropy
encoded. Finally, a nonlinear synthesis transform is performed
to reconstruct the image. These methods are optimized using
an end-to-end procedure and mainly differ in the employed
NN models [32], [33], [34], [35] and/or the loss function
used for training [36], [37], [38]. In this category of learned
image compression techniques, context model for entropy
coding is also investigated to further boost the rate-distortion
performance [37], [39], [40]. It is worth pointing out that most
of the developed NN-based image compression methods are
devoted to lossy compression [41] and only a few studies are
dealing with lossless compression [42], [43], [44].
The objective of this paper is to develop new learning tech-
niques for optimizing neural network models in lifting scheme-
based image coders. More precisely, we focus on a recent
non separable lifting architecture involving three FCNN-based
prediction steps followed by an FCNN-based update one [10].
While these different FCNN models have been separately
learned in [10], we propose here to investigate joint learning
approaches to find the optimal FCNN models. Note that a
preliminary version of this work has been presented in [25].
For instance, unlike [10] and [25] where `2- and `1-norm based
loss functions are employed, we resort to an entropy based
loss function in this paper. The loss function is grounded on
a Generalized Gaussian probabilistic model which has been
widely employed for wavelet coefficients modeling. Moreover,
this work aims to learn both the FCNN prediction and up-
date models simultaneously, while the joint learning of three
FCNN prediction models is achieved independently of that
of the FCNN update one in [25]. To this end, we propose a
multi-level optimization technique. This technique consists in
interpreting the lifting-based multiresolution decomposition as
a full architecture whose involved FCNN models are globally
learned at the same time through a unique loss function. In
this respect, two new loss functions will be investigated. While
the first one resorts to a weighted sum of the loss functions
used to optimize the prediction and update stages, the second
one aims to obtain a good approximation of rate-distortion
functions.
The remainder of this paper is organized as follows. In
Section II, we describe the related neural networks-based
lifting schemes and then focus on the FCNN-based structure
we recently proposed. Our statistical model-based entropy loss
function is introduced in Section III. The developed learning
approaches for the different FCNN models are described in
Section IV. Finally, extensive experiments are shown and
discussed in Section V, and our conclusions are presented in
Section VI.

II. FULLY CONNECTED NEURAL NETWORK BASED LIFTING
ARCHITECTURE

A. Related neural networks-based lifting schemes

The use of neural networks for the design of lifting based
image coding schemes have been mainly addressed in recent
works conducted by Ma et al. [23], [24] and Dardouri et al.
[10], [25]. In [23], the authors have considered a separable
lifting structure where the prediction stage is achieved using
a CNN model and the update one is performed by a mean
operation. The corresponding network parameters are then
learned by optimizing a distortion criterion. The latter scheme
(called iwave), has been extended in [24] (named iwave++)
by applying CNNs to both prediction and update stages and
optimizing the architecture in an end-to-end fashion using
a rate-distortion-based loss function. It must be emphasized
that the use of neural networks has been investigated in
three different modules [24]: lifting decomposition, entropy
coding, and post-processing, resulting in a high computational
complexity. Four variants have been developed. While the
first one is dedicated to lossless compression, the second and
third ones are designed for lossy coding and consider single
and multiple NN models, respectively. The last variant is a
universal scheme which uses a single model for both lossy
and lossless compression. However, the latter suffers from
two main drawbacks. First, while the best lossy compression
performance is obtained with the multi-model configuration
requiring a separate NN model for each point of the R-D
curve, the universal scheme results in a significant performance
drop. Moreover, iwave and iwave++ rely on the concept of a
one-dimensional (1D) LS-based decomposition, which yield
an increase of the number of employed NN models, and
so the number of parameters, in the whole multiresolution
architecture.
To alleviate these shortcomings, we have proposed in [10],
[25] to design a single FCNN model for both lossy and loss-
less compression while focusing on a Non-Separable Lifting
Scheme (NSLS) [19] which better captures the 2D charac-
teristics of the data and reduces the number of lifting stages
performed in the image decomposition. More precisely, both
prediction and update steps are achieved using an FCNN. To
this end, new loss functions, defined in the wavelet transform
domain, for learning the FCNN prediction and update models
have been proposed. While all the FCNN models are learned in
a separate manner in [10], joint learning restricted to prediction
models is developed in [25].

B. FCNN based wavelet representation

To perform wavelet decomposition, we have retained the
conventional NSLS composed of three prediction steps fol-
lowed by an update one. In conventional image coders, these
steps are often achieved using linear operators. To go beyond
these linear models and obtain more accurate nonlinear ap-
proximation properties, we have recently proposed performing
the prediction and update using neural networks, and more
specifically FCNN models. The analysis structure of this new
FCNN based NSLS is shown in Fig. 1. More precisely, xj
denotes the approximation subband at resolution level j where
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x0 = x represents the input image. In the first split stage, the
input xj is decomposed into four subsets of samples denoted
by 

x0,j(m,n) = xj(2m, 2n),
x1,j(m,n) = xj(2m, 2n+ 1),
x2,j(m,n) = xj(2m+ 1, 2n),
x3,j(m,n) = xj(2m+ 1, 2n+ 1).

(1)

Then, three prediction stages, based on three FCNN models
f
(HH)
j , f (LH)

j and f (HL)j , are applied to generate the diagonal
detail subband x(HH)

j+1 , the vertical subband x(LH)
j+1 , and the hor-

izontal subband x(HL)j+1 , respectively. These detail coefficients
are computed as follows:

∀ o ∈ {HH,LH,HL},
x
(o)
j+1(m,n) = xi,j(m,n)− x̂i,j(m,n)

= xi,j(m,n)− f (o)j (x̃
(o)
j (m,n)) (2)

where, for each i ∈ {1, 2, 3}, xi,j(m,n) is the sample to be
predicted, x̃

(o)
j (m,n) is the input reference vector containing

the samples used to generate the detail coefficients x(o)j+1, and
x̂i,j(m,n) is the predicted value that corresponds to the output
of the FCNN model f (o)j (x̃

(o)
j (m,n)).

xj(m,n)

+

-

-

-

x3,j(m,n)

x2,j(m,n)

x1,j(m,n)

x0,j(m,n) xj+1(m,n)

x
(HL)
j+1 (m,n)

x
(LH)
j+1 (m,n)

x
(HH)
j+1 (m,n)

f
(HH)
j

f
(LH)
j

f
(HL)
j f

(LL)
j

split

Fig. 1. Analysis structure of the FCNN-based NSLS architecture.

As shown in Fig. 2, the reference vector x̃
(o)
j (m,n) is first

fed to the input layer of an FCNN model. Then, a few hidden
layers with various dimensions (i.e., number of neurons) are
employed. The output values of these neurons are computed
based on a linear combination (with bias) followed by a
nonlinear activation function. Finally, the output layer, with a
single neuron, generates the predicted value x̂i,j(m,n) based
on a linear combination of the neuron values associated with
the last hidden layer.
Following the three prediction steps, an update step using an

x̂i,j(m, n)

Hidden layers

Θ
(o)
j

x̃
(o)
j (m, n)

Output

layer

Input

layer

Fig. 2. FCNN-based prediction stage.

FCNN model f (LL)j is performed to produce the approxima-
tion coefficients xj+1:

xj+1(m,n) = x0,j(m,n) + t̂j(m,n)

= x0,j(m,n) + f
(LL)
j (x̃j+1(m,n)) (3)

where x̃j+1(m,n) is the input reference vector containing the
diagonal, vertical, and horizontal detail coefficients.
Similar to the FCNN-based prediction stage, x̃j+1(m,n)

serves as an input vector for the FCNN update model f (LL)j .
A stack of hidden layers followed by an output layer with a
single neuron are then used to produce t̂j(m,n) and deduce
the approximation coefficients xj+1 according to (3).

C. Independent learning approaches

To learn the four FCNN models, f
(o)
j with o ∈

{HH,LH,HL,LL}, a simple approach, adopted in [10],
trains each model defined at a given resolution level j.
We recall the two optimization techniques which have been
employed for learning the prediction and update models.

1) Learning FCNN-based prediction models:
Let Θ

(o)
j , with o ∈ {HH,LH,HL} denote the vector of

parameters associated with the FCNN model f (o)j . Thus, for
each detail subband x

(o)
j+1, the vector Θ

(o)
j is learned by

performing several forward and backward propagation passes
while minimizing a loss function. In this manner, the Mean
Square Error (MSE) loss function has been widely used in
regression tasks. As a result, we proposed in [10] to train
each FCNN-based prediction model using the `2-norm of the
prediction error between the target pixels xi,j(m,n) and the
predicted ones x̂i,j(m,n):

∀ o ∈ {HH,LH,HL},

L̃(p)(Θ
(o)
j ) =

1

MjNj

Mj∑
m=1

Nj∑
n=1

(
xi,j(m,n)− x̂i,j(m,n)

)2
(4)

where Mj and Nj represent the dimensions of the image xj
divided by 2. Note that the superscript ’p’ is used to emphasize
that the above loss function is specific to the prediction model.
To optimize this loss function, a Mini-Batch Gradient Descent
(MBGD) algorithm has been employed [45]. For instance, the
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gradient of the loss function is computed for each mini-batch
and the model parameters are then updated from one mini-
batch to the next one. By repeating this process over several
epochs until convergence of the algorithm, the optimal weights
Θ

(o)
j are obtained. The optimal weights are finally applied to

the test images to find the predicted pixels x̂i,j and produce
the detail coefficients x(o)j+1 using (2).

2) Learning the FCNN-based update model:
Once the three FCNN prediction models are learned and
their respective detail subbands are produced, one can focus
on learning the FCNN update model. However, since the
generation of the approximation coefficients is quite different
from that of the detail ones, a more appropriate loss function
should be employed for the update stage. In this respect, we
proposed to use a simple and efficient update optimization
design method which consists in minimizing the error between
the approximation subband and the decimated version of the
output of an ideal low pass filter (whose impulse response will
be denoted by h̃) applied to the input xj [22]. This error is
given by

ej(m,n) = yj+1(m,n)− xj+1(m,n)

= yj+1(m,n)− x0,j(m,n)− f (LL)j (x̃j+1(m,n))

(5)

where

yj+1(m,n) = (h̃ ∗ xj)(2m, 2n). (6)

Thanks to (5), the update learning task can be seen as a
prediction learning task that aims to predict, from the input
reference vector x̃j+1(m,n), the target signal tj(m,n) defined
as

tj(m,n) = yj+1(m,n)− x0,j(m,n). (7)

Therefore, similar to (4), the FCNN-based update model
is trained by minimizing the MSE between tj(m,n) and
t̂j(m,n) = f

(LL)
j (x̃j+1(m,n)). Thus, the loss function used

for training the FCNN update model is given by

L̃(u)(Θ
(LL)
j )

=
1

MjNj

Mj∑
m=1

Nj∑
n=1

(
yj+1(m,n)− x0,j(m,n)− t̂j(m,n)

)2
(8)

where the superscript ‘u’ is employed to refer to the loss
function used with the update model.
Once the update network is trained, its optimal vector of
parameters Θ

(LL)
j is employed to compute the output t̂j(m,n)

from the input vector x̃j+1(m,n) and generate the approxi-
mation coefficients using (3).
For the test phase, and in order to generate integer wavelet
coefficients, which are mandatory for lossless compression, a
rounding operator is applied to the second terms (i.e., f (o)j (·))
of (2) and (3).

D. Analysis of the FCNN-based lifting structure

The employed loss functions and learning strategy present
some advantages and drawbacks. One of these advantages is
that the defined loss functions are computed in the transform
domain and so, they do not require to perform image recon-
struction as often considered in the existing learned image
compression methods. Moreover, the adopted learning strategy
can be seen as the straightforward solution which consists in
training the different FCNN models in a separate manner. This
allows to learn some models (in particular those related to the
second and third prediction stages) in parallel.
However, such an independent learning approach does not
take into account two main aspects inherent to NSLS based
coding schemes. The first aspect concerns the dependencies
existing between these models at a given resolution level j.
As it can be seen in Fig. 1, the output of the first FCNN
prediction model, and more specifically the diagonal detail
signal x(HH)

j+1 , is used as the reference signal (i.e., as an input)
of the second and third FCNN prediction models to produce
the vertical and horizontal detail signals. The second aspect is
related to the multiresolution form of the NSLS architecture. A
decomposition carried out over J resolution levels is iteratively
performed, and yields one approximation subband and 3J
detail subbands. This means that the coefficients computed
at a given level will impact those generated at coarser levels.
For this reason, we propose in this paper to resort to novel
joint learning approaches while investigating different loss
functions, as it will be described in Sections III and IV.

III. PROPOSED STATISTICAL MODEL BASED LOSS
FUNCTION

While the mean square prediction error has been widely
used as a loss function for learning predictive models, we
propose here to explore an entropy-based loss function. This
choice is motivated by the fact that the entropy represents a
good approximation to the final bitrate [46].

A. Statistical model

The analysis of wavelet coefficients and their probability
distributions have often been exploited in various image pro-
cessing tasks including denoising and compression. For in-
stance, the Generalized Gaussian Distribution (GGD) has been
extensively used to model the subband coefficients x(o)j+1 of a
given wavelet representation. These coefficients can be seen
as realizations of a random variable X(o)

j+1 whose probability
density function g(o)j+1 is given by

∀o ∈ {HH,LH,HL}, ∀ξ ∈ R,

g
(o)
j+1(ξ;α

(o)
j+1, β

(o)
j+1) =

β
(o)
j+1

2α
(o)
j+1Γ( 1

β
(o)
j+1

)
e
−
(
|ξ|

α
(o)
j+1

)β(o)
j+1

(9)

where Γ is the Gamma function, α(o)
j+1 ∈]0,+∞[ is the scale

parameter, and β
(o)
j+1 ∈]0,+∞[ is the shape parameter of the

GGD. The particular case when β
(o)
j+1 = 2 (resp. β(o)

j+1 = 1)
corresponds to the Gaussian distribution (resp. the Laplacian
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one).
Let us also recall that the use of `2 (resp. `1)-norm based
loss function suggests that the data distribution follows such
a Gaussian (resp. Laplacian) model. However, multiresolution
representations have the advantage of producing sparse coef-
ficients whose distribution shape parameters β(o)

j+1 are smaller
than 1. To confirm this property, we have conducted a distri-
bution analysis of the detail coefficients, and more specifically
the shape parameters β(o)

j+1 of their associated GGD models,
for a large set of samples extracted from the popular CLIC
database described in Section V. Note that the parameters
of the GGD models are estimated by applying the maximum
likelihood technique [47] to the subband coefficients produced
by the independent MSE-based learned FCNN model (see
Section II-C). Fig. 3 illustrates the distribution of the estimated
β
(o)
j+1 values obtained with the three detail subbands at the first

three resolution levels. We also provide the average values

β̃
(o)
j+1 =

1

K

K∑
k=1

β
(o,k)
j+1 (10)

where K is the number images. Thus, it can be observed that
typical values of the shape parameters β(o)

j+1 range from 0.2
to 1 and their mean values are around 0.6. Moreover, these
values become smaller at coarser levels.
Based on this analysis, instead of using a given value of β(o)

j+1

(i.e., β(o)
j+1 = 2 or β(o)

j+1 = 1) as is often considered in previous
studies, we propose here to adaptively select the values of
β
(o)
j+1 that depend on the subband orientation o as well as the

resolution level j.

B. Entropy-based loss function

Let x̄(o)j+1(m,n) be the quantized coefficients using a uni-
form scalar quantizer with a quantization step q

(o)
j+1. These

coefficients can also be seen as realizations of a random
variable X̄(o)

j+1. At high bitrates, it has been shown in [46] that
the discrete entropy of X̄(o)

j+1 can be approximated as follows:

H(X̄
(o)
j+1) ≈ h(X

(o)
j+1)− log2(q

(o)
j+1) (11)

where h(X
(o)
j+1) is the differential entropy of the variable

X
(o)
j+1.

Thus, it can be seen that the discrete entropy of the quantized
source is (up to an additive constant) approximately equal to
the differential entropy of the original (i.e., non-quantized)
source. For such a source following a GGD, the law of large
numbers yields the following expression of the differential
entropy:

h(X
(o)
j+1) ≈ 1

MjNj ln(2)(α
(o)
j+1)β

(o)
j+1

Mj∑
m=1

Nj∑
n=1

∣∣∣x(o)j+1(m,n)
∣∣∣β(o)
j+1

+ log2

(2α
(o)
j+1Γ

(
1

β
(o)
j+1

)
β
(o)
j+1

)
. (12)

Therefore, with the ultimate goal of approximating the bitrate
of the subbands to be generated, we propose to use the

differential entropy of the detail coefficients as a learning loss
for the different FCNN-based prediction models.

In this context, a possible choice for setting the β(o)
j+1 and

α
(o)
j+1 parameters consists of using values β̃

(o)
j+1 and α̃

(o)
j+1

estimated from K training images. Their subband coefficients
are computed by the independent MSE-based learned FCNN
model. By using an averaged maximum likelihood estimator,
we obtain

α̃
(o)
j+1 =

1

K

K∑
k=1

( β̃
(o)
j+1

MjNj

Mj∑
m=1

Nj∑
n=1

|x̃(o,k)j+1 (m,n)|β̃
(o)
j+1

)1/β̃(o)
j+1

,

(13)

where x̃(o,k)j+1 is the detail subband of the k-th training image
whose GGD shape parameter is β̃(o)

j+1. The expression of β̃(o)
j+1

is still given by (10). By omitting constant terms, this approach
leads to the following loss function, which in turn is used to
learn the FCNN prediction weight parameters Θ

(o)
j :

∀ o ∈ {HH,LH,HL}, L(p,1)
j,o (Θ

(o)
j )

=
1

MjNj ln(2)(α̃
(o)
j+1)β̃

(o)
j+1

Mj∑
m=1

Nj∑
n=1

∣∣∣x(o)j+1(m,n)
∣∣∣β̃(o)
j+1

.

(14)

This loss function provides a natural extension of both `1 and
`2 losses. It relies however on a relatively rough averaged
estimate of α(o)

j+1.
A second approach for estimating the α(o)

j+1 parameter relies
on the maximum likelihood estimate that would be obtained
from the generated subband coefficients:

α̂
(o)
j+1 =

( β
(o)
j+1

MjNj

Mj∑
m=1

Nj∑
n=1

|x(o)j+1(m,n)|β
(o)
j+1

)1/β(o)
j+1

. (15)

Although this estimate cannot be practically calculated, its
expression can be injected into (12), thus leading to the
definition of an alternative form of the loss function for
minimizing the entropy of the wavelet coefficients:

∀ o ∈ {HH,LH,HL}, L(p,2)
j,o (Θ

(o)
j )

=
1

β̃
(o)
j+1

log2

( 1

MjNj

Mj∑
m=1

Nj∑
n=1

∣∣∣x(o)j+1(m,n)
∣∣∣β̃(o)
j+1
)
. (16)

Because of the behaviour of the log2 function around 0, this
loss function has however a tendency to be sensitive to the
dynamics of the subband coefficients.

To benefit from the advantages of the two previous ap-
proaches, we propose to define the loss function as the
arithmetic mean of the two previous expressions in (14) and
(16), i.e.

∀ o ∈ {HH,LH,HL}, L(p)
j,o (Θ

(o)
j )

=
1

2
(L(p,1)

j,o (Θ
(o)
j ) + L(p,2)

j,o (Θ
(o)
j )). (17)

Note that this loss function depends on the averaged GGD
parameters β̃(o)

j+1 and α̃(o)
j+1 given by (10) and (13), respectively.
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(a) β̃(HL)
1 = 0.61 (b) β̃(LH)

1 = 0.60 (c) β̃(HH)
1 = 0.71

(d) β̃(HL)
2 = 0.58 (e) β̃(LH)

2 = 0.55 (f) β̃(HH)
2 = 0.61

(g) β̃(HL)
3 = 0.54 (h) β̃(LH)

3 = 0.54 (i) β̃(HH)
3 = 0.56

Fig. 3. Distribution of β(o)
j+1 values for the horizontal (first column), vertical (second column) and diagonal (third column) detail subbands at the first three

resolution levels (from top to bottom).

In this respect, and for the sake of simplicity (to avoid gener-
ating the wavelet coefficients of each image and estimating the
GGD parameters of the resulting subbands for several epochs),
β̃
(o)
j+1 and α̃

(o)
j+1 are computed over the training dataset only

once time before starting the learning process (i.e., without
updating them after each epoch).
We will see in the next section how the defined loss function
can be employed to develop a new rate-distortion strategy.

IV. TOWARDS JOINT LEARNING PREDICTION AND UPDATE
FCNN MODELS

A. Motivation

To learn the FCNN models involved in our NSLS architec-
ture, different approaches can be envisaged. A straightforward
solution, adopted in [10], consists of independently learning
the FCNN models as described in Section II-C. To overcome
the aforementioned limitations of such approach, a single level
optimization technique could be used. This technique aims

at jointly learning the FCNN models by optimizing a loss
function performed on the outputs of a given resolution level.
Such a learning approach, where only the three prediction
models are jointly trained, independently of the update, has
been developed in [25]. However, in order to deal with the
strong dependencies existing between the different wavelet
subbands (intra and inter scales), it appears more judicious
to learn the involved FCNN prediction and update models
while taking into account all the generated coefficients. Such
an approach, performed across the different resolution levels,
will be referred to as a multi-scale optimization technique.

B. Multi-scale optimization techniques for joint learning of
prediction and update models

To achieve this goal, our lifting-based multiresolution struc-
ture will be interpreted as a global architecture whose different
FCNN prediction and update models will be jointly learned.
In this respect, and instead of using different loss functions
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specific to the prediction and update models, these models
will be learned at once through a unique loss function.
Two expressions of the loss functions will be investigated
subsequently.

1) Combined predict-update loss functions:
Let Θ denote the set of weights associated with all the FCNN
prediction and update models used across the J resolution
levels:

Θ =
(
Θ

(o)
j

)
o∈{HH,LH,HL,LL}

j∈{0,...,J−1}
. (18)

To learn the resulting vector of parameters, a first approach
consists in combining the two loss functions previously used
for optimizing the prediction and update models, respectively.
Thus, the corresponding loss function is a weighted sum of
two terms evaluated on the multiresolution representation of
each training image. The first term represents the sum of the
entropy of all the detail subbands while the second one aims at
ensuring that the subband xJ , obtained at the resolution level
J , represents a coarse approximation to the original image.
Therefore, our first loss function used for jointly learning the
prediction and update models is given by

L(p,u)
1 (Θ)

=

J−1∑
j=0

1

4j+1

∑
o∈{HH,LH,HL}

L(p)
j,o (Θ

(o)
j ) +

λ1
4J
L̃(u)(Θ

(LL)
J−1 )

(19)

with λ1 is a positive constant weighting the predict and update
loss functions. Note that the factor 1

4j+1 corresponds to the
ratio between the size of the wavelet subband x

(o)
j+1 and that

of the original image, so as to weight properly the contribution
of this subband in the final image representation.
While the predict loss function L(p)

j,o is defined in (17), the
update one L̃(u) will be expressed as

L̃(u)(Θ
(LL)
J−1 )

=

MJ−1∑
m=1

NJ−1∑
n=1

(
yJ(m,n)− x0,0(m,n)− t̂J−1(m,n)

)2
(20)

where yJ is obtained by applying J successive operations of
convolution to the original image x0, using the ideal low-pass
filter h̃ (see Eq. (6)), followed by a decimation of factor 2.

2) Rate-Distortion approximation based loss function:
In the context of lossy coding application, a more appealing
learning approach would consist in optimizing all the FCNN
models by minimizing a Rate-Distortion (R-D) based cost
function. Note that most of the existing end-to-end learning
image compression methods use a R-D based loss function
where the quantization is replaced with an additive uniform
noise on the unit interval. This is achieved while assuming
a fixed uniform scalar quantizer. However, such a common
approach cannot be easily exploited in our subband-based
image coding context where variable quantization steps are
generally assigned to the different subbands in the test coding
phase.
As a result, we propose an alternative solution based on a
coarse-to-fine coding/decoding strategy. More precisely, while

the rate can again be approximated by the weighted sum of
the entropies of all the subbands, a both simple and efficient
distortion evaluation will be performed. First, we compute
the reconstruction error (MSE) between the original image
and the reconstructed one from the approximation coefficients
at the coarsest resolution level J , i.e by assuming that the
remaining detail coefficients are set to zero. Then, similar
reconstruction errors are evaluated and accumulated while
progressively adding the detail subbands. Therefore, our new
R-D based loss function, denoted by L(p,u)

2 , can be defined as
follows:

L(p,u)
2 (Θ) = R(Θ) + λ2D(Θ) (21)

where λ2 is a positive constant weighting the rate and distor-
tion criteria, given respectively by

R(Θ) =

J−1∑
j=0

1

4j+1

∑
o∈{HH,LH,HL}

L(p)
j,o (Θ

(o)
j )

+
1

4J
L(p)
J−1,LL(Θ

(LL)
J−1 ), (22)

and

D(Θ) =

3J∑
i=1

MSE(x, x̃i(Θ)). (23)

Hereabove, x̃i corresponds to the reconstructed image obtained
through the synthesis stage of the FCNN structure while using
the first i-th subbands of the multiresolution representation.
To evaluate (23), the subbands are added following a coarse-
to-fine resolution order as shown in Fig. 4. Note that the
diagonal detail subband obtained at the finest resolution level
is not considered in the last synthesis stage. This is because
adding the last subband will result in a reconstruction error
between x and x̃3J+1 equal to zero in theory, due to the perfect
reconstruction property of the lifting scheme.

2

3 4

5

6 −

1

Fig. 4. The order of the retained i wavelet subbands (with i ∈ {1, . . . , 3J},
with J = 2) during reconstruction error evaluation.

The parameters α̃(o)
j+1 and β̃

(o)
j+1, used in the above two loss

functions, have been defined in (13) and depend on the orienta-
tion of the detail subband as well as its resolution index. More-
over, whatever the employed loss function (L(p,u)

1 or L(p,u)
2 ),

it is minimized using the MBGD algorithm. After training,
the optimized weight vector Θj containing the learned FCNN
prediction and update models is applied to the test images to
generate their respective multiresolution representations (using
Eqs. (2) and (3)), and they are subsequently encoded.
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V. EXPERIMENTAL RESULTS

In this section, the proposed joint learning of the prediction
and update FCNN models in lifting based coding schemes
will be evaluated. Our approach will be compared to different
state-of-the-art neural networks based compression methods.

A. Experimental settings

To evaluate the performance of the proposed approach, our
FCNN-based lifting architectures have been trained using the
Challenge on Learned Image Compression (CLIC) database1.
The training dataset consists of 585 images of various sizes.
The compression methods are then validated on the test CLIC
dataset by randomly selecting 40 crop images of size 512 ×
512. In addition, we have also considered 30 images, of size
1200× 1200, taken from the Tecnick sampling dataset2 [48],
[49]. Note that all the tested methods will be evaluated on the
luminance component of the CLIC and Tecnick images since
our FCNN-based LS is designed to process 2D images (i.e., a
single component).
Regarding the different FCNN prediction and update models,
we have employed: 4 hidden layers of size 128×64×32×16,
Parametric Rectified Linear Unit (PReLU) activation func-
tions, and a learning rate equal to 10−3 while applying a decay
of 10−4. The simulations were carried out by using Keras and
TensorFlow on an NVIDIA Tesla V100 32 GB GPU. Finally,
the initialization steps of the joint learning approaches used
the pre-trained FCNN models obtained with the independent
learning strategy.3

B. Comparison methods

First, the prediction and update steps of the proposed lifting
structure have been performed using the 2D spatial supports
shown in Fig. 5. Recall that these supports represent the
samples assigned to the input layers of the different FCNN
models.

(b)(a)

(c) (d)

x0,j(m,n)

x1,j(m,n)

x2,j(m,n)

x3,j(m,n)

x
(HH)
j+1 (m,n)

x
(HL)
j+1 (m,n)

x
(LH)
j+1 (m,n)

Fig. 5. Spatial supports of the prediction and update operators used to
generate: (a) the diagonal detail coefficients x(HH)

j+1 , (b) the vertical detail

coefficients x(LH)
j+1 , (c) the horizontal detail coefficients x(HL)

j+1 , and (d) the
approximation coefficients xj+1. Note that for every step, the pixels to be
predicted and updated are highlighted in black.

1http://www.compression.cc/2018/challenge/
2https://testimages.org/
3The source code of the proposed methods as well as the trained FCNN

prediction and update models will be made publicly available.

Our proposed FCNN-based LS decompositions, carried out
over three resolution levels, will be designated as follows.
• FCNN-LS-JL-ML1 represents the first improved ver-

sion of the FCNN-based LS method, described in Sec-
tion IV-B, where both FCNN prediction and update mod-
els are jointly learned using a multi-level optimization
technique based on the combined predict-update loss
function L(p,u)

1 in (19).
• FCNN-LS-JL-ML2 is the second improved version of the

FCNN-based LS. It is similar to the previous one, except
that we resort to the rate-distortion based loss function
L(p,u)
2 in (21).

Note that these two approaches are tested using four λ1 and
λ2 values (as discussed at the beginning of Section V-D) and
the best model in terms of R-D performance is selected.
The above methods will be compared to the following state-
of-the-art deep learning-based coding methods:
• AE-Fact [33] is among the first reference end-to-end

optimized image compression methods and relies on a
nonlinear transform composed of three successive stages
of linear filters (convolutions) and nonlinear activation
functions. It uses a non-adaptive distribution model, based
on piecewise linear functions, referred to as factorized-
prior model.

• AE-Hyp [36] corresponds to an extension of the previous
one and aims to integrate a hyperprior model to capture
the spatial dependencies of the latent representation. To
do so, a zero-mean Gaussian distribution with standard
deviation parameter σ2 is considered.

• AE-Hyp-GMM [39] is also an improved version of the
previous architectures and uses a Gaussian mixture model
(GMM) with an attention module.

• iwave [23] is a recent method more related to this work.
It resorts to a neural network-based LS where the update
step is a mean filter and the prediction one is performed
using a CNN.

• iwave++ [24] corresponds to an extended version of the
“iwave” by applying CNN to both prediction and update
steps and optimizing the architecture in an end-to-end
fashion. Note that the tested method corresponds to the
lossy multi-model “iwave++”, which is the only version
available on GitHub.

All these NN-based coding methods (except “iwave++ [24]”)
have been developed for lossy image compression purposes
and as such, they will be considered as benchmarks in terms
of R-D performance. However, “iwave [23]” can be easily
exploited as a lossless compression method.
Furthermore, the proposed methods will also be compared to
our previous FCNN-based lifting schemes [10], [25], through
an ablation study, to show the benefits of the developed joint
multi-scale learning techniques compared to the independent
and single level learning approaches. In addition to the afore-
mentioned deep learning methods, the proposed ones will be
compared to some popular image coding standards including
JPEG2000 and BPG.
It should be noted that for the proposed FCNN-LS and
“iwave [23]” methods, JPEG2000 has been used only as an
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entropy encoder. For instance, the analysis and synthesis stages
of JPEG2000 (based on 5/3 and 9/7 transforms) have been
disabled and replaced by those of the tested FCNN-LS or
“iwave”.

C. Performance metrics

The proposed methods have been evaluated in the context
of lossy as well as lossless compression using various criteria.
In the context of lossless compression, we have considered
the entropy of the multiresolution representation as well as
the real bitrate of the encoded image. While the bitrate is
measured using the JPEG2000 encoding module, the entropy
value of a given wavelet representation is expressed as

H =

J∑
j=1

∑
o∈{HL,LH,HH}

1

4j
H(o)
j +

1

4J
H(LL)
J (24)

where H(o)
j is the entropy of the wavelet subband x

(o)
j at

resolution level j and orientation o.
The lossy compression performance are illustrated in terms of
R-D results. To assess the quality of reconstructed images at
different bitrates, three metrics are employed. The first and
second ones are the widely used Peak Signal-to-Noise Ratio
(PSNR) and Structural SIMilarity (SSIM) metrics [50]. The
third one is the Perceptual Image-Error Assessment through
Pairwise Preference (PieAPP) metric [51], which was found
to be better-correlated with human perception than its coun-
terparts such as PSNR and SSIM. It is worth pointing out that
such traditional metrics, and more specifically the PSNR, were
found to be much less accurate to assess the visual quality
of the reconstructed images in recent studies devoted to the
quality assessment aspects of deep learning based compressed
images [52], [53], [54]. Finally, the Bjøntegaard metric [55]
has been employed to evaluate the R-D performance in terms
of bitrate saving and image quality enhancement.

D. Results and discussion

1) Impact of parameters:
• Influence of λ1 and λ2 values: Our proposed FCNN-LS-JL-
ML1 and FCNN-LS-JL-ML2 methods, whose loss functions
are given by (19) and (21), were first evaluated using different
λ1 and λ2 values. More precisely, for each k ∈ {1, 2}, we
considered λk ∈ {10−4, 10−3, 10−2, 5×10−1}. The impact of
these λk values on the coding performance is shown in Fig. 6
and Table I in terms of R-D and entropy results, respectively.
For the first multi-scale optimization approach, the best results
are obtained with λ1 = 10−2 at low bitrates and λ1 = 5×10−1

at higher bitrates. However, based on the R-D plots obtained
with the different images of both datasets, we observed that
the appropriate choice for the λ1 value may change from one
image to another. Regarding the second-multi-scale optimiza-
tion technique, it is important to note that using a single model
obtained with λ2 = 10−3 leads to a good coding performance
in terms of SSIM at different bitrates. However, and similar to
the first approach, it has been observed with the PieAPP metric
that the different test images may have various appropriate λ2
values. For these reasons, we propose to apply the four models

obtained with λk ∈ {10−4, 10−3, 10−2, 5 × 10−1} and then
select the best one for each target bitrate of the test images.
Note that these hybrid approaches, designated as FCNN-LS-
JL-ML1 and FCNN-LS-JL-ML2 in what follows, will result
in a negligible overhead (2 bits per image) that needs to be
sent to the decoder.
Unlike the R-D coding performance, the results of the pro-
posed multi-scale optimization techniques in terms of entropy,
shown in Table I, indicate that setting λ1 (or λ2) to 10−4

leads to the lowest entropy values for all the dataset images.
Therefore, it will be enough to employ a single model (cor-
responding to λ1 = λ2 = 10−4) in the context of lossless
compression.
• Influence of β̃(o)

j+1 parameters: We have also studied the
impact of the β̃(o)

j+1 parameter, used in the `
β̃
(o)
j+1

-norm arising
in (17), on the proposed FCNN-LS-JL-ML1 and FCNN-LS-
JL-ML2 methods. While the most commonly used criterion
consists in setting β̃

(o)
j+1 to 2, we have proposed here to use

adaptive β̃(o)
j+1 values, provided in the captions of Fig. 3, which

depend on the orientation of the detail wavelet subbands as
well as their resolution levels. Table II and Fig. 7 show the
coding performance of these methods in terms of entropy
and R-D results. Observe that using adaptive β̃(o)

j+1 parameters
yields better coding performance, especially in the context of
lossy compression.

2) Lossy coding performance:
An objective evaluation of the aforementioned coding methods
is first performed in the context of lossy compression. The
average R-D results, obtained with CLIC and Tecnick datasets,
are shown in Fig. 8. Note that higher SSIM values and
lower PieAPP values indicate better quality of reconstruction.
According to the PSNR values, JPEG2000 appears more per-
formant than some deep learning based image coding methods.
On the other hand, the SSIM plots show that most of these
deep learning approaches yields better results compared to
JPEG2000. For this reason, and based on the recent image
quality assessment studies showing the limitations of these
traditional metrics (as discussed in Section V-C), we proposed
to resort to a more recent perceptual metric (PieAPP), which
was found to be more accurate to judge the visual quality
of the decoded images [10]. Thus, the PieAPP metric con-
firms that most of deep learning based image compression
methods outperforms JPEG2000. Most importantly, the two
proposed multi-scale learning approaches, and in particular
the second (i.e., FCNN-LS-JL-ML2), lead to better results
compared to different existing deep learning techniques (ex-
cept iwave++ [24]). Note that the good performance obtained
with iwave++ [24] is due to the integration of a post-
processing model in the developed compression method. For
fairer evaluation, the proposed methods should be compared
to iwave [23] (rather than iwave++ [24]) since iwave only
focuses on the use of neural networks to improve lifting based
decomposition (as investigated in this paper). For instance,
by removing the Post-Processing (PP) module in iwave++
[24], the latter (designated by “iwave++ (w/o PP) [24]”)
becomes less performant than the proposed method FCNN-LS-
JL-ML2 as depicted in Fig. 9. Finally, our FCNN-LS-JL-ML2
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method is slightly worse than BPG in terms of PieAPP metric.
However, our method achieves a significant gain compared to
BPG in the lossless compression context as it will be shown
later.
In addition, the proposed method FCNN-LS-JL-ML2 has been
compared to the closely related work “iwave [23]” using
the Bjøntegaard metric. Table III.(a) shows the relative gains
at low, middle and high bitrates corresponding respectively
to the bitrates {0.07, 0.1, 0.15, 0.2}, {0.25, 0.3, 0.4, 0.5} and
{0.7, 0.8, 0.9, 1} bpp. Note that a negative value in terms of
bitrate saving (resp. PieAPP difference) indicates a decrease
of bitrate (resp. PieAPP) for the same PieAPP (resp. bitrate).
Thus, it can be seen that our proposed method achieves
significant bitrate savings at different bitrates. These bitrate
savings reach about 35%, 25%, and 16% at low, middle, and
high bitrates.
A subjective evaluation of the decoded images at different
bitrates is also conducted to confirm the good performance of
the proposed FCNN-based LS coding methods. Figures 10 and
11 illustrate some reconstructed images for various methods.
It can be seen that the proposed FCNN-LS-JL-ML2 based
coding method leads to a better visual reconstruction quality
compared to the other methods. In particular, our reconstructed
images present better contrast while preserving sharp edges.

3) Lossless coding performance:
Since our FCNN-LS based methods are applicable to lossy-to-
lossless coding, they have also been evaluated in the context
of lossless compression. Table IV provides the average bitrate
values of different lossless coding methods for the CLIC,
Tecnick and Kodak image datasets. It can be first observed
that the modified version of iwave [23] is less performant
than JPEG2000 and so, it is not efficient for lossless image
coding. However, our proposed joint learning approaches
significantly outperform iwave [23]. Moreover, they achieve
a gain of about 0.15 bpp compared to the JPEG2000 coding
standard. Finally, our methods are more performant than BPG
yielding a gain of about 0.1 bpp, 0.45 bpp and 0.25 bpp
on CLIC, Tecnick and Kodak datasets, respectively. It should
be emphasized that the two variants of the proposed multi-
scale optimization technique (FCNN-LS-JL-ML1 and FCNN-
LS-JL-ML2) lead to similar lossless coding performance. Note
that the comparison with other variants of FCNN-based lifting
schemes will be later discussed in the ablation study.

4) Ablation study:
This study aims to illustrate the role of the different loss
functions used to learn the involved prediction and update
models in our FCNN-based lifting architecture. In this respect,
the proposed joint learning techniques FCNN-LS-JL-ML1 and
FCNN-LS-JL-ML2, based on the loss functions L(p,u)

1 (19)
and L(p,u)

2 (21), have been compared to the two following
approaches:

• FCNN-LS-IL where an Independent Learning ap-
proach [10] is applied using the prediction and approxi-
mation errors based loss functions L̃(p) and L̃(u) defined
in (4) and (8), respectively.

• FCNN-LS-JL-SL where the FCNN prediction models are
jointly learned using a single level optimization tech-

nique [25] (i.e., by minimizing a weighted sum of the
loss functions L̃(p) evaluated on a given resolution level).

For fair comparison, since the proposed joint learning tech-
niques have been designed using adaptive β̃

(o)
j+1 values, the

independent and single level optimization techniques have also
been evaluated using the same β̃(o)

j+1 values instead of setting
them to 2 as performed in [10] and [25]. Let us recall that the
benefits of using adaptive β̃(o)

j+1 parameters has been shown at
the beginning of Section V-D and Fig. 7.
Fig. 12 illustrates the R-D performance of the different learn-
ing strategies. It can be noticed that the single level learning
approach is slightly less performant than the independent
strategy, which suggests that the joint optimization of only
the prediction models (per resolution level) is still suboptimal.
Thus, by resorting to a multi-level optimization technique
and combining the prediction and update loss functions, the
FCNN-LS-JL-ML1 improves the R-D results. Finally, further
improvements are achieved using the R-D approximation
based loss function (i.e., FCNN-LS-JL-ML2). The latter has
also been compared to the independent learning approach
FCNN-LS-IL using the Bjøntegaard metric. Table III.(b)
shows the relative gains at low, middle, and high bitrates (using
the same bitrates defined with Table III.(a)). The proposed
method outperforms the independent learning approach and
reaches a bitrate saving of about 6%, 9%, and 14% at low,
middle, and high bitrates.
Moreover, in the context of lossless compression, Table IV
shows that the single level optimization technique (i.e “FCNN-
LS-JL-SL”) results in a slight improvement of 0.02 bpp
compared to the independent learning approach (i.e “FCNN-
LS-IL”). This gain reaches 0.1 bpp by applying the multi-level
optimization technique.

5) Computational complexity analysis:
Finally, the proposed method is evaluated and compared to
the recent related work “iwave++ [24]” in terms of encod-
ing/decoding time, number of model parameters, and number
of floating point operations per second (FLOPs). Table V
illustrates this comparison for an image of size 1200 × 1200
using an Intel Xeon(R) processor (4 GHz) and a Python
implementation. It can be observed that “iwave++ [24]” em-
ploys a large amount of parameters (17.91 M) and FLOPs
(5595 G). However, the proposed FCNN-LS-JL-ML2 method
uses only 167244 trainable parameters and 43,2 GFLOPs.
Moreover, the proposed method requires 8.5/3.2 seconds for
the encoding/decoding process, which is about 2.7 times
faster than “iwave++ [24]”. The runtime of our method is
reduced to 0.3/0.08 seconds when the code is executed on
an NVIDIA Tesla V100 32Gb GPU. The main difference in
the computational complexity between the two architectures is
explained by the fact that “iwave++ [24]” uses neural networks
for three main modules including lifting based decomposition,
entropy coding, and post-processing, while our method only
focuses on the first module. It should be noted here that the
computational complexity has been only given for FCNN-LS-
JL-ML2 in Table V since it is the same for all the proposed
FCNN-LS. Indeed, the different FCNN-LS schemes use the
same architecture and the main difference between them
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only concerns the learning approach of the FCNN prediction
and update models. While the different end-to-end learning
methods often use a specific model for each point of the
R-D curve which will yield multiple models covering low,
middle and high bitrates, it is worth pointing out that the
proposed method has the additional main advantage of learning
a single model that can be used at different bitrates as shown
at the beginning of Section V-D and Fig. 6. Therefore, the
proposed method corresponds to a light model and allows a
fast encoding/decoding process while being suitable for lossy-
to-lossless compression.
All these results confirm the effectiveness of the proposed
FCNN design strategies, and the flexibility offered by the joint
learning approaches.

VI. CONCLUSION AND PERSPECTIVES

Novel learning approaches for the design of FCNN based
lifting coding schemes have been proposed in this paper. While
a straightforward approach consists in separately learning
all the involved FCNN models, we have investigated the
benefits of joint learning approaches. These approaches allow
us to take into account the dependencies existing between the
different models as well as the multiresolution aspect of the
LS architecture. In doing so, an entropy based loss function
and a multi-scale optimization technique have been developed.
Experimental results have shown the effectiveness of the
proposed approaches in the context of both lossy and lossless
compression. In future work, an extension of the proposed
FCNN-LS architecture to more sophisticated structures, like
vector lifting scheme [56], could be envisaged to deal with
multi-component images. Another road of investigation could
be an end-to-end learning approach taking into account the
quantization and entropy coding modules.

TABLE I
AVERAGE ENTROPY RESULTS (IN BPP) OF FCNN-LS-JL-ML1 AND

FCNN-LS-JL-ML2 WITH DIFFERENT λk VALUES, WITH k ∈ {1, 2}, FOR
THE CLIC AND TECNICK (SECOND COLUMN) IMAGE DATASETS.

Method CLIC Tecnick
FCNN-LS-JL-ML1 (λ1 = 5× 10−1) 4.14 3.77

FCNN-LS-JL-ML1 (λ1 = 10−2) 4.10 3.74
FCNN-LS-JL-ML1 (λ1 = 10−3) 4.09 3.73
FCNN-LS-JL-ML1 (λ1 = 10−4) 4.09 3.73

FCNN-LS-JL-ML2 (λ2 = 5× 10−1) 4.39 3.95
FCNN-LS-JL-ML2 (λ2 = 10−2) 4.18 3.79
FCNN-LS-JL-ML2 (λ2 = 10−3) 4.12 3.75
FCNN-LS-JL-ML2 (λ2 = 10−4) 4.10 3.74

TABLE II
AVERAGE ENTROPY (IN BPP) RESULTS OF FCNN-LS-JL-ML1 AND

FCNN-LS-JL-ML2 WITH DIFFERENT β̃
(o)
j+1 VALUES FOR THE CLIC AND

TECNICK IMAGE DATASETS.

Method CLIC Tecnick
FCNN-LS-JL-ML1 (β̃(o)

j+1 = 2) 4.13 3.75
FCNN-LS-JL-ML1 4.09 3.73

FCNN-LS-JL-ML2 (β̃(o)
j+1 = 2) 4.14 3.76

FCNN-LS-JL-ML2 4.10 3.74

TABLE III
BJØNTEGAARD METRIC: THE AVERAGE PIEAPP DIFFERENCE AND THE

BITRATE SAVING.

(a) The gain of “FCNN-LS-JL-ML2” w.r.t “iwave [23]”.
bitrate saving (in %) PieAPP difference

Datasets low middle high low middle high
CLIC -35.42 -25.04 -16.18 -0.42 -0.20 -0.06
Tecnick -32.55 -14.98 -9.01 -0.29 -0.08 -0.02

(b) The gain of “FCNN-LS-JL-ML2” w.r.t “FCNN-LS-IL”.
bitrate saving (in %) PieAPP difference

Datasets low middle high low middle high
CLIC -5.91 -9.41 -9.50 -0.06 -0.07 -0.04
Tecnick 0.72 -3.38 -13.95 0.01 -0.02 -0.04

TABLE IV
LOSSLESS COMPRESSION PERFORMANCE IN TERMS OF AVERAGE BITRATE

(IN BPP).

Method CLIC Tecnick Kodak
JPEG2000 4.16 3.72 4.67

BPG 4.09 4.03 4.73
iwave [23] 4.66 4.17 4.99

FCNN-LS-IL 4.09 3.64 4.58
FCNN-LS-JL-SL 4.07 3.62 4.56

FCNN-LS-JL-ML1 4.00 3.58 4.49
FCNN-LS-JL-ML2 4.00 3.58 4.49

TABLE V
COMPLEXITY OF THE PROPOSED METHOD.

Criterion iwave++ [24] FCNN-LS-JL-ML2
Number of parameters 17.91 M 167244

FLOPs 5595.4 G 43.2 G
Encoding time 22.3 s 8.5 s
Decoding time 8.65 s 3.2 s
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Fig. 6. Average R-D results of FCNN-LS-JL-ML1 (first row) and FCNN-LS-JL-ML2 (second row) with different λk values, with k ∈ {1, 2}, for the CLIC
(first column) and Tecnick (second column) image datasets.
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Fig. 7. Average R-D results of FCNN-LS-JL-ML1 and FCNN-LS-JL-ML2 with different β̃(o)
j+1 values for the CLIC (first column) and Tecnick (second

column) image datasets.
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Fig. 8. Average R-D results of the CLIC (first column) and Tecnick (second column) image datasets using PieAPP, SSIM and PSNR metrics.
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Fig. 9. Removing the post-processing (PP) module in iwave++ [24] and
comparison with the proposed method: R-D results for the CLIC dataset.

(a) (b): SSIM=0.81, PieAPP=3.79

(c): SSIM=0.85, PieAPP=1.61 (d): SSIM=0.84, PieAPP=1.47

(e): SSIM=0.86, PieAPP=1.24 (f): SSIM=0.89, PieAPP=1.13

Fig. 10. (a) Original test image (image 21 of the CLIC dataset). The
reconstructed ones at 0.1 bpp using: (b) JPEG2000, (c) CNN-LS [23],
(d) FCNN-LS-JL-SL [25], (e) FCNN-LS-JL-ML1, (f) FCNN-LS-JL-ML2.
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