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Abstract

Solving bilevel optimization (BLO) problems to global optimality is generally in-
tractable. A common surrogate is to compute a hyper-stationary point—a stationary
point of the hyper-objective function obtained by minimizing or maximizing the
upper-level objective over the lower-level solution set. Existing methods, however,
either provide weak notions of stationarity or require restrictive assumptions to
guarantee the smoothness of hyper-objective functions. In this paper, we eliminate
these impractical assumptions and show that strong (Clarke) hyper-stationarity
remains computable even when the hyper-objective is nonsmooth. Our key in-
gredient is a new structural property, called set smoothness, which captures the
variational dependence of the lower-level solution set on the upper-level variable.
We prove that this property holds for a broad class of BLO problems and ensures
weak convexity (resp. concavity) of pessimistic (resp. optimistic) hyper-objective
functions. Building on this foundation, we show that a zeroth-order algorithm
that computes approximate Clarke hyper-stationary points with non-asymptotic
convergence guarantees. To the best of our knowledge, this is the first compu-
tational guarantee for Clarke-type stationarity in nonsmooth BLO. Beyond this
specific application, the set smoothness property emerges as a structural concept
of independent interest, with potential to inform the analysis of broader classes of
optimization and variational problems.

1 Introduction

Bilevel optimization (BLO) models hierarchical decision-making with two agents acting sequentially
[13, 14]. The follower responds to the leader’s decision by solving a lower-level optimization problem,
while the leader seeks an optimal strategy to minimize its upper-level objective subject to this reaction.
The follower’s attitude plays a central role: If the follower is favorable (resp. adverse) to the leader,
the resulting BLO is termed optimistic (resp. pessimistic) [13, 51, 36]. Formally, the optimistic and
pessimistic BLO take the following forms:
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Optimistic BLO:

min
x∈Rm

min
y∈Rn

F (x,y)

subject to y ∈ argmin
y′∈Rn

f(x,y′),

∣∣∣∣∣
Pessimistic BLO:

min
x∈Rm

max
y∈Rn

F (x,y)

subject to y ∈ argmin
y′∈Rn

f(x,y′).

These formulations appear in diverse domains such as Stackelberg games [14, 4, 50], hyperparameter
optimization [17, 3, 6], reinforcement learning [29, 55, 21], and interdiction games [36, 5], among
others. A standard approach to tackle such nested problems is to reformulate them into single-level
problems via hyper-objective functions. Let S(x) := argminy′∈Rn f(x,y′) denote the follower’s
optimal response set. The optimistic and pessimistic hyper-objectives are then defined as

φo(x) := min
y∈S(x)

F (x,y), φp(x) := max
y∈S(x)

F (x,y). (1)

Solving an optimistic (resp. pessimistic) BLO is therefore equivalent to minimizing the corresponding
hyper-objective φo (resp. φp).

Despite the single-level reformulation, the resulting hyper-objective functions are highly nonconvex
[8, 31], which makes global optimization intractable. In practice, researchers therefore focus on
finding stationary points rather than global minimizers, using algorithms such as implicit gradient
descent [17, 18, 3] and fully first-order methods [32, 21]. These approaches assume that the lower-
level problem is strongly convex, ensuring a unique solution, i.e., S(x) := {y⋆(x)}. Under this
assumption, the hyper-objective reduces to a smooth function φ(x) := F (x,y⋆(x)) [19]. One can
then seek an ϵ-approximate hyper-stationary point satisfying ∥∇φ(x)∥ ≤ ϵ. Convergence is well
understood under smoothness and uniqueness assumptions [19], but these conditions rarely hold in
practice. With multiple lower-level solutions, the existing methods break down.

To move beyond the singleton lower-level solution set, Kwon et al. [32] introduced a penalty-
based framework that allows multiple follower solutions. Building on this idea, Chen et al. [8]
obtained a refined scheme with near-optimal convergence. However, ensuring smoothness of the
induced hyper-objective still demands strong regularity: The penalized model function hσ(x,y) :=
σF (x,y) + f(x,y) must satisfy, uniformly in σ ∈ [0, σ̄], an error bound or a Polyak–Łojasiewicz
(PŁ) condition in y. Such requirements are often unrealistic in practice, as F and f typically
have mismatched structures. More fundamentally, the Kurdyka–Łojasiewicz (KŁ) exponent is not
preserved under summation [23], so smoothness of hyper-objective functions cannot be guaranteed.

Without relying on these stringent conditions, Chen et al. [7] and Khanduri et al. [28] proposed algo-
rithms for nonsmooth hyper-objectives; however, by their zero-respecting nature (cf. [8, Thm. 3.2]),
they cannot in general approximate hyper-stationary points and thus only guarantee convergence to
(approximate) Goldstein stationary points [20]—a relatively weak notion. By contrast, a separate
line of work studies alternative stationarity concepts via reformulations [35, 52, 38, 1, 39]; yet these
notions (e.g., KKT stationarity [37, Sec. 2.1] and penalization stationarity [54, Sec. 4.2]) are posed
jointly in (x,y) and do not ensure that, for a stationary pair (x̄, ȳ), the lower-level solution ȳ actually
minimizes or maximizes F (x̄,y) over S(x̄).

Given the above discussion, existing algorithms either fail to approximate a meaningful hyper-
stationary point or rely on stringent assumptions to do so. This naturally leads to a fundamental
question:

Can strong hyper-stationarity be computed in general settings
where multiple lower-level solutions exist?

Addressing this question is challenging for a simple reason chain. When the lower level admits multi-
ple solutions, the induced hyper-objective is typically nonsmooth and, under standard assumptions,
no better than Lipschitz continuous [7, Corollary 6.1]. At precisely this level of regularity, computing
(stronger) approximate Clarke stationary points is, in general, computationally intractable [30, 46].
Thus Lipschitz regularity alone is too weak for algorithmic purposes, motivating new, verifiable
structural conditions that make meaningful hyper-stationarity attainable.

Our Contributions. In this paper, we address the above challenges and show that (strong) Clarke
stationarity of hyper-objective functions is computable for a broad class of BLO problems. As our
key contribution, we identify a hidden weak convexity/concavity structure of the hyper-objective
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in nonconvex–PŁ BLO,1 which places the analysis within the well-studied weakly convex/concave
framework. Within this setting, approximate hyper-stationarity admits a natural Clarke-subdifferential
characterization that we leverage to obtain computable guarantees.

The foundation of our analysis is a new concept, set smoothness (Definition 3), which extends
classical smoothness to set-valued mappings and encompasses several variational regularity notions
[40, 15, 7, 27]. Building on this notion, we prove two complementary statements. First, if the
lower-level solution mapping is set smooth, then the optimistic (resp. pessimistic) hyper-objective
is weakly concave (resp. weakly convex). Second, a broad and verifiable condition guarantees set
smoothness: When the lower-level function satisfies an error bound condition—equivalently, the PŁ
condition—the solution mapping is set smooth. Together, these statements provide checkable criteria
under which the hyper-objective inherits a weak convexity/concavity structure.

Once the hidden weak convexity/concavity of the hyper-objective is in place, approximate Clarke
hyper-stationary points can be computed by a simple inexact zeroth-order scheme. In the weakly
convex case, results based on the Moreau envelope [12, 56, 41] provide convergence and complexity
guarantees. For the weakly concave case, however, no existing algorithmic guarantee is known, and
the absence of a Moreau-type smoothing technique makes the analysis significantly more challenging.
We overcome this by developing a novel convergence proof based on a Brøndsted–Rockafellar-
type approximation result [43, Theorem 2], and establish, to the best of our knowledge, the first
general computational guarantee for finding approximate Clarke stationary points of nonsmooth
hyper-objective functions.

Overall, these developments, particularly set smoothness, provide a principled foundation for the
computability of hyper-stationarity in BLO and open new avenues for other structured nonsmooth
optimization problems.

Organization. This paper is organized as follows. Sec. 2 collects assumptions and preliminaries.
Sec. 3 introduces set smoothness and uses it to reveal a weak convexity/concavity structure of
the hyper-objective. Sec. 4 presents an inexact zeroth-order scheme and establishes convergence
guarantees for computing approximate Clarke hyper-stationary points. Sec. 5 concludes with final
remarks.

Notation. The notation used in this paper is mostly standard. We use ∥x∥ to denote the Euclidean
norm of a vector x and ∥A∥ to denote the l2 norm of a matrix A. We use B(z, r) to denote the ball
centering at z with radius r, i.e., {x : ∥x− z∥ ≤ r}. For a scalar α ∈ R and a set S ⊆ Rn, we use
α · S to denote their product {αx : x ∈ S}. We define the distance from a vector x ∈ Rn to S by
dist(x,S) := minz∈S ∥x− z∥ and the projection of x onto S by ΠS(x) := argminz∈S ∥x− z∥.
We use Conv(S) to denote the convex hull of S . For two sets S1,S2 ⊆ Rn, define their Minkowski
sum by S1 + S2 := {x1 + x2 : x1 ∈ S1, x2 ∈ S2}, and define their Hausdorff distance (with
respect to ∥ · ∥) by

dH(S1,S2) := max

{
sup

x1∈S1

dist(x1,S2), sup
x2∈S2

dist(x2,S1)
}
.

For a differentiable function g : Rm × Rn → R, we use ∇g to denote its gradient w.r.t. the joint
variables (x,y) and∇xg (resp. ∇yg) to denote its gradient w.r.t. x (resp. y).

2 Preliminaries
In this paper, we focus on nonconvex-PŁ BLO problems and make the following assumptions:

Assumption 1 (Lower-level Functions).

(A1). The function f is Lf -smooth and twice differentiable. Moreover, ∇∇yf is Hf -Lipschitz
continuous, i.e., for all x1,x2 ∈ Rm and y1,y2 ∈ Rn,

∥∇∇yf(x1,y1)−∇∇yf(x2,y2)∥ ≤ Hf (∥x1 − x2∥+ ∥y1 − y2∥) .

(A2). The solution set S(x) = argminy∈Rn f(x,y) is nonempty closed convex for all x ∈ Rm.

1That is, BLO problems with a nonconvex upper-level objective and a lower-level function satisfying the PŁ
condition.
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(A3). There exists a scalar τ > 0 such that for all x ∈ Rm and y ∈ Rn,
dist(y,S(x)) ≤ τ∥∇yf(x,y)∥.

Assumption 2 (Upper-level and Hyper-objective Functions).

(B1). The function F is MF -Lipschitz continuous and LF -smooth.

(B2). There exists x⋆ ∈ Rm such that φo(x
⋆) > −∞ (resp. φp(x

⋆) < +∞) for the optimistic
(resp. pessimistic) setting.

Assumptions (A1), (A2), and (B1) are standard in BLO settings; see, e.g., [21, 8, 19, 52, 1] and the
references therein. Assumption (B2) guarantees that the hyper-objective functions are well-defined
and is imposed without loss of generality. Assumption (A3) imposes an error bound in the lower-level
variable that holds uniformly over the upper-level parameter. This requirement is strictly weaker
than the strong convexity-in-y conditions commonly used in prior work [18, 22, 21], as it allows the
solution set argminy f(x,y) to be multi-valued. Under Lf–smoothnes f in y, (A3) implies the PŁ
inequality

f(x,y)− min
y∈Rn

f(x,y) ≤
τL2

f

2
∥∇yf(x,y)∥2 for all x ∈ Rm,y ∈ Rn,

vice versus [33, Theorem 3.1]. Hence, our setting aligns with the widely adopted nonconvex–PŁ
framework for BLO [45, 52, 35].

Under the standing assumptions, we begin with the solution mapping S , which under (A3) admits the
following equivalent characterization:

S(x) = {y ∈ Rn : ∇yf(x,y) = 0} . (2)
Furthermore, under Assumption 1, the solution mapping S as well as the hyper-objective functions
φo and φp are the Lipschitz continuous.

Lemma 1 (Lipschitz Continuity of S(x)). (cf. [7, Proposition 6.1]) Under Assumption 1, the lower-
level solution set function is MS -Lipschitz continuous with MS = Lfτ , i.e., for any x1,x2 ∈ Rm,

dH (S(x1),S(x2)) ≤MS∥x1 − x2∥.

Lemma 2. (cf. [7, Proposition 5.3]) Suppose that Assumption 1 and 2 hold. For the optimistic (resp.
pessimistic) setting, φo (resp. φp) is Mφ-Lipschitz continuous with Mφ = MF (1 + Lfτ).

The Lipschitz continuity of the hyper-objective functions ensures that the Clarke and Goldstein
subdifferentials are well defined.

Definition 1 (Clarke Subdifferential). (cf. [9, Definition 1.1]) For a Lipschitz continuous function
g : Rm → R, the Clarke subdifferential of g at a point x ∈ Rm is defined by

∂g(x) := Conv ({s ∈ Rm : ∃ x′ → x, ∇g(x′) exists, ∇g(x′)→ s}) .
We say that x is an (ϵ, δ)-approximate Clarke stationary point of g if

dist

0,
⋃

z∈B(x,δ)

∂g(z)

 ≤ ϵ.

Remark 1. The Clarke subdifferential ∂g reduces to the gradient ∇g when g is smooth. Moreover,
if g is convex, then ∂g(x) coincides with the vanilla subgradients defined by {s : g(z) ≥ g(x) +
sT (z − x) ∀ z ∈ Rm}.
Then, the Goldstein δ-subdifferential at x can be constructed by the convex hull of the Clarke
subdifferentials taken over a δ-neighborhood of x. Here is the formal definition of Goldstein
δ-subdifferential.

Definition 2 (Goldstein δ-Subdifferential). (cf. [20, Definition 2.2]) For a Lipschitz continuous
function g : Rm → R and a scalar δ ≥ 0, the Goldstein δ-subdifferential of g at a point x ∈ Rm is
defined by

∂δg(x) := Conv

 ⋃
z∈B(x,δ)

∂g(z)


 .

We say that x is an (ϵ, δ)-approximate Goldstein stationary point of g if dist (0, ∂δg(x)) ≤ ϵ.
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Leveraging the Lipschitz continuity of the hyper-objective, recent work has established the com-
putability of (ϵ, δ)–Goldstein hyper-stationary points [7]. However, Goldstein stationarity is strictly
weaker and does not, in general, imply Clarke stationarity. Indeed, there exists a convex, 2-
Lipschitz function g̃ : R2 → R and a point x such that x is (0, δ)–Goldstein stationary while
minz∈B(x,δ) dist(0, ∂g̃(z)) ≥ 2√

5
; see [47, Proposition 2.7]. To obtain stronger algorithmic guar-

antees for hyper-objective minimization, we therefore focus on computing Clarke stationary points
(and their (ϵ, δ)–approximate variants).

Despite the well-definedness, approximate Clarke stationarity is not achievable in finite time for
general Lipschitz functions [30, 46]. A sufficient condition for its computability is the weak convexity
of g [12]. To elaborate on this, we review some basic properties of weakly convex functions. Given
a function g : Rm → R and a scalar r > 0, we say that g is r-weakly convex if the function
x 7→ g(x) + r

2∥x∥
2 is convex. The following equivalent characterizations are useful for our analysis.

Lemma 3 (Equivalent Characterizations of Weak Convexity). (cf. [11, Theorem 3.1] and [2,
Proposition 2.2]) For a Lipschitz continuous function g : Rm → R, the following statements are
equivalent:

(i) g is r-weakly convex.

(ii) For any θ ∈ [0, 1] and x1,x2 ∈ Rm, we have

g (θx1 + (1− θ)x2) ≤ θg(x1) + (1− θ)g(x2) +
r

2
θ(1− θ)∥x1 − x2∥2.

(iii) For any x1,x2 ∈ Rm with ∂g(x1) ̸= ∅, and all subgradients v ∈ ∂g(x1), we have

vT (x2 − x1) ≤ g(x2)− g(x1) +
r

2
∥x2 − x1∥2.

For an r–weakly convex function g : Rm → R with γ ∈ (0, 1
r ), we define its Moreau envelope and

the proximal mapping by

gγ(x) := inf
z∈Rn

{
g(z) +

1

2γ
∥x− z∥2

}
, proxγ,g(x) := argmin

z∈Rn

{
g(z) +

1

2γ
∥x− z∥2

}
.

Clearly, proxγ,g(x) is single-valued and well-defined, when g is r-weakly convex and γ < 1
r . Next,

we provide the standard result, which establishes a stationarity measure based on the gradient of the
Moreau envelope.

Lemma 4 (Properties of Moreau Envelope). (cf. [56, Proposition 2.1]) Suppose that g : Rn → R is
a r-weakly convex function and γ < 1

r . The following hold:

(i) gγ(x) ≤ g(x)− 1−γr
2γ

∥∥x− proxγ,g(x)
∥∥2.

(ii) γ dist (0, ∂g(x̂)) ≤
∥∥x− proxγ,g(x)

∥∥ ≤ γ
1−γr dist (0, ∂g(x)).

(iii) x = proxγ,g(x) if and only if 0 ∈ ∂g(x).

(iv) ∇gγ(x) = 1
γ

(
x− proxγ,g(x)

)
.

Lemma 4 (ii) and (iv) show that ∥∇gγ(x)∥ equals zero if and only if x = proxγ,g(x) and 0 ∈ ∂g(x).
Thus ∥∇gγ(x)∥ is a valid Clarke stationarity measure. Moreover, by Lemma 4 (iv), if ∥∇gγ(x)∥ ≤ ϵ,
then ∥proxγ,g(x)− x∥ = γ∥∇gγ(x)∥ ≤ γϵ, hence dist

(
0, ∂g(proxγ,g(x))

)
≤ ϵ. Equivalently,

∥∇gγ(x)∥ ≤ ϵ =⇒ dist

0,
⋃

z∈B(x,γϵ)

∂g(z)

 ≤ ϵ. (3)

Since Davis and Drusvyatskiy [12] establish non-asymptotic rates for finding x with ∥∇gγ(x)∥ ≤ ϵ
when g is weakly convex, (3) implies that (ϵ, γϵ)–approximate Clarke stationarity is computable in
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this regime. This observation motivates us to establish weak–convexity–type structure for hyper-
objectives; see Sec. 3.

Before leaving this section, we record weak concavity, a notion closely related to weak convexity.
For a function g : Rn → R, we say that g is r-weakly convex if −g is r-weakly convex. We have the
following facts.

Fact 1. If a function g : Rm → R is r-weakly concave, then for any x1,x2 ∈ Rm, and v ∈ ∂g(x1),
we have g(x2) ≤ g(x1) + vT (x2 − x1) +

r
2∥x2 − x1∥2.

Fact 2. If a function g : Rm → R is r-smooth, then g is r-weakly convex and r-weakly concave, and
the following inequality holds:

|θg(x1) + (1− θ)g(x2)− g (θx1 + (1− θ)x2)| ≤
r

2
θ(1− θ)∥x1 − x2∥2.

3 Unveiling Hidden Structural Properties
This section is devoted to unveiling the hidden structural properties of the hyper-objective functions,
which is the key contribution of this paper. Recall that the hyper-objective functions in (1) are defined
by minimizing/maximizing the upper-level function w.r.t. y over the parameterized set S(x). We
are motivated to investigate the property of the set-valued function S . Inspired by the smoothness of
real-valued functions, we propose a novel concept of smoothness for set-valued functions, formalized
in Definition 3. As we will show, the lower-level solution set function S satisfies this smoothness
property, which in turn ensures the weak concavity (resp. convexity) of φo (resp. φp).

Definition 3 (Set Smoothness). For a set-valued function Y : Rm ⇒ Rn with a convex domain
dom(Y) ⊆ Rm, we say that it is L-smooth if for any x1,x2 ∈ dom(Y), θ ∈ [0, 1], and all
y ∈ Y(θx1 + (1− θ)x2), there exist y1 ∈ Y(x1) and y2 ∈ Y(x2) such that

∥θy1 + (1− θ)y2 − y∥ ≤ L

2
θ(1− θ)∥x1 − x2∥2; (4)

∥y1 − y2∥2 ≤ L∥x1 − x2∥2. (5)

The condition (4) can be viewed as a natural extension of the gradient-Lipschitz smoothness condition
for real-valued functions to the setting of set-valued mappings. It guarantees that a convex combination
of y1 ∈ Y(x1) and y2 ∈ Y(x2) provides a close approximation to a point in Y(θx1 + (1− θ)x2),
with an error that decays quadratically in ∥x1 − x2∥. This yields the following set inclusion:

Y (θx1 + (1− θ)x2) ⊆ θY(x1) + (1− θ)Y(x2) +
L

2
θ(1− θ)∥x1 − x2∥2 · B(0, 1). (6)

Intuitively, (5) enforces a consistent branch selection between Y(x1) and Y(x2): The chosen
representatives y1 and y2 must remain aligned (Lipschitz-close) as the input varies, thereby excluding
cross-branch pairings that could make the interpolation in (4) hold trivially while the underlying
geometry is severely mismatched.
Example 1 (Why the condition (5) is needed: A trivialization for the condition (4)). Define the set-
valued map Y : R ⇒ R2 by Y(x) = {(z, x) : z ∈ R}. Pick x1 = a > 0, x2 = −a, and θ = 1

2 ; then
θx1 + (1 − θ)x2 = 0 and Y(0) = {(z, 0) : z ∈ R}. Choose y = 0 ∈ Y(0), y1 = (K, a) ∈ Y(a),
and y2 = (−K,−a) ∈ Y(−a). We have

1
2y1 +

1
2y2 = y,

so the condition (4) holds with zero error even though ∥y1 − y2∥ = 2
√
a2 +K2 can be made

arbitrarily large as K →∞. Hence the condition (4) alone does not preclude severely mismatched
pairings on a convex domain. In contrast, (5) enforces ∥y1 − y2∥2 ≤ L∥x1 − x2∥2 = 4La2, which
forces K2 ≤ (L − 1)a2 and thereby rules out such cross-branch selections unless the Lipschitz
modulus is correspondingly large. □

With the notion of set smoothness in place, we now present our first main theoretical result. It shows
that set smoothness serves as the key vehicle for establishing weak convexity/concavity of parametric
optimization problems with coupled constraints: Under mild Lipschitz-type assumptions, the induced
value function inherits weak convexity (or weak concavity). This is formalized in Theorem 1 below.
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Theorem 1 (Implication of Set Smoothness). Consider a real-valued function g : Rm×Rn → R and
a set-valued function Y : Rm ⇒ Rn. Let ϕ(x) := maxy∈Y(x) g(x,y) andD := {x : ϕ(x) > −∞}.
Assume that D is a nonempty closed convex set, Y is LY -smooth on D, and g is Mg-Lipschitz
continuous w.r.t. y, Lg-smooth onD×Conv

(⋃
x∈D Y(x)

)
. Then, the function ϕ is ρ-weakly convex

with ρ = MgLY + Lg(1 + LY).

We now instantiate the framework in the bilevel setting. Our first step is to certify set smoothness
for the lower-level solution map. Under the error-bound (EB) condition in Assumption 1 (A3),
the mapping S : x 7→ argminy∈Rn f(x,y) is LS-smooth (Theorem 2). Combining this with
Theorem 1 shows that the pessimistic hyper-objective φp inherits weak convexity (resp. the optimistic
φo inherits weak concavity).

Theorem 2 (EB Implies Set Smoothness). If a function f : Rm × Rn → R satisfies Assumption
1, then its associated solution set function S : x 7→ argminy∈Rn f(x,y) is LS-smooth with
LS = max{2Hfτ(1 + 9L2

fτ
2), 4L2

fτ
2}.

Proof idea (why residual backfilling is essential) Fix x1,x2 and θ ∈ (0, 1), and set xθ :=
θx1 + (1− θ)x2. Given any y ∈ S(xθ), our goal is to select y1 ∈ S(x1) and y2 ∈ S(x2) so that
(4) and (5) hold. A natural choice is to project y onto the endpoint fibers, yielding ȳi := ΠS(xi)(y)
for i = 1, 2. Using Lemma 1, it is easy to see that this naive selection satisfies (5).

However, even when each fiber S(x) is convex, the midpoint ȳθ := θ ȳ1+(1−θ) ȳ2 may correspond,
at xθ, to a different local selection of the set-valued map S(·) than the given y ∈ S(xθ). Consequently,
in general multi-solution settings the naive midpoint error can be first-order,

∥ȳθ − y∥ = Θ
(
∥x1 − x2∥

)
,

which motivates an additional correction to synchronize the selections.

We therefore align the midpoint and backfill the residual: First project the naive midpoint to the
middle fiber, ŷ := ΠS(xθ)(ȳ

θ), and then use the residual y− ŷ to refine the endpoint representatives:

yi := ΠS(xi)

(
ȳi + (y − ŷ)

)
, i = 1, 2.

This construction cancels the first-order branch mismatch in the convex combination and leaves only
a quadratic remainder. Consequently, (4) holds while (5) remains valid.

Remark 2. Think of S(x) as a family of convex “fibers”. The direct projections ȳ1, ȳ2 may live on
selections that are not synchronized with the selection containing y, so their convex combination
carries a first-order drift. Projecting ȳθ to S(xθ) identifies the correct selection at the midpoint;
adding the same residual y − ŷ to both endpoints moves them to the same selection as y, making the
first-order terms cancel in the average and exposing the desired O(∥x1 − x2∥2) behavior.

Theorem 2 is not limited to the lower-level problem of BLO but applies to general parametric
optimization problems. The established set smoothness property offers new insights into the structure
of the solution mapping, which goes beyond the variational conditions considered in the literature
[40, 27, 15, 7, 53].

Remark 3 (Local Conditions are Sufficient). Suppose the solution mapping S is defined on a bounded
convex domain D ⊆ Rm. To ensure Theorem 2, it suffices that Assumption 1 holds on the set D × Y ,
where

Y = Conv

( ⋃
x∈D
S(x)

)
+ 1

2 MS diam(D)B(0, 1).

The following simple example shows that the set smoothness of S does not, in general, require
Assumption 1. This suggests that alternative sufficient conditions may guarantee set smoothness;
identifying such conditions is an interesting direction for future work.
Example 2. Consider f : R2 → R defined by f(x, y) = g(sinx + y), where g : R → R has a
nonempty set of minimizers V = argminz∈R g(z). Then the solution set admits a closed form:

S(x) = argmin
y∈R

f(x, y) = V − sinx := { v − sinx : v ∈ V }.
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In particular, S is 1-smooth in the sense of Definition 3 (since it is a translation of the fixed set V by
the scalar − sinx), even though f need not satisfy Assumption 1. □

With Theorems 1 and 2 in place, we now state our main result on the weak convexity/concavity of the
hyper-objective φo (resp. φp).

Theorem 3 (Weak convexity/concavity of the hyper-objectives). Assume Assumptions 1 and 2. Let
LS be the set-smoothness modulus of S from Theorem 2, and define ρ := MF LS + LF (1 + LS).
Then the following hold:

(i) The optimistic hyper-objective φo is ρ-weakly concave.

(ii) The pessimistic hyper-objective φp is ρ-weakly convex.

Proof of Theorem 3. Theorem 2 guarantees that the set-valued function S is LS-smooth. Then, the
result (ii) directly follows from Theorem 1. Hence, we only need to prove (i). Note that

−φo(x) = − min
y∈S(x)

F (x,y) = max
y∈S(x)

−F (x,y).

We see that −φo is ρ-weakly convex by Theorem 1. It follows that φo is ρ-weakly concave.

Theorem 3 establishes the weak concavity/convexity of the hyper-objectives in nonconvex–PŁ bilevel
optimization (BLO). This stands in contrast to classical results (e.g., [19, Lemma 2.2]), which impose
strong convexity of the lower level to obtain smooth hyper-objectives. Our result is significant because
it places the minimization of these generally nonsmooth hyper-objectives within the framework of
weakly concave/convex optimization. As a consequence, computing approximate Clarke hyper-
stationary points becomes tractable—an avenue we pursue in the next section. Crucially, all of these
developments hinge on the set smoothness property (Definition 3), highlighting the utility of this
notion.
Remark 4 (Lower-level Constraints Matter). Under Assumptions 1 and 2, imposing an upper-
level constraint x ∈ X ⊆ Rm with X nonempty, closed, and convex preserves the conclusions of
Theorem 3: The functions φo(x) + ιX (x) and φp(x) + ιX (x) remain weakly concave and weakly
convex, respectively, where ιX denotes the indicator of X . In contrast, adding a lower-level constraint
y ∈ Y can destroy the weak concavity/convexity of the hyper-objectives, because the set smoothness
of S may fail in this case; see Example 3. Developing structural conditions that recover such
properties for lower-level constrained BLO is an interesting direction for future work.

Example 3. Let Y = [0, 1] × [0, 1]. Consider the pessimistic bilevel problem with a lower-level
constraint:

min
x∈R

max
y∈R2

−1⊤y

s.t. y ∈ argmin
y′∈Y

∥y′ − (x, 2)∥2. (7)

Assumptions 1 and 2 are directly satisfied for (7), except for the unconstrained lower level; the only
deviation here is the added constraint y ∈ Y .

The lower-level solution set is the projection of (x, 2) onto the box Y , hence

S(x) =


{(0, 1)}, x ≤ 0,

{(x, 1)}, 0 ≤ x ≤ 1,

{(1, 1)}, x ≥ 1.

Therefore the pessimistic hyper-objective is

φp(x) =


−1, x ≤ 0,

−x− 1, 0 ≤ x ≤ 1,

−2, x ≥ 1.

This function is not weakly convex. Indeed, for any ρ ≥ 0 consider hρ(x) := φp(x) +
ρ
2x

2. Then hρ

has left and right derivatives at x = 0 given by h′
ρ(0

−) = 0 and h′
ρ(0

+) = −1 (the quadratic term
has zero slope at 0), which violates the monotonicity of one-sided derivatives required by convexity.
Hence no ρ makes hρ convex, i.e., φp is not weakly convex. □
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4 Computing Approximate Clarke Hyper-stationarity
Equipped with the weak convexity/concavity of the hyper-objectives, our next goal is to establish
the computability of Clarke stationary points. First-order methods are impractical here because sub-
gradients of the hyper-objectives are typically unavailable. In contrast, under mild conditions—e.g.,
F (x, ·) is concave (resp. convex) so that the inner maximization (resp. minimization) is tractable,
the function values of the hyper-objectives can be (approximately) evaluated at a given x [16, 44].
This motivates the use of zeroth-order methods for minimizing hyper-objectives [7, 34]. In particular,
we adopt the inexact zeroth-order method (IZOM) in Algorithm 1, which employs a deterministic
subroutine A to approximately evaluate φβ(x) (with additive accuracy w) by solving the inner
problem in (1); see [7, 24–26] for practical implementations of A.

Algorithm 1 Inexact Zeroth-order Method (cf. [7, Algorithm 2])
Input: Radius ε > 0, iteration number T ∈ N, stepsize η, initial point x0 ∈ Rm, inexact error
w > 0, and mode parameter β ∈ {1, 0}
for t = 0, 1, . . . , T − 1 do

Sample ut from the the uniform distribution on the unit sphere in Rm

Compute Aβ
w(xt + εut) and Aβ

w(xt − εut) by subroutine A
Set G̃(xt) =

m
2ε (A

β
w(xt + εut)−Aβ

w(xt − εut))ut

xt+1 = xt − ηG̃(xt)
end for

Output: x̄ uniformly chosen from {xt}T−1
t=0

Algorithm 2 Deterministic Subroutine A
Input: Accuracy w > 0, iterate point x ∈ Rm, and mode β ∈ {1, 0}

if β = 1 then
Compute a value φ̃(x) satisfying |φ̃(x)− φo(x)| ≤ w

else
Compute a value φ̃(x) satisfying |φ̃(x)− φp(x)| ≤ w

end if
Output: Aβ

w(x) = φ̃(x)

Let φp,γ denote the Moreau envelope of φp with parameter γ. We quantify hyper-stationarity as
follows: In the optimistic case we use the approximate Clarke stationarity measure, i.e., Definition 1,
while in the pessimistic case we use the gradient norm of the envelope, i.e., ∥∇φp,γ(x)∥. These two
criteria can be unified in principle via (3); in either form they are strictly stronger than the Goldstein
stationarity measure; see Sec. 2.

We then present the main theorem of this section.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Given an iteration number T ∈ N, set
η = Θ(m− 1

2T− 1
2 ), ε = O(T− 1

2 ), w = O(m− 3
4T− 3

4 ) for Algorithm 1. Then, the following hold:

(i) Let ∆o := φo(x0)−minx φo(x) + 2Mφε with Mφ given in Lemma 2. For optimistic BLO,
we have

E
[
dist

(
0,
⋃

z∈B(x̄,δ)∂φo(z)
)2]

= O
(√

m(∆o + 1)√
T

)
with δ = O

(
T− 1

4

)
.

(ii) Let γ ∈ (0, 1
ρ+1 ) with ρ > 0 given in Theorem 3, and ∆p := φp,γ(x0) − minx φp,γ(x).

For pessimistic BLO, we have

E[∥∇φp,γ(x̄)∥2] = O
(√

m(∆p + 1)√
T

)
.

Theorem 4 demonstrates, for the first time, that approximate Clarke hyper-stationarity is computable
for nonconvex-PŁ BLO in both optimistic and pessimistic settings. This result significantly improves
the existing computational guarantees for nonsmooth hyper-objective functions, which are mainly
based on the Goldstein stationarity [7, 28]. The proof of the optimistic case relies on a Brøndsted-
Rockafellar-like relation, details of which can be found in Appendix D.1.
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5 Conclusion and Discussion
In this paper, we established the first theoretical guarantee for computing approximate Clarke hyper-
stationarity in nonconvex-PŁ BLO. The key step is unveiling the hidden structural properties of
hyper-objective functions via the newly introduced smoothness concept for set-valued functions.
Specifically, we proved that (i) the smoothness of the set-valued function Y ensures the weak
convexity of the function x 7→ maxy∈Y(x) ϕ(x,y); and (ii) the lower-level solution set function of
BLO satisfies set smoothness. Consequently, we obtained the weak convexity/concavity of hyper-
objective functions. With these properties in hand, we showed that an inexact zeroth-order method
can compute approximate Clarke stationary points of hyper-objective functions.

We believe that our developments contribute to a deeper understanding of the computability properties
of BLO and open up several directions for future research. First, with the established structural
properties, our work calls for designing faster algorithms for computing Clarke hyper-stationarity.
Second, it would be valuable to generalize our methodology to establish adapted properties for BLO
in other settings (e.g., structured lower-level constrained BLO [28]). Furthermore, our set smoothness
property, along with Theorem 1, may find applications in other fields such as coupled minmax
optimization [48] and set-valued optimization [27], where set-valued functions play a central role.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The developments established in Sec. 3, 4 support the claims made in the
abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We used Example 3 to show that our work does not apply to the lower-level
constrained case. In Sec. 5, we gave some remarks that reflect the limitations of our work
and call for future research.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provided the full set of assumptions for our theoretical results, as detailed
in Sec. 3 and 4. Complete proofs can be found in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not include experiments requiring code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors are sure that the research conducted in the paper conforms with
the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper considers the theoretical computability of BLO. We do not see any
potential negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and poses no such risks.
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Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper focuses on the theoretical computability of hyper-stationarity for
BLO and does not involve LLMs as any important, original, or non-standard components.
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Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Missing Proofs for Sec. 2
A.1 Proof of Lemma 1

Proof. Thanks to Assumption 1 (A3), we have

dist(y1,S(x2)) ≤ τ∥∇yf(x2,y1)∥,

for any y1 ∈ S(x1). Moreover, we have

∥∇yf(x2,y1)∥ = ∥∇yf(x2,y1)−∇yf(x1,y1)∥ ≤ Lf∥x1 − x2∥,

where the equality follows from∇yf(x1,y1) = 0, and the inequality is due to the Lf -smoothness
of f . Putting them together yields dist(y1,S(x2)) ≤ Lfτ∥x1 − x2∥ for all y1 ∈ S(x1).

By the same argument with x1 and x2 interchanged, we have dist(y2,S(x1)) ≤ Lfτ∥x1 − x2∥ for
all y2 ∈ S(x1). By the definition of dH(S(x1),S(x2)), we conclude

dH (S(x1),S(x2)) = max

{
sup

y1∈S(x1)

dist(y1,S(x2)), sup
y2∈S(x2)

dist(y2,S(x1))

}
≤ Lfτ∥x1 − x2∥.

This completes the proof.

A.2 Proof of Lemma 2

Proof. We prove the Mφ-Lipschitz continuity for φp only, as the argument for φo is entirely analo-
gous.

Then, it suffices to show that for any x1,x2 ∈ dom(φp),

|φp(x1)− φp(x2)| ≤Mφ∥x2 − x2∥.

Note that S(x) is closed but not necessarily compact. We can only find a sequence {yk
1}k∈N ⊆

S(x1) such that F (x1,y
k
1 ) → supy∈S(x1) F (x1,y) = φp(x1). Let yk

2 := ΠS(x2)(y
k
1 ). Then, by

yk
2 ∈ S(x2), we have φp(x2) = supy∈S(x2) F (x2,y) ≥ F (x2,y

k
2 ). This observation, combined

with the MF -Lipschitz continuity of F , yields

F (x1,y
k
1 )− φp(x2) ≤ F (x1,y

k
1 )− F (x2,y

k
2 ) ≤MF

(
∥x1 − x2∥+ ∥yk

1 − yk
2∥
)
,

where the last inequality follows from Assumption 2 (B1).

Moreover, we have

∥yk
1 − yk

2∥ = ∥yk
1 −ΠS(x2)(y

k
1 )∥ = dist(yk

1 ,S(x2)) ≤ dH(S(x1),S(x2)) ≤MS∥x1 − x2∥,

where the last inequality is due to Lemma 1. Then, we can see that for all k ∈ N,

F (x1,y
k
1 )− φp(x2) ≤MF (1 +MS)∥x1 − x2∥.

Letting k →∞ and recalling F (x1,y
k
1 )← φp(x1), we obtain

φp(x1)− φp(x2) ≤MF (1 +MS)∥x1 − x2∥,

which completes the proof.

A.3 Proof of Fact 1

Proof. By [49, Proposition 4.4], the weakly convex function −g is locally Lipschitz (hence so is
g), so the Clarke subdifferential ∂g is well defined. Moreover, the Clarke subdifferential satisfies
∂(−g) = − ∂g [10, Prop. 2.3.1]. Applying Lemma 3 (iii) to −g then yields the claim.
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B Proof of Theorem 1
Proof. To establish the weak convexity of ϕ, we verify the condition in Lemma 3 (ii). Specifically,
we show that there exists a constant ρ > 0 such that, for all θ ∈ [0, 1] and all x1,x2 ∈ D,

ϕ(xθ) ≤ θϕ(x1) + (1− θ)ϕ(x2) +
ρ

2
θ(1− θ)∥x1 − x2∥2, (8)

where we let xθ := θx1 + (1− θ)x2 for notation convenience.

By definition, ϕ(xθ) = maxy′∈Y(xθ) g(x
θ,y′). Hence (8) will follow if we show that, for all

y ∈ Y(xθ),
g(xθ,y)− θ ϕ(x1)− (1− θ)ϕ(x2) ≤ ρ

2 θ(1− θ) ∥x1 − x2∥2. (9)

Taking the maximization over y ∈ Y(xθ) then yields (8).

We proceed via the LY -smoothness of Y , which guarantees the existence of y1 ∈ Y(x1) and
y2 ∈ Y(x2) such that

∥θy1 + (1− θ)y2 − y∥ ≤ LY

2
θ(1− θ)∥x1 − x2∥2; (10)

∥y1 − y2∥2 ≤ LY ∥x1 − x2∥2 . (11)

Then, using the fact that ϕ(xi) = maxy′∈Y(xi) g(xi,y
′) ≥ g(xi,yi) for i = 1, 2, we have

g
(
xθ,y

)
− θϕ(x1)− (1− θ)ϕ(x2)

≤g
(
xθ,y

)
− θg(x1,y1)− (1− θ)g(x2,y2)

≤g
(
xθ,y

)
− g

(
xθ, θy1 + (1− θ)y2

)
+

Lg

2
θ(1− θ)

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
,

where the last inequality is due to the Lg-smoothness of g on D × Conv(
⋃

x∈D Y(x)) and Fact 2.

This, together with the Mg-Lipschitz continuity of g w.r.t. y and the set-smoothness inequalities (10)
and (11), yields

g
(
xθ,y

)
− θϕ(x1)− (1− θ)ϕ(x2)

≤Mg ∥θy1 + (1− θ)y2 − y∥+ Lg

2
θ(1− θ)

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
≤MgLY

2
θ(1− θ)∥x1 − x2∥2 +

Lg

2
θ(1− θ)

(
∥x1 − x2∥2 + LY∥x1 − x2∥2

)
=
MgLY + Lg(1 + LY)

2
θ(1− θ)∥x1 − x2∥2,

for all y ∈ Y(xθ). We prove the desired inequality (9) with ρ = MgLY + Lg(1 + LY).

C Proof of Theorem 2
We start by stating a lemma that will be used in the sequel.
Lemma 5. Under Assumption 1 (A1), for any x1,x2 ∈ Rm and y1,y2 ∈ Rn, we have

(i) ∥∇yf(x1,y1)−∇yf (x2,y2)−∇∇yf (x2,y2) (x1 − x2,y1 − y2)∥

≤Hf

2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
;

(ii)
∥∥θ∇yf(x1,y1) + (1− θ)∇yf(x2,y2)−∇yf(x

θ,yθ)
∥∥

≤Hf

2
θ(1− θ)

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
, ∀ θ ∈ [0, 1],

where xθ := θx1 + (1− θ)x2 and yθ := θy1 + (1− θ)y2.
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Proof of Lemma 5. (i) The argument directly follows from [42, Lemma 1]:

∥∇yf(x1,y1)−∇yf (x2,y2)−∇∇yf (x2,y2) (x1 − x2,y1 − y2)∥

=∥
∫ 1

0

∇∇yf (x1 + t (x2 − x1) ,y1 + t (y2 − y1)) (x1 − x2,y1 − y2) dt

−∇∇yf (x2,y2) (x1 − x2,y1 − y2)∥

=

∥∥∥∥∫ 1

0

(∇∇yf (x1 + t (x2 − x1) ,y1 + t (y2 − y1))−∇∇yf (x2,y2)) (x1 − x2,y1 − y2) dt
∥∥∥∥

≤
∫ 1

0

∥(∇∇yf (x1 + t (x2 − x1) ,y1 + t (y2 − y1))−∇∇yf (x2,y2)) (x1 − x2,y1 − y2)∥ dt

≤
∫ 1

0

∥∇∇yf (x1 + t (x2 − x1) ,y1 + t (y2 − y1))−∇∇yf (x2,y2)∥ ∥(x1 − x2,y1 − y2)∥ dt

≤
∫ 1

0

Hf t ∥(x1 − x2,y1 − y2)∥ · ∥(x1 − x2,y1 − y2)∥ dt

=
Hf

2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
,

where the first inequality is due to Jensen’s inequality; the second inequality is due to the Cauchy
inequality; and the third inequality uses the Hf -Lipschitz continuity of∇∇yf .

(ii) Using the result of (i), we have∥∥∇yf(x1,y1)−∇yf
(
xθ,yθ

)
−∇∇yf

(
xθ,yθ

) (
x1 − xθ,y1 − yθ

)∥∥
≤Hf

2

(∥∥x1 − xθ
∥∥2 + ∥∥y1 − yθ

∥∥2) .
It follows from xθ = θx1 + (1− θ)x2 and yθ = θy1 + (1− θ)y2 that∥∥∇yf(x1,y1)−∇yf

(
xθ,yθ

)
− (1− θ)∇∇yf

(
xθ,yθ

)
(x1 − x2,y1 − y2)

∥∥
≤Hf

2
(1− θ)2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
.

(12)

Using the same arguments with (x1,y1) replaced by (x2,y2), we have∥∥∇yf(x2,y2)−∇yf
(
xθ,yθ

)
− θ∇∇yf

(
xθ,yθ

)
(x2 − x1,y2 − y1)

∥∥
≤Hf

2
θ2
(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
.

(13)

Then, the desired inequality follows from the weighted sum θ×(12)+(1− θ)×(13), and the triangle
inequality that

θ
∥∥∇yf(x1,y1)−∇yf

(
xθ,yθ

)
− (1− θ)∇∇yf

(
xθ,yθ

)
(x1 − x2,y1 − y2)

∥∥
+ (1− θ)

∥∥∇yf(x2,y2)−∇yf
(
xθ,yθ

)
− θ∇∇yf

(
xθ,yθ

)
(x2 − x1,y2 − y1)

∥∥
≥
∥∥θ∇yf(x1,y1) + (1− θ)∇yf(x2,y2)−∇yf(x

θ,yθ)
∥∥ .

We are now ready to prove Proposition 2. Fix θ ∈ [0, 1] and x1,x2 ∈ Rm, and let y ∈ S(θx1 +(1−
θ)x2). Our goal is to construct y1 ∈ S(x1) and y2 ∈ S(x2) such that (4) and (5) hold.

C.1 Step 1: Choose projection points as the candidate approximation points.
Let ȳ1 := ΠS(x1)(y) and ȳ2 := ΠS(x2)(y). For simplicity, we write xθ = θx1 + (1 − θ)x2 and
ȳθ = θȳ1 + (1− θ)ȳ2. We start with giving basic estimates on ∥ȳ1 − ȳ2∥ and dist(ȳθ,S(xθ)), in
Claim 1.
Claim 1. Let L0 := Hfτ(1 +M2

S)/2. The following hold:

∥ȳ1 − ȳ2∥ ≤MS∥x1 − x2∥ (14)

dist
(
ȳθ,S

(
xθ
))
≤ L0θ(1− θ)∥x1 − x2∥2. (15)
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Proof of Claim 1. We have

∥ȳ1 − ȳ2∥ ≤ ∥ȳ1 − y∥+ ∥y − ȳ2∥
= dist(y,S(x1)) + dist(y,S(x2))

≤ dH
(
S
(
xθ
)
,S(x1)

)
+ dH

(
S
(
xθ
)
,S(x2)

)
≤MS∥x1 − (θx1 + (1− θ)x2)∥+MS∥x2 − (θx1 + (1− θ)x2)∥
= MS∥x1 − x2∥,

where the second inequality follows from y ∈ S(xθ) and the definition of the Hausdorff distance;
the third inequality is due to Lemma 1 and xθ = θx1 + (1− θ)x2. This proves (14).

We then prove (15). First, by the Hf -Lipschitz continuity of∇∇yf and Lemma 5 (ii), we have∥∥θ∇yf(x1, ȳ1) + (1− θ)∇yf(x2, ȳ2)−∇yf(x
θ, ȳθ)

∥∥
≤Hf

2
θ(1− θ)

(
∥x1 − x2∥2 + ∥ȳ1 − ȳ2∥2

)
≤Hf

2
θ(1− θ)

(
1 +M2

S
)
∥x1 − x2∥2,

(16)

where the second inequality is due to (14).

Since ȳ1 ∈ S(x1) and ȳ2 ∈ S(x2), we have the first-order optimality

∇yf(x1, ȳ1) = 0, ∇yf(x2, ȳ2) = 0.

Substituting these identities into (16) yields∥∥∇yf
(
xθ, ȳθ

)∥∥ ≤ Hf

2
θ(1− θ)

(
1 +M2

S
)
∥x1 − x2∥2.

Combining the error bound from Assumption 1, dist(ȳθ,S(xθ)) ≤ τ∥∇yf(x
θ, ȳθ)∥, with the

preceding inequality, we obtain

dist
(
ȳθ,S

(
xθ
))
≤ Hfτ

2
θ(1− θ)

(
1 +M2

S
)
∥x1 − x2∥2,

which accords with (15) with L0 = Hfτ(1 +M2
S)/2. Claim 1 is proved.

Note that (15) controls only the distance from ȳθ to the set S(xθ); it does not guarantee that the
specific point θȳ1 + (1− θ)ȳ2 lies on the same branch as the metric projection ΠS(xθ)(ȳ

θ). Hence
one cannot conclude that ∥θȳ1 +(1− θ)ȳ2−y∥ = O(∥x1−x2∥2) in general. Therefore we cannot
simply take y1 = ȳ1 and y2 = ȳ2, which motivates the rectification in Step 2.

C.2 Step 2: Translate the candidate approximation points
Let ŷ := ΠS(xθ)(ȳ

θ), ŷ1 := ȳ1 + (y − ŷ), and ŷ2 := ȳ2 + (y − ŷ). We will bound the three
quantities ∥ŷ − y∥, dist(ŷ1,S(x1)), and dist(ŷ2,S(x2)).
Claim 2. Let L1 := Hfτ

(
1 + 17M2

S
)
/2. The following hold:

∥ŷ − y∥ ≤ 2θ(1− θ)MS ∥x1 − x2∥ ; (17)

dist (ŷ1,S(x1)) ≤ L1(1− θ)2∥x1 − x2∥2; dist (ŷ2,S(x2)) ≤ L1θ
2∥x1 − x2∥2. (18)

Proof of Claim 2. We begin with the proof of (17). The non-expansiveness of the projection operator
ΠS(xθ)(·) yields

∥ŷ − y∥ =
∥∥ΠS(xθ)(ȳ

θ)−ΠS(xθ)(y)
∥∥ ≤ ∥∥ȳθ − y

∥∥ ≤ θ ∥ȳ1 − y∥+ (1− θ) ∥ȳ2 − y∥ . (19)

Moreover, by ȳi = ΠS(xi)(y) for i = 1, 2, y ∈ S(xθ), and the MS-Lipschitz continuity of S from
Lemma 1, we have

∥ȳi − y∥ = dist(y,S(xi)) ≤ dH
(
S
(
xθ
)
,S(xi)

)
≤MS

∥∥xi − xθ
∥∥ , i = 1, 2. (20)
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Combining (19) and (20) leads to

∥ŷ − y∥ ≤ θMS
∥∥x1 − xθ

∥∥+ (1− θ)MS
∥∥x2 − xθ

∥∥ = 2θ(1− θ)MS ∥x1 − x2∥ .

We then continue to prove (18). It suffices to upper bound ∥∇yf(x1, ŷ1)∥, due to Assumption 1
(A3). By Lemma 5, we have ∇yf(x1, ŷ1):

∥∇yf(x1, ŷ1)−∇yf(x1, ȳ1)−∇∇yf(x1, ȳ1)(0, ŷ1 − ȳ1)∥ ≤
Hf

2
∥ŷ1 − ȳ1∥2.

Noticing ȳ1 ∈ S(x1), we have ∇yf(x1, ȳ1) = 0, and thus

∥∇yf(x1, ŷ1)−∇∇yf(x1, ȳ1)(0, ŷ1 − ȳ1)∥ ≤
Hf

2
∥ŷ1 − ȳ1∥2.

Using the triangle inequality and the identity ŷ1 − ȳ1 = y − ŷ (by the definition of ŷ1), we obtain

∥∇yf(x1, ŷ1)∥ ≤ ∥∇∇yf(x1, ȳ1)(0,y − ŷ)∥+ Hf

2
∥y − ŷ∥2. (21)

We proceed to control ∥∇∇yf(x1, ȳ1)(0,y− ŷ)∥. To do so, we first estimate a closely related norm
∥∇∇yf(x

θ,y)(0,y − ŷ)∥. We apply Lemma 5 again to obtain∥∥∇yf
(
xθ, ŷ

)
−∇yf

(
xθ,y

)
−∇∇yf

(
xθ,y

)
(0, ŷ − y)

∥∥ ≤ Hf

2
∥ŷ − y∥2 .

Note that both y and ŷ belong to the set S(xθ), which leads to

∇yf
(
xθ, ŷ

)
= ∇yf

(
xθ,y

)
= 0.

It follows that ∥∥∇∇yf
(
xθ,y

)
(0,y − ŷ)

∥∥ ≤ Hf

2
∥y − ŷ∥2 . (22)

Putting everything together yields

∥∇yf(x1, ŷ1)∥
≤
∥∥(∇∇yf(x1, ȳ1)−∇∇yf

(
xθ,y

))
(0,y − ŷ)

∥∥+ ∥∥∇∇yf
(
xθ,y

)
(0,y − ŷ)

∥∥
+

Hf

2
∥y − ŷ∥2

≤
∥∥∇∇yf(x1, ȳ1)−∇∇yf

(
xθ,y

)∥∥ ∥(0,y − ŷ)∥+ Hf

2
∥y − ŷ∥2 + Hf

2
∥y − ŷ∥2

≤Hf

(∥∥x1 − xθ
∥∥+ ∥ȳ1 − y∥

)
· ∥y − ŷ∥+Hf∥y − ŷ∥2

≤Hf

2
∥x1 − xθ∥2 + Hf

2
∥ȳ1 − y∥2 +Hf∥y − ŷ∥2 +Hf∥y − ŷ∥2

=
Hf

2
∥x1 − xθ∥2 + Hf

2
∥ȳ1 − y∥2 + 2Hf∥y − ŷ∥2,

where the second inequality uses the definition of matrix’s l2 norm and (22); the third inequality is
due to the Hf -Lipschitz continuity of ∇∇yf and the triangle inequality; the forth inequality is due
to the Cauchy inequality.

Combining the above estimate with ∥x1 − xθ∥ = (1 − θ)∥x1 − x2∥, (20) (with i = 1), and the
bound from (17), namely ∥y − ŷ∥ ≤ 2(1− θ)MS∥x1 − x2∥, we obtain

∥∇yf(x1, ŷ1)∥ ≤
Hf

(
1 + 17M2

S
)

2
(1− θ)2∥x1 − x2∥2. (23)

Finally, armed with the error bound condition in Assumption 1 (A3), we have

dist (ŷ1,S(x1)) ≤
Hfτ

(
1 + 17M2

S
)

2
(1− θ)2∥x1 − x2∥2.

By the symmetric arguments, we can also have dist (ŷ2,S(x2)) ≤ Hfτ
(
1 + 17M2

S
)
θ2∥x1−x2∥2/2.

We finished our proof for Claim 2.
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C.3 Step 3: Define approximation points
With the preparations in Steps 1–2, we now define the approximation points

y1 := ΠS(x1)(ŷ1), y2 := ΠS(x2)(ŷ2).

To establish the smoothness of S, it remains to show that there exists a constant LS > 0 such that

∥θy1 + (1− θ)y2 − y∥ ≤ LS

2
θ(1− θ)∥x1 − x2∥2; (24)

∥y1 − y2∥2 ≤ LS∥x1 − x2∥2. (25)

We first prove the inequality (24). We have

∥θy1 + (1− θ)y2 − y∥
=∥θ(y1 − ŷ1) + (1− θ)(y2 − ŷ2) + (θŷ1 + (1− θ)ŷ2 − y)∥
≤θ∥y1 − ŷ1∥+ (1− θ)∥y1 − ŷ1∥+ ∥(θŷ1 + (1− θ)ŷ2 − y)∥
=θ dist(ŷ1,S(x1)) + (1− θ) dist(ŷ2,S(x2)) +

∥∥ȳθ − ŷ
∥∥

=θ dist(ŷ1,S(x1)) + (1− θ) dist(ŷ2,S(x2)) + dist
(
ȳθ,S

(
xθ
))

,

where the second equality follows from yi = ΠS(xi)(ŷi) and ŷi = ȳi + y − ŷ for i = 1, 2; the final
one is due to ŷ = ΠS(xθ)(ȳ

θ).

This, together with (15) and (18), implies

∥θy1 + (1− θ)y2 − y∥ ≤ (L0 + L1)θ(1− θ)∥x1 − x2∥2.

Hence, (24) holds if LS ≥ 2(L0 + L1). It is left to show (25).

To prove (25), we estimate the distance ∥y1 − y2∥. To begin, we apply the triangle inequality to
obtain

∥y1 − y2∥ ≤ ∥y1 − ȳ1∥+ ∥ȳ1 − ȳ2∥+ ∥ȳ2 − y2∥.
Then, use the definition yi = ΠS(xi)(ŷi) = ΠS(xi)(ȳi + y − ŷ) and notice ȳi ∈ S(xi) for i = 1, 2.
We have

∥y1 − y2∥ ≤
∥∥ΠS(x1)(ȳ1 + (y − ŷ))−ΠS(x1)(ȳ1))

∥∥+ ∥ȳ1 − ȳ2∥
+
∥∥ΠS(x2)(ȳ2))−ΠS(x2)(ȳ2 + (y − ŷ))

∥∥
≤ ∥ŷ − y∥+ ∥ȳ1 − ȳ2∥+ ∥ŷ − y∥
= 2 ∥ŷ − y∥+ ∥ȳ1 − ȳ2∥,

(26)

where the second inequality follows from the non-expansiveness of the projectors ΠS(x1)(·) and
ΠS(x2)(·)

Recall from (14) that ∥ȳ1 − ȳ2∥ ≤MS∥x1 − x2∥, and note that (17) further implies

∥ŷ − y∥ ≤ 2θ(1− θ)MS∥x1 − x2∥ ≤
1

2
MS∥x1 − x2∥. (27)

Combining (26) and (27) yields

∥y1 − y2∥ ≤ 2MS∥x1 − x2∥,

which proves (25) with LS ≥ 4M2
S .

Finally, to ensure (24) it suffices to choose

LS ≥ max{ 2(L0 + L1), 4M
2
S }.

Recalling MS = Lfτ , L0 =
Hfτ
2 (1 +M2

S), and L1 =
Hfτ
2 (1 + 17M2

S), we obtain

LS = max
{
2Hfτ

(
1 + 9L2

fτ
2
)
, 4L2

fτ
2
}
.

This completes the proof of Theorem 2.
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C.4 Proof of Remark 3
In the proof of Theorem 2, Assumption 1 is only used to guarantee Lemma 1 and the estimations on
the involved points. Notice that to ensure Lemma 1, it suffices for Assumption 1 to hold on the set
D × Conv(

⋃
x∈D S(x)) ⊆ D × Y . We only need to check that the involved points belong to the set

D × Y to prove Remark 3.

As the domain of S is D, to verify the set smoothness of S, we can choose x1,x2 ∈ D. Then, we
have xθ ∈ D due to the convexity of D. Hence, it suffices to check that ȳ1, ȳ2, ȳθ, y1, y2, ŷ, ŷ1,
and ŷ2 belong to the convex set Y .

First, recall that ȳ1,y1 ∈ S(x1), ȳ2,y2 ∈ S(x2), ŷ ∈ S(xθ), and ȳθ ∈ Conv(S(x1) ∪ S(x2)) ⊆
Conv(

⋃
x∈D S(x)) due to their definitions. We see that they belong to the set Y . We then focus on

ŷ1 and ŷ2. Recall that ŷi = ȳi + (y − ŷ) for i = 1, 2. We see that for i = 1, 2,
dist (ŷi,S(xi)) ≤ ∥ŷi − ȳi∥ = ∥y − ŷ∥ .

By (27) and ∥x1 − x2∥ ≤ diam(D), for i = 1, 2, we further have

dist (ŷi,S(xi)) ≤
1

2
MS · diam(D).

This implies that ŷi ∈ S(xi) +
1
2MS · diam(D) · B(0, 1) ⊆ Y for i = 1, 2. We complete the proof.

D Proof of Theorem 4
We first introduce some background on zeroth-order methods before the formal proof. Let P denote
the uniform distribution on the unit sphere in Rm. Given a function g : Rm → R and a radius ε > 0,
we define the randomized smooth approximation g by gε(x) := Eu∼P[g(x + εu)]. We have the
following properties for gε.

Lemma 6 (Basic Properties of Randomized Smoothing). The following hold:

(i) If g is Mg-Lipschitz continuous, then gε is differentiable, Mg-Lipschitz continuous, and
satisfies

|g(x)− gε(x)| ≤ εMg. (28)

(ii) If g is r-weakly convex (resp. concave), then gε is r-weakly convex (resp. concave).

Proof. (i) See [34, Proposition 2.3].

(ii) If g is r-weakly convex, then by the same arguments of Nazari et al. [41, Lemma 16], we have the
r-weak convexity of gε. When g is r-weakly concave, we note that−g is r-weakly convex, and hence
(−g)ε is r-weakly convex. Due to the simple fact (−g)ε = −gε, we have the r-weak convexity of
−gε, i.e., the r-weak concavity of gε.

As the approximation for a subdifferental ∂g via randomized smoothing can be inexact, we need the
following ϵ-subdifferential.

Definition 4. Consider a convex function g : Rm → R and a scalar ν ≥ 0. We define the
ν-subdifferential of g at x ∈ Rm by

∂νg(x) =
{
s ∈ Rm : g(z) ≥ g(x) + sT (z − x)− ν, ∀ z ∈ Rm

}
.

We then develop the convergence rates of IZOM for optimistic and pessimistic BLO, respectively. We
remark that our analysis remains valid when the hyper-objective functions φo (resp. φp) are replaced
with general M -Lipschitz continuous, ρ-weakly concave (resp. convex) functions.

D.1 Optimistic Case
To begin, we record a celebrated proposition on subdifferential transportation.

Proposition 1. (cf. [2, Theorem 5.5] and [43, Theorem 2]) Let g : Rm → R be a proper lower
semicontinuous convex function. Suppose that ν ≥ 0 and G ∈ ∂νg(x). Then, for each r > 0, there is
a unique vector v ∈ Rm such that

G− 1

r
v ∈ ∂g(x+ rv), ∥v∥ ≤

√
ν.
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Proposition 1 plays an important role in relating an ϵ-subdifferential to the Clarke subdifferential at a
near point, leading to the following lemma.
Lemma 7. Let g : Rm → R be an Mg-Lipschitz continuous and ρ-weakly concave function. Let gε
be the randomized approximation of g with radius ε > 0 and ν = 2εMg. Then, for all x ∈ Rm, we
have

dist
(
0,
⋃

z∈B(x,
√
ν)∂g(z)

)
≤ ∥∇gε(x)∥+ (ρ+ 1)

√
ν. (29)

Proof of Lemma 7. By Lemma 6 (ii), gε is ρ-weakly concave, i.e., the function x 7→ ρ
2∥x∥

2 − gε(x)
is convex. Then, we know that for all z,x ∈ Rm,

ρ

2
∥z∥2 − gε(z) ≥ ρ

2
∥x∥2 − gε(x) + (ρx−∇gε(x))T (z − x).

This, together with Lemma 6 (i), implies
ρ

2
∥z∥2 − g(z) ≥ ρ

2
∥x∥2 − g(x) + (ρx−∇gε(x))T (z − x)− 2εMg,

which is equivalent to

ρx−∇gε(x) ∈ ∂ν

(ρ
2
∥x∥2 − g(x)

)
with ν = 2εMg.

For simplicity, we define ḡ : x 7→ ρ
2∥x∥

2 − g(x). Clearly, ḡ is convex due to the ρ-weak concavity
of g. Applying Proposition 1, we see that there exists v ∈ Rm with ∥v∥ ≤

√
ν such that

ρx−∇gε(x)− v ∈ ∂ḡ(x+ v). (30)

Recall that −g is ρ-weakly convex, and thus is regular according to [49, Proposition 4.5]. Then, we
have ∂ḡ(z) = ρz+ ∂(−g)(z) for all z ∈ Rm by [10, Corollary 3 of Proposition 2.3.3]. On the other
hand, we have ∂(−g) = −∂g by [10, Proposition 2.3.1] and Lipschitz continuity of g. Hence, we
see that

∂ḡ(z) = ρz − ∂g(z), ∀ z ∈ Rm.

In particular, we have
∂ḡ(x+ v) = ρ(x+ v)− ∂g(x+ v).

This, together with (30), implies

∇gε(x) + (ρ+ 1)v ∈ ∂g(x+ v).

It follows that

dist(0, ∂g(x+ v)) ≤ ∥∇gε(x) + (ρ+ 1)v∥ ≤ ∥∇gε(x)∥+ (ρ+ 1)∥v∥.
Observe that ∥v∥ ≤

√
ν and

dist (0, ∂g(x+ v)) ≥ dist
(
0,
⋃

z∈B(x,∥v∥)∂g(z)
)
≥ dist

(
0,
⋃

z∈B(x,
√
ν)∂g(z)

)
.

We obtain the desired inequality

dist
(
0,
⋃

z∈B(x,
√
ν)∂g(z)

)
≤ ∥∇gε(x)∥+ (ρ+ 1)

√
ν.

Now, we are ready to prove the convergence rate for IZOM. To begin, we define the subdifferential
approximation function G by

G(xt) =
m

2ε
(φo(xt + εut)− φo(xt − εut))ut.

By [34, Lemma D.1], it holds that

E[G(xt)|xt] = ∇φε
o(xt); E[∥G(xt)∥2|xt] ≤ 16

√
2πmM2

φ. (31)

Since |φ̃(xt)−φo(xt)| ≤ w by the subroutine A, we have ∥G̃(xt)−G(xt)∥ ≤ mw
ε . This, together

with the simple fact ∥G̃(xt)∥2 ≤ 2∥G̃(xt)−G(xt)∥2 + 2∥G(xt)∥2 due to the Cauchy inequality,
implies

E[∥G̃(xt)−G(xt)∥2|xt] ≤
(mw

ε

)2
; E[∥G̃(xt)∥2|xt] ≤ 32

√
2πmM2

φ + 2
(mw

ε

)2
. (32)
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Next, we combine the update of IZOM and ρ-weak concavity of φε
o to develop a sufficient decrease

property for the t-th iteration. Using Fact 1 and the update xt+1 − xt = −ηG̃(xt) of Algorithm 1,
we obtain the following estimate:

φε
o(xt+1)

≤φε
o(xt) +∇φε

o(xt)
T (xt+1 − xt) +

ρ

2
∥xt+1 − xt∥2

=φε
o(xt)− η∇φε

o(xt)
T G̃(xt) +

ρ

2
η2∥G̃(xt)∥2

=φε
o(xt)− η∇φε

o(xt)
TG(xt)− η∇φε

o(xt)
T
(
G̃(xt)−G(xt)

)
+

ρ

2
η2∥G̃(xt)∥2

≤φε
o(xt)− η∇φε

o(xt)
TG(xt) +

η

2
∥∇φε

o(xt)∥2 +
η

2

∥∥∥G̃(xt)−G(xt)
∥∥∥2 + ρ

2
η2∥G̃(xt)∥2.

where the last inequality is due to the Cauchy inequality.

We take expectation conditioning on xt for the above inequality. Recall that E[G(xt)|xt] = ∇φε
o(xt)

by (31). We see that

E[φε
o(xt+1)|xt] ≤ φε

o(xt)−
η

2
∥∇φε

o(xt)∥2 +
η

2
E[∥G̃(xt)−G(xt)∥2|xt]

+
ρη2

2
E[∥G̃(xt)∥2|xt].

Apply Lemma 7 to φo and use the Cauchy inequality. We obtain

dist
(
0,
⋃

z∈B(xt,
√
ν)∂φo(z)

)2
≤ 2 ∥∇φε

o(xt)∥2 + 2(ρ+ 1)2ε.

Combining the above two inequalities with (32), we have

E[φε
o(xt+1)|xt] ≤ φε

o(xt)−
η

4
dist

(
0,
⋃

z∈B(xt,
√
ν)∂φo(z)

)2
+

η

2
(ρ+ 1)2ε

+
η

2

(mw

ε

)2
+

ρ

2
η2
(
32
√
2πmM2

φ + 2
(mw

ε

)2)
.

Recall that ν = 2εMφ, η = Θ( 1√
mT

), ε = O( 1√
T
), and w = O( 1

m
3
4 T

3
4
). Ignoring some scalars, we

further have

E[φε
o(xt+1)|xt] ≤ φε

o(xt)−
η

4
dist

(
0,
⋃

z∈B(xt,
√
ν)∂φo(z)

)2
+O

(
1

T

)
. (33)

Summing (33) over t = 0, 1, . . . T − 1 and taking full expectation, we obtain

E[φε
o(xT )] ≤ φε

o(x0)−
η

4

T−1∑
t=0

E
[
dist

(
0,
⋃

z∈B(xt,
√
ν)∂φo(z)

)2]
+O(1).

Note that the definition of x̄ yields

E
[
dist

(
0,
⋃

z∈B(x̄,
√
ν)∂φo(z)

)2]
=

1

T

T−1∑
t=0

E
[
dist

(
0,
⋃

z∈B(xt,
√
ν)∂φo(z)

)2]
.

On the other hand, by Lemma 6 (i) and Mφ-Lipschitz continuity of φo,

φε
o(x0)− E[φε

o(xT )] ≤ 2εMφ + φo(x0)−min
x

φo(x) = ∆o.

Putting all the things together, we have

E
[
dist

(
0,
⋃

z∈B(x̄,
√
ν)∂φo(z)

)2]
= O

(
∆o + 1

ηT

)
= O

(√
m(∆o + 1)√

T

)
,

where
√
ν =

√
2εMφ = O(T− 1

4 ).

30



D.2 Pessimistic Case
In this section, we let G(xt) =

m
2ε (φp(xt+εut)−φp(xt−εut))ut and use x̂ to denote proxγ,φp

(x)
for simplicity. Similar to the arguments on (31), (32), we have the following due to [34, Lemma D.1]
and |φ̃(xt)− φp(xt)| ≤ w given by Algorithm 1:

E[G(xt)|xt] = ∇φε
p(xt); E[∥G(xt)∥2|xt] ≤ 16

√
2πmM2

φ. (34)

E[∥G̃(xt)−G(xt)∥2|xt] ≤
(mw

ε

)2
; E[∥G̃(xt)∥2|xt] ≤ 32

√
2πmM2

φ + 2
(mw

ε

)2
. (35)

Invoking the methodology of Davis and Drusvyatskiy [12], we first estimate ∥x̂t − xt+1∥ for
t = 0, 1, . . . , T − 1. To begin, the update of Algorithm 1 and direct computation give the following
estimate:

∥x̂t − xt+1∥2

=∥x̂t − xt + ηG̃(xt)∥
=∥x̂t − xt∥2 + η2∥G̃(xt)∥2 + 2ηG̃(xt)

T (x̂t − xt)

=∥x̂t − xt∥2 + η2∥G̃(xt)∥2 + 2ηG(xt)
T (x̂t − xt) + 2η

(
G̃(xt)−G(xt)

)T
(x̂t − xt)

≤∥x̂t − xt∥2 + η2∥G̃(xt)∥2 + 2ηG(xt)
T (x̂t − xt) + η∥G̃(xt)−G(xt)∥2 + η∥x̂t − xt∥2.

(36)
Taking expectation in (36) and using (34), (35), we obtain the following inequality:

E[∥x̂t − xt+1∥2|xt]

≤(1 + η)∥x̂t − xt∥2 + 2η∇φε
p(xt)

T (x̂t − xt) + η E[∥G̃(xt)−G(xt)∥2|xt]

+ η2 E[∥G̃(xt)∥2|xt]

≤(1 + η)∥x̂t − xt∥2 + 2η∇φε
p(xt)

T (x̂t − xt) + η
(mw

ε

)2
+ 32
√
2πmM2

φη
2 + 2

(mw

ε

)2
η2.

(37)
We then turn to estimate φp,γ(xt+1). By the definition of φp,γ , we have

φp,γ(xt+1) ≤ φp(x̂t) +
1

2γ
∥x̂t − xt+1∥2.

This, together with (37), implies

E[φp,γ(xt+1)|xt]− φp(x̂t)

≤1 + η

2γ
∥x̂t − xt∥2 +

η

γ
∇φε

p(xt)
T (x̂t − xt) +

η

2γ

(mw

ε

)2
+ 16
√
2πmM2

φ

η2

γ
+
(mw

ε

)2 η2

γ
.

Recall that φε
p is ρ-weakly convex by Theorem 3 and Lemma 6 (ii). Then, using Lemma 3 (iii), we

have
∇φε

p(xt)
T (x̂t − xt) ≤ φε

p(x̂t)− φε
p(xt) +

ρ

2
∥x̂t − xt∥2

≤ φp(x̂t)− φp(xt) +
ρ

2
∥x̂t − xt∥2 + 2εMφ,

where the second inequality is due to Lemma 6 (i).

Combining the above two estimates gives

E[φp,γ(xt+1)|xt]

≤φp(x̂t) +
1

2γ
∥x̂t − xt∥2 +

η

γ

(
φp(x̂t)− φp(xt) +

ρ+ 1

2
∥x̂t − xt∥2

)
+

2η

γ
εMφ

+
η

2γ

(mw

ε

)2
+ 16

√
2πmM2

φ

η2

γ
+
(mw

ε

)2 η2

γ

=φp,γ(xt) +
η

γ

(
φp,γ(xt)− φp(xt) +

(ρ+ 1)γ − 1

2γ
∥x̂t − xt∥2

)
+

2η

γ
εMφ

+
η

2γ

(mw

ε

)2
+ 16

√
2πmM2

φ

η2

γ
+
(mw

ε

)2 η2

γ
,
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where the equation uses φp,γ(xt) = φp(x̂t) +
1
2γ ∥x̂t − xt∥2. Recall that by Lemma 4, it holds that

xt − x̂t = γ∇φp,γ(xt) and

φp,γ(xt)− φp(xt) ≤ −
1− γρ

2γ
∥x̂t − xt∥2 ≤ −

1− γ(ρ+ 1)

2γ
∥x̂t − xt∥2.

We further have

E[φp,γ(xt+1)|xt] ≤ φp,γ(xt)− η (1− γ(ρ+ 1)) ∥∇φp,γ(xt)∥2 +
2η

γ
εMφ

+
η

2γ

(mw

ε

)2
+ 16
√
2πmM2

φ

η2

γ
+
(mw

ε

)2 η2

γ
.

Recall that η = Θ( 1√
mT

), ε = O( 1√
T
), w = O( 1

m
3
4 T

3
4
), and γ ∈ (0, 1/(ρ+ 1)). Neglecting some

scalars, it follows that

E[φp,γ(xt+1)|xt] ≤ φp,γ(xt)− η (1− γ(ρ+ 1)) ∥∇φp,γ(xt)∥2 +O
(
1

T

)
. (38)

Summing (38) over t = 0, 1, . . . T − 1 and taking full expectation, we have

E[φp,γ(xT )] ≤ φp,γ(x0)− η (1− γ(ρ+ 1))

T−1∑
t=0

E[∥∇φp,γ(xt)∥2] +O(1).

Note that the definition of x̄ gives
∑T−1

t=0 ∥∇φp,γ(xt)∥2 = T E[∥∇φp,γ(x̄)∥2]. Also, notice that

φp,γ(x0)− E[φp,γ(xT )] ≤ φp,γ(x0)−min
x

φp,γ(x) = ∆p.

Putting all the things together, we obtain

E[∥∇φp,γ(x̄)∥2] = O
(
∆p + 1

ηT

)
= O

(√
m(∆p + 1)√

T

)
.

This completes the proof.
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