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Abstract

Choice Modeling is at the core of many economics, operations, and marketing prob-
lems. In this paper, we propose a fundamental characterization of choice functions
that encompasses a wide variety of extant choice models. We demonstrate how
non-parametric estimators like neural nets can easily approximate such functionals
and overcome the curse of dimensionality that is inherent in the non-parametric
estimation of choice functions. We demonstrate through extensive simulations that
our proposed functionals can flexibly capture underlying consumer behavior in
a completely data-driven fashion and outperform traditional parametric models.
As demand settings often exhibit endogenous features, we extend our framework
to incorporate estimation under endogenous features. Further, we also describe a
formal inference procedure to construct valid confidence intervals on objects of
interest like price elasticity. Finally, to assess the practical applicability of our
estimator, we utilize a real-world dataset from Berry et al. (1995). Our empirical
analysis confirms that the estimator generates realistic and comparable own- and
cross-price elasticities that are consistent with the observations reported in the
existing literature.

1 Introduction

Demand estimation is a critical component in the field of economics, operations, and marketing,
enabling practitioners to model consumer choice behavior and understand how consumers react to
changes in a market. This understanding helps policymakers and businesses alike make informed
decisions, whether it be about launching new products, adjusting pricing strategies, or analyzing the
consequences of mergers. Over the years, various approaches both parametric and non-parametric
have been developed to address the complexities inherent in demand estimation. While parametric
methods, based on logit or probit assumptions, have remained popular due to their simplicity and
interpretability, they often require strong assumptions about the underlying choice process, limiting
their ability to capture the true complexity of consumer preferences.

Nonparametric methods, on the other hand, offer a more flexible approach to demand estimation,
allowing for more nuanced representations of consumer preferences without restrictive assumptions
about the underlying distributions. Despite their potential advantages, non-parametric approaches
often suffer from the “curse of dimensionality", as the complexity to estimate choice functions grows
exponentially with the number of products. This challenge has limited the widespread adoption of
nonparametric methods in practice.

In this paper, we make significant strides in bridging the gap between the flexibility of non-parametric
methods and the tractability of parametric models by introducing a fundamental characterization of
choice models. This characterization specifically addresses the curse of dimensionality in choice
systems and enables the flexible estimation of choice functions via non-parametric estimators.
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A key advantage of contemporary parametric demand estimation approaches is their ability to
model counterfactual demand in situations involving new product introductions or mergers. This
strength often serves to highlight the limitations of existing non-parametric methods, which struggle
with counterfactual estimation. Our proposed characterization, however, successfully estimates
counterfactual demand in such scenarios, thereby offering a more robust approach to modeling
consumer choice behavior.

Moreover, we recognize that real-world demand systems often contain unobserved demand shocks
correlated with observable product features, such as prices. These shocks can lead to endogeneity
issues, which can bias the estimated choice functions if not properly addressed. To tackle this
challenge, we extend our framework to accommodate endogeneity.

Additionally, we build upon recent advances in automatic debiased machine learning and provide an
inference procedure for constructing valid confidence intervals on objects of interest, such as price
elasticities.

Finally, to showcase the effectiveness and applicability of our proposed framework, we use the Berry
et al. (1995) Automobile dataset to estimate the price elasticities using our non-parametric estimator.
The results of our analysis align with existing literature and demonstrate the practical utility of our
approach, underscoring its potential for adoption in real-world demand estimation settings.

2 Theory

2.1 Choice Models

In this section, we provide a general characterization of consumer choice functions. In particular,
we focus on a scenario where researchers have access only to aggregate market-level demand data,
while individual-level choices and characteristics remain unobserved. Suppose consumers in a market
t face an offer set St that can comprise any subset of Jt distinct products ({1, 2, . . . , Jt}) 1. We
use uijt to represent the index tuple {Xjt, Iit, εijt}, where Xjt ∈ Ck denotes k product features
belonging to some countable universe Ck; Iit ∈ Cl denotes demographics of consumer i in market t,
we assume there are l features and belong to some countable universe Cl, and εijt denotes random
idiosyncratic components pertinent to consumer i for product j in market t that are not unobservable
to the researcher but observable to consumers.

Definition 1 (Choice Function). Given the offer set St ⊂ {1, 2, 3, . . . , Jt}, we define a function
π : {uijt : j ∈ St} → R|St| that maps a set of index tuples {uijt}j∈St

to a |St|-dimensional
probability vector. Each element in the π(·) vector represents the probability of consumer i choosing
product j in market t.

Here we present a very general characterization of choice functions that maps the observable and
unobservable components of product and individual characteristics to observed choices through some
choice function π. Note that, traditionally, uijt is a scalar that represents utility in choice models.
However, in our framework, uijt doesn’t necessarily represent utility. Further, we have not yet
imposed any assumption on π, i.e., how consumers make choices.

We now specify a set of assumptions on the model and data-generating process below.
Assumption 1 (Exogeneity). The unobserved error term εijt is independent and identically distributed
(i.i.d.) across all products. This can be expressed as follows:

P(εijt | X·t) = P(εijt)

This assumption implies that the error term εijt is not correlated with any of the observed variables
X·t. As such, it precludes the possibility of endogenous prices and/or marketing-mix variables, as
is common in observational data (). We start with the basic case with exogenous covariates in this
section and later in Section 2.2, we relax this assumption and allow for endogenous covariates.
Assumption 2 (Identity Independence). For any product j ∈ St and any market t, we assume the
choice function π does not depend on the identity of the product (jt). That is:

1The offer set St also includes an ’outside option,’ a hypothetical choice where all product features are zero.
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πijt({uikt}k∈St) = πijt(uijt, {uikt}k∈St,k ̸=j) = π(uijt, {uikt}k∈St,k ̸=j)

This assumption implies two things: first, the functional form of the choice probability for different
products and markets is the same; second, for any market-level heterogeneity (e.g., in the distribution
Ft(Iit, εijt)), we can include them in Xjt as features. Intuitively, this assumption suggests that
conditional on product and consumer features and the unobserved error term, the choice probabilities
are not functions of the identities of the products themselves.
Assumption 3 (Permutation Invariance). The choice function π is invariant under any permutation σj
applied to the competitors of product j, such that:

πijt = π(uijt, {uiσj(k)t}k∈St,k ̸=j)

In this assumption, we state that the choice function for product j is invariant to all permutations
of its competitors. This implies that the individual’s choice for product j is not affected by the
order or identity of the other products in the market, and it only depends on the set of competitors’
characteristics.

Since researchers only observe aggregate data, we next define the aggregate demand function. In
aggregate demand settings, individual-level choices are not observable and only aggregate demand is
observable. It is often the case that the market-specific individual features are not observable and are
assumed exogenously drawn from some distribution F(mt), where mt represents the market-level
characteristics. For the sake of notional simplicity, we let mt to be the same across all markets. One
can easily incorporate market-specific user demographics in the choice function. Thus the demand of
product j in market t denoted by πjt can be expressed as follows –

πjt =

∫ ∫
πijt({uikt}k∈St

)dF(mt)dG(εijt), (1)

where G(εijt) denotes the CDF of unobserved errors εijt. Since uijt is determined by {Xjt, Iit, εijt}
and Iit, εijt are integrated out in a market. Hence, we can express πjt as a function of only the
observable product characteristics –

πjt = g(Xjt, {Xkt}k∈S,k ̸=j). (2)

Lemma 1. For any choice function that satisfies Assumption 1 and 3, the aggregate demand function
is also permutation invariant.

This permutation invariance of aggregate demand function exists because, under the exogeneity
assumption, the aggregate demand function is simply the sum (or integral) of individual choice
functions that are themselves invariant to permutation. Hence, changes to the order of competitors
have no impact on the aggregated result. When the assumption of exogeneity is not satisfied, the
aggregate demand function does not retain the permutation invariance, notwithstanding the fact that
the individual-level choice function exhibit permutation invariance.

Our assumptions 2 (identity independence) and 3 (permutation invariance) are fairly standard in
the choice modeling literature, although they might not always be explicitly named. Table A16
summarizes models that satisfy these assumptions.

Theorem 1. For any offer set St ⊂ {1, 2, 3, . . . , Jt}, if a choice function π : {uijt : j ∈ St} → R|St|

where uijt represents the index tuple {Xjt, Iit, εijt} satisfies Assumption 1, 2 and 3, then there exists
suitable ρ, ϕ1 and ϕ2 such that

πjt = ρ(ϕ1(Xjt) +
∑

k ̸=j,k∈St

ϕ2(Xkt)),

Proof: See Appendix B.

This result is the generalization of the results shown in Zaheer et al. (2017) and can be shown
following similar arguments. The above result is very powerful and has two important takeaways: (i)
input space of the choice function does not grow with the number of products in the assortment. The
input space of the choice function (i.e., ϕ1 and ϕ2) grows only as a function of the number of features
of the products in consideration, and (ii) the result remains valid for all offer sets, denoted by St,
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irrespective of their size. This allows one to easily simulate the demand and entry of new products
or changes in market structure, as one does with traditional parametric models. As an example, for

the multinomial logit model one possible set of transformations could be ϕ1(x) =
[
exp(x)

0

]
and

ϕ2(x) =

[
0

exp(x)

]
that generate two-dimensional vectors, and the function ρ

([
x1
x2

])
= x1

x1+x2

operates on these vectors. 2

2.2 Endogenous Covariates

In this section, we relax the exogeneity assumption and handle the potential endogeneity issue that is
commonplace in demand settings. Note that, when the price (or other product characteristics or mixed
variables, such as promotions, correlate with unobserved variables (ϵijt), Assumption 1 (exogeneity)
is compromised. As a result, it becomes infeasible to integrate out ϵijt in the aggregate demand
function, as we did in Equation 1. This means that the aggregate demand function loses its property
of permutation invariance with respect to the observable characteristics of competitors. To address
this, we will build on the approach developed in Petrin and Train (2010) to allow for endogenous
observable features. Without loss of generality, we assume that the price pjt is the endogenous
variable and all other characteristics of the product Xjt are exogenous variables. i.e.,

E[pjt · εijt] ̸= 0 and E[Xjt · εijt] = 0,

Given valid instruments IVjt, we can express pjt as

pjt = γ (Xjt, IVjt) + µjt, (3)

At this point, no specific assumptions are made regarding the function γ. However, in the subsequent
inference section, we will discuss that the estimator of γ must be estimable at n−1/2 in order to
construct valid confidence intervals. Next, to address the issue of price endogeneity, we impose a
mild restriction on the space of choice functions we consider.
Assumption 4 (Linear Separability). The unobserved product characteristics can be expressed as the
sum of an endogenous (CF) and exogenous component

εijt = CF (µjt;λ) + ε̃ijt, (4)

where E[pjt · ε̃ijt] = 0.

This assumption implies that, after controlling for µjt using the control function CF , the endogenous
variable pjt is uncorrelated with the error term εijt in the model, thus it becomes exogenous. Then,
we can re-write the index tuple uijt as

uijt = {Xjt, pjt, CF (µjt;λ) + ε̃ijt}, (5)

such that E
[
ε̃ijt|(Xjt, pjt, µjt)

]
= 0

Theorem 2. For any offer set St ⊂ {1, 2, 3, . . . , Jt}, if a choice function π : {uijt : j ∈ St} → R|St|

where uijt represents the index tuple {Xjt, pjt, Iit, εijt} satisfies assumption 2 to 4. Then under the
condition of knowing the true function (γ0) of γ, there exists suitable ρ, ϕ1 and ϕ2 such that

πjt = ρ(ϕ1(Xjt, pjt, µjt(γ0)) +
∑

k ̸=j,k∈S

ϕ2(Xkt, pjt, µkt(γ0))),

The result follows straightforwardly from the observation that after controlling for CF (µjt;λ) the
unobservable component ε̃ is exogenous. This implies the aggregate demand function is invariant
under any permutation applied to competitors of product j. The result demonstrates that endogeneity
can be addressed by using the residuals from Equation 4 along with product observable characteristics
simply as an additional set of features.

2ρ
(
ϕ1(xjt) +

∑
k ̸=j ϕ2(xkt)

)
= ρ

([
exp(xjt)

0

]
+

[
0∑

k ̸=j exp(xkt)

])
= ρ

([
exp(xjt)∑

k ̸=j exp(xkt)

])
=

exp(xjt)

exp(xjt)+
∑

k ̸=j exp(xkt)
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3 Numerical Experiments

In this section, we first conduct several experiments to evaluate our estimator’s predictive performance
by applying it to different choice models. To assess the predictive performance of our model, we

focus on three estimators: market share (π̂jt), own-elasticity ( ˆ∂πjt

∂Pjt
) and cross-elasticity ( ˆ∂πjt

∂Pk ̸=jt
). For

comparison, we also include the predictive performance of four baseline models : 1) MNL; 2) RCL;
3) A standard neural network-based non-parametric method (NP): We tune the hyperparameters –
number of layers, number of nodes in each layer, learning rate, and the number of epochs using 5-fold
cross-validation for each data generation. We detail the space of hyperparameters in Appendix F.
We also apply the ReLU activation for each layer. 4) A “mean" predictor for all data points (Mean)
where we predict the market share to be the same for all products in a market and set it equal to the
average market share across all products in the dataset.

One advantage of our model compared to the standard neural network-based non-parametric method
is that the parameter of our model does not scale with the number of products. The standard neural
network uses the stacked products’ feature as input and has (J ×K + 1) × h1 parameters in the
input layer, where h1 denotes the size of the first hidden layer, while our model only use product
features with dimension K + 1 as input. Across the simulation runs, we observe that the selected
neural network has more parameters than our model.

Recent literature (Allenby et al., 2004) has highlighted a growing trend towards the adoption of
non-linear utility functions. In traditional parametric choice models like RCL and MNL, the oversight
of non-linear relationships between features and utilities can introduce biases in the estimates.
Conversely, non-parametric estimators are adept at capturing these non-linear patterns directly from
the data. As part of our analysis, we focus on data generated from a random coefficients logit model
with non-linear transformations applied to observable features. Without loss of generalizabilty, we
consider the case where there is only one feature x on which we apply non-linear transformation
g(x). Specifically, we consider two funtions of g(x) –

a. log(): g(x) = log(| 16x− 8 | +1)sign(x− 0.5)

b. sin(): g(x) = sin(x)

We also estimate baseline models (MNL and RCL) as comparison. Regarding the MAE of predicted
market shares, our model surpasses the RCL model by a factor of 8X and 4X across transformations (a)
and (b), respectively. Similarly, considering the MAE of predicted own-elasticity in transformations
(a) and (b), our model outperforms RCL by factors of 20X and 2.5X, respectively. For the MAE
of predicted cross-elasticity, our model is 2X and 1.5X superior to RCL across transformations
(a) and (b), respectively. It’s worth noting that while our model consistently outperforms the NP
method across metrics, the NP method still shows better performance than both RCL and MNL in

terms of MAE and RMSE for estimated own-elasticity ( ˆ∂πjt

∂Pjt
), underscoring the strengths of neural

network-driven approaches in navigating non-linearities.

Table 1: Non-linearity - Predicted Market Shares(π̂jt)
# True Model Our model MNL RCL NP Mean No. Obs.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
0 RCL-log() 0.0025 0.0063 0.0358 0.0361 0.0213 0.0309 0.0588 0.1235 0.0836 0.1401 200
1 RCL-sin() 0.0029 0.0046 0.0281 0.0340 0.0102 0.0172 0.0315 0.0449 0.0388 0.0527 200

Note: This table presents the results when we add non-linear transformation in data generation. We generate
using the Random Coefficient Logit (RCL) model, with 10 products and 100 markets, while only considering a

single non-linearly transformed feature, which is the price.

4 Conclusion

Choice models are fundamental in understanding consumer behavior and informing business decisions.
Over the years, various methods, both parametric and non-parametric, have been developed to
represent consumer behavior. In this paper, we propose a fundamental characterization of choice
models that combines the tractability of traditional choice models and the flexibility of non-parametric
estimators. This characterization specifically tackles the challenge of high dimensionality in choice
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Table 2: Non-linearity - Estimated own-Elasticity ( ˆ∂πjt

∂Pjt
)

# True Model Our Model MNL RCL NP No. Obs
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

0 RCL-log() 0.0566 0.1523 5.4278 2.8249 1.1961 2.1135 0.6119 0.9085 16000
1 RCL-sin() 0.0609 0.2820 0.6229 1.1350 0.1777 0.4246 0.4057 1.0787 16000

Note: This table presents the results when we add non-linear transformation in data generation. We generate
using the Random Coefficient Logit (RCL) model, with 10 products and 100 markets, while only considering a

single non-linearly transformed feature, which is the price.

Table 3: Non-linearity - Estimated Cross-Elasticity ( ˆ∂πjt

∂Pk ̸=jt
)

# True Model Our Model MNL RCL NP No. Obs
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

0 RCL-log() 0.0150 0.0543 0.0436 0.1389 0.0372 0.4414 0.2552 0.5444 144000
1 RCL-sin() 0.0226 0.1047 0.0471 0.1794 0.0354 0.1751 0.1448 0.3357 144000

Note: This table presents the results when we add non-linear transformation to features. To limit the influence of
other factors that may affect the result, we consider the case when there is only one feature (price).

systems and facilitates flexible estimation of choice functions. Through extensive simulations, we
validate the efficacy of our model, demonstrating its superior ability to capture a range of consumer
behaviors that traditional choice models fail to capture. We also show how to address the endogeneity
issue and estimate counterfactuals in our characterization. Furthermore, leveraging the recent strides
in the automatic debiased machine learning literature, we offer an inference procedure that constructs
confidence intervals on relevant objects, such as price elasticities. Finally, we apply our method to the
automobile dataset from Berry et al. (1995). Our empirical analysis affirms that our model produces
results that align well with the extant literature.

Our paper opens many avenues for future research. First, we focus on using neural network-based
estimators. However, estimators, such as Gaussian processes and Gradient boosting-based estimators
can be adopted to estimate the proposed functionals. Second, we also only consider a very standard
multilayer RELU neural network for each component of our model. Another potential future
direction could be exploring the connection between transformer networks (Vaswani et al., 2017) and
set functions as the attention mechanism used in these architectures have a very similar functional
form.
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Appendices

A Inference

The aim of this paper is to estimate choice functions flexibly using non-parametric estimators.
However, often in social science contexts, one is also interested in conducting inference over some
economic objects. Note that because non-parametric regression functions are estimated at a slower
rate compared to parametric regressions, it is often infeasible to construct confidence intervals directly
on the estimated π̂. However, it is generally possible to perform inference and construct valid
confidence intervals for specific economic objects that are functions of π. In this section, we will
provide example of one such important economic object and demonstrate how to construct valid
confidence intervals for it. This will be done by leveraging the recent advances in automatic debiased
machine learning as shown in the works of Ichimura and Newey (2022); Chernozhukov et al. (2022b,a,
2021), and others. However, unlike existing automatic debiased machine learning setups we also
have to account for an additional first-stage estimator γ̂.

In demand estimation, researchers are often interested in estimating the average effect of a price
change on the demand for a product, as it can significantly influence market dynamics, pricing strate-
gies, and regulatory decisions. To proceed with our analysis, let wjt = (yjt, pjt, xjt, {pkt, xkt}k ̸=j)
and zjt = (pjt, xjt, {pkt, xkt}k ̸=j) represent the variables associated with product j in market t.
Here, pjt ∈ C denotes the observed prices, xjt ∈ Cd represents other product characteristics and
yjt ∈ R refers to the observed demand for product j in market t, such as market shares or log shares.
Note that either the observed price (pjt) or other characteristics (xjt) could be endogenous. For
simplicity and without loss of generality, we focus on pjt as the endogenous variable in the following
analysis.

The average effect of a price change3 can be expressed as the difference between the demand function
πjt(·; γ) evaluated at the original price pjt and at the price incremented by ∆pjt, given by the
following expression:

m(wjt, π(·; γ)) = π(pjt +∆pjt, xjt, {pkt, xkt}k ̸=j); γ)− π(pjt, xjt, {pkt, xkt}k ̸=j); γ).

The parameter of interest, θ0, is the expected value of this price change effect over the true population
distribution4 of wjt, which can be calculated as:

θ0 = E[m(wjt, π(·; γ))] = E[π(pjt +∆pjt, xjt, {xkt}k ̸=j ; γ)− π(pjt, xjt, {xkt}k ̸=j ; γ)].

In summary, the average effect of a price change on demand, denoted by θ0, is calculated by evaluating
the difference between the demand function at the original price and at the price incremented by
∆pjt, and then computing the expected value of this difference.

In practice, we estimate θ0 by computing its empirical analog using the estimated demand function π̂
and first-stage estimator γ̂, i.e.,

θ̂ =
1

n

n∑
t=1

m(wjt, π̂(zjt; γ̂)), (A1)

where n is the number of observations. When parametric methods are employed to estimate π̂ and
γ̂, the estimator for θ̂ is generally

√
n-consistent, assuming that the model is correctly specified.

However,
√
n-consistency may not hold when non-parametric estimators are used, particularly if

the first-order bias does not vanish at a rate of
√
n. Irrespective of the method used to estimate π,

this is often the case, as flexible estimation of π always requires some form of regularization and/or
model selection. Debiasing techniques are required to mitigate the effects of regularization and/or
model selection when learning flexible demand models. These approaches can help improve the
performance of the estimator and facilitate valid inference with θ̂. We therefore adapt recent debiasing

3The expression for the average effect of a price change can be adapted to represent average price elasticity
by placing the known and fixed value of ∆pjt in the denominator.

4We assume the data reflects the true population.
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techniques developed in recent automatic debiased machine learning literature (see Chernozhukov
et al. (2022b)). Specifically, we will focus on problems where there exists a square-integrable random
variable α0(z) such that ∀ ||γ − γ0|| small enough –

E[m(wjt, π(zjt; γ))] = E[α0(zjt)π(zjt; γ)]

∀π with E[πjt(zjt; γ)2] <∞

By the Riesz representation theorem, the existence of such α0(zjt) is equivalent to
E[m(wjt, π(zjt; γ))] being a mean square continuous functional of π(zjt; γ). Henceforth, we refer
to α0(z) as Riesz representer (or RR). Newey (1994) shows that the mean square continuity of
E[m(wjt, πjt(zjt; γ))] is equivalent to the semiparametric efficiency bound of θ0 being finite. Thus,
our approach focuses on regular functionals. Similar uses of the Riesz representation theorem can be
found in Ai and Chen (2007), Ackerberg et al. (2014), Hirshberg and Wager (2020), and Chernozhukov
et al. (2022b) among others. The debiasing term in this case takes the form α(zjt)(yjt − π(zjt; γ)).
To see that, consider the score m(wjt, π(zjt; γ)) + α(zjt)(yjt − π(zjt; γ)) − θ0. It satisfies the
following mixed bias property:

E[m(wjt, π(zjt; γ)) + α(zjt)(yjt − π(zjt; γ))− θ0]

= −E [(α(zjt)− α0(zjt)) (π(zjt)− yjt)] .

This property implies double robustness (Robins et al., 1994; Funk et al., 2011) of the score. That is,
if either α(zjt) is correctly estimated, which would mean α(zjt)−α0(zjt) = 0, or π(zjt) is correctly
estimated, implying π(zjt)− yjt = 0, then the term (α(zjt)− α0(zjt))(π(zjt)− yjt) will be zero.
This results in the score going to zero, thereby making the estimator consistent for θ0. A debiased
machine learning estimator of θ0 can be constructed from this score and first-stage learners π̂ and α̂.
Let En[·] denote the empirical expectation over a sample of size n, i.e., En[xi] =

1
n

∑n
i=1 xi. We

consider:
θ̂ = En[m(wjt; π̂) + α̂(zjt)(yjt − π̂(zjt))].

The mixed bias property implies that the bias of this estimator will vanish at a rate equal to the product
of the mean-square convergence rates of α̂ and π̂. Therefore, in cases where the demand function
π can be estimated very well, the rate requirements on α̂ will be less strict, and vice versa. More
notably, whenever the product of the meansquare convergence rates of α̂ and f̂ is larger than

√
n, we

have that
√
n
(
θ̂ − θ0

)
converges in distribution to centered normal law N

(
0,E

[
ψ0(wjt)

2
])

, where

ψ0(wjt) := m (wjt;π0) + α0(zjt) (yjt − π0(zjt))− θ0

as proven formally in Theorem 3 of Chernozhukov et al. (2022b). Results in Newey (1994) imply that
E
[
ψ0(wi)

2
]

is a semiparametric efficient variance bound for θ0, and therefore the estimator achieves
this bound.

Theorem 3. [Chernozhukov et al. (2021)] One can view the Riesz representer as the minimizer of
the loss function:

α0 = argmin
α

E
[
(α(zjt)− α0(zjt))

2
]

= argmin
α

E
[
α(zjt)

2 − 2α0(zjt)α(zjt) + α0(zjt)
2
]

= argmin
α

E
[
α(zjt)

2 − 2m(wjt;α)
]
,

In our earlier discussions, we employed the moment function of π, whereas in Theorem 3, we focus
on the moment function of α. This shift is justified by the Riesz Representation Theorem, which
implies E[m(wjt;π)] = E[α0(zjt)π(zjt)]. Given that π can represent any function, substituting α
for π is permissible, thereby validating the transition from the second to the third line in Theorem
3. We use the above theorem to flexibly estimate the RR. The advantage of this approach is that it
eliminates the need to derive an analytical form for the RR estimator, allowing it to be addressed as a
simple computational optimization problem.

Theorem 4. [Chernozhukov et al. (2021)] Let δn be an upper bound on the critical radius (Wainwright
(2019)) of the function spaces:
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{z 7→ ζ (α(z)− α0(z)) : α ∈ An, ζ ∈ [0, 1]} and
{w 7→ ζ (m(w;α)−m (w;α0)) : α ∈ An, ζ ∈ [0, 1]}

and suppose that for all f in the spaces above: ∥f∥∞ ≤ 1. Suppose, furthermore, that m satisfies the
mean-squared continuity property:

E
[
(m(w;α)−m (w;α′))

2
]
≤M ∥α− α′∥22

for all α, α′ ∈ An and some M ≥ 1. Then for some universal constant C, we have that w.p. 1− ζ :

∥α̂− α0∥22 ≤ C(δ2nM +
M log(1/ζ)

n

+ inf
α∗∈An

∥α∗ − α0∥22

)
The critical radius has been widely studied in various function spaces, such as high-dimensional
linear functions, neural networks, and superficial regression trees, often showing δn = O

(
dnn

−1/2
)
,

where dn represents the effective dimensions of the hypothesis spaces (Chernozhukov et al. (2021)).
In our research, we focus on applying Theorem 2.1 from an application standpoint to neural networks.
Assumption 5. i) α0(z) and ∀ ||γ − γ0|| small enough E[(y − π0(zjt; γ))

2|zjt] are bounded ii)
E[m(wjt, π0(zjt; γ0))

2] <∞

These assumptions are standard regularity conditions used in the automatic machine learning litera-
ture.
Assumption 6. i) ∀ ||γ − γ0|| small enough ||π̂(; γ) − π0(; γ)||

p−→ 0 and ||α̂ − α0||
p−→ 0; ii)√

n||α̂− α||||(π̂(; γ)− π0(; γ)||
p−→ 0; iii) α̂ is bounded; (iv)

√
n||γ̂ − γ0||

p−→ 0

Intuitively these assumptions mean that (i) the estimator of both π and α should be consistent for
values of γ in a close enough neighborhood of γ0. Further, it requires that the product of mean square
error of α̂ and mean square error of π should vanish at

√
n− rate. This can be achieved if both

these terms converge at least at n−1/4 rate. Finally, we also assume that the first stage estimator γ̂ is
estimable at n−1/2 rate. This limits the class of functions one can use to estimate γ.
Assumption 7. m(w, π) is linear in π and there is C > 0 such that

|E [m(w, π)− θ0 + α0(z)(y − π(z; γ))]| ≤ C ∥π − π0∥2

Proposition 1. If Assumptions 5-7 are satisfied then for V = E[{m(w, π0(z; γ0))− θ0
+α0(z)(y − π0(z; γ0))}2], √

n(θ̂ − θ0)
D−→ N(0, V ), V̂

p−→ V.

We show the proof in Appendix B. This theorem shows that if γ̂ is estimable at a fast enough rate
one can still construct valid confidence intervals for θ̂. This result can be shown following similar
arguments as in Chernozhukov et al. (2022a).

A.1 Estimation Outline

Consider the dataset {yt, zt, IVt}nt=1 is independently and identically distributed.

• Stage 1 (γ̂): We estimate γ by regressing the endogenous variable on the exogenous
instruments. We then calculate the residual µ̂ with estimated γ̂.

• Stage 2 (π̂):
– Stage 2a (Data partition): We randomly split the data into L folds such that the data
Dl := {yt, zt}t∈Il , where Il denotes the lth partition.

– Stage 2b (Estimation): In the second stage for each fold Il, we estimate both the choice
function (π̂) and the Riesz estimator (α̂) on the left out data Dc

l := {yt, xt}t/∈Il

π̂l =f∈F
1∑

t∈Dlc
Jt

∑
t∈Dlc

∑
j∈Jt

[(yjt − π(zjt; γ))
2] (A2)
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α̂l =α∈A
1∑

t∈Dlc
Jt

∑
t∈Dlc

∑
j∈Jt

[
α(zjt)

2 − 2m(wjt;α)
]
. (A3)

Based on Theorem 2, instead of estimating a function π, we decompose the estimation
to 3 components: ρ, ψ1, and ψ2. Specifically, for each component of our model ( ϕ1,
ϕ2 and ρ), we use a standard 3-layer neural network, and this is implemented without
further hyperparameter tuning. We implement ReLU activation function at each layer
as it is standard in feedforward designs due to simplicity and computation efficiency
in gradients. Specifically, we pass the focal product’s characteristics (xjt) and the
residuals (µjt) estimated from first stage to the ϕ1. In parallel, we pass each other
product’s (of the same market) characteristics (xkt) and the residuals (µkt) to a same
ϕ2 then sum the output up. The output of ϕ1 and ϕ2 have the same data structure
(e.g., a 64-dimension vector). Next, we pass the summation of the output of ϕ1 and
ϕ2 to a third neural network ρ. The output of ρ is a scalar which represents the market
share of the focal product jt. We use the same structure when estimating α. The only
difference is, the loss function of α is not based on the difference between the observed
and the predicted. Instead, the loss function is based on the difference between α and
the moment function of α as stated in Theorem 3.

– Stage 2c (Cross-fitting): Now we use the cross-fitting technique, same as Chernozhukov
et al. (2021) to reduce the bias when estimating θ̂. Specifically, we use the estimators
(π̂ and π̂) estimated on Dc

l to estimate the θ̂l of Il. By applying cross-fitting, we
ensure that the nuisance functions and the parameters are estimated on separate, non-
overlapping datasets. This approach diminishes the risk of overfitting and enhances the
robustness of our estimation. And finally, to estimate θ, we average it out across all
folds. Thus the estimator for θ0 and its variance can be given as follows –

θ̂ =
1

n

L∑
ℓ=1

∑
t∈Dc

ℓ

{m (wt, π̂ℓ) + α̂ℓ (zt) (yt − π̂ℓ(xt))}

V̂ =
1

n

L∑
ℓ=1

∑
t∈Dc

ℓ

ψ̂2
tℓ, ψ̂tℓ = m (wt, π̂ℓ)− θ̂ + α̂ℓ (zt) (yt − π̂ℓ(xt))

A.2 Inference and Coverage Analysis

We demonstrate the performance of the debiasing and inference procedure. The objective is to
demonstrate the validity of the estimated confidence intervals. To this end, we estimate the average
effect of a 1% change in own price on demand over all products (θ̂) and compute the corresponding
confidence intervals of this effect. The difference between this section and section ?? lies in both the
estimators and the methods. In terms of estimators, in section ??, we predict the market share (π̂jt),

own-elasticity ( ˆ∂πjt

∂Pjt
) and cross-elasticity ( ˆ∂πjt

∂Pk ̸=jt
) for individual products. In contrast, the object of

interest in this section is average effect of price on demand across all products (θ̂). As a result, in
section ??, we did not use debiasing techniques which we apply here. It’s important to emphasize
that in our approach, constructing a confidence interval is viable only for aggregate measures, not for
individual observations.

To simulate the data, we consider a random-coefficients logit model of demand with 3 products across
100 markets. We set the true model parameters to be βik ∼ N (1, 0.5), αi ∼ N (−1, 0.5). The effect
of a 1% increase in a product’s price is given by

θ0 = E[m(wi, π] = E[π(pjt ∗ (1.01), xjt, {xkt}k ̸=j)− π(pjt, xjt, {xkt}k ̸=j)],

As discussed earlier, one way to estimate this effect is to compute the sample analog of this using the
estimated π̂, such that θ̂ = 1

n

∑n
i=1m(wi, π̂). However, as we pointed out earlier, the distribution of

θ̂ might not be asymptotically normal. To demonstrate this, in Figure A1a, we display the histogram
of the estimated effect across 50 random samples by using the plug-in method. We standardize
the estimates by subtracting the mean and then dividing by the standard deviation and plot them
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against the standard normal distribution. As one can observe the distribution appears multi-modal
and deviates from a standard normal distribution. Next, we use our proposed debiased estimator
and plot the standardized estimates across 50 samples of draws in Figure A1b. As one can note the
resultant distribution with the debiased estimator is much closer to a standard normal. Finally, we
calculate the 95% confidence intervals using our debiased estimator across 50 random draws. In Table
A1, we report the bias (mean absolute error from all draws) and the coverage i.e., the percentage of
times the true parameter is covered in the estimated confidence intervals. We find that bias across
both data-generating processes (RCL and MNL) is notably low, reflecting only a -0.0001 difference
from the true effect. The coverage rate of the 95% confidence interval in our corrected model is
90%, indicating good coverage. This shows that our debiased estimator can be used to conduct valid
inference in finite samples.

(a) Distribution of Estimated Average Effect of
Price Change with Plug-in

(b) Distribution of Estimated Average Effect of
Price Change with the Debiased Estimator

Figure A1: Distribution of Estimated Average Effect of Price Change
Note:The figure shows the distribution of the standardized plug-in and debiased estimators of the average effect
of 1% change in price on demand. To simulate the data, we consider 3 products across 100 markets with 5
non-price features using RCL for 50 samples. For each sample, we set the true model parameters to be
βik ∼ N (1, 0.5), αi ∼ N (−1, 0.5). Figure A1a displays the distribution of the estimated effect with the
Plug-in method and Figure A1b shows the result when employing the debiased estimator.

Table A1: Inference Coverage Analysis
True Model True Effect Bias 95% CI Cov.

RCL -0.0013 -0.0001 90%
MNL -0.0016 -0.0001 90%

Note: This table presents the bias and coverage rate of 95% confidence interval using our debiased estimator of
the average effect of 1% change in price on demand. To simulate the data, we consider 3 products across 100
markets with 5 non-price features using RCL and MNL for 50 samples of draws. For each RCL sample, we set
the true model parameters to be βik ∼ N (1, 0.5), αi ∼ N (−1, 0.5). For each MNL sample, we set the true
model parameters to be βik = 1, αi = −1.

B Appendix for the Proof of Main Results

Theorem 1. For any offer set St ⊂ {1, 2, 3, . . . , Jt}, if a choice function π : {uijt : j ∈ St} → R|St|

where uijt represents the index tuple {Xjt, Iit, εijt} satisfies Assumption 1, 2 and 3, then there exists
suitable ρ, ϕ1 and ϕ2 such that

πjt = ρ(ϕ1(Xjt) +
∑

k ̸=j,k∈St

ϕ2(Xkt)),

Proof. The sufficiency follows by observing that the function πjt = ρ(ϕ1(Xjt)+
∑

k∈S\{j} ϕ2(Xkt))

satisfies assumption 2 and 3. To prove necessity, first consider E = {2n | n ∈ N} and O = {2n+1 |
n ∈ N} as the set of all even and odd natural numbers respectively. Next, to show that all functions
can be decomposed in the above manner, we begin by noting that there must be a mapping from the
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elements to the set of even number and odd numbers respectively, since the elements belong to a
countable universe Ck. Let these mappings be denoted by ce : Ck → E and co : Ck → O. Now if
we let ϕ1(x) = 4−ce(x) and ϕ2(x) = 4−co(x) then ϕ1(x) +

∑
x∈S\{j} ϕ2(x) constitutes an unique

representation for every product j and competing assortment S \ {j}. Now a function ρ : R → R
can always be constructed such that πjt = ρ

(
ϕ1(xjt) +

∑
k∈S\{j} ϕ2(xkt)

)
.

Proposition 1. If Assumptions 5-7 are satisfied then for V = E[{m(w, π0(z; γ0))− θ0
+α0(z)(y − π0(z; γ0))}2], √

n(θ̂ − θ0)
D−→ N(0, V ), V̂

p−→ V.

Proof. To show the asymptotic normality we will first verify the Assumptions 1-3 of Cher-
nozhukov et al. (2022a), from now on CEINR, with g(w, π(z; γ), θ) = m(w, π(z; γ)) − θ and
ϕ(w, π(z; γ), α(z), θ) = α(z) · (y − π(z; γ)). Using Taylor series expansion, Assumption 6 and
||π̂(z; γ)− π0(z; γ)||

p−→ 0 we have,

∫
||g(w, π̂(zi; γ̂), θ0)− g(w, π0(zi; γ0), θ0)||2P0(dw)

=

∫
||m(w, π̂(zi; γ̂))−m(w, π0(zi; γ0))||2P0(dw)

≤ C

∫
||π̂(zi; γ̂)− π0(zi; γ0)||2P0(dw)

≤ C

∫
||π̂(zi; γ̂)− π̂(zi; γ0) + π̂(zi; γ0)− π0(zi; γ0)||2P0(dw)

By the triangle inequality

≤ C

∫
||π̂(zi; γ̂)− π̂(zi; γ0)||2P0(dw)

+ C

∫
||π̂(zi; γ0)− π0(zi; γ0)||2P0(dw)

+ C

∫
||π̂(zi; γ̂)− π̂(zi; γ0)||||π̂(zi; γ0)− π0(zi; γ0)||P0(dw)

p−→ 0

(A-4)

The first term converges in probability to 0 by Taylor series expansion.

Also by Assumption 5 i) and ii), and as just showed ||π̂(z; γ̂)− π0(z; γ0)||
p−→ 0,∫

||ϕ(w, π̂(z; γ̂), α0, θ0)− ϕ(w, π0, α0, θ0)||2P0(dw) =

∫
||α0(z)(π0(z; γ0)− π̂(z; γ̂))||2P0(dw)

≤ C

∫
||(π0(z; γ0)− π̂(z; γ̂))||2P0(dw)

≤ C||π̂(z; γ̂)− π0(z; γ0)||2
p−→ 0

(A-5)

Also by Assumption 5 i) and ||α̂− α0||
p−→ 0, we have,∫

||ϕ(w, π0(z; γ0), α̂, θ̃)− ϕ(w, π0(z; γ0), α0, θ0)||2P0(dw) =

∫
|| (α̂(z)− α0(z)) (y − π0(z; γ0)) ||2P0(dw)

≤ C

∫
||α̂− α0||2P0(dw)

≤ C||α̂− α0||2
p−→ 0

(A-6)
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This satisfies Assumption 1 parts i), ii), and iii) of CEINR.

Next, consider

∆̂(w) := ϕ
(
w, π̂(z; γ̂), α̂, θ̃

)
− ϕ

(
w, f0, α̂, θ̃

)
− ϕ (w, π̂(z; γ̂), α0, θ0) + ϕ (w, f0, α0, θ0)

= − [α̂(z)− α0(z)] [π̂(z; γ̂)− π0(z; γ)] .

Then by the Cauchy-Schwartz inequality, and Assumptions 6 i) and ii)

E
[
∆̂(w)

]
=

∫
− [α̂(z)− α0(z)] [(π̂(z; γ̂)− π(z; γ))]P0(dz)

≤ ∥α̂− α0∥ ∥(π̂(z; γ̂)− π(z; γ))∥ = op

(
1√
n

) (A-7)

Also since α̂(z) and α(z) is bounded, we have∫ ∥∥∥∆̂(w)
∥∥∥2 P0(dw) =

∫
[α̂(z)− α0(z)]

2
[(π̂(z; γ̂)− π0(z))]

2 P0(dz)

≤ C

∫
[(π̂ − π0(z))]

2 P0(dz)
p−→ 0

(A-8)

Thus Equation A-7 and Equation A-8 verify Assumption 2 i) of CEINR.

Next Assumption 3 of CEINR is satisfied through Assumption 7. Thus Assumptions 1-3 of CEINR
are satisfied. Thus asymptotic normality follows by Lemma 15 of CEINR and the Lindberg-Levy
central limit theorem.

Finally, we know θ
p−→ θ0. And thus we have,∫ ∥∥∥g (w, π̂(z; γ̂), θ̃)− g (w, π̂(z; γ̂), θ0)
∥∥∥2 P0(dw) =

p−→ 0

To get the second conclusion, we need to show that V̂ is a consistent estimator of V . To show this,
we closely follow Chernozhukov et al. (2021). Let ψi = ψ0 (wi) and consider

V̂ =
1

n

n∑
i=1

ψ̂2
i =

1

n

n∑
i=1

(
ψ̂i − ψi

)2
+

2

n

n∑
i=1

(
ψ̂i − ψi

)
ψi +

1

n

n∑
i=1

ψ2
i

hence, by re-arranging the terms and Cauchy-Schwarz inequality,

V̂−V =
1

n

n∑
i=1

(
ψ̂i − ψi

)2
+
2

n

n∑
i=1

(
ψ̂i − ψi

)
ψi ≤

1

n

n∑
i=1

(
ψ̂i − ψi

)2
+2

√√√√ 1

n

n∑
i=1

(
ψ̂i − ψi

)2√√√√ 1

n

n∑
i=1

ψ2
i .

Using the triangle inequality, for i ∈ Iℓ,(
ψ̂i − ψi

)2
≤ C

4∑
j=1

Rij = C

3∑
j=1

Rij + op(1)

where
Ri1 = [m (wi, π̂ℓ(zi; γ̂ℓ))−m (wi, π0(zi; γ0))]

2
,

Ri2 = α̂2
ℓ (zi) [π̂ℓ(zi; γ̂ℓ)− π0(zi; γ0)]

2
,

Ri3 = [α̂ℓ (zi)− α0 (zi)]
2
[yi − π0 (zi; γ0)]

2
,

Ri4 =
(
θ̂ − θ0

)2
.

We already showed consistency, so Ri4
p→ 0.
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Let I−ℓ denote observations not in Iℓ. By Markov’s inequality, for some δ > 0,

P

(
1

n

n∑
i=1

(
ψ̂i − ψi

)2
> δ

)
≤

E
[
1
n

∑n
i=1

(
ψ̂i − ψi

)2]
δ

Note that the cross-fitting allows us to write

E

[
1

n

n∑
i=1

(
ψ̂i − ψi

)2]
≤ E

C
n

L∑
ℓ=1

∑
i∈Iℓ

3∑
j=1

Rij

+op(1) = C

L∑
ℓ=1

nℓ
n

3∑
j=1

E [E [Rij | I−ℓ]]+op(1).

We already showed,

E [Ri1 | I−ℓ] =

∫
[m (wi, γ̂ℓ)−m (wi, γ0)]

2
F0(dw) = op(1)

Next by triangle inequality, we have

E [Ri2 | W−l] =

∫
α̂2
l [π̂l(zi; γ̂l)− π0(zi; γ0)]

2
F0(dz)

=

∫
[α̂l + α0 − α0]

2
[π̂l(zi; γ̂l)− π0(zi; γ0)]

2
F0(dz)

≤
∫

[α̂l − α0]
2
[π̂l(zi; γ̂l)− π0(zi; γ0)]

2
F0(dz)

+

∫
[α0]

2
[π̂l(zi; γ̂l)− π0(zi; γ0)]

2
F0(dz)

≤ Op(1)

∫
[π̂ℓ(zi; γ̂ℓ)− π0(zi; γ0)]

2
F0(dz)

p→ 0

Finally, we have

E [Ri3 | I−ℓ] = E
[
E
[
[α̂ℓ (zi)− α0 (zi)]

2
[yi − π0 (zi; γ0)]

2 | zi, I−ℓ

]
| I−ℓ

]
= E

[
[α̂ℓ (Zi)− α0 (Zi)]

2 E
[
[yi − π0 (zi; γ0)]

2 | Zi

]
| I−ℓ

]
≤ C ∥α̂ℓ − α0∥2

p→ 0.

As a result,
1

n

n∑
i=1

(
ψ̂i − ψi

)2 p→ 0

Thus, we have V̂
p−→ V

Also by Assumption 9 and iterated expectations

E [Ri3 | W−ℓ] ≤
∫

{α̂ℓ(z)− ᾱ(x)}2 E
[
(y − π̄(z))2 | Z = z

]
FZ(dz)

≤ C

∫
{α̂ℓ(z)− ᾱ(z)}2 Fz(dz) = C ∥α̂ℓ − ᾱ∥2 = op(1).
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C Additional Numerical Experiments

We first examine the predictive performance of our model under stylized choice models, such as
Multinomial Logit (MNL) and Random-Coefficients Logit (RCL). We also investigate the sensitivity
of our model by adjusting key parameters, such as the number of products and markets, within
the data generation processes. Second, since the stylized MNL and RCL cannot fully capture how
each predictor affects the market shares, for example, the relationship between some predictor and
the market share could be non-linear. We expand to other models where models are allowed to be
misspecified. Third, we demonstrate the performance of our model when broader consumer behaviors,
such as consumer inattention, are considered. Fourth, we demonstrate the capability of our model in
estimating counterfactuals.

To assess the predictive performance of our model, we focus on three estimators: market share (π̂jt),

own-elasticity ( ˆ∂πjt

∂Pjt
) and cross-elasticity ( ˆ∂πjt

∂Pk ̸=jt
). For comparison, we also include the predictive

performance of four baseline models : 1) MNL; 2) RCL; 3) A standard neural network-based non-
parametric method (NP): We tune the hyperparameters – number of layers, number of nodes in each
layer, learning rate, and the number of epochs using 5-fold cross-validation for each data generation.
We detail the space of hyperparameters in Appendix F. We also apply the ReLU activation for each
layer. 4) A “mean" predictor for all data points (Mean) where we predict the market share to be the
same for all products in a market and set it equal to the average market share across all products in
the dataset.

One advantage of our model compared to the standard neural network-based non-parametric method
is that the parameter of our model does not scale with the number of products. The standard neural
network uses the stacked products’ feature as input and has (J ×K + 1) × h1 parameters in the
input layer, where h1 denotes the size of the first hidden layer, while our model only use product
features with dimension K + 1 as input. Across the simulation runs, we observe that the selected
neural network has more parameters than our model.

C.1 Baseline Models - RCL and MNL

Data Generation

We consider the stylized discrete choice models, MNL and RCL models as our baseline data
generations. We simulate data using these two models, considering a setting with 10 products
(J = 10), across 100 markets (M = 100), with 10 non-price features (K = 10). We calculate the
utility ui,m,j that consumer i in market m derives from product j using the formula:

ui,m,j = αiPricem,j + βiXm,j + εi,m,j , (A-9)

where εi,m,j represents an independently and identically distributed (iid) Type-I extreme value across
products and consumers. Xm,j ∈ RK denotes the non-price features of the product. αi, βi are the
model coefficients, which are kept constant for all consumers in the MNL, while in the RCL, they are
normally distributed across consumers. The probability distribution of features and coefficients are in
Appendix E.

We denote the market share of product j in market m generated from MNL by SMNL
m,j and the market

share generated from RCL by SRCL
m,j . For each market, we generate the market shares of each product

by simulating N = 10, 000 individual choices and aggregating by each market as below, (the mean
utility derived from the outside option is normalized to 0. )

SMNL
m,j =

1

N

N∑
i

1(ui,m,j = max
k

(ui,m,k))
5 (A-10)

SRCL
m,j =

1

N

N∑
i

exp(αiPricem,j + βiXm,j)

1 +
∑

j exp(αiPricem,j + βiXm,j)
(A-11)

5Instead of simulating each individual’s choice probability, we simulate each indivdual’s choice based on the
utility maximization. This approach ensures that when we use MNL (true model) for estimation, it does not
reproduce the data perfectly.
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We then split the generated data into training data (80%) and test data (20%) and only use training
data for estimation. We report Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of
the estimators using 20 draws of each simulation.

Results

Table A2, A3, and A4 present MAE and RMSE in the predicted market share (π̂jt), own-elasticity

( ˆ∂πjt

∂Pjt
) and cross-elasticity ( ˆ∂πjt

∂Pk ̸=jt
) respectively. J represents the number of products, M represents

the number of markets (in the full data) and K represents the number of non-price features. The
number of observations for market share (π̂jt) is calculated based on M × J × 20% (the portion of
test data) ×20 (the number of draws of simulations). The number of observations for own-elasticity

( ˆ∂πjt

∂Pjt
) is calculated based on M × J × 80% (the portion of training data 6) ×20 (the number of

draws of simulations). The number of observations for cross-elasticity ( ˆ∂πjt

∂Pk ̸=jt
) is calculated based

on M × J × (J − 1)× 80% (the portion of training data) ×20 (the number of draws of simulations).

Our model outperforms the benchmark non-parametric method in the predicted market shares in all
data generation processes. Note that, this is despite extensive hyperparameter tuning. When the true
model is MNL, our model cannot beat RCL or MNL, which is as expected; but the error of our model
is close to the true model. When the true model is RCL, our model can beat MNL consistently and
the performance of our model is also close to the true model.

A significant advantage of our model, as compared to the benchmark non-parametric estimator, is
its ability to circumvent the curse of dimensionality that arises with the increase in the number of
products. Specifically, the number of model parameters of our model does not scale with the number
of products. On the other hand, each sample in the NP method is a market while one sample in our
model is a product. Therefore, the sample size of NP method is essentially M , while the sample size
of our model is M × J . Thus, as the number of products escalates, we anticipate an improvement in
the performance of our model due to the availability of more training data points or observations. We
verify this by varying the number of products to 5, 10, and 20 during data generation. As anticipated,
the MAE of the predicted market shares from our model decreases monotonically with an increase
in product count. In contrast, the benchmark non-parametric estimator even falls behind that of
Mean prediction as the number of products increases, demonstrating the existence of the curse of
dimensionality.

We also test the performance of our model with varying market numbers (20, 100, and 200). Although
both our model and the NP method show improved performance with more markets, the non-
parametric estimator is more adversely affected by a decrease in market numbers due to a more
significant reduction in its sample size. This is particularly problematic in scenarios with one market,
as the non-parametric estimator becomes infeasible for estimation for only one sample.

In the prediction of own- and cross- elasticity, the patterns observed in the predicted market shares

generally remain consistent. Note that, here we use the predicted own-elasticity ( ˆ∂πjt

∂Pjt
) and cross-

elasticity ( ˆ∂πjt

∂Pk ̸=jt
) for each observation (product), which is different to the average effect of price on

the market share that we discussed in Section A.1. We will elaborate how to conduct inference on the
average effect of price (θ̂) in Section A.2.

C.2 Choice Behaviors

Recent literature (e.g., Abaluck et al. (2020); Gabaix (2019); Honka et al. (2019); Compiani (2022);
Goeree (2008)) also demonstrate that consumers may not be fully informed of all products when
deciding which product to purchase. This violates a general assumption of the choice model:
consumers are informed and consider all options when they make purchase decisions. In some
parametric models (e.g., Van Nierop et al. (2010)), this issue is managed by constructing the consumer
consideration set. However, consideration sets are mostly unobserved in data thus it requires
assumptions on how consideration sets are formed, which might not always be appropriate or
reflective of actual consumer behavior. Another way to manage this issue is to consider for search

6The reason that we use training data for evaluating elasticity is to mirror the process when our method is
applied in estimating elasticity. That is when all data is used for estimation.

x



Table A2: Baseline Results - Predicted Market Share
# True Model J M K Our Model MNL RCL NP Mean No. Obs.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
0 MNL 5 100 10 0.0534 0.0834 0.0078 0.0105 0.0082 0.0052 0.1269 0.2364 0.2312 0.2220 2000
1 MNL 10 20 10 0.0585 0.1086 0.0040 0.0131 0.0089 0.0134 0.1129 0.2191 0.1365 0.2948 800
2 MNL 10 100 10 0.0333 0.0591 0.0044 0.0039 0.0026 0.0053 0.1181 0.1717 0.1422 0.1503 4000
3 MNL 10 200 10 0.0307 0.1346 0.0032 0.0102 0.0034 0.0197 0.1096 0.2170 0.1416 0.2106 8000
4 MNL 20 100 10 0.0194 0.0765 0.0015 0.0077 0.0023 0.0068 0.0707 0.2242 0.0768 0.2201 8000
5 RCL 5 100 10 0.0240 0.0314 0.0307 0.0382 0.0033 0.0042 0.0456 0.0583 0.0538 0.0656 2000
6 RCL 10 20 10 0.0206 0.0281 0.0270 0.0343 0.0034 0.0044 0.0540 0.0612 0.0418 0.0525 800
7 RCL 10 100 10 0.0171 0.0231 0.0262 0.0326 0.0025 0.0033 0.0458 0.0583 0.0413 0.0514 4000
8 RCL 10 200 10 0.0141 0.0187 0.0252 0.0318 0.0032 0.0039 0.0431 0.0559 0.0412 0.0513 8000
9 RCL 20 100 10 0.0099 0.0140 0.0262 0.0281 0.0018 0.0024 0.0390 0.0489 0.0276 0.0354 8000

Note: This table presents the baseline results for predicted market share using various models. J, M, and K
represent the number of products, non-price features, and markets, respectively. NP denotes a benchmark
non-parametric method. Specifically, we use a standard neural network, where we tune the hyperparameters
(number of layers, number of nodes in each layer, learning rate, and the number of epochs) using 5-fold
cross-validation for each data generation. Mean indicates a prediction method that predicts the market share to
be equal to the average market share derived from the training data. The Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) provided for each scenario (i.e., true model, J, K, M) are computed using the test
data from 20 iterations of data generation. The column titled “No. Obs." indicates the total number of products
in the test data across all draws. Specifically, the number of observations for market share (π̂jt) is calculated
based on M × J × 20% (the portion of test data) ×20 (the number of draws of simulations).

Table A3: Baseline Results - Estimated Own-Elasticity ( ˆ∂πjt

∂Pjt
)

# True Model J M K Our Model MNL RCL NP No. Obs
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

0 MNL 5 100 10 0.2588 1.1815 0.1414 1.1232 0.1757 1.1322 0.4554 1.2115 8000
1 MNL 10 20 10 0.3523 1.3557 0.1967 1.2970 0.2585 1.3118 1.0057 1.5316 3200
2 MNL 10 100 10 0.3346 1.4327 0.2066 1.3851 0.2150 1.3863 0.9266 1.5857 16000
3 MNL 10 200 10 0.3245 1.4131 0.2007 1.3842 0.2357 1.3876 0.8266 1.5768 32000
4 MNL 20 100 10 0.4146 1.6596 0.3305 1.6203 0.3570 1.6229 1.0151 1.8353 32000
5 RCL 5 100 10 0.1189 0.2310 0.1474 0.3735 0.0125 0.0305 0.1802 0.3145 8000
6 RCL 10 20 10 0.1799 0.3729 0.2039 0.5326 0.0365 0.1196 0.3768 0.3254 3200
7 RCL 10 100 10 0.1498 0.2862 0.2154 0.5531 0.0224 0.0685 0.2987 0.3643 16000
8 RCL 10 200 10 0.1209 0.2416 0.2188 0.5512 0.0233 0.0732 0.2464 0.4241 32000
9 RCL 20 100 10 0.1658 0.3533 1.4591 1.7099 0.0429 0.1319 0.4555 0.4741 32000

Note: This table presents the baseline results for estimated own-elasticity using various models. The number of

observations for own-elasticity ( ˆ∂πjt

∂Pjt
) is calculated based on M × J × 80% (the portion of training data ×20

(the number of draws of simulations). )

Table A4: Baseline Results - Estimated Cross-Elasticity ( ˆ∂πjt

∂Pk ̸=jt
)

# True Model J M K Our Model MNL RCL NP No. Obs
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

0 MNL 5 100 10 0.1349 0.8115 0.0107 0.6780 0.0118 0.6807 0.1968 0.9442 32000
1 MNL 10 20 10 0.0649 0.6742 0.0043 0.5326 0.0059 0.5424 0.1527 0.7123 28800
2 MNL 10 100 10 0.0862 0.6104 0.0043 0.5142 0.0049 0.5143 0.1885 0.7488 144000
3 MNL 10 200 10 0.0901 0.6075 0.0042 0.5140 0.0047 0.5153 0.2110 0.7831 288000
4 MNL 20 100 10 0.0482 0.4665 0.0015 0.4151 0.0016 0.4157 0.1270 0.5303 608000
5 RCL 5 100 10 0.0293 0.0571 0.0492 0.0551 0.0030 0.0070 0.0617 0.0960 32000
6 RCL 10 20 10 0.0261 0.0435 0.0332 0.0455 0.0039 0.0143 0.0972 0.0791 28800
7 RCL 10 100 10 0.0257 0.0493 0.0324 0.0447 0.0028 0.0090 0.0795 0.1124 144000
8 RCL 10 200 10 0.0213 0.0417 0.0353 0.0455 0.0035 0.0097 0.0745 0.1277 288000
9 RCL 20 100 10 0.0220 0.0431 0.0204 0.0359 0.0022 0.0103 0.0715 0.0890 608000

Note: This table presents the baseline results for estimated cross-elasticity using various models. The number of

observations for cross-elasticity ( ˆ∂πjt

∂Pk ̸=jt
) is calculated based on M × J × (J − 1)× 80% (the portion of

training data) ×20 (the number of draws of simulations).

cost (Mehta et al., 2003). Similarly, it also requires researchers to specify how search cost enters
the utility function and decision process. In contrast to these models, our approach refrains from
making any parametric assumptions, which allows for a potentially more flexible representation of
consumer behavior in the case of consumer attention. To demonstrate how our model can capture
the inattentive behavior, we look at a scenario where consumers are inattentive and deviate from the
traditional random coefficients logit model.
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To evaluate how our model performs when there are inattentive consumers, we simulate the market
share of each product in each market by assuming there is a portion of consumers who ignore the
product with the highest price. We assume the portion is 1− 1

1+Pricej
, so when the price increases,

the portion of inattentive consumers increases. In other words, the consideration set of 1− 1
1+Pricej

consumers excludes the highest-price product. We again only consider there is only one feature, price.
The choice probability of the highest price product jh is

1

1 + Pricejh

exp(αiPricem,jh)

1 +
∑

k exp(αiPricem,k)
.

The choice probability of other products j ̸= jh is

1

1 + Pricejh

exp(αiPricej,k)

1 +
∑

k exp(αiPricem,k)
+ (1− 1

1 + Pricejh
)

exp(αiPricem,j)

1 +
∑

k ̸=jh
exp(αiPricem,k)

.

Figure A2 illustrates the performance of different models when there are two products. We consider
the number of markets to be 1,000 so that we can observe enough variance in our data. We still only
consider there is only one feature, price. Figure A2a captures how the estimated own-elasticity varies
with the price of the product ignored. Due to the existence of inattention, when the price is higher,
the portion of inattentive consumers is higher. Thus when we change the price, the change in market
share is smaller than the case without inattention. Only our model captures this pattern and predicts
the own-elasticity to be flat when the price is high. It is also easy to see that only our model is close
to the true model. Figure A2b captures how the estimated cross-elasticity varies with the price of
the other product. Similarly, due to the ignorance of inattention, both MNL and RCL overestimate
the magnitude of the elasticity of the other product. Our model is the only model that captures the
elasticity and is closest to the true model.

(a) Own-Elasticity ( ˆ∂πjt

∂Pjt
) in Consumer Inattention

(b) Cross-Elasticity ( ˆ∂πjt

∂Pk ̸=jt
) in Consumer Inatten-

tion

Figure A2: Elasticity Effects in Consumer Inattention
Note: Figure A2 illustrates how different models perform when there is 1− 1

1+Pricej
consumers who ignore the

product with the highest price. We simulate market shares in the case of 2 products, 1000 markets, and 1 feature
(price). Due to the existence of inattention, when the price is higher, the portion of inattentive consumers is
higher. Thus when we change the price, the change in market share is smaller than the case without inattention.

We consider when there are more products (5, 10) and present our results in Table A5, A6, and A7.
Consistently, our model outperforms all other models across these scenarios.

C.3 Counterfactual Analysis

Next, we look at the application of our model to estimate counterfactuals. Our model can handle the
counterfactual estimates in multiple scenarios. First, our model can handle any counterfactuals when
shocks only result in the change in features of each product. For example, in a choice model where
ranking is an important component that influences the choice behavior of each individual, researchers
would like to see how the demand would change if the ranking policy is changed. This counterfactual
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Table A5: Consumer Inattention - Predicted Market Shares
# J Our Model MNL RCL NP Mean No. Obs

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
0 2 0.0047 0.0198 0.0590 0.0753 0.0316 0.0439 0.0076 0.0273 0.1840 0.2044 40
1 5 0.0064 0.0139 0.0203 0.0252 0.0178 0.0226 0.0250 0.0345 0.0780 0.1022 100
2 10 0.0033 0.0068 0.0137 0.0166 0.0072 0.0100 0.0258 0.0365 0.0492 0.0656 200

Note: This table presents the MAE and RMSE of predicted market shares when there are inattentive consumers.
We simulate the market share of each product in each market by assuming there is a portion of consumers who
ignore the product with the highest price. We assume the portion is 1− 1

1+Pricej
. We consider 3 scenarios with

2, 5, and 10 products respectively. We fix the number of markets to 100 and the number of features to 1 (with
only price). Other parts are the same as RCL in our baseline.

Table A6: Consumer Inattention - Estimated own-Elasticity
# J Our Model MNL RCL NP No. Obs

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
0 2 0.0609 0.5190 0.6758 1.5698 0.3929 1.4598 0.0573 0.8804 3200
1 5 0.0978 1.8579 0.6917 1.9614 0.3753 1.9782 0.4288 1.9546 8000
2 10 0.0708 2.4273 0.8306 2.1031 0.1842 2.2787 0.5464 2.1450 16000

Note: This table presents the MAE and RMSE of own-elasticity when there are inattentive consumers. We
simulate the market share of each product in each market by assuming there is a portion of consumers who

ignore the product with the highest price. We assume the portion is 1− 1
1+Pricej

. We consider 3 scenarios with
2, 5, and 10 products respectively. We fix the number of markets to 100 and the number of features to 1 (with

only price). Other parts are the same as RCL in our baseline.

Table A7: Consumer Inattention - Estimated Cross-Elasticity
# J Our Model MNL RCL NP No. Obs

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
0 2 0.0419 4.3553 0.1911 8.8197 0.3350 8.5791 0.0378 5.6814 3200
1 5 0.0486 4.7745 0.0827 5.8357 0.0503 5.8404 0.1897 5.5601 32000
2 10 0.0212 3.8765 0.0476 4.0961 0.0146 4.1113 0.1676 4.1198 144000

Note: This table presents the MAE and RMSE of cross-elasticity when there are inattentive consumers. We
simulate the market share of each product in each market by assuming there is a portion of consumers who

ignore the product with the highest price. We assume the portion is 1− 1
1+Pricej

. We consider 3 scenarios with
2, 5, and 10 products respectively. We fix the number of markets to 100 and the number of features to 1 (with

only price). Other parts are the same as RCL in our baseline.

can be estimated by updating the value of the ranking feature in prediction. Second, our model can
also handle the counterfactual estimates when the choice set (product set) changes. For example,
one common counterfactual of interest is the demand of new product. Since our model only uses
product features as input, we can estimate the demand of any new product. In contrast, it is important
to acknowledge that estimating counterfactual demand with a standard neural network estimator is
infeasible due to its structural constraints on the input space. A change in choice set would result in
the change of size of the input vector, making such estimation infeasible. The same case stands for
when researchers would like to estimate the demand when one product is removed from the market.

To showcase the capability of our model to estimate counterfactuals, we consider a case where a
new product is introduced to the market. For comparison, we will only consider an MNL and RCL
estimator since it is infeasible for the NP method to estimate the counterfactual. We use two data
generation processes – Multinomial Logit (MNL) and Random-Coefficients Logit (RCL). In each
data generation, we consider an 11th product is introduced to each market where there were 10
products and an outside option. The observable characteristics of the new product are simulated from
the same distribution as other products. In Table A8, we present the estimated market share of the
new product. Our model outperforms the MNL when the underlying data generation process is RCL,
and produces results comparable to the true model.
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Table A8: New Product Demand Estimation - Predicted Market Share (π̂jt)
True Model Our Model MNL RCL No. Obs.

MAE RMSE MAE RMSE MAE RMSE
MNL 0.0234 0.0644 0.0041 0.0095 0.0023 0.0045 22,000
RCL 0.0186 0.0145 0.0265 0.0331 0.0023 0.0031 22,000

Note: This table presents the MAE and RMSE of predicted market shares of all products in the market when a
new product enters. We simulate market shares as in our baseline scenario (10 products and one outside option,

100 markets, 10 features) when a 11th product is introduced.

D Emprical Data Analysis: US Automobile Data (1971 - 1990)

In this section, we apply our model to a real-world dataset. We use the “US Automobile Data (1971 -
1990)" from Berry et al. (1995). The dataset features cars in the US market from 1971 to 1990, with
each year regarded as a market. The number of cars varies from 86 to 150 each year. For each car,
the dataset provides information such as the car’s name, the manufacturing company, factory region,
market share, price, and four exogenous car characteristics: horsepower, space, mileage per dollar,
and the presence of an air conditioning device.

Even though the dataset is relatively small, it presents two key challenges that make it difficult to use
traditional non-parametric estimators: (i) the dataset features markets with more than 100 products
and only 20 markets in total, (ii) the product assortment in each year or market varies. In this section,
we demonstrate the use of our estimator, which is capable of effectively addressing such challenges
posed in real-world datasets.

For each component of our model (ϕ1, ϕ2, and ρ), we use a standard 3-layer neural network, and
this is implemented without further hyperparameter tuning. We implement ReLU activation function
at each layer. This architecture is the same as the one we used in our numerical experiments. For
comparison, we replicate the random coefficient logit model (with only the demand side) used
by Berry et al. (1995) using the Python package pyblp (Conlon and Gortmaker, 2020). In our
replication, we allow for heterogeneity in random coefficients across all variables. Our findings show
that the estimates obtained from our model are comparable to the random coefficient logit estimation
presented in Berry et al. (1995). We estimate our model both without and with consideration of
endogeneity. To address endogeneity we utilize three sets of IVs – (i) the sum of characteristics of all
car models, excluding the product in focus, produced by the same firm in the same year; (ii) the sum
of characteristics of all car models, excluding the product in focus, produced by rival firms in the same
year; and (iii) cost shifters, which encompass the wage and exchange rate prevalent in the year and
region where the factory is located. The utilization of traditional BLP-style instruments, as discussed
by Gandhi and Houde (2019), can be problematic due to their relative weakness, often resulting
in considerable bias in the estimation of parameters. These issues are significantly exacerbated in
non-parametric models. Thus, to counter potential concerns related to weak instruments, we employ
a machine-learning-based IV methodology (MLIV) as proposed by Singh et al. (2020). We detail the
estimation procedure and results using BLP style IVs in Appendix G.

In Figure A3, we present the estimated own-elasticity ( ˆ∂πjt

∂Pjt
) of our model without IV and with

IV. The x-axis represents the price of the focal product, while the y-axis shows the product’s own
elasticity. Each point corresponds to a product in a market, resulting in 2,217 observations. We
report the estimated elasticity based on the same price variation used in the BLP paper (a 1,000-dollar
change). In Figure A3a, we observe that the majority of low-price products (priced below 6,000
dollars) exhibit positive estimated own-elasticity, demonstrating the existence of the endogeneity.

We report the own-elasticity ( ˆ∂πjt

∂Pjt
) and cross-elasticity ( ˆ∂πjt

∂Pk ̸=jt
) estimated in our model and random

coefficient logit model with a sample of 13 cars in the 1990 market in Table A9 and A10. The sample
of 13 cars is the same as the one reported in Berry et al. (1995). Overall, our results are very similar
and comparable to Berry et al. (1995). We also plot the distributions of the estimated own-elasticity

( ˆ∂πjt

∂Pjt
) and cross-elasticity ( ˆ∂πjt

∂Pk ̸=jt
) obtained from our model and the BLP model in Figure A4. The

filled areas in the violin plots represent the complete range of the elasticities, while the text labels
next to the line indicate the mean values. The estimated mean own- and cross-elasticities appear to
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(a) Estimated own-Elasticity ( ˆ∂πjt

∂Pjt
)without IV (b) Estimated own-Elasticity ( ˆ∂πjt

∂Pjt
) with IV

Figure A3: Elasticity Estimation Comparison

Figure A3 presents the estimated own-elasticity ( ˆ∂πjt

∂Pjt
) of our model without IV and with IV. The x-axis

represents the price of the focal product, while the y-axis shows the product’s own-elasticity. Each point
corresponds to a product in a market, resulting in 2,217 observations. We report the estimated elasticity based on
the same price variation used in the BLP paper (a 1,000-dollar change). Although we cannot ascertain the true
value of own-elasticity, it is widely accepted that own-elasticity should generally be negative for most, if not all,
products. In Figure A3a, we observe that the majority of low-price products (priced below 5,000 dollars) exhibit

positive estimated own-elasticity, demonstrating the existence of the endogeneity.

be similar between our model and the BLP model, though our model exhibits a larger RMSE in the
estimated elasticity values compared to the BLP model.

(a) Own-Elasticity Estimation (Our Model vs. BLP
Model)

(b) Cross-Elasticity Estimation (Our Model vs.
BLP Model)

Figure A4: Elasticity Estimation Comparison
Note: Figure A4 illustrates the distributions of the estimated own- and cross-elasticities obtained from our

model and the BLP model. The filled areas in the violin plots represent the complete range of the elasticities,
while the text labels indicate the mean values.

We further estimate the average own-elasticity (θ̂) for high-priced, medium-priced, and low-priced
cars and construct a confidence interval for each category using our inference procedure. We present
our result in Table A11.

E Distribution of Features and Coefficients in Numerical Experiments

MNL RCL
Pricem,j U [0, 4] U [0, 4]
Xm,j N(0, 1) N(0, 1)

Table A12: Distribution of Features
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BLP Model Our Model No. Obs.
Mean Estimate Mean Estimate (95% Confidence Interval)

High -5.6705 -4.1922 (-6.2204, -2.1641) 20
Medium -3.7354 -3.7215 (-4.9260, -2.5169) 20
Low -2.9174 -2.0697 (-3.1980, -0.9415) 20

Table A11: Estimates of Average Own-Elasticity

Note: This table presents the estimated average own-elasticity for cars across various price categories. We
categorize cars with a price over $20k as “high-priced", cars priced between $8k and $20k as “medium-priced",

and all other cars as “low-priced". For each category, we randomly select one car of the category from each
market as one observation. For the BLP model, we calculate the average own-elasticity of the sampled cars as
the mean estimate. For our model, we estimate the average own-elasticity and construct the confidence interval

following our inference procedure.

MNL RCL
αi -1 N(−1, 1)
βik 1 N(µβk

, 1)

Notes : µβk ∼ N(0, 1/2K)
Table A13: Distribution of Coefficients

F Hyperparameter Space for Tuning Non-parametric Estimator Benchmark

Hyperparameter Space
Number of hidden layers [3, 4, 5]
Number of nodes in each layer [64, 128, 256]
Learning rate [1e-2, 1e-3, 1e-4]
Number of epochs [1, 2, 4]

Table A14: Hyperparameter Space for Tuning Non-parametric Estimator Benchmark

G Details in Adopting the “MLIV” Method

Following Singh et al. (2020), we perform the steps below to construct the machine-learning-based
IV (MLIV) and use them to estimate γ̂ to control for endogeneity in prices.

• Step 1: Data Partition We randomly split the data set, S, into three separate partitions
of markets, each denoted as Sk. Each market is exclusively assigned to only one partition.
For each partition, we define its complement set, Sc

k, as the subset of data in S that is not
included in Sk.

• Step 2: Cross-fitting For each partition Sk, we first estimate a linear regression model on
the complement data set, Sc

k, using the Lasso method with hyperparameters tuned by 3-fold
cross-validation. As discussed in section A, we need the estimator of γ to converge at n−1/2

rate, a similar result that bounds the in-sample prediction error of the lasso estimator has
been established in Chatterjee and Jafarov (2015). Then, we use this trained model to predict
the outcomes (prices) of the Sk. We denote the fitted value as f̂k, which is essentially the
MLIV.

• Step 3: First-stage Regression We run a first-stage linear regression on the entire dataset
using the MLIV as the only predictor. Then, we use the residuals estimated from this
first-stage regression as one additional feature as detailed in Section 2.2.

As a supplement to our main result, we also run our model using non-machine learning-based IVs.
Similar to Figure 4 in the main text, we present the estimated own-elasticity of our model without
IV, with BLP-style IVs, with differentiation IVs, and with MLIV in Figure A5. In Figure A5b, even
when IVs are applied, the persistence of many positive own-elasticities suggests the weakness of
the BLP style IVs. Furthermore, we apply the differentiation IVs (Gandhi and Houde, 2019), which
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use exogenous measures of differentiation and provide a more robust instrument compared to the
conventional BLP IVs. As one can see from Figure A5c, the use of differentiation IV provides a more
realistic estimation of own-elasticities, strengthening the issue of weak instruments of the BLP style
IVs. We also include the distributions of the estimated own- and cross-elasticities obtained from our
model using different sets of IVs in Figure A6.

(a) Without IV (b) BLP Style IVs

(c) Differentiation IVs (d) MLIV

Figure A5: Elasticity Estimation Comparison
Figure A5 presents the estimated own-elasticity of our model without IV, with BLP Style IVs, with

differentiation IVs and with MLIV. The x-axis represents the price of the focal product, while the y-axis shows
the product’s own-elasticity. Each point corresponds to a product in a market, resulting in 2,217 observations.

We report the estimated elasticity based on the same price variation used in the BLP paper (a 1,000-dollar
change).

(a) Own-Elasticity Estimation (Our Model vs. BLP
Model)

(b) Cross-Elasticity Estimation (Our Model vs.
BLP Model)

Figure A6: Elasticity Estimation Comparison
Note: Figure A6 illustrates the distributions of the estimated own- and cross-elasticities obtained from our

model (using different sets of IVs) and the BLP model. The filled areas in the violin plots represent the complete
range of the elasticities, while the text labels indicate the mean values.
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In addition, we also perform a weak instrument test on both BLP Style IVs and the MLIV and report
the F-statitics and p-value in Table A15. Both BLP Style IVs and MLIV pass the weak instrument
tests.

F-statistic P-value
BLP Style IVs 241.5 < 1e-8
MLIV 280.9 <1e-8

Table A15: Weak Instrument Test

H Choice Models Satisfying Permutation Invariance

Table A16: Choice Models Satisfying Permutation Invariance
Choice Model Literature
Multinomial Logit Model McFadden et al. (1973)
Nested Logit Model Train et al. (1987)
Mixed Logit Model McFadden and Train (2000)
Generalized Extreme Value (GEV) Model Train (2009)
Probit Model Hausman and Wise (1978)
Latent Class Logit Model Kamakura and Russell (1989)
Random Coefficients Nested Logit Grigolon and Verboven (2014)
Markov Chain Choice Model Blanchet et al. (2016)
Customer Inattention Based Models Goeree (2008)
Customer Search Models Mehta et al. (2003)
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