
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ATLAS: ALIBABA DATASET AND BENCHMARK FOR
LEARNING-AUGMENTED SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning-augmented scheduling uses ML predictions to improve decision-making
under uncertainty. Many algorithms in this class have been proposed with bet-
ter theoretical guarantees than the classic methods. Translating these theoreti-
cal results into practice, however, requires an understanding of real workloads.
Such an understanding is hard to develop because existing production traces ei-
ther lack the ground-truth processing times or are not publicly available, while
synthetic benchmarks fail to represent real-world complexity. We fill this gap
by introducing Alibaba Trace for Learning-Augmented Scheduling (ATLAS), a
research-ready dataset derived from Alibaba’s Platform of Artificial Intelligence
(PAI) cluster trace—a production system that processes hundreds of thousands
of ML jobs per day. The ATLAS dataset has been cleaned and features engi-
neered to represent the inputs and constraints of non-clairvoyant scheduling, in-
cluding user tags, resource requests (CPU/GPU/memory), and job structures with
ground-truth processing times. We develop a prediction benchmark reporting
prediction error metrics, along with feature importance analysis, and introduce
a novel multi-stage ML model. We also provide a scheduling benchmark for
minimizing the total completion time, max-stretch, and makespan. ATLAS is a
reproducible foundation for researchers to study learning-augmented scheduling
on real workloads, available at https://anonymous.4open.science/
r/non-clairvoyant-with-predictions-7BF8/.

1 INTRODUCTION

Modern computing systems have to schedule millions of jobs across without knowing job sizes
(i.e., processing time) at submission, a challenge known as non-clairvoyant scheduling. As job
sizes are unknown at arrival, the scheduler cannot implement an optimal clairvoyant strategy such
as SRPT for total completion time; consequently, non-clairvoyant algorithms achieve suboptimal
scheduling performance (Motwani et al., 1994). Learning-augmented algorithms address this per-
formance degradation by incorporating ML job size predictions into online algorithms, improving
performance while maintaining worst-case guarantees (Kumar et al., 2018). This framework applies
to many domains, and now has grown into an active community (Lindermayr & Megow, 2022).

To illustrate the effect of predictions, consider the single-machine scheduling to minimize total com-
pletion time

∑
Cj , where Cj is the completion time of job Jj , in Figure 1. Suppose we have four

jobs released at rj with unknown sizes p∗j . Without job predictions, First-In-First-Out (FIFO) runs
jobs in arrival order, yielding a total completion time of 51. Round Robin(RR), another good default
for non-clairvoyant scheduling (Motwani et al., 1994), achieves

∑
Cj of 46.3. With predictions p̂j ,

Shortest Predicted Job First (SPJF) runs jobs by job size predictions. Even imperfect predictions add
value when they roughly reflect relative job order. With true sizes, Shortest Remaining Processing
Time (SRPT) is optimal for this problem (Schrage, 1968), yielding a total completion time of 33. Be-
yond

∑
Cj , other interesting objectives include maximum stretch, which measures fairness via the

maximum ratio of job response time to size maxj
Cj−rj

p∗
j

, and makespan Cmax = maxj Cj , repre-
senting the completion time of the last job, a classic objective in parallel-machine scheduling (Zheng
et al., 2023). For each specific objective, recent theoretical work has developed learning-augmented
algorithms with provable guarantees (Zhao et al., 2024; Lattanzi et al., 2020; Kumar et al., 2018).

1

https://anonymous.4open.science/r/non-clairvoyant-with-predictions-7BF8/
https://anonymous.4open.science/r/non-clairvoyant-with-predictions-7BF8/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

J1 J3J2 J4

Job size

0 0 1 2

4 10 1 3

FIFO

SPJF

SRPT

J1 J2 J3 J4

J1 J4 J2J3

J1 J4J3

51 units

37 units

4 8 12: J1 finishes0

3 11 2 1

RR

33 units

46 .3 units

J2

16
Total completion time

Release time

Predicted size

4.66: J3 finishes 11.66: J4 finishes

k=2 k=3 k=4

J3 Arrives J4 Arrives

k=1

J2 finishes

Figure 1: A toy example showing the comparison of online/offline scheduling algorithms on a single machine
with four jobs arriving at 0, 0, 1, 2 with job sizes 4, 10, 1, 3 and job size predictions 3, 11, 2, 1. Despite pre-
diction errors, SPJF, a widely known learning-augmented algorithm, achieves a total completion time of 37,
remaining close to SRPT’s optimum of 33 and outperforming both Round Robin’s 46.3 and FIFO’s 51.

However, real production clusters often violate core assumptions underlying these theoretical mod-
els. In practice, jobs execute as multi-step workflows (e.g., preprocessing before training) where
early-stage failures can terminate the sequence. Furthermore, hardware is heterogeneous and ar-
rivals are stochastic, undermining standard analyses (Weng et al., 2022). These disconnects between
theory and practice raise a central question: How well do learning-augmented schedulers perform in
real-world environments? We address the problem with Alibaba Trace for Learning-Augmented
Scheduling (ATLAS), the first dataset for learning-augmented scheduling derived from PAI produc-
tion clusters, covering over 730,000 jobs with complete execution histories and resource profiles.

Issues with current datasets and benchmarks. First, existing production traces offer limited
data for training and evaluating predictors for job processing times. Google’s Borg traces (Tirmazi
et al., 2020) normalize processing times and obfuscate job identities, removing rich context like user
patterns, job types, resource requests, and historical behavior. Azure public datasets (Cortez et al.,
2017) and Microsoft’s Virtual Machine (VM) allocation traces (Lu et al., 2017) focus primarily on
VM provisioning, exposing utilization rates while omitting job structures or exact completion times.
The Alibaba trace (Weng et al., 2022) provides job structures but was designed for workload char-
acterization rather than scheduling evaluations. Second, most theoretical studies rely exclusively on
synthetic workloads (Zhao et al., 2022; Benomar & Perchet, 2024), limiting job sizes to standard
exponential, Pareto, or uniform distributions that miss the complex patterns found in real systems.
Third, the field lacks a standardized evaluation benchmark: a clear, reproducible specification of
(a) the scheduling framework (online/offline, (non-)preemptive, number of machines), (b) how pre-
dictors are trained and validated, and (c) how results are reported and normalized. Consequently,
different studies adopt incompatible problem formulations, metrics, and experimental setups, such
as work by Fan et al. (2022); Im et al. (2023); Bampis et al. (2023), making cross-paper algorithm
comparisons difficult. Furthermore, many overlook temporal constraints (training on past, testing on
future), failing to restrict features to historical information, or skip calibration–test separation, risk-
ing information leakage that violates non-clairvoyant assumptions (Kapoor & Narayanan, 2023).

1.1 OUR WORK

The ATLAS Dataset. ATLAS transforms raw production traces from Alibaba’s Platform of Ar-
tificial Intelligence cluster into a dataset designed for scheduling research. The dataset contains
completed ML jobs collected from a cluster with over 6,500 GPUs across 1,800 machines. The
overview and statistics are shown in Table 1. ATLAS dataset has three defining characteristics:

(1) Non-clairvoyant dataset: Our dataset is non-clairvoyant, where models access only information
available at submission time, such as resource plans (resource requests) for CPU, memory, GPU, and
instance counts for each task, and identity fields needed to build signatures such as user, group, and
workload. We exclude post-execution metrics, actual resource usage, utilization rates, and machine
placements, ensuring the ATLAS dataset is research-ready, which replicates a real scheduling envi-
ronment. (2) Complete ground-truth job sizes: Unlike other production traces that omit or normalize
runtime information for privacy reasons, ATLAS provides verified processing times for all tasks and
jobs. Jobs, with a mean of 1.5 hours, range from 3 seconds to 7 days, with 73.8% completing
within one hour and 5.7% exceeding six hours, showing a full spectrum of production workloads.
(3) Rich workload diversity: ATLAS dataset encompasses jobs with resource requirements spanning
from single-CPU tasks to distributed jobs using multiple GPU and GPU clusters, reflecting realis-
tic heterogeneity in CPU/GPU/memory requests. The dataset includes 74.4% single-instance jobs,
multi-instance jobs, and distributed jobs with up to 1,050 instances, capturing job scale complexity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: ATLAS dataset contains jobs from a two-month Alibaba trace with selected submit-time known and
engineered without data-leakage features. ✓ = prediction feature; • = ground-truth label; × = excluded.
Source Field Use Description Dataset Statistics

Job
Submission time ✓ Release time rj ; enables temporal patterns Dataset splits
User ID ✓ Anonymized submitter (1,314 users) Training 512,649 (70%)
Processing time • Label p∗j = mint st −maxt et Validation 109,853 (15%)

Test 109,853 (15%)

Task

Task count ✓ Number of roles [1, 20] (median: 1) Job size
Planned CPU ✓

∑
t ntrt,1 [0, 810K] (median: 6) Mean 5,382 s (1.5 h)

Planned GPU ✓
∑

t ntrt,2 [0, 40K] (median: 1) Median 663 s (11 min)
Planned Memory ✓

∑
t ntrt,3 [0.4, 47K] GiB (median: 29) Std. Dev. 17,095 s

Instance count ✓ Total parallelism
∑

t nt [1, 1050] Range [3 s, 626,384 s]

Group-tag

Group tag ✓ Semantic cluster (65% recurring tasks) Job duration
Workload tag ✓ Application type when known <10 min 355,328 (48.5%)
GPU spec ✓ Submit-time constraint (V100/P100/T4) 10 min–6 h 335,121 (45.8%)
Recurrence count ✓ Historical submission frequency >6 h 41,906 (5.7%)

Engineered

CPU per GPU ✓ Resource ratio rcpu/rgpu Job-scale
Memory per GPU ✓ Resource ratio rmem/rgpu Single-instance(1) 544,881 (74.4%)
Distributed flag ✓ Binary indicator (n > 1) Small (2–10) 93,951 (12.8%)
User history ✓ Mean/std of user’s past submissions Medium (11–100) 86,380 (11.8%)
Group history ✓ Mean/std/count of group’s past runs Large (>100) 7,143 (1.0%)
Scale category ✓ Composite job-scale classification

Excluded

Assigned GPU × Actual placement (V100/P100/T4/Misc) GPU categories
Instance IDs × Worker/container identifiers No GPU 17,452 (2.4%)
Sensor metrics × Runtime CPU/GPU/memory utilization Single GPU 554,179 (75.7%)
Network usage × Bandwidth and I/O measurements Multi-GPU 110,474 (15.1%)
Machine specs × Hardware configuration details GPU cluster 50,250 (6.9%)

The LASched Benchmark. Built on top of ATLAS, LASched (Learning-Augmented Scheduling
Benchmark) provides a standardized evaluation for the Prediction Task on job sizes and Schedul-
ing Task of jobs with job size predictions. The prediction benchmark implements multiple baseline
models and evaluation metrics, showing that jobs exhibit recurring patterns that can be leveraged
for accuracy. LASched enforces leakage-safe construction and restricts features to past-only in-
formation available at decision time, preventing future leakage. The scheduling benchmark evalu-
ates classic and learning-augmented schedulers on three metrics—total completion time, maximum
stretch, and makespan. With a scheduling benchmark including various baselines, using job size
predictions to schedule, the objective values are normalized against the optimum. Together, ATLAS
and LASched form a complete platform that enables researchers to develop, evaluate, and compare
learning-augmented scheduling methods on real production workloads with reproducible results.

2 THE ATLAS DATASET

2.1 DATA SOURCE AND FORMALIZATION

Alibaba PAI–2020 Trace. ATLAS is built on the publicly available Alibaba PAI–2020 GPU-
cluster trace, which captures two months of MLaaS activity on a large heterogeneous GPU cluster
over 6,500 GPUs across∼1,800 machines (Weng et al., 2022). The trace captures the job life-cycle,
including submission, queuing, scheduling, and execution. The trace is relational and organized
hierarchically into jobs, tasks, and instances, consistent with established system frameworks such
as Google Borg (Verma et al., 2015) and Facebook’s Hadoop workloads (Zaharia et al., 2008).
Users submit ML jobs through frameworks (e.g., TensorFlow, PyTorch, Graph-Learn); each job
is assigned to a scheduler (Fuxi), which translates it into multiple tasks with different roles, e.g.,
worker, parameter-server (PS), and then instantiates them into Docker containers that are distributed
across multiple machines based on resource availability and locality requirements (Weng et al.,
2022). Once started, jobs run to completion without preemption. The trace contains only start and
end timestamps for each instance, not suspension or resumption events. PAI’s monitoring collects
per-instance system metrics: CPU/GPU utilization and host/GPU memory, at every 15 seconds via
daemon agents that query the Linux kernel and NVIDIA’s NVML; the release data also includes
machine-level statistics such as network receive throughput. Figure 2 summarizes the job schema,
showing hierarchical structure, and the relationship between jobs, planned resources, observed uti-
lization, and machine specifications. We formalize the PAI trace columns so that time semantics,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Job schema Plan vs Usage Machine Spec

Planned GPU

Planned CPU

GPU util (avg)

CPU util (avg)

Percentage of a full GPU

Percentage of a vCPU core

Machine ID
GPU type = V100

 Cap GPU = 2
Cap CPU = 96 cores
 Cap Mem = 512 GB

Machine Metrics (avg over instance lifetime)

role = ps,
inst_num = 1,

GPU per inst = 0...

Task_A

role = worker ,
inst_num = 2,

GPU per inst = 1...

Task_B

plan_cpu = 600,
plan_gpu = 0.....

Instance_A0

Instance_B0

plan_cpu = 400,
plan_gpu = 50...

Instance_B1

plan_cpu = 400,
plan_gpu = 50...

Job_0 Job_1

Job ID
User

Submit time

Req: 4 GPU, 14
CPU

Job_3 Job_4

GPU util (machine) = 88 %
CPU usr+sys = 18.5 %

1-min load = 18.3
Net receive = 112 MB/s

Job_5

Figure 2: Structure of the Alibaba PAI-2020 GPU cluster trace. Jobs decompose hierarchically into tasks and
instances with per-instance resource requirements for GPU and CPU. Job processing time p∗j = maxt∈T (j) dt
equals the maximum task duration. The center panel shows planned versus actual resource usage, revealing
users requesting more resources than they actually use. Instances can request fractional resources (e.g., 0.5
GPU), supporting resource sharing across multiple jobs. Machine specifications and utilization metrics appear
on the right. Task B illustrates gang scheduling gt = 1, where more than one instances start at same time.

label construction, and reproducibility checks are unambiguous, whereas prior analyses of this trace
reported workload behavior without a unified mathematical specification.

Job life-cycle: arrivals, queuing, launching. We formalise job life-cycle mathematically as fol-
lows. A job Jj arrives at time rj and consists of tasks t ∈ T (j). Each task t declares a per-
instance demand vector rt = (rt,1, rt,2, rt,3)

⊤ ∈ R3
+ representing per-instance GPU, CPU, and

memory requests. To be specific, a distributed training worker might request rt = (1, 8, 32)
for 1 GPU, 8 CPUs, and 32GB memory. Also, each task includes an instance count nt, and
constraints: an admissible GPU-type set Γt, a gang flag gt ∈ {0, 1}, and an optional local-
ity flag ℓt ∈ {0, 1}. The cluster comprises machines and each machine m with capacity vec-
tor cm = (cm,1, cm,2, cm,3)

⊤ ∈ R3
+ corresponding to GPU, CPU and memory capacity. While

the job waits, the scheduler seeks, for each task t, the earliest time τ ≥ rj at which its nt in-
stances admit a feasible placement. Let I(t) be the instances of t; let t(i) denote the task of in-
stance i; let xi,m(τ) ∈ {0, 1} indicate that instance i is assigned to machine m at time τ (i.e.,
xi,m(τ) = 1 if instance i runs on m at time τ , 0 otherwise). Feasibility requires, for every ma-
chine m, the resource capacity constraint:

∑
i xi,m(τ) rt(i) ≤ cm Where the inequality holds for

each resource dimension: GPU, CPU and memory. If gt = 1 then all instances of t must start
together, i.e.,

∑
m

∑
i∈I(t) xi,m(τ) = nt; if ℓt = 1 then all instances of t must be co-located on

some machine mt, i.e.,
∑

i∈I(t) xi,mt
(τ) = nt; for GPU-type admissibility, let g(m) denote the

GPU type of machine m. We enforce xi,m(τ) = 0, wheneverg(m) /∈ Γt, ∀i ∈ I(t), ∀m, ∀τ ,
i.e., instances are ineligible for machines of the wrong GPU type. Define the task-ready time
st := inf{τ ≥ rj : a feasible placement for t exists at τ}. The job’s start time is the earliest
task launch sj = mint∈T (j) st, and the queuing delay is qj = sj − rj . In the PAI trace, the
job table’s start time stores the submission timerj , while task and instance tables record the real-
ized launches and finishes. In production, PAI uses reserving-and-packing scheduling: it reserves
high-end V100/V100M32 (NVLink) nodes for high-GPU or strict gang/locality tasks, and packs
lower-GPU tasks onto T4/older ‘Misc’ machines via fractional-GPU sharing (Weng et al., 2022).

Job processing time. For every instance i we record its start and end time (si, ei) and the duration
as di = ei − si. For each task t with instances I(t), define st = mini∈I(t) si, et = maxi∈I(t) ei,
and dt = et − st. Let S = mint st and E = maxt et. The job-level processing time is:

p∗j = E − S

For any task t, dt = et − st ≤ E − S = p∗j , hence maxt dt ≤ p∗j . Prior work by Weng et al. (2022)
trains a regressor on instance records and predicts a per-instance duration d̂i; scheduling and error
evaluation are performed at the instance granularity. When a value is summarized for a task, it is
the mean across that task’s instances, d̄t = 1

|I(t)|
∑

i∈I(t) di. In contrast, we define the job-level
label without using the mean task duration: maxt et−mint st , which matches the classic fork–join
completion rule: a task completes when all of its instances complete, and a job completes when all
of its tasks complete (Blumofe & Leiserson, 1999; Ko & Serfozo, 2004). Under gang scheduling

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Three representative job examples from the ATLAS submit-time dataset, and the processing time
serves as the prediction label representing the uninterrupted execution duration.

Job Type pai job table pai task table pai group tag table Processing Time
job name user id submit time tasks instances cpu (%) gpu (%) mem (GB) group tag workload recurrence (Label)

Small Inference d7eb43b8... 5b1345f0... 09:23:15 1 1 600 25 29.3 6c0d75d7... - 47 136 s
Distributed Training 84afa920... d4d51aca... 10:45:30 2 26 15,100 625 52.0 aba828a1... ctr 12 9,493 s
Large Scale e6145fb3... df2899e2... 14:12:45 2 105 55,000 4,000 2,050.8 e9d4c564... - 3 44,632 s

J1 J2 J3

Job type Small inference Distributed training Large scale
Task 1 dt
Task 2 dt

136 s 9493 s
9493 s

Total resource
required

44632 s
44632 s

1 inst, 25 GPU,
600 CPU

26 inst, 625 GPU,
15100 CPU

105 inst, 4000 GPU,
55000 CPU

Machine 1

Machine 2

Machine 3

Machine 4Start time

J1, task 1

J2, task 2

J2, task 1

0 0 100

J3, task 2

J3, task 1

time (s): 0 100 9493 44732 54125 Total completion time

J1

J2

J3, task 1

136 s

9493 s

44723 s

54125 sJ3, task 2

Machine 1 (T4):

Machine 2 (P100):

Machine 3 (V100):

Machine 4 (Misc):

2 T4 GPUs, 96 CPUs

2 P100 GPUs, 64 CPUs

8 V100 GPUs, 96 CPUs

8 Misc GPUs, 96 CPUs

Job information SchedulingMachine specification

Figure 3: SRPT scheduling of three real PAI jobs. The table shows job characteristics. The timeline illustrates
how jobs are allocated: Job 1 (small inference) completes quickly on Machine 1; Job 2 (distributed training)
runs tasks in parallel on Machines 2 and 3; Job 3 (large scale) has Task 1 starting immediately on Machine 4
while Task 2 waits for Machine 3, demonstrating the impact of resource heterogeneity on scheduling decisions.

(gt = 1),
∑

m

∑
i∈I(t) xi,m(τ) = nt, instances of a task start together (si = st), so dt = maxi di

and per-instance predictions can be used as task size directly. Weng et al. (2022) report that 85% of
task instances in the PAI trace require gang scheduling; in the remaining cases, instances may start
at different times, such as one at 0s and one at 50s, but both lasting 100s. The same policies apply to
job level. We propose p⋆j that is reconstructed from timestamps in the task table, not just using the
mean task size, which is a more pessimistic method. Admittedly, neither definition decouples the
true job demand from Fuxi’s historical allocation decisions; allocation preferences and CPU-bound
contention remain embedded in the recorded durations. However, the trade-off lies in safety. d̄t ≤ dt
filters skew systematically underestimates occupancy for gang-scheduled tasks where tail determines
release. Conversely, p⋆j captures actual system constraints. We explicitly enforce robustness.

Resource metrics and utilization. Let resource coordinates k ∈ {1, 2, 3} denote GPU, CPU,
and memory, respectively. We distinguish submit-time requests from post-execution utilization
metrics. Each task t declares a per-instance request rt = (rt,1, rt,2, rt,3) and instance count nt,
yielding total request Rt = nt rt. For job j with tasks T (j), the submit-time request known
at arrival is Rj =

∑
t∈T (j) Rt. These submit-time quantities {rt, nt,Rj} constitute the pre-

diction features available at scheduling time. Post-execution, instance i runs on interval [si, ei)
with duration di = ei − si on machine m(i) having capacity vector cm(i). Let ũi,k ∈ [0, 1]
denote the time-averaged utilization fraction of resource k for instance i; the resource–time con-
sumed is Ai,k = ũi,k cm(i),k di. Aggregating to tasks and jobs yields At,k =

∑
i∈I(t)Ai,k and

Aj,k =
∑

t∈T (j)At,k. Over reporting horizon H > 0, the average utilization of machine m
on resource k is ūhost,k(m) = 1

H cm,k

∑
i∈I(m)Ai,k. With cluster capacity Ck =

∑
m cm,k, the

cluster-level utilization is ūcluster,k = 1
H Ck

∑
j Aj,k. These realized usage metrics {ũi,k, A·,k, ū·,k}

are computed after job completion for workload characterization and data validation, not for predic-
tion (Verma et al., 2015; Jeon et al., 2019; Weng et al., 2022).

2.2 DATASET DESCRIPTION

Revised data columns. We extract submit-time features from three of the original Alibaba’s PAI
joint tables to build a dataset for learning-augmented non-clairvoyant scheduling, specified by Ta-
ble 1. From the job table, we keep job’s start time and user ID as features, while task and instance
timestamps are used solely to compute the ground-truth processing time p∗j = maxt et − mint st.
The task table provides resource requirements (CPU, GPU, memory) and parallelism metrics (task
and instance counts), aggregated to job level; we exclude assigned GPU types as these reflect post-
submission scheduling decisions. The group-tag table contributes semantic identifiers and GPU
specifications that encode submission-time constraints and recurrence patterns. The remaining ta-
bles, sensor and instance, are excluded as they contain either redundant information, post-execution
metrics, or scheduling-dependent outcomes incompatible with non-clairvoyant scheduling. Table 5
illustrates data columns with real information for representative jobs derived from the ATLAS.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

100 101 102 103
CPU Cores

0.0

0.2

0.4

0.6

0.8

1.0

50%
6

75%
18

90%
74

95%
180

99%
500

(a)

10−2 10−1 100 101 102
GPU Units

50%
1.0
75%
1.0

90%
5.0

95%
10.0

99%
30.0

(b)

100 101 102 103 104
Memory (GB)

50%
29

75%
59

90%
293

95%
615

99%
1957

(c)

10−3 10−2 10−1 100 101 102
Processing Time (hours)

50%
0.2h

75%
1.1h

90%
3.6h

95%
6.6h

99%
19.1h

(d)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Figure 4: Resource demand and processing-time distributions in the PAI workload. Panels (a)–(c) plot cumu-
lative distribution function (CDF) of per-job requested resources on a log-scaled x-axis with a common y-axis,
Cumulative Probability. (a) total requested CPU cores, (b) total requested GPUs, and (c) total requested mem-
ory (GiB). Requests are computed as per-instance plans multiplied by instance count and aggregated per job.
(d) shows the CDF of per-job p∗j , defined as the elapsed time from the first task launch to the job’s completion.

00 03 06 09 12 15 18 21
Hour of day (0 23, UTC+8)

M
on

Tu
e

W
ed

Th
u

Fr
i

Sa
t

Su
n

Da
y

of
 w

ee
k

(a)

0

250

500

750

1000

Su
bm

iss
io

ns

Mon Tue Wed Thu Fri Sat Sun

(b)
Job submissions
Task submissions

0 20 40 60 80 100 120 140 160
Hours from the beginning of a week (Mon. to Sun., UTC+8)

0

1000

2000

3000

4000

Re
qu

es
te

d
re

so
ur

ce
s Mon Tue Wed Thu Fri Sat Sun

(c)

Max |Task Job| (weekly means): CPU 2.20%, GPU 1.85%, Mem 2.53%

Task: 10 vCPU cores
Task: GPU
Task: Mem (100GiB)
Job: 10 vCPU cores
Job: GPU
Job: Mem (100GiB)

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
e

jo
b

su
bm

iss
io

ns
 (c

ou
nt

)

Figure 5: Temporal patterns of submissions and planned resource demand.(a) Heatmap of cumulative job sub-
missions by weekday (rows) and hour (columns). (b) Weekly mean job submissions per hour over complete
Monday–Sunday weeks (jobs and tasks).(c) Weekly means of total planned requests from obtained from per-
task, per-instance plans ntrt (CPU, GPU, memory); shaded bands show 95% confidence intervals across weeks.

Case study. Figure 3 illustrates heterogeneous-GPU scheduling on representative PAI jobs. For
this case study we assume SRPT with known processing times; the goal is to illustrate how trace
semantics and resource constraints impact on execution. The small inference job (136 s) is priori-
tized and finishes quickly, minimizing its impact on throughput. The distributed training job, though
longer, exploits parallelism with tasks running concurrently on different nodes. The large-scale job,
arriving at t=100, shows how task-level scheduling adds flexibility: Task 2 starts immediately on
available machine 4, while Task 1 queues for a V100 due to GPU-type locality. This yields asym-
metric task completions (44,732 s vs. 54,125 s), with the job’s finish dictated by the slower task.

2.3 WORK LOAD CHARACTERIZATION

Data cleaning. We keep only terminated jobs/tasks and drop rows with missing timestamps
or non-positive instance counts. In the trace, timestamps are converted to UTC+8, and for any
time–series statistics we restrict to complete Monday–Sunday weeks, discarding partial weeks to
avoid edge cases; this dataset choice improves comparability and reduces noise. We reproduced the
instance–anchored plot in Weng et al. (2022) for verification, but our scope is on job– and task–level.

Heavy-skewed distribution. The PAI workload exhibits extreme heterogeneity at the job level,
with distributions showing severe right-skew. Skewness is 11.02 for processing time and coefficient
of variation is larger than 3 for resources. As shown in Figure 4, resource requests size 3–5 orders of
magnitude: CPUs (0–8,100 cores), GPUs (0–400 units), and memory (0.4 GB–47 TB). Processing
times vary from seconds to days, with the 99th percentile (19.1 hours) being 106× the median: 11
minutes. The workload stratifies into distinct scales: 74% single-instance jobs versus distributed
jobs with up to 1,050 instances, and 66% tiny jobs (median 7-minute runtime) versus 1% massive
jobs (median 77-minute runtime). This compound heterogeneity—where a small fraction of jobs
dominate resource consumption—necessitates log transformation, which reduces skewness from
11.02 to 0.17 and scale-aware modeling for effective learning-augmented scheduling.

Temporal pattern. The trace exhibits strong diurnal/weekly regularity: weekends have fewer sub-
missions, and late–night hours show higher arrivals, consistent with prior production studies (Tir-
mazi et al., 2020; Reiss et al., 2011). Whereas Weng et al. (2022) visualize a single week, we report
the weekly average across complete weeks, shown in Figure 5, which smooths episodic spikes and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

yields a more stable signature. Concretely, letting h ∈ {0, . . . , 167} index hour–of–week and w
index weeks, we average hourly request series (e.g., task–anchored Tw(h) and job–anchored Jw(h)
formed from planned totals Rt = ntrt) as T̄ (h) = |W|−1

∑
w∈W Tw(h) and analogously for J̄(h).

In our data, T̄ (h) and J̄(h) are nearly identical, reflecting that most tasks launch within the job’s
start hour, while the averaged curves remain less sharp, but more robust than a single-week analysis.

3 BENCHMARK

3.1 PREPARATION

Data pre-processing. We use the ATLAS dataset, which constructs a submit-time, job-level table
by joining the job, task, and group-tag relations from ALIBABA PAI trace and retaining only ter-
minated records. Timestamps are parsed as seconds, and empty rows are removed. For each task
t with instances, we set st = mini st,i, et = maxi et,i, and define the job processing time as
p∗j = maxt et −mint st. Jobs with p⋆j ≤ 0 are discarded. The submission time rj anchors chronol-
ogy and all causal features. Submit-time resource declarations are aggregated per job by summing
the times of per-task plans multiplied by their multiplicity, and details are in Table 1. We join the
group tag, user identifier, workload tag, and requested GPU specification via the instance identifier;
assigned hardware and any post-submission outcomes are excluded. To avoid leakage, we split by
rj : the earliest 70% for training, next 15% for validation, and final 15% for testing. Before training,
we run simple checks and use log-transformed p⋆j as the prediction target to stabilize heavy tails.

Feature engineering. From raw PAI ATLAS data. including 13 columns, we engineer 40 addi-
tional features into 53 data frame columns, filtering to 33 model features after removing identifiers
and intermediates. All encoders and statistics use training data only. (1) Resources: log-transformed
totals (CPU, GPU, memory, instances, tasks) and per-instance ratios (CPU/instance, GPU/instance,
memory/instance, tasks/instance), addressing the heavy-tailed PAI distributions (Weng et al., 2022)
(Figure 4). (2) Temporal: sine–cosine hour-of-day encoding to preserve cyclic continuity (Jiang
& Zhang, 2009), plus day-of-week and weekend flags. (3) Recurrence signatures: concatenate
user, group, workload, and decile-bucketed resources; match to historical executions and attach
the same train-only statistics such as mean, median, quartiles, standard deviation, and counts.
(4) Historical: strictly causal, submit-time–ordered expanding statistics for users and groups
on y = log(1 + p⋆)—cumulative means, counts, and exponentially weighted moving averages
(span=10)—all with one-step lags via shift(1); low-support groups use Empirical Bayes shrink-
age (λ = 5) toward the training-set mean. (5) Categorical: user, group, workload, and GPU speci-
fication are label-encoded from the training set vocabulary with unseen values mapped to -1.

Ablation study and overfitting analysis. The ablation study, using LightGBM, reveals that work-
load recurrence and group-level execution patterns are the dominant predictive signals (+20.2% over
a resource-only baseline), while individual user behaviors provide secondary refinement. The re-
sults validate our benchmark design and demonstrate that all using features contribute meaningfully
to prediction accuracy, with group-level patterns generalizable across users and resource features
transferable across datasets. Our overfitting analysis shows a minimal 1.1% Cov@25% gap between
5-fold cross-validation training and test results, indicating negligible overfitting to the training data.
While performance naturally drops for unseen users, a 5.8% gap, due to missing user-specific his-
tory, the model maintains robust accuracy by relying on generalizable group and resource features.

3.2 PREDICTION TASK

Prediction models. We model yj = log(1 + p⋆j), where p⋆j is from earliest task start to latest task
end, from submit-time features xj using gradient boosting with validation-based calibration. Our
methods include, specified in D: (1) Conformal quantile regression (CQR) training quantile regres-
sor at α with Ridge-blended final predictions (Romano et al., 2019); (2) Isotonic calibration ensur-
ing monotonic probability mapping and adapted for regression/uncertainty calibration (Zadrozny &
Elkan, 2002; Kuleshov et al., 2018); (3) Meta-stacking combines diverse base models (L2, regular-
ized, quantile, Huber) via gradient boosting on validation predictions (Wolpert, 1992); (4) Gated

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

experts (two-stage): a mixture-of-experts design in which a classifier network routes examples to
capacity-matched regressor and aggregates them by soft probabilities (Jordan & Jacobs, 1994); (5)
Weighted recency uses exponential time-decaywt = exp(−λ(T−t)) for drift adaptation Gama et al.
(2014). (6) Historical Recency-Aware with Shrinkage uses per-signature means with EB shrinkage
to stabilize predictions for rare user-group-resource patterns. All calibrators fit exclusively on val-
idation data following honest prediction principles (Wager & Athey, 2018), with LightGBM (Ke
et al., 2017) as our primary regressor using early stopping and monotone constraints if applicable.

Multi-stage predictor. Traditional ML baselines (Classification+Regression and Scale-Bucket
Experts) reached only 38–40% Cov@25% in Appendix C, motivating a novel calibration-centric
designs. We therefore evaluate methods within one leakage-free framework in Algorithm 1.

Algorithm 1 Multi-Method Job Duration Prediction

1: Input: time-ordered splits by submit time rj : Dtrain 70%, Dvalidation 15%, Dtest 15%
2: Features: xj = [xr,xt,xh,xc]
3: xr: job totals from task table (CPU/GPU per-inst%→ counts×inst), log-totals, per-inst ratios
4: xt: sin(2πh/24), cos(2πh/24), day-of-week
5: xh: user/group histories with within-group shift(1); time-since-last-submit
6: xc: categorical (user, group, workload, gpu type spec) encoded from Dtr only
7: Target: yj = log(1 + p∗j), where p∗j = maxt et −mint st (excludes queuing)
8: Stage 1 (train on Dtr):
9: Quantiles: Qα ← LGBM (quantile), α ∈ {0.1, 0.5, 0.9}

10: Regressors: {Mk} ← LGBM with {ℓ2,Huber, regularized}
11: Two-Stage: classifier C on tertiles via Q30,70(y); expert Ec per class
12: Recency: Rfull (time-decay), R50, R20 (most recent 50%, 20%)
13: Signatures: train-only stats (median/quantiles/count); EB shrinkage µ̄s =

nsµs+λµ0

ns+λ (λ=5)

14: Stage 2 (calibrate on Dva):
15: CQR: on log-target let r = max(0, Q0.1 − y, y −Q0.9), k = Q60(r);
16: set bounds L = Q0.1 − k, U = Q0.9 + k (used as features; clip Q0.5 to [L,U])
17: Blender: β←Ridge([L,Q0.5, U, clip(Q0.5),Mℓ2 , priors])
18: Isotonic: ϕ←monotone fit of (Q0.5, y) (log domain, clipped)
19: Meta: ψ←LGBM on [Mk, dispersion(Mk), context]
20: Recency: ωw ∝ (MAEva(Rw) + ϵ)−1; normalize

∑
w ωw = 1.

21: Stage 3 (predict on Dte):
22: CQR: ŷ = β([L,Q0.5, U, clip(Q0.5),Mℓ2 , priors]); also report [L,U]
23: Isotonic: ŷ = ϕ(Q0.5) ; Meta: ŷ = ψ([Mk])
24: Two-Stage: ŷ =

∑
c πcEc(x), with πc = P (c | x) from C

25: Recency: ŷ =
∑

w∈{full,50,20} ωwRw(x)

26: HRAS: ŷ = µ̄s; else group EB prior; else global mean
27: Output: p̂∗j = exp(ŷj)− 1 for all methods

3.3 SCHEDULING TASK

Implementation Setup. LASched evaluates objectives under following settings: for total com-
pletion time (

∑
j Cj), a single machine with online arrivals and preemptive scheduling (jobs Jj

released at times rj); for makespan, m parallel machines with batch release (all jobs at time 0) and
non-preemptive; and for max-stretch, a single machine with online arrivals and preemption to cap-
ture fairness and prevent starvation of large jobs. Unlike prior work on the original dataset (Weng
et al., 2022), which exploits recurring task-level patterns, we study job-level scheduling with imper-
fect predictions across all job types, scaling from single-machine to thousand-machine clusters.

Baseline Algorithms. For non-clairvoyant baselines, we use FIFO as the online default (Weng
et al., 2022), RR, which shares capacity equally among active jobs (Motwani et al., 1994), and LAS
(Least-Attained-Service), which prioritizes the job that has received the least service so far (Nuyens
& Wierman, 2008). For clairvoyant baselines, which serve as offline performance bounds, we em-
ploy SRPT, the optimal for minimizing total completion time (Schrage, 1968), and SJF (Shortest

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Job First). For the multi-machine makespan objective, we evaluate LPT (Longest Processing Time),
which balances load by assigning the largest job to the least-loaded machine (Della Croce & Scata-
macchia, 2020), alongside SPT (Shortest Processing Time) and a Random assignment baseline.

Scheduling Algorithms. These algorithms integrate predictions p̂j generated by our prediction
benchmark models (e.g., CQR, TwoSt) into online decision-making. For total completion time,
we evaluate SPJF and PRR (Preferential Round-Robin). PRR is a robust mechanism that reserves
a processor share λ for the job with the smallest p̂j while distributing the remaining rate (1 − λ)
equally among all jobs (Kumar et al., 2018). For max-stretch, we evaluate SPRPT (SRPT using
predicted remaining work) and EDF-P, an Earliest-Deadline-First policy that schedules based on
predicted deadlines dj = rj + Sadv · p̂j . For makespan, we substitute true sizes with predictions to
create LPPT (Longest Predicted Processing Time) and SPPT (Shortest Predicted Processing Time),
prediction variant of SPT, evaluating how prediction errors impact scheduling policies.

3.4 EVALUATION

Prediction error. From theoretical study, η = max1≤j≤n max{p
∗
j

pj
,
pj

p∗
j
} and L1 =

∑n
j=1 |p̂j −

p∗j | (Kumar et al., 2018; Zhao et al., 2022) are often reported. The community moves toward build-
ing a portfolio of metrics rather than a single number (Ahmed et al., 2022), and we propose di-
verse empirical error metrics for the prediction task. We present Root Mean Squared Logarithmic

Error RMSLE =
√

1
n

∑n
j=1

(
ln(1 + p̂j)− ln(1 + p⋆j)

)2
, which de-emphasizes large outliers in

heavy-tailed job distributions (Soysal & Streit, 2021). Operational tolerance is captured by Cov-
erage at τ , the fraction of jobs predicted within a relative error τ ; we report τ ∈ {0.25, 0.50}:
Cov@τ = 100

n

∑n
j=1 1

(
|p̂j−p⋆

j |
p⋆
j
≤ τ

)
(Minku & Yao, 2013). Finally, to assess ranking quality, we

report Spearman’s rank correlation ρ between p̂j and p⋆j (Pearson correlation) (Bedő & Ong, 2016).

Scheduling Performance. We evaluate algorithms via empirical competitive ratios against op-
timal solutions or tight bounds. For total completion time 1|rj , pmtn|

∑
Cj , we normalize by

SRPT: ρTC =
∑

j C
ALG
j /

∑
j C

SRPT
j . For makespan P ||Cmax, we use McNaughton’s preemp-

tive bound OPTpre = max{
∑

j p
∗
j/m,maxj p

∗
j} as baseline: ρMS = CALG

max/OPTpre. While non-
preemptive makespan is NP-hard, LPT empirically achieves near-optimal performance (ρMS ≈ 1)
on our instances. For max-stretch 1|rj , pmtn|maxj Sj , we obtain S∗ by bisection on S with
EDF-feasibility (Harchol-Balter, 2013), then run EDF at S∗ and normalize by the realized Semp =
maxj(Cj − rj)/pj , reporting ρS,max = Smax/Semp together with ρS,99 and ρS,med.

4 RESULTS AND DISCUSSION

Table 3 details prediction performance. Two-Stage achieves the best coverage (60.8% Cov@25%,
80.4% Cov@50%) via its classification-first approach, despite similar rank correlations across Two-
Stage, Meta-Stack, CQR, and Isotonic. The substantial gap between calibration-centric methods
and the history-only HRAS baseline confirms the necessity of job-specific features. Recurring jobs,
81.3% of the test set, exhibit consistently higher accuracy, validating the utility of historical data. Al-
though Meta-Stack offers marginally lower RMSLE, Two-Stage’s superior coverage directly yields
better scheduling performance. High rank correlation (ρ) explains the outperformance of order-
dependent algorithms despite prediction errors. As shown in Table 4, SPJF achieves near-optimal
total completion time because the objective prioritizes relative order over accurate prediction size;
the 6.8% degradation from SJF to SPJF quantifies the specific cost of prediction error. Furthermore,
SPJF outperforms PRR (λ = 0.7), demonstrating that fully leveraging accurate predicted rankings
supersedes partial usage. For makespan, LPPT shows moderate sensitivity, depending primarily on
identifying the largest jobs. Preemption mitigates error impact by distributing delays across jobs or
m machines, enabling reasonable performance even with HRAS. In contrast, the max-stretch ob-
jective is extremely sensitive to prediction quality: a single underestimated large job receives lower
priority and accumulates excessive queuing delays, severely degrading the worst-case metric.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: LASched prediction performance. Cov@25/50 of ground truth. RMSLE and ρ are for All only.

Method Causal Val-Only Ensemble Cov@25 (%) Cov@50 (%) RMSLE (All) ρ (All)
History Calib. Type (All / Rec.) (All / Rec.)

CQR-Stack ✓ ✓ Conformal 58.3 / 62.9 78.4 / 82.5 0.659 0.950
HRAS ✓ – None 21.6 / 24.2 40.0 / 43.9 1.455 0.772
QMed+Iso ✓ ✓ Single 60.0 / 64.4 79.5 / 83.6 0.689 0.946
LGBM-Meta ✓ ✓ Meta-stack 60.0 / 64.4 79.2 / 83.0 0.656 0.950
Two-Stage ✓ – Adaptive 60.8 / 65.4 80.4 / 84.1 0.658 0.951
Weighted-Rec ✓ – Temporal 52.0 / 55.2 76.5 / 79.8 0.685 0.948
Notes: Recurring = signature seen in training. Splits = 512,647 / 109,854 / 109,854; test recurring = 81.3%

Table 4: Complete scheduling performance across three objectives; lower is better.

(A) Max-Stretch (B) Total Completion Time (C) Makespan
Algorithm ρS,max ρS,99 ρS,med Algorithm Ratio Algorithm Ratio
OPT (EDF at S∗) 1.000 1.000 1.000 SRPT 1.000 LPT 1.000
SRPT 1.189 1.150 0.900 SJF 1.001 SPT 1.539
LAS/FB 1005.85 607.79 155.62 RR 1.975 Greedy 1.452

FIFO 5.372 Random 1.955

CQR-SPRPT 15.69 3.88 0.121 CQR-SPJF 1.075 CQR-LPPT 1.517
CQR-EDF(pred) 4287.21 1214.92 14.65 CQR-PRR 1.252 CQR-SPPT 1.694

HRAS-SPRPT 39.80 24.59 0.235 HRAS-SPJF 1.823 HRAS-LPPT 1.874
HRAS-EDF(pred) 5036.06 1474.90 20.01 HRAS-PRR 1.929 HRAS-SPPT 1.801

Iso-SPRPT 15.58 3.62 0.127 Iso-SPJF 1.087 Iso-LPPT 1.500
Iso-EDF(pred) 4437.21 1233.32 14.99 Iso-PRR 1.265 Iso-SPPT 1.615

Meta-SPRPT 14.97 3.35 0.125 Meta-SPJF 1.072 Meta-LPPT 1.529
Meta-EDF(pred) 4342.12 1232.13 14.83 Meta-PRR 1.252 Meta-SPPT 1.692

TwoSt-SPRPT 15.63 3.64 0.119 TwoSt-SPJF 1.066 TwoSt-LPPT 1.498
TwoSt-EDF(pred) 4346.84 1212.56 14.68 TwoSt-PRR 1.246 TwoSt-SPPT 1.604

Rec-SPRPT 17.64 3.78 0.120 Rec-SPJF 1.097 Rec-LPPT 1.568
Rec-EDF(pred) 4567.88 1292.03 16.34 Rec-PRR 1.278 Rec-SPPT 1.769

5 CONCLUSION

We release ATLAS, a research-ready dataset with actual job sizes and features over 730k+ cluster
jobs for learning-augmented scheduling, and LASched, a standardized benchmark for job size pre-
diction and scheduling tasks with an implementation guide. We provide prediction baselines with
error evaluation using coverage, RMSLE, and rank correlation. Popular learning-augmented algo-
rithms are implemented with their performance reported. The dataset and baselines are intended
to serve as community reference points, demonstrating that LAShed achieves near-optimal perfor-
mance for common objectives: total completion time and makespan. However, while standard pre-
dictors suffice for these aggregate metrics, they fail on tail-sensitive objectives. Exposing these gaps
identifies three future directions: (1) asymmetric loss functions to address prediction-scheduling
mismatches, (2) distributionally robust optimization (e.g., CVaR) to minimize worst-case stretch,
and (3) rank-aware feature learning to prioritize relative ordering. Future work will extend the
benchmark with cross-dataset validation and test algorithms on different optimization objectives.

Reproducibility Statement. We make our work reproducible along three aspects: data, predic-
tion, and scheduling. The clear step-by-step user guide, including data downloading notes for differ-
ent systems, code scripts running suggestions, and a detailed evaluation method, is in anonymized
link, referred to readme.md file in the following link: https://anonymous.4open.
science/r/non-clairvoyant-with-predictions-7BF8/. Three reproducible infor-
mation are listed.

(i) Data. ATLAS is derived from the public Alibaba PAI–2020 trace with a novel formalized job
schema and label construction; we release an anonymized repository, shown in abstract, with scripts
to rebuild the submit-time job table and ground-truth labels from raw datasets, including checks for
terminated rows only and exact time semantics (earliest task start, latest task end). Please see dataset

10

https://anonymous.4open.science/r/non-clairvoyant-with-predictions-7BF8/
https://anonymous.4open.science/r/non-clairvoyant-with-predictions-7BF8/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

link in the abstract and Section 2: Dataset. Users can employ this dataset to construct interested
columns, such as maximum task duration and instance duration. Also, users can make Python plots
to see job size distribution, actual resource utilization rate, which could be both at submit-time or
post-execution, any workload characterization preferred.

(ii) Prediction. We release code to reproduce the split (70%/15%/15% by submit time), train-only
feature engineering (resources, temporal signals, recurrence signatures, strictly causal group/user
histories with shift(1), and label encoding), and all six calibrated baselines with validation-only
calibration; configuration files and fixed random seeds are provided to regenerate Table 3 end-to-end
(Cov@25/50, RMSLE, and Spearman’s ρ). Users can use traditional ML models to make job size
and task size predictions, which is also provided, and technical details are shown in Appendix C.

(iii) Scheduling. The benchmark includes an executable simulator with reference implementations
of all policies and the exact normalizations used in Table 4:

∑
j Cj reported relative to SRPT;

makespan reported relative to the preemptive lower bound OPTpre; and max-stretch computed via
an EDF-feasibility test at the bisection optimum. Scripts are provided to recreate every number
from a fixed commit. In line with the ICLR 2026 Author Guide, we place this statement before
the references and supply anonymous code and supplementary materials with the submission; while
reviewers are not required to read appendices, the released anonymized repository can reproduce all
main tables and figures.

REFERENCES

Nasim Ahmed, Andre LC Barczak, Mohammad A Rashid, and Teo Susnjak. Runtime prediction
of big data jobs: performance comparison of machine learning algorithms and analytical models.
Journal of Big Data, 9(1):67, 2022.

Evripidis Bampis, Alexander Kononov, Giorgio Lucarelli, and Fanny Pascual. Non-clairvoyant
makespan minimization scheduling with predictions. In 34th International Symposium on Algo-
rithms and Computation (ISAAC 2023), pp. 9–1. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2023.

Justin Bedő and Cheng Soon Ong. Multivariate spearman’s ρ for aggregating ranks using copulas.
Journal of Machine Learning Research, 17(201):1–30, 2016.

Ziyad Benomar and Vianney Perchet. Non-clairvoyant scheduling with partial predictions. arXiv
preprint arXiv:2405.01013, 2024.

Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work steal-
ing. Journal of the ACM (JACM), 46(5):720–748, 1999.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo
Bianchini. Resource central: Understanding and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pp. 153–167, 2017.

Federico Della Croce and Rosario Scatamacchia. The longest processing time rule for identical
parallel machines revisited. Journal of Scheduling, 23(2):163–176, 2020.

Yuping Fan, Zhiling Lan, Paul Rich, William Allcock, and Michael E Papka. Hybrid workload
scheduling on hpc systems. In 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 470–480. IEEE, 2022.

João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

Mor Harchol-Balter. Performance modeling and design of computer systems: queueing theory in
action. Cambridge University Press, 2013.

Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Non-clairvoyant schedul-
ing with predictions. ACM Transactions on Parallel Computing, 10(4):1–26, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and Fan
Yang. Analysis of {Large-Scale}{Multi-Tenant}{GPU} clusters for {DNN} training workloads.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 947–960, 2019.

Wenhua Jiang and Cun-Hui Zhang. General maximum likelihood empirical bayes estimation of
normal means. Journal of the American Statistical Association, 2009.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Sayash Kapoor and Arvind Narayanan. Leakage and the reproducibility crisis in machine-learning-
based science. Patterns, 4(9), 2023.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Sung-Seok Ko and Richard F Serfozo. Response times in m/m/s fork-join networks. Advances in
Applied Probability, 36(3):854–871, 2004.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In International conference on machine learning, pp. 2796–2804.
PMLR, 2018.

Ravi Kumar, Manish Purohit, and Zoya Svitkina. Improving online algorithms via ml predictions.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pp. 9684–9693, 2018.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling
via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1859–1877. SIAM, 2020.

Alexander Lindermayr and Nicole Megow. Algorithms with predictions. https://
algorithms-with-predictions.github.io/, 2022. Accessed: 2024-01-24.

Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin Bai. Imbalance in the cloud:
An analysis on alibaba cluster trace. In 2017 IEEE International Conference on Big Data (Big
Data), pp. 2884–2892. IEEE, 2017.

Leandro L Minku and Xin Yao. Software effort estimation as a multiobjective learning problem.
ACM Transactions on Software Engineering and Methodology (TOSEM), 22(4):1–32, 2013.

Rajeev Motwani, Steven Phillips, and Eric Torng. Nonclairvoyant scheduling. Theoretical computer
science, 130(1):17–47, 1994.

Misja Nuyens and Adam Wierman. The foreground–background queue: a survey. Performance
evaluation, 65(3-4):286–307, 2008.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Charles Reiss, John Wilkes, and Joseph L Hellerstein. Google cluster-usage traces: format+ schema.
Google Inc., White Paper, 1:1–14, 2011.

Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. Ad-
vances in neural information processing systems, 32, 2019.

Linus Schrage. A proof of the optimality of the shortest remaining processing time discipline.
Operations Research, 16(3):687–690, 1968.

Mehmet Soysal and Achim Streit. Collection of job scheduling prediction methods. In Job Schedul-
ing Strategies for Parallel Processing: 24th International Workshop, JSSPP 2021, Virtual Event,
May 21, 2021, Revised Selected Papers 24, pp. 35–42. Springer, 2021.

12

https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhijing Gene Qin, Steven Hand, Mor
Harchol-Balter, and John Wilkes. Borg: the next generation. In Proceedings of the fifteenth
European conference on computer systems, pp. 1–14, 2020.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John
Wilkes. Large-scale cluster management at google with borg. In Proceedings of the tenth euro-
pean conference on computer systems, pp. 1–17, 2015.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He, Yong Li, Liping
Zhang, Wei Lin, and Yu Ding. {MLaaS} in the wild: Workload analysis and scheduling in
{Large-Scale} heterogeneous {GPU} clusters. In 19th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 22), pp. 945–960, 2022.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass proba-
bility estimates. In Proceedings of the eighth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 694–699, 2002.

Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica. Improving
mapreduce performance in heterogeneous environments. In Osdi, volume 8, pp. 7, 2008.

Tianming Zhao, Wei Li, and Albert Y Zomaya. Uniform machine scheduling with predictions. In
Proceedings of the International Conference on Automated Planning and Scheduling, volume 32,
pp. 413–422, 2022.

Tianming Zhao, Xiaomin Chang, Chunhao Li, Wei Li, Albert Zomaya, et al. Competitive fair
scheduling with predictions. In The Thirteenth International Conference on Learning Represen-
tations, 2024.

Pengfei Zheng, Rui Pan, Tarannum Khan, Shivaram Venkataraman, and Aditya Akella. Shockwave:
Fair and efficient cluster scheduling for dynamic adaptation in machine learning. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23), pp. 703–723, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATIONS

A.1 BASIC ENTITIES AND TIME VARIABLES

Symbol Name Meaning Example

Jj Job A job submitted by a user Training job for classifier
t Task A role within a job Worker task in distributed training
i Instance One copy of a task running Worker instance #3 out of 10
m Machine Physical server in cluster Server with 8 V100 GPUs
rj Arrival time When job was submitted Submitted at 10:00 AM
τ Time variable Any point in time Checking availability at 10:15 AM
st Task start time When task begins running Task starts at 10:30 AM
sj Job start time When first task starts Job starts with earliest task
qj Queuing delay Time spent waiting Waited 30 minutes for resources

A.2 SETS AND COLLECTIONS

Symbol Name Meaning Example

T (j) Task set All tasks belonging to job j {PS, Worker, Evaluator}
I(t) Instance set All instances of task t {Worker-1, ..., Worker-10}
Γt GPU type set Compatible GPU types {V100, P100} but not T4

A.3 RESOURCE VECTORS AND DEMANDS

Symbol Name Meaning Example

rt Resource request Resources per instance [2 GPUs, 16 CPUs, 64GB RAM]
cm Machine capacity Total machine resources [8 GPUs, 96 CPUs, 512GB RAM]
nt Instance count Number of task copies 10 worker instances

A.4 RESOURCE UTILIZATION

A.5 JOB PROCESSING TIME CALCULATION

We define job processing time based on a hierarchical Fork-Join model.

1. Instance Duration For an instance i running on the interval [si, ei):

di = ei − si (1)

2. Task Span (Fork-Join for Instances) A task t completes only when its last instance finishes.

st = min
i∈I(t)

si, et = max
i∈I(t)

ei (2)

dt = et − st = max
i∈I(t)

ei − min
i∈I(t)

si (3)

Note: For gang-scheduled tasks (gt = 1), si = st for all i, so dt = maxi di.

3. Job Processing Time (Fork-Join for Tasks) A job Jj completes only when its last task finishes.

S = min
t∈T (j)

st, E = max
t∈T (j)

et (4)

p∗j = E − S (5)
This definition correctly captures the true resource occupancy window, including barriers from stag-
gered task starts, unlike mean-based aggregations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Symbol Name Meaning Example

Rt Total task request Rt = nt · rt Total resources for all workers
Rj Total job request Rj =

∑
t∈T (j) Rt Sum of all tasks’ requests

ui,k Instance utilization Average usage of resource k by instance i 85% GPU usage over execution
Ai,k Resource-time Ai,k = ui,k · cm(i),k · di Total GPU-seconds consumed

A.6 KEY SCHEDULING CONSTRAINTS

1. Resource Capacity Constraint ∑
i

xi,m(τ) · rt(i) ≤ cm (6)

Total resources used by all instances on a machine cannot exceed that machine’s capacity

2. Gang Scheduling Constraint (when gt = 1)∑
m

∑
i∈I(t)

xi,m(τ) = nt (7)

All nt instances of the task must be placed at the same time τ

3. Locality Constraint (when ℓt = 1) ∑
i∈I(t)

xi,mt(τ) = nt (8)

All instances must be on the same machine mt

4. GPU Type Constraint
xi,m(τ) = 0 when g(m) /∈ Γt (9)

Cannot place instances on machines with incompatible GPU types

B DATASET CHARACTERISTICS AND JOB EXAMPLES

To illustrate the diversity of workloads in the ATLAS dataset and clarify the nature of the Processing
Time label, Table 5 presents three representative jobs drawn directly from the trace. These examples
showcase different scales of operation, from small inference tasks to large-scale distributed training.

Crucially, the workloads captured in the Alibaba PAI trace are non-preemptible. Once a job begins
execution, it runs to completion without interruption by the scheduler. Therefore, the Processing
Time reported in the final column of Table 5 represents the actual, continuous duration of the job
from start to finish. This single value accurately reflects the job’s size for prediction tasks, as there
are no preemption or resumption dynamics to model. The table highlights key features used for
prediction, such as the number of tasks and instances, requested resources (CPU, GPU, memory),
and workload type. The wide range of processing times, from just over two minutes to more than 12
hours, demonstrates the challenge of the prediction task.

Table 5: Three representative job examples from the ATLAS submit-time dataset, illustrating different job
types, scales, and their corresponding processing times. The Processing Time serves as the prediction label and
represents the uninterrupted execution duration, as jobs in this trace are not preempted.

Job Type pai job table pai task table pai group tag table Processing Time
job name user id submit time tasks instances cpu (%) gpu (%) mem (GB) group tag workload recurrence (Label)

Small Inference d7eb43b8... 5b1345f0... 09:23:15 1 1 600 25 29.3 6c0d75d7... - 47 136 s
Distributed Training 84afa920... d4d51aca... 10:45:30 2 26 15,100 625 52.0 aba828a1... ctr 12 9,493 s
Large Scale e6145fb3... df2899e2... 14:12:45 2 105 55,000 4,000 2,050.8 e9d4c564... - 3 44,632 s

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C TRADITIONAL ML PREDICTION MODELS TRIED

Our preliminary methods explored four baselines: (1) a single-stage gradient-boosted trees model
on the log target with monotone constraints on obvious scale features (instances, GPUs), to en-
code weak priors and reduce pathological splits in sparse regions Ke et al. (2017). (2) a CRR++
“cluster→route→refit” variant that forms train-only k-means families, learns a router, and applies
per-family experts with a global fallback—useful when coarse workload types exist but are unla-
beled Pedregosa et al. (2011). (3) scale-bucket experts using train-quantile edges on instance/GPU
counts to fit per-bucket regressor, again with a global fallback; and (4) a simple recency ensem-
ble mixing a full-history model with a recent-window model to hedge concept drift Gama et al.
(2014). These baselines improved over naive single models but exposed core gaps: poor uncertainty
calibration and tail handling (heavy-tailed durations), weak rank fidelity in some regimes, brittle
behavior for signatures, and limited drift adaptation from fixed mixtures. So, bad performances
motivated our current seven-method toolkit that adds calibrated quantile intervals and blending, ex-
plicit monotone-safe calibration (isotonic), diversity via stacking, a principled gated-experts split,
stronger recency weighting with validation-based ensembling, and empirical-Bayes priors for sparse
signatures—addressing calibration, ranking, sparsity, and drift more systematically than the four
preliminaries could alone.

Algorithm 2 Common preprocessing (used by M1–M4)
1: Input: raw tables (job, task, tag), submit time rj , label p⋆j , features xj

2: Split by time: sort by rj ; pick cut times ttrain < tval; define Dtr = {j : rj < ttrain}, Dva = {j : ttrain ≤
rj < tval}, Dte = {j : rj ≥ tval}.

3: Core features (submit-time only): logs of totals (log(1 + x) for CPU/GPU/MEM/instances/tasks),
per-instance ratios, cyclic time (hour, wday, sin / cos of 24h and 168h).

4: Causal histories (group/user): on the log target yj = log(1 + p⋆j), compute within-group expanding
means and counts with a one-step shift(1); time since previous submit; small shifted rolling means; an
empirical-Bayes (EB) group mean µEB using only Dtr to set the global prior µ0.

5: Train-only encodings: map user/group/workload/gpu type spec to integer codes using the vo-
cabulary in Dtr; unseen 7→ OTHER.

6: Sanity: replace±∞ and NaNs with 0 for numeric features; never touch labels inDva,Dte beyond metrics.

7: Return: design matrices Xtr, Xva, Xte and vectors ytr = log(1 + p⋆), yva, yte = p⋆.

Algorithm 3 M1 — Single-Stage Gradient Boosting (log target) with causal histories
1: Input: Xtr, Xva, Xte from Alg. 2; ytr, yva, yte
2: (optional) Monotone constraints: choose a feature subset M+ expected to be non-decreasing (e.g.,

log(1 + instances), log(1 + GPU)) and pass a monotonicity vector to the booster.
3: Train a gradient-boosted trees regressor on ytr with early stopping on (Xva, yva) (all log-domain).
4: Predict: ŷte ← model(Xte); return p̂te = exp(ŷte)− 1.
5: Metrics: report Cov@25/50, RMSLE, MAE, and Spearman on (p̂te, yte).

Algorithm 4 M2 — CRR++ (Cluster→ Route→ Refit) with per-family experts
1: Input: Xtr, Xva, Xte; ytr, yva, yte; clusters K; min-support nmin

2: Standardize (train-only): fit a scaler on Xtr; transform to Ztr, Zva, Zte.
3: Unsupervised families (train-only): fit K-means on Ztr; obtain family IDs ftr; assign fva, fte by

predict.
4: Router (train-only): train a multi-class classifier to map Z 7→ f using (Ztr, ftr).
5: Fallback regressor: train a global log-target booster on (Xtr, ytr) with early stopping on (Xva, yva).
6: Per-family experts: for each k ∈ {1, . . . ,K} with #{j ∈ Dtr : ftr(j) = k} ≥ nmin, train a log-target

booster on the subset {j : ftr(j) = k}; optionally use (Xva[fva = k], yva[fva = k]) for early stopping.
7: Predict: for each test sample x, set k̂ ← router(z); if expert k = k̂ exists use it, else use the fallback;

return p̂ = exp(ŷ)− 1.
8: Metrics: as in Alg. 3.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 5 M3 — Scale-Bucket Experts (train-quantiles→ per-bucket models)
1: Input: Xtr, Xva, Xte; ytr, yva, yte; train-only features a = instances, b = GPU; min-bucket nmin

2: Train-only bucket edges: compute quantiles Qa and Qb on (a, b) overDtr (e.g., {0.5, 0.9, 0.99}); define
bucketizers bina, binb.

3: Assign buckets: uj = max{bina(aj), binb(bj)} for all j in train/val/test.
4: Global fallback: train a log-target booster on all of Dtr with early stopping on Dva.
5: Per-bucket experts: for each bucket u with #{j ∈ Dtr : uj = u} ≥ nmin, train a log-target booster on
{j : uj = u}; optionally early-stop on {j ∈ Dva : uj = u}.

6: Predict: for each test sample with bucket u, use expert(u) if available; else use the global fallback; return
p̂ = exp(ŷ)− 1.

7: Metrics: as in Alg. 3.

Algorithm 6 M4 — Recency Ensemble (full vs. recent window; train-only gates)

1: Input: Xtr, Xva, Xte; ytr, yva, yte; training times {rj : j ∈ Dtr}; window quantile q; mixture weight α
2: Full model: train a log-target booster on (Xtr, ytr); early-stop on (Xva, yva).
3: Recent cut (train-only): set tq ← Quantileq({rj : j ∈ Dtr}); define Drecent

tr = {j ∈ Dtr : rj ≥ tq}.
4: Recent model (if enough support): train a log-target booster on Drecent

tr , early-stopped on (Xva, yva);
otherwise skip.

5: Predict & mix: let p̃(full) = exp(ŷ(full)) − 1, p̃(rec) = exp(ŷ(rec)) − 1 (if present); output p̂ =

(1− α)p̃(full) + α p̃(rec) if recent model exists, else p̃(full).
6: Metrics: as in Alg. 3.

Results. The corresponding prediction metrics are summarized below in Table 6.

Table 6: Preliminary prediction methods (leakage-safe). Cov@25/50 reported as All / Rec.; RMSLE and ρ are
for All.
Method Causal Val-Only Ensemble Cov@25 (%) Cov@50 (%) RMSLE (All) ρ (All)

History Calib. Type (All / Rec.) (All / Rec.)
M1 Single-Stage (LGBM, log-target) ✓ – Single 39.9 / — 61.3 / — 1.002 0.885
M2 CRR++ (KMeans+router+experts) ✓ – Cluster-experts 40.0 / — 61.8 / — 1.016 0.882
M3 Scale-Bucket Experts ✓ – Scale-experts 39.0 / — 59.8 / — 1.072 0.867
M4 Recency Ensemble (full+recent) ✓ – Temporal 38.4 / — 59.7 / — 1.040 0.878

Notes: “Rec.” values are unavailable for these preliminary runs; dashes indicate not reported. All methods use
leakage-safe, time-ordered splits with submit-time features only.

D PREDICTION MODEL DESCRIPTION

We model yj = log(1 + p⋆j) from submit-time features xj using gradient boosting with validation-
based calibration. Our six methods address different challenges in job duration prediction:

(1) Conformal Quantile Regression (CQR) (Romano et al., 2019) addresses prediction uncertainty
by learning the conditional distribution rather than just point estimates. We train three LightGBM
models with quantile loss at α ∈ {0.1, 0.5, 0.9} to predict the 10th, 50th, and 90th percentiles of job
duration. On the validation set, we compute the conformal width w = quantile0.6(|Q0.1 − y|, |y −
Q0.9|) from residuals, which captures the typical prediction error. The final prediction blends the
median Q0.5 with the calibrated interval bounds [Q0.5−w,Q0.5+w] using Ridge regression, along
with contextual features like group means. This approach is particularly effective for jobs with high
uncertainty—for instance, experimental ML training jobs where duration depends on convergence
criteria, or data processing jobs where input size varies significantly. The method provides both
accurate point estimates and reliable confidence intervals.

(2) Isotonic Calibration (Zadrozny & Elkan, 2002; Kuleshov et al., 2018) corrects systematic pre-
diction biases while preserving ranking order. The method fits a monotonic non-decreasing function
ϕ : R → R mapping raw predictions to calibrated values, ensuring ϕ(x1) ≤ ϕ(x2) whenever
x1 ≤ x2. This is crucial when the model consistently over-predicts short jobs (e.g., quick validation
scripts that always take 5 seconds but are predicted as 30 seconds) or under-predicts long jobs (e.g.,
full model training that takes 10 hours but is predicted as 2 hours). The isotonic regression finds the
optimal step function that minimizes squared error on the validation set while maintaining mono-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

tonicity. This property is essential for scheduling decisions where relative job ordering matters—if
job A is predicted to be shorter than job B, this relationship is preserved after calibration.

(3) Meta-Stacking (Wolpert, 1992) leverages model diversity to improve robustness. We train
four base models with different loss functions: (i) L2 loss for standard regression, (ii) Huber loss
(δ = 0.9) for robustness to outliers like crashed jobs or anomalously long runs, (iii) quantile loss
for median prediction, and (iv) heavily regularized L2 (α = 0.5, λ = 1.0) to prevent overfitting.
Each model captures different aspects: L2 minimizes average error, Huber handles extreme cases,
quantile focuses on the median behavior, and regularized models provide stable baselines. The
meta-learner (another LGBM) takes these base predictions, their standard deviation (measuring dis-
agreement), and contextual features (group history, signature statistics) as input. It learns non-linear
combinations—for example, trusting the Huber model more when base predictions diverge sig-
nificantly (indicating potential outliers), or weighting the regularized model higher for users with
limited history.

(4) Two-Stage Gated Experts (Jordan & Jacobs, 1994) recognizes that different job types require
different prediction strategies. The gating network (classifier) first categorizes jobs into three types
based on the 30th and 70th percentiles of training durations: (i) short jobs (>30th percentile, typi-
cally <100s): quick validation runs, status checks, or small data samples; (ii) medium jobs (30th–
70th percentile, 100s–1000s): regular training epochs, moderate data processing; (iii) long jobs
(>70th percentile, >1000s): full model training, large-scale data processing, or hyperparameter
sweeps. Each category gets a specialized expert model with appropriate complexity—simple models
for predictable short jobs, complex deep trees for variable long jobs. The final prediction aggregates
expert outputs weighted by soft probabilities: ŷ =

∑
c∈{short, med, long} P (c|x) ·Ec(x). This prevents

short jobs from being influenced by patterns from marathon training runs and vice versa.

(5) Weighted Recency (Gama et al., 2014) adapts to temporal drift in workload patterns. Computing
clusters exhibit temporal patterns: new framework releases change typical training times, approach-
ing deadlines increase job submissions, and hardware upgrades affect processing speeds. We train
three models on progressively recent data windows: (i) full history for stable long-term patterns, (ii)
recent 50% for medium-term trends, (iii) recent 20% for immediate patterns. Each training sample
receives weight wt = exp(−λ(T − t)) where T is the current time and λ controls decay rate. Mod-
els are combined using validation performance weights—if recent models show lower validation
error, they receive higher weight in the ensemble, automatically adapting to drift. For example, after
a PyTorch version upgrade that speeds up training by 30%, the recent-20% model would quickly
adapt while the full-history model provides stability.

(6) Historical Recency-Aware with Shrinkage (HRAS) addresses the cold-start problem for rare
job signatures. A signature combines user, group, workload type, and resource requirements (buck-
eted into deciles). Rare signatures include: (i) new users or groups with no history, (ii) unusual
resource combinations (e.g., user alice from vision group suddenly requesting 8 GPUs when
historically using only CPUs), (iii) infrequent workload types (e.g., monthly financial reports in a
primarily ML-focused cluster). For signature s with ns historical observations and mean duration
µs, we apply Empirical Bayes shrinkage: µ̄s = (nsµs + λµ0)/(ns + λ), where µ0 is the global
mean and λ = 5 is the shrinkage strength. When ns = 0 (completely new pattern), the prediction
equals the global mean. As ns grows, the prediction gradually shifts toward the signature-specific
mean. The exponentially weighted component gives more weight to recent instances of the signa-
ture, capturing evolution in user behavior.

18

	Introduction
	Our work

	The ATLAS Dataset
	Data source and formalization
	Dataset description
	Work load characterization

	Benchmark
	Preparation
	Prediction task
	Scheduling task
	Evaluation

	Results and discussion
	Conclusion
	Notations
	Basic Entities and Time Variables
	Sets and Collections
	Resource Vectors and Demands
	Resource Utilization
	Job Processing Time Calculation
	Key Scheduling Constraints

	Dataset Characteristics and Job Examples
	Traditional ML prediction models tried
	Prediction model description

