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ABSTRACT

Learning-augmented scheduling uses ML predictions to improve decision-making
under uncertainty. Many algorithms in this class have been proposed with bet-
ter theoretical guarantees than the classic methods. Translating these theoreti-
cal results into practice, however, requires an understanding of real workloads.
Such an understanding is hard to develop because existing production traces ei-
ther lack the ground-truth processing times or are not publicly available, while
synthetic benchmarks fail to represent real-world complexity. We fill this gap
by introducing Alibaba Trace for Learning-Augmented Scheduling (ATLAS), a
research-ready dataset derived from Alibaba’s Platform of Artificial Intelligence
(PAI) cluster trace—a production system that processes hundreds of thousands
of ML jobs per day. The ATLAS dataset has been cleaned and features engi-
neered to represent the inputs and constraints of non-clairvoyant scheduling, in-
cluding user tags, resource requests (CPU/GPU/memory), and job structures with
ground-truth processing times. We develop a prediction benchmark reporting
prediction error metrics, along with feature importance analysis, and introduce
a novel multi-stage ML model. We also provide a scheduling benchmark for
minimizing the total completion time, max-stretch, and makespan. ATLAS is a
reproducible foundation for researchers to study learning-augmented scheduling
on real workloads, available at https://anonymous.4open.science/
r/non-clairvoyant—-with-predictions—-7BF8/.

1 INTRODUCTION

Modern computing systems have to schedule millions of jobs across without knowing job sizes
(i.e., processing time) at submission, a challenge known as non-clairvoyant scheduling. As job
sizes are unknown at arrival, the scheduler cannot implement an optimal clairvoyant strategy such
as SRPT for total completion time; consequently, non-clairvoyant algorithms achieve suboptimal
scheduling performance (Motwani et al.| [1994). Learning-augmented algorithms address this per-
formance degradation by incorporating ML job size predictions into online algorithms, improving
performance while maintaining worst-case guarantees (Kumar et al., 2018)). This framework applies
to many domains, and now has grown into an active community (Lindermayr & Megow) 2022).

To illustrate the effect of predictions, consider the single-machine scheduling to minimize total com-
pletion time ) | C;, where C; is the completion time of job .J;, in Figure|l| Suppose we have four
Jobs released at r; with unknown sizes pj. Without job predictions, First-In-First-Out (FIFO) runs
jobs in arrival order, yielding a total completion time of 51. Round Robin(RR), another good default
for non-clairvoyant scheduling (Motwani et al.,|1994)), achieves > C; of 46.3. With predictions pj,
Shortest Predicted Job First (SPJF) runs jobs by job size predictions. Even imperfect predictions add
value when they roughly reflect relative job order. With true sizes, Shortest Remaining Processing
Time (SRPT) is optimal for this problem (Schragel |1968), yielding a total completion time of 33. Be-
yond ) C}, other interesting objectives include maximum stretch, which measures fairness via the

. . . . . C.—r;
maximum ratio of job response time to size max; Jp,f” , and makespan Cr,ax = max; C;, repre-

senting the completion time of the last job, a classic objjective in parallel-machine scheduling (Zheng
et al.| [2023). For each specific objective, recent theoretical work has developed learning-augmented
algorithms with provable guarantees (Zhao et al., 2024; |Lattanzi et al.,|2020; |Kumar et al., 2018).
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Figure 1: A toy example showing the comparison of online/offline scheduling algorithms on a single machine
with four jobs arriving at 0,0, 1, 2 with job sizes 4, 10, 1, 3 and job size predictions 3, 11,2, 1. Despite pre-
diction errors, SPJF, a widely known learning-augmented algorithm, achieves a total completion time of 37,
remaining close to SRPT’s optimum of 33 and outperforming both Round Robin’s 46.3 and FIFO’s 51.

However, real production clusters often violate core assumptions underlying these theoretical mod-
els. In practice, jobs execute as multi-step workflows (e.g., preprocessing before training) where
early-stage failures can terminate the sequence. Furthermore, hardware is heterogeneous and ar-
rivals are stochastic, undermining standard analyses (Weng et al.,[2022). These disconnects between
theory and practice raise a central question: How well do learning-augmented schedulers perform in
real-world environments? We address the problem with Alibaba Trace for Learning-Augmented
Scheduling (ATLAS), the first dataset for learning-augmented scheduling derived from PAI produc-
tion clusters, covering over 730,000 jobs with complete execution histories and resource profiles.

Issues with current datasets and benchmarks. First, existing production traces offer limited
data for training and evaluating predictors for job processing times. Google’s Borg traces (Tirmazi
et al.,|2020) normalize processing times and obfuscate job identities, removing rich context like user
patterns, job types, resource requests, and historical behavior. Azure public datasets (Cortez et al.,
2017) and Microsoft’s Virtual Machine (VM) allocation traces (Lu et al., 2017) focus primarily on
VM provisioning, exposing utilization rates while omitting job structures or exact completion times.
The Alibaba trace (Weng et al., |2022) provides job structures but was designed for workload char-
acterization rather than scheduling evaluations. Second, most theoretical studies rely exclusively on
synthetic workloads (Zhao et al.l 2022; [ Benomar & Perchet, [2024)), limiting job sizes to standard
exponential, Pareto, or uniform distributions that miss the complex patterns found in real systems.
Third, the field lacks a standardized evaluation benchmark: a clear, reproducible specification of
(a) the scheduling framework (online/offline, (non-)preemptive, number of machines), (b) how pre-
dictors are trained and validated, and (c) how results are reported and normalized. Consequently,
different studies adopt incompatible problem formulations, metrics, and experimental setups, such
as work by [Fan et al.| (2022); [Im et al.| (2023)); Bampis et al.| (2023)), making cross-paper algorithm
comparisons difficult. Furthermore, many overlook temporal constraints (training on past, testing on
future), failing to restrict features to historical information, or skip calibration—test separation, risk-
ing information leakage that violates non-clairvoyant assumptions (Kapoor & Narayanan) 2023)).

1.1 OUR WORK

The ATLAS Dataset. ATLAS transforms raw production traces from Alibaba’s Platform of Ar-
tificial Intelligence cluster into a dataset designed for scheduling research. The dataset contains
completed ML jobs collected from a cluster with over 6,500 GPUs across 1,800 machines. The
overview and statistics are shown in Table[T} ATLAS dataset has three defining characteristics:

(1) Non-clairvoyant dataset: Our dataset is non-clairvoyant, where models access only information
available at submission time, such as resource plans (resource requests) for CPU, memory, GPU, and
instance counts for each task, and identity fields needed to build signatures such as user, group, and
workload. We exclude post-execution metrics, actual resource usage, utilization rates, and machine
placements, ensuring the ATLAS dataset is research-ready, which replicates a real scheduling envi-
ronment. (2) Complete ground-truth job sizes: Unlike other production traces that omit or normalize
runtime information for privacy reasons, ATLAS provides verified processing times for all tasks and
jobs. Jobs, with a mean of 1.5 hours, range from 3 seconds to 7 days, with 73.8% completing
within one hour and 5.7% exceeding six hours, showing a full spectrum of production workloads.
(3) Rich workload diversity: ATLAS dataset encompasses jobs with resource requirements spanning
from single-CPU tasks to distributed jobs using multiple GPU and GPU clusters, reflecting realis-
tic heterogeneity in CPU/GPU/memory requests. The dataset includes 74.4% single-instance jobs,
multi-instance jobs, and distributed jobs with up to 1,050 instances, capturing job scale complexity.
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Table 1: ATLAS dataset contains jobs from a two-month Alibaba trace with selected submit-time known and
engineered without data-leakage features. v* = prediction feature; ® = ground-truth label; x = excluded.

Source Field Use Description Dataset Statistics
Submission time v Release time r;; enables temporal patterns Dataset splits
Job User ID V" Anonymized submitter (1,314 users) Training 512,649 (70%)
Processing time ° Label p;f = min; $; — maxy e; Validation 109,853 (15%)
' Test 109,853 (15%)
Task count v Number of roles [1, 20] (median: 1) Job size
Planned CPU v Y [0, 810K] (median: 6) Mean 5,382 s (1.5h)
Task Planned GPU VoY e [0,40K] (median: 1) Median 663 s (11 min)
Planned Memory VoY, e s [0.4,47K] GiB (median: 29) Std. Dev. 17,095 s
Instance count V' Total parallelism 3, n; [1,1050] Range [3 5,626,384 5]
Group tag V' Semantic cluster (65% recurring tasks) Job duration
Group-tag Workload tag v Application type when known <10 min 355,328 (48.5%)
GPU spec V" Submit-time constraint (V100/P100/T4) 10 min—6 h 335,121 (45.8%)
Recurrence count v Historical submission frequency >6h 41,906 (5.7%)
CPU per GPU v Resource ratio 7cpu/Tgpu Job-scale
Memory per GPU v Resource ratio r'mem/ Tgpu Single-instance(1) 544,881 (74.4%)
Engineered Distributed flag v Binary indicator (n > 1) Small (2-10) 93,951 (12.8%)
User history v Mean/std of user’s past submissions Medium (11-100) 86,380 (11.8%)
Group history V' Mean/std/count of group’s past runs Large (>100) 7,143 (1.0%)
Scale category V" Composite job-scale classification
Assigned GPU X Actual placement (V100/P100/T4/Misc) GPU categories
Instance IDs % Worker/container identifiers No GPU 17,452 (2.4%)
Excluded Sensor metrics % Runtime CPU/GPU/memory utilization Single GPU 554,179 (75.7%)
Network usage X Bandwidth and I/O measurements Multi-GPU 110,474 (15.1%)
Machine specs % Hardware configuration details GPU cluster 50,250 (6.9%)

The LASched Benchmark. Built on top of ATLAS, LASched (Learning-Augmented Scheduling
Benchmark) provides a standardized evaluation for the Prediction Task on job sizes and Schedul-
ing Task of jobs with job size predictions. The prediction benchmark implements multiple baseline
models and evaluation metrics, showing that jobs exhibit recurring patterns that can be leveraged
for accuracy. LASched enforces leakage-safe construction and restricts features to past-only in-
formation available at decision time, preventing future leakage. The scheduling benchmark evalu-
ates classic and learning-augmented schedulers on three metrics—total completion time, maximum
stretch, and makespan. With a scheduling benchmark including various baselines, using job size
predictions to schedule, the objective values are normalized against the optimum. Together, ATLAS
and LASched form a complete platform that enables researchers to develop, evaluate, and compare
learning-augmented scheduling methods on real production workloads with reproducible results.

2 THE ATLAS DATASET

2.1 DATA SOURCE AND FORMALIZATION

Alibaba PAI-2020 Trace. ATLAS is built on the publicly available Alibaba PAI-2020 GPU-
cluster trace, which captures two months of MLaaS activity on a large heterogeneous GPU cluster
over 6,500 GPUs across ~1,800 machines (Weng et al.|[2022). The trace captures the job life-cycle,
including submission, queuing, scheduling, and execution. The trace is relational and organized
hierarchically into jobs, tasks, and instances, consistent with established system frameworks such
as Google Borg (Verma et al., 2015) and Facebook’s Hadoop workloads (Zaharia et al., |2008).
Users submit ML jobs through frameworks (e.g., TensorFlow, PyTorch, Graph-Learn); each job
is assigned to a scheduler (Fuxi), which translates it into multiple tasks with different roles, e.g.,
worker, parameter-server (PS), and then instantiates them into Docker containers that are distributed
across multiple machines based on resource availability and locality requirements (Weng et al.,
2022)). Once started, jobs run to completion without preemption. The trace contains only start and
end timestamps for each instance, not suspension or resumption events. PAI’s monitoring collects
per-instance system metrics: CPU/GPU utilization and host/GPU memory, at every 15 seconds via
daemon agents that query the Linux kernel and NVIDIA’s NVML,; the release data also includes
machine-level statistics such as network receive throughput. Figure [2] summarizes the job schema,
showing hierarchical structure, and the relationship between jobs, planned resources, observed uti-
lization, and machine specifications. We formalize the PAI trace columns so that time semantics,
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Figure 2: Structure of the Alibaba PAI-2020 GPU cluster trace. Jobs decompose hierarchically into tasks and
instances with per-instance resource requirements for GPU and CPU. Job processing time p; = max;c ;) ds
equals the maximum task duration. The center panel shows planned versus actual resource usage, revealing
users requesting more resources than they actually use. Instances can request fractional resources (e.g., 0.5
GPU), supporting resource sharing across multiple jobs. Machine specifications and utilization metrics appear
on the right. Task B illustrates gang scheduling g; = 1, where more than one instances start at same time.

label construction, and reproducibility checks are unambiguous, whereas prior analyses of this trace
reported workload behavior without a unified mathematical specification.

Job life-cycle: arrivals, queuing, launching. We formalise job life-cycle mathematically as fol-
lows. A job J; arrives at time r; and consists of tasks t € 7 (j). Each task ¢ declares a per-
instance demand vector r, = (71, T‘t,g,’l"tg)—r S Ri representing per-instance GPU, CPU, and
memory requests. To be specific, a distributed training worker might request ry = (1,8, 32)
for 1 GPU, 8 CPUs, and 32GB memory. Also, each task includes an instance count n;, and
constraints: an admissible GPU-type set I'y, a gang flag g¢ € {0,1}, and an optional local-
ity flag ¢, € {0,1}. The cluster comprises machines and each machine m with capacity vec-
tor €, = (Cm,1,Cm,2, cm}g)T S Ri corresponding to GPU, CPU and memory capacity. While
the job waits, the scheduler seeks, for each task ¢, the earliest time 7 > r; at which its n; in-
stances admit a feasible placement. Let Z(t) be the instances of ¢; let ¢(¢) denote the task of in-
stance i; let z; ,,(7) € {0,1} indicate that instance ¢ is assigned to machine m at time 7 (i.e.,
Z;m(7) = 1 1if instance ¢ runs on m at time 7, 0 otherwise). Feasibility requires, for every ma-
chine m, the resource capacity constraint: ), z; ., (7) r¢(;y < €, Where the inequality holds for
each resource dimension: GPU, CPU and memory. If g, = 1 then all instances of ¢ must start
together, i.e., >, > ;e Ti,m(T) = ne; if £ = 1 then all instances of ¢ must be co-located on
some machine my, i.e., ZieI(t) Tim, (T) = ny; for GPU-type admissibility, let g(m) denote the
GPU type of machine m. We enforce z; ,,,(7) = 0, wheneverg(m) ¢ I',,Vi € Z(t), Vm, Vr,
i.e., instances are ineligible for machines of the wrong GPU type. Define the task-ready time
s¢ = inf{r > r; : afeasible placement for ¢ exists at 7}. The job’s start time is the earliest
task launch s; = minge7(;) s¢, and the queuing delay is ¢; = s; — r;. In the PAI trace, the
job table’s start time stores the submission timer;, while task and instance tables record the real-
ized launches and finishes. In production, PAI uses reserving-and-packing scheduling: it reserves
high-end V100/V100M32 (NVLink) nodes for high-GPU or strict gang/locality tasks, and packs
lower-GPU tasks onto T4/older ‘Misc’ machines via fractional-GPU sharing (Weng et al.| 2022).

Job processing time. For every instance ¢ we record its start and end time (s;, ¢;) and the duration
as d; = e; — s;. For each task ¢ with instances Z(t), define s; = milez(y) Si> €¢ = MaAX;e7(¢) i
and d; = e; — s4. Let S = min, s; and £ = max; e;. The job-level processing time is:

p;=E-8
For any task ¢t,d; = e, —s; < E— S = p;-‘, hence max; d; < p;f. Prior work by [Weng et al.|(2022)

trains a regressor on instance records and predicts a per-instance duration dis scheduling and error
evaluation are performed at the instance granularity. When a value is summarized for a task, it is
the mean across that task’s instances, d; = Wlt)l ZieI(t) d;. In contrast, we define the job-level
label without using the mean task duration: max; e; — min; s; , which matches the classic fork—join
completion rule: a task completes when all of its instances complete, and a job completes when all
of its tasks complete (Blumofe & Leisersonl [1999; Ko & Serfozol [2004). Under gang scheduling
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Table 2: Three representative job examples from the ATLAS submit-time dataset, and the processing time
serves as the prediction label representing the uninterrupted execution duration.

Job Type pai_job_table pai_task_table pai_group_tag_table Processing Time
Jjob_name user_id submit_time tasks instances cpu(%) gpu(%) mem (GB) group_tag workload recurrence (Label)
Small Inference d7eb43b8... 5b1345f£0... 09:23:15 1 1 600 25 29.3 6c0d75d7. .. - 47 136 s
Distributed Training 84afa920... d4d5laca... 10:45:30 2 26 15,100 625 52,0 abag828al... ctr 12 9,493 s
Large Scale ©6145fb3... df2899%e2... 14:12:45 2 105 55,000 4,000 2,050.8 e9ddc564. .. = 3 44,632 s
Job information Machine specification :
me@: 0 100 9493 w2 sz Total completion time
7 7, 7 ! , : !
Jobtype | Small inference Distributed training Large scale p : : : 1 1365
fachine 1 (T4): 2 T4 GPUs, 96 CPUs achine
Task 1 dt 1365 9493 s 246325 Machine 1 (T4): s, Machine 1 ‘J, skl .
Task 2 dt 9493 5 44632 s M: P100):2 P100 GPUs, 64 CPUs Machine 2 | EA 72 :
Total resource] p S p S i ; - ' .
1 inst, 25 GPU, 26 inst, 625 GPU, 105 inst, 4000 GPU, , . . 1 : 1 g
required 600 CPU 15100 CPU 55000 CPU Machine 3 (V100):8 V100 GPUs, 96 CPUs Machine 3 ! ) sk 1 ! A ks : i ki 44723 s
Start time 0 0 100 Machine 4 (Misc): § Misc GPUSs, 96 CPUs Machine 4 - T ] : Js

3task2 541255

Figure 3: SRPT scheduling of three real PAI jobs. The table shows job characteristics. The timeline illustrates
how jobs are allocated: Job 1 (small inference) completes quickly on Machine 1; Job 2 (distributed training)
runs tasks in parallel on Machines 2 and 3; Job 3 (large scale) has Task 1 starting immediately on Machine 4
while Task 2 waits for Machine 3, demonstrating the impact of resource heterogeneity on scheduling decisions.

(ge=1),>,, ZieI(t) 2;.m(T) = ny, instances of a task start together (s; = s¢), so dy = max; d;
and per-instance predictions can be used as task size directly. Weng et al.| (2022) report that 85% of
task instances in the PAI trace require gang scheduling; in the remaining cases, instances may start
at different times, such as one at Os and one at 50s, but both lasting 100s. The same policies apply to
job level. We propose p7 that is reconstructed from timestamps in the task table, not just using the
mean task size, which is a more pessimistic method. Admittedly, neither definition decouples the
true job demand from Fuxi’s historical allocation decisions; allocation preferences and CPU-bound
contention remain embedded in the recorded durations. However, the trade-off lies in safety. d; < d;
filters skew systematically underestimates occupancy for gang-scheduled tasks where tail determines
release. Conversely, p} captures actual system constraints. We explicitly enforce robustness.

Resource metrics and utilization. Let resource coordinates k£ € {1,2,3} denote GPU, CPU,
and memory, respectively. We distinguish submit-time requests from post-execution utilization
metrics. Each task ¢ declares a per-instance request ry = (71, T2, ry3) and instance count ny,
yielding total request Ry = n;r;. For job j with tasks 7 (j), the submit-time request known

at arrival is R; = ZteT( ;) Re. These submit-time quantities {ry,n,R;} constitute the pre-
diction features available at scheduling time. Post-execution, instance ¢ runs on interval [s;, e;)
with duration d; = e; — s; on machine m(i) having capacity vector c,,(;). Let @; € [0,1]

denote the time-averaged utilization fraction of resource k for instance i; the resource—time con-
sumed is A; k= U; k Cm(i),k di- Aggregating to tasks and jobs yields A ) = ZieI(t) A; ) and
Ajr = ZteT( 7 At . Over reporting horizon H > 0, the average utilization of machine m
on resource k i Unost, k(M) = ﬁ ZiEI(m) A, .. With cluster capacity C, = ) Cm i, the

cluster-level utilization is Uenster, ki = %@ > y A, .. These realized usage metrics {u; , A. k., U. 1 }

are computed after job completion for workload characterization and data validation, not for predic-
tion (Verma et al., 2015 |Jeon et al.| |2019; |Weng et al., 2022).

2.2 DATASET DESCRIPTION

Revised data columns. We extract submit-time features from three of the original Alibaba’s PAI
joint tables to build a dataset for learning-augmented non-clairvoyant scheduling, specified by Ta-
ble E} From the job table, we keep job’s start time and user ID as features, while task and instance
timestamps are used solely to compute the ground-truth processing time p; = max; €; — miny .
The task table provides resource requirements (CPU, GPU, memory) and parallelism metrics (task
and instance counts), aggregated to job level; we exclude assigned GPU types as these reflect post-
submission scheduling decisions. The group-tag table contributes semantic identifiers and GPU
specifications that encode submission-time constraints and recurrence patterns. The remaining ta-
bles, sensor and instance, are excluded as they contain either redundant information, post-execution
metrics, or scheduling-dependent outcomes incompatible with non-clairvoyant scheduling. Table 3]
illustrates data columns with real information for representative jobs derived from the ATLAS.
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Figure 4: Resource demand and processing-time distributions in the PAI workload. Panels (a)—(c) plot cumu-
lative distribution function (CDF) of per-job requested resources on a log-scaled x-axis with a common y-axis,
Cumulative Probability. (a) total requested CPU cores, (b) total requested GPUs, and (c) total requested mem-
ory (GiB). Requests are computed as per-instance plans multiplied by instance count and aggregated per job.
(d) shows the CDF of per-job pj, defined as the elapsed time from the first task launch to the job’s completion.
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Case study. Figure 3] illustrates heterogeneous-GPU scheduling on representative PAI jobs. For
this case study we assume SRPT with known processing times; the goal is to illustrate how trace
semantics and resource constraints impact on execution. The small inference job (136 s) is priori-
tized and finishes quickly, minimizing its impact on throughput. The distributed training job, though
longer, exploits parallelism with tasks running concurrently on different nodes. The large-scale job,
arriving at t=100, shows how task-level scheduling adds flexibility: Task 2 starts immediately on
available machine 4, while Task 1 queues for a V100 due to GPU-type locality. This yields asym-
metric task completions (44,732 s vs. 54,125 s), with the job’s finish dictated by the slower task.

2.3 WORK LOAD CHARACTERIZATION

Data cleaning. We keep only terminated jobs/tasks and drop rows with missing timestamps
or non-positive instance counts. In the trace, timestamps are converted to UTC+8, and for any
time—series statistics we restrict to complete Monday—Sunday weeks, discarding partial weeks to
avoid edge cases; this dataset choice improves comparability and reduces noise. We reproduced the
instance—anchored plot inWeng et al.|(2022) for verification, but our scope is on job— and task—level.

Heavy-skewed distribution. The PAI workload exhibits extreme heterogeneity at the job level,
with distributions showing severe right-skew. Skewness is 11.02 for processing time and coefficient
of variation is larger than 3 for resources. As shown in Figure[d] resource requests size 3—5 orders of
magnitude: CPUs (0-8,100 cores), GPUs (0—400 units), and memory (0.4 GB—47 TB). Processing
times vary from seconds to days, with the 99th percentile (19.1 hours) being 106x the median: 11
minutes. The workload stratifies into distinct scales: 74% single-instance jobs versus distributed
jobs with up to 1,050 instances, and 66% tiny jobs (median 7-minute runtime) versus 1% massive
jobs (median 77-minute runtime). This compound heterogeneity—where a small fraction of jobs
dominate resource consumption—necessitates log transformation, which reduces skewness from
11.02 to 0.17 and scale-aware modeling for effective learning-augmented scheduling.

Temporal pattern. The trace exhibits strong diurnal/weekly regularity: weekends have fewer sub-
missions, and late—night hours show higher arrivals, consistent with prior production studies (Tir-
mazi et al.,|2020; Reiss et al., 201 1)). Whereas Weng et al.|(2022) visualize a single week, we report
the weekly average across complete weeks, shown in Figure 5] which smooths episodic spikes and
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yields a more stable signature. Concretely, letting h € {0,...,167} index hour-of-week and w
index weeks, we average hourly request series (e.g., task—anchored T, (h) and job—anchored J,, (h)
formed from planned totals R; = nyry) as T(h) = [W|™' 3 ), T\ (h) and analogously for J(h).

In our data, T'(h) and J(h) are nearly identical, reflecting that most tasks launch within the job’s
start hour, while the averaged curves remain less sharp, but more robust than a single-week analysis.

3 BENCHMARK

3.1 PREPARATION

Data pre-processing. We use the ATLAS dataset, which constructs a submit-time, job-level table
by joining the job, task, and group-tag relations from ALIBABA PAI trace and retaining only ter-
minated records. Timestamps are parsed as seconds, and empty rows are removed. For each task
t with instances, we set s; = min; s;;, e; = max; e ;, and define the job processing time as
p;f = max; e; — min; s;. Jobs with p} < 0 are discarded. The submission time 7; anchors chronol-
ogy and all causal features. Submit-time resource declarations are aggregated per job by summing
the times of per-task plans multiplied by their multiplicity, and details are in Table |I} We join the
group tag, user identifier, workload tag, and requested GPU specification via the instance identifier;
assigned hardware and any post-submission outcomes are excluded. To avoid leakage, we split by
r;: the earliest 70% for training, next 15% for validation, and final 15% for testing. Before training,
we run simple checks and use log-transformed p7 as the prediction target to stabilize heavy tails.

Feature engineering. From raw PAI ATLAS data. including 13 columns, we engineer 40 addi-
tional features into 53 data frame columns, filtering to 33 model features after removing identifiers
and intermediates. All encoders and statistics use training data only. (1) Resources: log-transformed
totals (CPU, GPU, memory, instances, tasks) and per-instance ratios (CPU/instance, GPU/instance,
memory/instance, tasks/instance), addressing the heavy-tailed PAI distributions (Weng et al., [2022))
(Figure [d). (2) Temporal: sine—cosine hour-of-day encoding to preserve cyclic continuity (Jiang
& Zhang| 2009), plus day-of-week and weekend flags. (3) Recurrence signatures: concatenate
user, group, workload, and decile-bucketed resources; match to historical executions and attach
the same train-only statistics such as mean, median, quartiles, standard deviation, and counts.
(4) Historical: strictly causal, submit-time—ordered expanding statistics for users and groups
on y = log(l + p*)—cumulative means, counts, and exponentially weighted moving averages
(span=10)—all with one-step lags via shift (1) ; low-support groups use Empirical Bayes shrink-
age (A = 5) toward the training-set mean. (5) Categorical: user, group, workload, and GPU speci-
fication are label-encoded from the training set vocabulary with unseen values mapped to —1.

Ablation study and overfitting analysis. The ablation study, using LightGBM, reveals that work-
load recurrence and group-level execution patterns are the dominant predictive signals (+20.2% over
a resource-only baseline), while individual user behaviors provide secondary refinement. The re-
sults validate our benchmark design and demonstrate that all using features contribute meaningfully
to prediction accuracy, with group-level patterns generalizable across users and resource features
transferable across datasets. Our overfitting analysis shows a minimal 1.1% Cov@25% gap between
5-fold cross-validation training and test results, indicating negligible overfitting to the training data.
While performance naturally drops for unseen users, a 5.8% gap, due to missing user-specific his-
tory, the model maintains robust accuracy by relying on generalizable group and resource features.

3.2 PREDICTION TASK

Prediction models. We model y; = log(1 + pj), where p7 is from earliest task start to latest task
end, from submit-time features x; using gradient boosting with validation-based calibration. Our
methods include, specified in[D} (1) Conformal quantile regression (CQR) training quantile regres-
sor at o with Ridge-blended final predictions (Romano et al., 2019); (2) Isotonic calibration ensur-
ing monotonic probability mapping and adapted for regression/uncertainty calibration (Zadrozny &
Elkanl 2002; Kuleshov et al.,[2018)); (3) Meta-stacking combines diverse base models (L2, regular-
ized, quantile, Huber) via gradient boosting on validation predictions (Wolpert, (1992)); (4) Gated
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experts (two-stage): a mixture-of-experts design in which a classifier network routes examples to
capacity-matched regressor and aggregates them by soft probabilities (Jordan & Jacobs)| |1994); (5)
Weighted recency uses exponential time-decay w; = exp(—A(T"—t)) for drift adaptation Gama et al.
(2014). (6) Historical Recency-Aware with Shrinkage uses per-signature means with EB shrinkage
to stabilize predictions for rare user-group-resource patterns. All calibrators fit exclusively on val-
idation data following honest prediction principles (Wager & Atheyl 2018])), with LightGBM (Ke
et al.| 2017) as our primary regressor using early stopping and monotone constraints if applicable.

Multi-stage predictor. Traditional ML baselines (Classification+Regression and Scale-Bucket
Experts) reached only 38-40% Cov@25% in Appendix |[C} motivating a novel calibration-centric
designs. We therefore evaluate methods within one leakage-free framework in Algorithm|[I]

Algorithm 1 Multi-Method Job Duration Prediction

1: Input: time-ordered splits by submit time 7;: Dyyqin 70%, Dyatidation 15%, Diest 15%

2: Features: x; = [X;, X¢, Xp, Xc]

3:  x,: job totals from task table (CPU/GPU per-inst%— counts xinst), log-totals, per-inst ratios
4: x4 sin(2mh/24), cos(2mwh/24), day-of-week

5:  xy user/group histories with within-group shift (1) ; time-since-last-submit

6:  x.: categorical (user, group, workload, gpu_type_spec) encoded from Dy, only
7
8

: Target: y; = log(1 + p;) where p} = max; e; — min, s; (excludes queuing)

: Stage 1 (train on D;,,.):
9:  Quantiles: @, < LGBM (quantile), o € {0.1,0.5,0.9}
10:  Regressors: { M}, } < LGBM with {/5, Huber, regularized}
11:  Two-Stage: classifier C' on tertiles via Q30 70(y); expert E. per class
12:  Recency: Ry (time-decay), R5g, Roo (most recent 50%, 20%)
_ MspstApo

13:  Signatures: train-only stats (median/quantiles/count); EB shrinkage fis = =55 (A=5)

oA
14: Stage 2 (calibrate on D,,):
15 CQR: on log-target let r = max(0, Qo1 — ¥,y — Qo.9), k = Qgo(r);
16: setbounds L = Qo1 — k, U = Qo.9 + k (used as features; clip Qo 5 to [L, U))
17:  Blender: 8<Ridge([L, Qo.5, U, clip(Qo.5), My, , priors])
18:  Isotonic: ¢ <—monotone fit of (Qg.5,y) (log domain, clipped)
19:  Meta: ¢+ LGBM on [My, dispersion(M},), context]
20:  Recency: wy, < (MAE,(Ry) + €)' normalize Y w,, = 1.
21: Stage 3 (predict on D;.):
22:  CQR: g = B([L,Qo.5,U,clip(Qo.5), My,, priors]); also report [L, U]
23:  Isotonic: § = ¢(Qo5) ; Meta: § = ([My])
24:  Two-Stage: § = > 7w E.(x), with 7. = P(c | x) from C
25:  Recency: § = Zwe{fu]l,50,20} wip Ry (%)
26:  HRAS: § = [is; else group EB prior; else global mean
27: Output: p; = exp(y;) — 1 for all methods

3.3 SCHEDULING TASK

Implementation Setup. LASched evaluates objectives under following settings: for total com-
pletion time (> ; C;), a single machine with online arrivals and preemptive scheduling (jobs J;
released at times r;); for makespan, m parallel machines with batch release (all jobs at time 0) and
non-preemptive; and for max-stretch, a single machine with online arrivals and preemption to cap-
ture fairness and prevent starvation of large jobs. Unlike prior work on the original dataset (Weng
et al.| [2022), which exploits recurring task-level patterns, we study job-level scheduling with imper-
fect predictions across all job types, scaling from single-machine to thousand-machine clusters.

Baseline Algorithms. For non-clairvoyant baselines, we use FIFO as the online default (Weng
et al.,2022), RR, which shares capacity equally among active jobs (Motwani et al.,|1994)), and LAS
(Least-Attained-Service), which prioritizes the job that has received the least service so far (Nuyens
& Wierman, 2008). For clairvoyant baselines, which serve as offline performance bounds, we em-
ploy SRPT, the optimal for minimizing total completion time (Schrage, |1968), and SJF (Shortest
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Job First). For the multi-machine makespan objective, we evaluate LPT (Longest Processing Time),
which balances load by assigning the largest job to the least-loaded machine (Della Croce & Scata-
macchial [2020), alongside SPT (Shortest Processing Time) and a Random assignment baseline.

Scheduling Algorithms. These algorithms integrate predictions p; generated by our prediction
benchmark models (e.g., CQR, TwoSt) into online decision-making. For total completion time,
we evaluate SPJF and PRR (Preferential Round-Robin). PRR is a robust mechanism that reserves
a processor share A for the job with the smallest 5; while distributing the remaining rate (1 — \)
equally among all jobs (Kumar et al} |[2018). For max-stretch, we evaluate SPRPT (SRPT using
predicted remaining work) and EDF-P, an Earliest-Deadline-First policy that schedules based on
predicted deadlines d; = r; 4 Saqv - ;. For makespan, we substitute true sizes with predictions to
create LPPT (Longest Predicted Processing Time) and SPPT (Shortest Predicted Processing Time),
prediction variant of SPT, evaluating how prediction errors impact scheduling policies.

3.4 EVALUATION

Prediction error. From theoretical study, 7 = maxi<;<p max{i—;, pryand Ly = 350, [Py —
i’ P

p;"| (Kumar et al., 2018} |Zhao et al.;[2022) are often reported. The community moves toward build-

ing a porttolio of metrics rather than a single number (Ahmed et al.| [2022), and we propose di-

verse empirical error metrics for the prediction task. We present Root Mean Squared Logarithmic

Error RMSLE = \/ 1 Sy (In(1+p;) — In(1 + p}‘»))z, which de-emphasizes large outliers in
heavy-tailed job distributions (Soysal & Streit, 2021). Operational tolerance is captured by Cov-
erage at 7, the fraction of jobs predicted within a relative error 7; we report 7 € {0.25,0.50}:

Cov@Qr = % Z?’Zl 1 (‘Z)J;i*p;‘ < 7') (Minku & Yao,[2013). Finally, to assess ranking quality, we

report Spearman’s rank correlation p between p; and p; (Pearson correlation) (Bedd & Ong 2016).

Scheduling Performance. We evaluate algorithms via empirical competitive ratios against op-
timal solutions or tight bounds. For total completion time 1|r;, pmtn| > C;, we normalize by
SRPT: prc = 3, CaslDY ; CSRPT. For makespan P||Ciax, we use McNaughton’s preemp-

tive bound OPTye = max{}_; pj/m, max; p;} as baseline: pys = CALG JOPT,y.. While non-
preemptive makespan is NP-hard, LPT empirically achieves near-optimal performance (pvs ~ 1)
on our instances. For max-stretch 1|r;, pmtn|max; S;, we obtain S* by bisection on S with
EDF-feasibility (Harchol-Balter, 2013), then run EDF at S* and normalize by the realized Semp =

max;(Cj — r;)/pj, reporting pg max = Smax/Semp together with ps g9 and pg med-

4 RESULTS AND DISCUSSION

Table [3] details prediction performance. Two-Stage achieves the best coverage (60.8% Cov@25%,
80.4% Cov@50%) via its classification-first approach, despite similar rank correlations across Two-
Stage, Meta-Stack, CQR, and Isotonic. The substantial gap between calibration-centric methods
and the history-only HRAS baseline confirms the necessity of job-specific features. Recurring jobs,
81.3% of the test set, exhibit consistently higher accuracy, validating the utility of historical data. Al-
though Meta-Stack offers marginally lower RMSLE, Two-Stage’s superior coverage directly yields
better scheduling performance. High rank correlation (p) explains the outperformance of order-
dependent algorithms despite prediction errors. As shown in Table ] SPJF achieves near-optimal
total completion time because the objective prioritizes relative order over accurate prediction size;
the 6.8% degradation from SJF to SPJF quantifies the specific cost of prediction error. Furthermore,
SPJF outperforms PRR (A = 0.7), demonstrating that fully leveraging accurate predicted rankings
supersedes partial usage. For makespan, LPPT shows moderate sensitivity, depending primarily on
identifying the largest jobs. Preemption mitigates error impact by distributing delays across jobs or
m machines, enabling reasonable performance even with HRAS. In contrast, the max-stretch ob-
jective is extremely sensitive to prediction quality: a single underestimated large job receives lower
priority and accumulates excessive queuing delays, severely degrading the worst-case metric.
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Table 3: LASched prediction performance. Cov@25/50 of ground truth. RMSLE and p are for A/l only.

Method Causal Val-Only Ensemble Cov@25(%) Cov@50(%) RMSLE (All) p (Al
History Calib. Type (All/ Rec.) (All/ Rec.)
CQR-Stack v v Conformal 58.3/62.9 78.4182.5 0.659 0.950
HRAS v - None 21.6/24.2 40.0/43.9 1.455 0.772
QMed-+Iso v v Single 60.0/ 64.4 79.51783.6 0.689 0.946
LGBM-Meta v v Meta-stack 60.0/64.4 79.21783.0 0.656 0.950
Two-Stage v - Adaptive 60.8/ 65.4 80.4/ 84.1 0.658 0.951
Weighted-Rec v - Temporal 52.0/55.2 76.5/79.8 0.685 0.948

Notes: Recurring = signature seen in training. Splits = 512,647 / 109,854 / 109,854; test recurring = 81.3%

Table 4: Complete scheduling performance across three objectives; lower is better.

(A) Max-Stretch (B) Total Completion Time (C) Makespan

Algorithm PS,max p£S5,99  PSmed Algorithm Ratio  Algorithm Ratio
OPT (EDF at S™) 1.000 1.000 1.000 SRPT 1.000 LPT 1.000
SRPT 1.189 1.150 0.900 SJF 1.001  SPT 1.539
LAS/FB 1005.85 607.79 155,62 RR 1.975  Greedy 1.452

FIFO 5.372 Random 1.955
CQR-SPRPT 15.69 3.88 0.121 CQR-SPJF 1.075 CQR-LPPT 1.517
CQR-EDF(pred) 428721  1214.92 14.65 CQR-PRR 1.252 CQR-SPPT 1.694
HRAS-SPRPT 39.80 24.59 0.235 HRAS-SPJF 1.823 HRAS-LPPT 1.874
HRAS-EDF(pred) 5036.06 1474.90 20.01 HRAS-PRR 1.929 HRAS-SPPT 1.801
Iso-SPRPT 15.58 3.62 0.127  Iso-SPJF 1.087 Iso-LPPT 1.500
Iso-EDF(pred) 443721  1233.32 1499 Iso-PRR 1.265 Iso-SPPT 1.615
Meta-SPRPT 14.97 3.35 0.125 Meta-SPJF 1.072  Meta-LPPT 1.529
Meta-EDF(pred) 4342.12  1232.13 14.83  Meta-PRR 1.252  Meta-SPPT 1.692
TwoSt-SPRPT 15.63 3.64 0.119 TwoSt-SPJF 1.066 TwoSt-LPPT  1.498
TwoSt-EDF(pred)  4346.84 1212.56 14.68 TwoSt-PRR 1.246  TwoSt-SPPT  1.604
Rec-SPRPT 17.64 3.78 0.120  Rec-SPJF 1.097 Rec-LPPT 1.568
Rec-EDF(pred) 4567.88  1292.03 16.34  Rec-PRR 1.278 Rec-SPPT 1.769

5 CONCLUSION

We release ATLAS, a research-ready dataset with actual job sizes and features over 730k+ cluster
jobs for learning-augmented scheduling, and LASched, a standardized benchmark for job size pre-
diction and scheduling tasks with an implementation guide. We provide prediction baselines with
error evaluation using coverage, RMSLE, and rank correlation. Popular learning-augmented algo-
rithms are implemented with their performance reported. The dataset and baselines are intended
to serve as community reference points, demonstrating that LAShed achieves near-optimal perfor-
mance for common objectives: total completion time and makespan. However, while standard pre-
dictors suffice for these aggregate metrics, they fail on tail-sensitive objectives. Exposing these gaps
identifies three future directions: (1) asymmetric loss functions to address prediction-scheduling
mismatches, (2) distributionally robust optimization (e.g., CVaR) to minimize worst-case stretch,
and (3) rank-aware feature learning to prioritize relative ordering. Future work will extend the
benchmark with cross-dataset validation and test algorithms on different optimization objectives.

Reproducibility Statement. We make our work reproducible along three aspects: data, predic-
tion, and scheduling. The clear step-by-step user guide, including data downloading notes for differ-
ent systems, code scripts running suggestions, and a detailed evaluation method, is in anonymized
link, referred to readme.md file in the following link: https://anonymous.4open.
science/r/non-clairvoyant-with-predictions—7BF8/| Three reproducible infor-
mation are listed.

(1) Data. ATLAS is derived from the public Alibaba PAI-2020 trace with a novel formalized job
schema and label construction; we release an anonymized repository, shown in abstract, with scripts
to rebuild the submit-time job table and ground-truth labels from raw datasets, including checks for
terminated rows only and exact time semantics (earliest task start, latest task end). Please see dataset
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link in the abstract and Section 2} Dataset. Users can employ this dataset to construct interested
columns, such as maximum task duration and instance duration. Also, users can make Python plots
to see job size distribution, actual resource utilization rate, which could be both at submit-time or
post-execution, any workload characterization preferred.

(ii) Prediction. We release code to reproduce the split (70%/15%/15% by submit time), train-only
feature engineering (resources, temporal signals, recurrence signatures, strictly causal group/user
histories with shift (1), and label encoding), and all six calibrated baselines with validation-only
calibration; configuration files and fixed random seeds are provided to regenerate Table [3|end-to-end
(Cov@25/50, RMSLE, and Spearman’s p). Users can use traditional ML models to make job size
and task size predictions, which is also provided, and technical details are shown in Appendix [C]

(iii) Scheduling. The benchmark includes an executable simulator with reference implementations
of all policies and the exact normalizations used in Table E} > j C; reported relative to SRPT;
makespan reported relative to the preemptive lower bound OPTy,.; and max-stretch computed via
an EDF-feasibility test at the bisection optimum. Scripts are provided to recreate every number
from a fixed commit. In line with the ICLR 2026 Author Guide, we place this statement before
the references and supply anonymous code and supplementary materials with the submission; while
reviewers are not required to read appendices, the released anonymized repository can reproduce all
main tables and figures.
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A  NOTATIONS

A.1 BASIC ENTITIES AND TIME VARIABLES

Symbol Name Meaning Example
J; Job A job submitted by a user Training job for classifier
Task A role within a job Worker task in distributed training
7 Instance One copy of a task running ~ Worker instance #3 out of 10
m Machine Physical server in cluster Server with 8 V100 GPUs
T Arrival time When job was submitted Submitted at 10:00 AM
T Time variable ~ Any point in time Checking availability at 10:15 AM
St Task start time  When task begins running  Task starts at 10:30 AM
S; Job start time ~ When first task starts Job starts with earliest task
q; Queuing delay  Time spent waiting Waited 30 minutes for resources

A.2 SETS AND COLLECTIONS

Symbol Name Meaning Example

T(j) Task set All tasks belonging to job j  {PS, Worker, Evaluator }
I(t) Instance set Al instances of task ¢ {Worker-1, ..., Worker-10}
T GPU type set Compatible GPU types {V100, P100} but not T4

A.3 RESOURCE VECTORS AND DEMANDS

Symbol Name Meaning Example

r: Resource request ~ Resources per instance [2 GPUs, 16 CPUs, 64GB RAM]
Cm Machine capacity  Total machine resources  [8 GPUs, 96 CPUs, 512GB RAM]
ne Instance count Number of task copies 10 worker instances

A.4 RESOURCE UTILIZATION

A.5 JOB PROCESSING TIME CALCULATION

We define job processing time based on a hierarchical Fork-Join model.
1. Instance Duration For an instance ¢ running on the interval [s;, e;):

di =€, — 54 (1)

2. Task Span (Fork-Join for Instances) A task ¢ completes only when its last instance finishes.

S§; = min s;, €; = max e; 2)
i€l (t) icI(t)
di = e; — S = max e; — min s; 3)
iel(t) iel(t)

Note: For gang-scheduled tasks (g: = 1), s; = s; for all i, so d; = max; d;.

3. Job Processing Time (Fork-Join for Tasks) A job J; completes only when its last task finishes.

S = min s, FE= max e 4)
teT(5) teT(j)
pj=E-5 )

This definition correctly captures the true resource occupancy window, including barriers from stag-
gered task starts, unlike mean-based aggregations.
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Symbol Name Meaning Example

R Total task request Ri=n: 1y Total resources for all workers
R; Total job request R; =5, er(j) Re Sum of all tasks’ requests

Wik Instance utilization ~ Average usage of resource k by instance ¢  85% GPU usage over execution
Ak Resource-time Aik = Uik " Cm(i),k - di Total GPU-seconds consumed

A.6 KEY SCHEDULING CONSTRAINTS

1. Resource Capacity Constraint

Z Tim(T) " Tii) < Cm (6)

Total resources used by all instances on a machine cannot exceed that machine’s capacity

2. Gang Scheduling Constraint (when g; = 1)

SO wim(r) =ny @)
)

m Gel(t
All ny instances of the task must be placed at the same time T

3. Locality Constraint (when ¢/, = 1)

> T (1) =1 (8)

All instances must be on the same machine m;

4. GPU Type Constraint
Zim(T) =0 when g(m) ¢ T, 9)

Cannot place instances on machines with incompatible GPU types

B DATASET CHARACTERISTICS AND JOB EXAMPLES

To illustrate the diversity of workloads in the ATLAS dataset and clarify the nature of the Processing
Time label, Table[5|presents three representative jobs drawn directly from the trace. These examples
showecase different scales of operation, from small inference tasks to large-scale distributed training.

Crucially, the workloads captured in the Alibaba PAI trace are non-preemptible. Once a job begins
execution, it runs to completion without interruption by the scheduler. Therefore, the Processing
Time reported in the final column of Table [5] represents the actual, continuous duration of the job
from start to finish. This single value accurately reflects the job’s size for prediction tasks, as there
are no preemption or resumption dynamics to model. The table highlights key features used for
prediction, such as the number of tasks and instances, requested resources (CPU, GPU, memory),
and workload type. The wide range of processing times, from just over two minutes to more than 12
hours, demonstrates the challenge of the prediction task.

Table 5: Three representative job examples from the ATLAS submit-time dataset, illustrating different job
types, scales, and their corresponding processing times. The Processing Time serves as the prediction label and
represents the uninterrupted execution duration, as jobs in this trace are not preempted.

Job Type pai_job_table pai_task_table pai_group_tag_table Processing Time
job_name user_id submit_time tasks instances cpu(%) gpu(%) mem (GB) group_tag workload recurrence (Label)
Small Inference d7eb43b8... 5bl1345f0... 09:23:15 1 1 600 25 29.3 6c0d75d7. .. - 47 136 s
Distributed Training 84afa920... d4d5laca... 10:45:30 2 26 15,100 625 52.0 aba828al... ctr 12 9,493 s
Large Scale €6145fb3... df2899%e2... 14:12:45 2 105 55,000 4,000 2,050.8 e9d4c564. .. - 3 44,632 s
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C TRADITIONAL ML PREDICTION MODELS TRIED

Our preliminary methods explored four baselines: (1) a single-stage gradient-boosted trees model
on the log target with monotone constraints on obvious scale features (instances, GPUs), to en-
code weak priors and reduce pathological splits in sparse regions Ke et al.| (2017). (2) a CRR++
“cluster—route—refit” variant that forms train-only k-means families, learns a router, and applies
per-family experts with a global fallback—useful when coarse workload types exist but are unla-
beled [Pedregosa et al.| (2011). (3) scale-bucket experts using train-quantile edges on instance/GPU
counts to fit per-bucket regressor, again with a global fallback; and (4) a simple recency ensem-
ble mixing a full-history model with a recent-window model to hedge concept drift |Gama et al.
(2014). These baselines improved over naive single models but exposed core gaps: poor uncertainty
calibration and tail handling (heavy-tailed durations), weak rank fidelity in some regimes, brittle
behavior for signatures, and limited drift adaptation from fixed mixtures. So, bad performances
motivated our current seven-method toolkit that adds calibrated quantile intervals and blending, ex-
plicit monotone-safe calibration (isotonic), diversity via stacking, a principled gated-experts split,
stronger recency weighting with validation-based ensembling, and empirical-Bayes priors for sparse
signatures—addressing calibration, ranking, sparsity, and drift more systematically than the four
preliminaries could alone.

Algorithm 2 Common preprocessing (used by M1-M4)

1: Input: raw tables (job, task, tag), submit time 7;, label p]*, features x;

2: Split by time: sort by r;; pick cut times tuin < tva; define Dy = {j : 7 < tiain}> Dva = {J © tiain <
T < tval}, Dte - {,] Ty 2 tval}-

3: Core features (submit-time only): logs of totals (log(1 + x) for CPU/GPU/MEM/instances/tasks),
per-instance ratios, cyclic time (hour, wday, sin / cos of 24h and 168h).

4: Causal histories (group/user): on the log target y; = log(1 + p}), compute within-group expanding
means and counts with a one-step shift (1) ; time since previous submit; small shifted rolling means; an
empirical-Bayes (EB) group mean 1 using only D, to set the global prior 0.

5: Train-only encodings: map user/group/workload/gpu_type_spec to integer codes using the vo-
cabulary in D, ; unseen — OTHER.

6: Sanity: replace +o0o and NaNs with 0 for numeric features; never touch labels in D, D¢ beyond metrics.

7: Return: design matrices Xy, Xya, Xte and vectors yi = log(1 + p*), Yva, Yte = p*.

Algorithm 3 M1 — Single-Stage Gradient Boosting (log target) with causal histories

1: Input: X, Xoa, X¢e from Alg. 2} yir, Yoa, Yte

2: (optional) Monotone constraints: choose a feature subset M™ expected to be non-decreasing (e.g.,
log(1 + instances), log(1 + GPU)) and pass a monotonicity vector to the booster.

: Train a gradient-boosted trees regressor on yy, with early stopping on (Xyq, Yve) (all log-domain).

: Predict: §:c < model(Xz.); return pre = exp(gee) — 1.

: Metrics: report Cov@25/50, RMSLE, MAE, and Spearman on (Pie, Yte)-

[T SN

Algorithm 4 M2 — CRR++ (Cluster — Route — Refit) with per-family experts

1: Input: Xy, Xva, Xte Ytr, Yva, Yte; clusters K; min-support nomin

2: Standardize (train-only): fit a scaler on X,; transform to Zi,, Zya, Zte.

3: Unsupervised families (train-only): fit K-means on Z;,; obtain family IDs f:; assign fyq, fte by
predict.

4: Router (train-only): train a multi-class classifier to map Z +— f using (Zsr, ftr).

5: Fallback regressor: train a global log-target booster on (X, yi) with early stopping on (Xyq, Yva)-

6: Per-family experts: for each k € {1,..., K} with #{j € D¢ : fer(j) = k} > Numin, train a log-target
booster on the subset {7 : fir(j) = k}; optionally use (Xva[fva = k|, Yva[fva = k]) for early stopping.

7: Predict: for each test sample z, set k router(z); if expert k = k exists use it, else use the fallback;
return p = exp(g§) — 1.

8: Metrics: as in Alg.[3]
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Algorithm 5 M3 — Scale-Bucket Experts (train-quantiles — per-bucket models)

1: Input: X, Xva, Xte; Ytr, Yva, Yte; train-only features a = instances, b = GPU; min-bucket nmin

2: Train-only bucket edges: compute quantiles Q, and Q5 on (a, b) over Dy, (e.g., {0.5,0.9,0.99}); define
bucketizers bin,, bin,.

3: Assign buckets: u; = max{bin,(a;), biny(b;)} for all j in train/val/test.

4: Global fallback: train a log-target booster on all of D, with early stopping on D,,.

5: Per-bucket experts: for each bucket u with #{j € Dy : uj = u} > numin, train a log-target booster on
{j : u; = u}; optionally early-stop on {j € Dyq : u; = u}.

6: Predict: for each test sample with bucket u, use expert(u) if available; else use the global fallback; return
p=exp(y) — L.

7: Metrics: as in Alg.[3]

Algorithm 6 M4 — Recency Ensemble (full vs. recent window; train-only gates)

: Input: Xyr, Xoa, Xte; Yir, Yva, Yte; training times {r; : j € Dy, }; window quantile ¢; mixture weight

: Full model: train a log-target booster on (X, y:r); early-stop on (Xya, Yva)-

: Recent cut (train-only): set t, <— Quantile,({r; : j € Ds}); define D™ = {j € Dy : 15 > t4}.

: Recent model (if enough support): train a log-target booster on Dy™, early-stopped on (Xya, Yva);
otherwise skip.

5: Predict & mix: let /") = exp(g“V) — 1, (79 = exp(§("°?) — 1 (if present); output p =

1- a)pP W 4 o p(7e®) if recent model exists, else pU/ .
6: Metrics: as in Alg.3]

AW N~

Results. The corresponding prediction metrics are summarized below in Table [6]

Table 6: Preliminary prediction methods (leakage-safe). Cov@25/50 reported as All / Rec.; RMSLE and p are
for All.

Method Causal  Val-Only Ensemble Cov@25 (%) Cov@50(%) RMSLE (All) p (All)
History Calib. Type (All/ Rec.) (All/ Rec.)

M1 Single-Stage (LGBM, log-target) v - Single 399/ — 61.3/— 1.002 0.885

M2 CRR++ (KMeans+router+experts) v - Cluster-experts 40.0/— 61.8/— 1.016 0.882

M3 Scale-Bucket Experts v - Scale-experts 39.0/— 59.8/— 1.072 0.867

M4 Recency Ensemble (full+recent) v - Temporal 384/ — 59.7/ — 1.040 0.878

Notes: “Rec.” values are unavailable for these preliminary runs; dashes indicate not reported. All methods use
leakage-safe, time-ordered splits with submit-time features only.

D PREDICTION MODEL DESCRIPTION

We model y; = log(1 + p}‘) from submit-time features x; using gradient boosting with validation-
based calibration. Our six methods address different challenges in job duration prediction:

(1) Conformal Quantile Regression (CQR) (Romano et al.|[2019) addresses prediction uncertainty
by learning the conditional distribution rather than just point estimates. We train three LightGBM
models with quantile loss at « € {0.1,0.5, 0.9} to predict the 10th, 50th, and 90th percentiles of job
duration. On the validation set, we compute the conformal width w = quantile, 4(|Qo.1 — Y|, |y —
Qo.9]) from residuals, which captures the typical prediction error. The final prediction blends the
median @) 5 with the calibrated interval bounds [Qo 5 — w, Qo.5 + w] using Ridge regression, along
with contextual features like group means. This approach is particularly effective for jobs with high
uncertainty—for instance, experimental ML training jobs where duration depends on convergence
criteria, or data processing jobs where input size varies significantly. The method provides both
accurate point estimates and reliable confidence intervals.

(2) Isotonic Calibration (Zadrozny & Elkan} 2002 |Kuleshov et al., 2018)) corrects systematic pre-
diction biases while preserving ranking order. The method fits a monotonic non-decreasing function
¢ : R — R mapping raw predictions to calibrated values, ensuring ¢(z1) < ¢(x2) whenever
x1 < x9. This is crucial when the model consistently over-predicts short jobs (e.g., quick validation
scripts that always take 5 seconds but are predicted as 30 seconds) or under-predicts long jobs (e.g.,
full model training that takes 10 hours but is predicted as 2 hours). The isotonic regression finds the
optimal step function that minimizes squared error on the validation set while maintaining mono-
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tonicity. This property is essential for scheduling decisions where relative job ordering matters—if
job A is predicted to be shorter than job B, this relationship is preserved after calibration.

(3) Meta-Stacking (Wolpert, [1992) leverages model diversity to improve robustness. We train
four base models with different loss functions: (i) L2 loss for standard regression, (ii) Huber loss
(0 = 0.9) for robustness to outliers like crashed jobs or anomalously long runs, (iii) quantile loss
for median prediction, and (iv) heavily regularized L2 (o« = 0.5, A = 1.0) to prevent overfitting.
Each model captures different aspects: L2 minimizes average error, Huber handles extreme cases,
quantile focuses on the median behavior, and regularized models provide stable baselines. The
meta-learner (another LGBM) takes these base predictions, their standard deviation (measuring dis-
agreement), and contextual features (group history, signature statistics) as input. It learns non-linear
combinations—for example, trusting the Huber model more when base predictions diverge sig-
nificantly (indicating potential outliers), or weighting the regularized model higher for users with
limited history.

(4) Two-Stage Gated Experts (Jordan & Jacobs| [1994) recognizes that different job types require
different prediction strategies. The gating network (classifier) first categorizes jobs into three types
based on the 30th and 70th percentiles of training durations: (i) short jobs (>30th percentile, typi-
cally <100s): quick validation runs, status checks, or small data samples; (ii) medium jobs (30th—
70th percentile, 100s—1000s): regular training epochs, moderate data processing; (iii) long jobs
(>70th percentile, >1000s): full model training, large-scale data processing, or hyperparameter
sweeps. Each category gets a specialized expert model with appropriate complexity—simple models
for predictable short jobs, complex deep trees for variable long jobs. The final prediction aggregates
expert outputs weighted by soft probabilities: § = 3 .c (snor, med, tong} £(€1X) - Ec(x). This prevents
short jobs from being influenced by patterns from marathon training runs and vice versa.

(5) Weighted Recency (Gama et al.,[2014) adapts to temporal drift in workload patterns. Computing
clusters exhibit temporal patterns: new framework releases change typical training times, approach-
ing deadlines increase job submissions, and hardware upgrades affect processing speeds. We train
three models on progressively recent data windows: (i) full history for stable long-term patterns, (ii)
recent 50% for medium-term trends, (iii) recent 20% for immediate patterns. Each training sample
receives weight w;, = exp(—A(T" — t)) where T is the current time and )\ controls decay rate. Mod-
els are combined using validation performance weights—if recent models show lower validation
error, they receive higher weight in the ensemble, automatically adapting to drift. For example, after
a PyTorch version upgrade that speeds up training by 30%, the recent-20% model would quickly
adapt while the full-history model provides stability.

(6) Historical Recency-Aware with Shrinkage (HRAS) addresses the cold-start problem for rare
job signatures. A signature combines user, group, workload type, and resource requirements (buck-
eted into deciles). Rare signatures include: (i) new users or groups with no history, (ii) unusual
resource combinations (e.g., user alice from vision_group suddenly requesting 8 GPUs when
historically using only CPUs), (iii) infrequent workload types (e.g., monthly financial reports in a
primarily ML-focused cluster). For signature s with ns historical observations and mean duration
s, we apply Empirical Bayes shrinkage: fis = (nsus + Ato)/(ns + A), where pg is the global
mean and A = 5 is the shrinkage strength. When n, = 0 (completely new pattern), the prediction
equals the global mean. As ng grows, the prediction gradually shifts toward the signature-specific
mean. The exponentially weighted component gives more weight to recent instances of the signa-
ture, capturing evolution in user behavior.
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