
Published as a conference paper at ICLR 2026

AUTOMATIC AND STRUCTURE-AWARE SPARSIFICATION
OF HYBRID NEURAL ODES WITH APPLICATION TO
GLUCOSE PREDICTION

Bob Junyi Zou
Institute for Computational and Mathematical Engineering
Stanford University
Stanford, CA 94305
junyizou@stanford.edu

Lu Tian
Department of Biomedical Data Science
Stanford University
Stanford, CA 94305
lutian@stanford.edu

ABSTRACT

Hybrid neural ordinary differential equations (neural ODEs) integrate mechanistic
models with neural ODEs, offering strong inductive bias and flexibility, and are
particularly advantageous in data-scarce healthcare settings. However, excessive
latent states and interactions from mechanistic models can lead to training ineffi-
ciency and over-fitting, limiting practical effectiveness of hybrid neural ODEs. In
response, we propose a new hybrid pipeline for automatic state selection and struc-
ture optimization in mechanistic neural ODEs, combining domain-informed graph
modifications with data-driven regularization to sparsify the model for improving
predictive performance and stability while retaining mechanistic plausibility. Ex-
periments on synthetic and real-world data show improved predictive performance
and robustness with desired sparsity, establishing an effective solution for hybrid
model reduction in healthcare applications.

1 INTRODUCTION

Hybrid modeling methods are receiving increased attention from the healthcare community because
they combine inductive bias from mechanistic models with the flexibility of neural networks. These
methods often prove especially valuable in small-data regimes—commonly found in healthcare, and
medicine—by outperforming both fully black-box and purely white-box approaches in terms of
predictive performance, robustness and interpretability (Ahmad et al., 2018; Du et al., 2019; Mohan
et al., 2019; Rackauckas et al., 2020; Yazdani et al., 2020; Hussain et al., 2021; Karniadakis et al.,
2021; Qian et al., 2021; Sottile et al., 2021; Zou et al., 2024).

In the field of dynamical system modeling, a significant category of hybrid approaches builds on
neural ordinary differential equations (neural ODEs) (Haber & Ruthotto, 2017; Chen et al., 2018;
Kidger, 2021), which arose from the insight that deep residual neural networks can be formulated
as continuous-time dynamical systems (Rico-Martinez et al., 1992; Weinan, 2017). Neural ODEs
are well-suited for modeling dynamical systems as they offer continuous-time representations with
latent dynamics that integrate seamlessly into modern machine learning pipelines with automatic
differentiation, making them both scalable and flexible. More recently, researchers have adapted
neural ODEs to incorporate domain-knowledge-informed relational inductive bias, often derived from
mechanistic models or causal graphs. This hybrid style—sometimes termed Graph Neural ODE (Poli
et al., 2019), Neural Causal Model (Xia et al., 2021), Neural State Space Modeling (Hussain et al.,
2021) or Mechanistic Neural ODE (MNODE) (Zou et al., 2024)—ensures mechanistic plausibility
and interpretability while taking advantage of the flexibility of neural networks, thereby improving
model performance and robustness in data-scarce settings.

While hybrid neural ODEs show competitive performance in various healthcare and medical appli-
cations such as cardiovascular simulation (Grigorian et al., 2024; Salvador et al., 2024), epidemic
forecasting (Sottile et al., 2021; Huang et al., 2024), disease progression and survival analysis (Dang
et al., 2023; Xiang et al., 2024), treatment effect estimation (Gwak et al., 2020; Zou et al., 2024) and
pharmacology (Qian et al., 2021; Hussain et al., 2021), one persistent challenge in deploying them in

1

Published as a conference paper at ICLR 2026

practice is model reduction. Mechanistic models in physiology and medicine tend to become exces-
sively large in attempts to capture wide-ranging and complex dynamics (e.g., delays, heterogeneities,
multi-compartment processes, etc.) and may contain dozens of latent states despite only a handful of
observable states. For instance, the state-of-the-art model for human carbohydrate-insulin-glucose
dynamics has more than 20 latent states, even though it only uses 2 input variables and less than 5
observable state variables (Visentin et al., 2018). After hybridization, the added flexibility of neural
components may render some latent states unnecessary or even detrimental when training data are
scarce, as redundant states can significantly increase model variance, leading to over-fitting and
undermining the benefits mechanistic models promise.

Traditional model reduction approaches in biochemistry—such as timescale separation (Michaelis
& Menten, 1913; Johnson & Goody, 2011) and quasi-steady-state approximations (Schauer &
Heinrich, 1983; Bothe & Pierre, 2010)—often require deep domain expertise or extensive trial-
and-error. On the other end of the spectrum, data-driven graph-based model reduction offers a
pathway to solve this problem. In many healthcare application domains, mechanistic ODEs can be
represented as reaction networks or directed graphs, where nodes denote system states and edges
denote interactions (Hodgkin & Huxley, 1952; Holz & Fahr, 2001; Smith et al., 2004; Canini &
Perelson, 2014; Man et al., 2014). In recent years, many solutions have emerged from the graph
neural network (GNN) community for general graph pruning, using approaches such as topology-
based node/edge selection (Spielman & Srivastava, 2008; Liu et al., 2023), learning-based sub-graph
sampling (Wang et al., 2019; Zeng et al., 2019; Zheng et al., 2020), or optimization-based graph
sparsification (Li et al., 2020; Jiang et al., 2021; 2023). However, these reduction methods are
typically data-driven and agnostic of any domain knowledge, and thus do not necessarily preserve
key mechanistic structures or constraints. Furthermore, non-gradient-based reduction methods (e.g.,
greedy search) can be prohibitively costly in computation for large, high-dimensional ODE systems.
As a result, a gap remains for computationally efficient solutions that reduce model complexity while
preserving the mechanistic integrity and improving predictive performance for hybrid neural ODEs.

In this paper, we address this challenge by introducing a hybrid, gradient-based algorithm for
automatic state/edge selection and structure optimization in MNODEs. Our approach combines
domain-knowledge-informed graph modification with a mix of L1 and L2 regularization that encour-
ages graph sparsity to efficiently reduce model complexity. The graph modification step draws insights
from classical reduction methods and graph theory to constrain the search space to mechanistically
plausible sparse graphs that retain key topological structures. Meanwhile, the regularization step
allows data-driven, gradient-based graph pruning during training, making the reduction process com-
putationally efficient and adapted to observed data. By combining both mechanistic and data-driven
elements, our reduction scheme integrates the best of both worlds and is particularly well-suited
for modeling complex dynamical systems in healthcare and medicine with limited data. Through
extensive experiments on both synthetic and real-world data, we demonstrate that our algorithm
outperforms other reduction strategies for MNODEs and also surpasses unreduced MNODEs and
widely used black-box sequence models in terms of predictive performance and robustness using
less parameters. These findings highlight a promising path toward more efficient and effective hybrid
modeling solutions—particularly in settings where high-quality data are scarce and model stability is
crucial.

2 METHODOLOGY

2.1 Preliminary

Mechanistic controlled ODE system We define a mechanistic controlled ODE system M as a
4-tuple M = (S,X, F, S0):

1. S = {s1, . . . , sn} is the set of state variables with cardinality n, and si(t) : [0,+∞) → R is a
real-valued function of t representing the value of state si at time t.

2. X = {x1, . . . , xm} is the set of exogenous input variables with cardinality m, and xj(t) :
[0,+∞) → R is a function of t representing the value of input xj at time t.

2

Published as a conference paper at ICLR 2026

3. F = {f1, . . . , fn} is the set of real-valued functions of S,X and t that describe the system’s
temporal evolution:

dsi(t)

dt
= fi(Spa(i)(t), Xpa(i)(t), t),

where Spa(i) ⊆ S, Xpa(i) ⊆ X are subsets of state and input variables, respectively, on which the
derivative of si with respect to t depends, i.e., they are “parents” of si.

4. S0 = {s1(0), . . . , sn(0)} is the set of initial conditions.

In addition, we can further split the state variable set into two disjoint subsets:

S = observable states Sobs ⊔ latent states Slat.

Observable states are variables in the system that can be directly measured through experiments or
sensors. These are the quantities that can be collected and tracked over time. On the other hand, latent
states are variables that are not directly accessible but still believed to play a role in system dynamics.

Directed graph representation of mechanistic ODE We define the directed graph representation of
M = (S,X, F, S0) as a directed graph GM = (VM , EM), whose node set and edge set are defined
in the following way:

VM = S ∪X = {s1, . . . , sn, x1, . . . , xm},
(sj , si) ∈ EM ⇐⇒ sj ∈ Spa(i); and (xk, si) ∈ EM ⇐⇒ xk ∈ Xpa(i).

Specifically, (sj , si) ∈ EM means that the value of sj(t) influences the “direction” of si(t). Similarly,
(xk, si) ∈ EM means that the value of xk(t) influences the “direction” of si(t). Note that we allow
self loops–we can have (si, si) ∈ EM , if dsi(t)/dt depends on si(t) in the system. In the rest of the
paper, we will use the following definitions:

Relaxed directed acyclic graph (RDAG): We define a relaxed directed acyclic graph to be a directed
graph with no directed cycles, except for self-loops. Note that the directed graph representations of
mechanistic ODE systems are in general NOT RDAG.

2.2 Prediction task: time series forecasting with dynamic covariates

The main task we are interested in is to predict the future trajectory of observable state variables,
given their observed history and both past and future exogenous input signals. More precisely, given:

(1) Past context: SP
obs = {Sobs(tk)}0k=−p ∈ R(p+1)×|Sobs|, XP = {X(tk)}−1

k=−p ∈ Rp×m, where
t−p < · · · < t−1 < t0 = 0 are a set of discrete time stamps at which observations of Sobs and X are
collected, and t0 is the beginning of the prediction window;

(2) Future inputs: XF = {X(tk)}q−1
k=0 ∈ Rq×m, where 0 = t0 < t1 < · · · < tq are future prediction

time stamps in the prediction window;

we want to predict SF
obs = {Sobs(tk)}qk=1 ∈ Rq×|Sobs|, the future value of the observable states.

Data: The observed data consist of copies of {SP
obs, X

P, SF
obs, X

F} from multiple instances and the
objective is to use observed data to train an algorithm prospectively predicting observable state values
in new instances based on history, {SP

obs, X
P, XF}.

2.3 Model architecture: mechanistic neural ODE (MNODE)

At a high level, MNODE follows the encoder-decoder sequence modeling paradigm, in which the
encoder takes in historical context and output an initial condition estimate of the latent states in the
system and the decoder rolls out predictions based on the initial condition and future inputs:

Encoder(SP
obs, X

P) = Ŝlat(0), Decoder(Ŝ(0), XF) = ŜF
obs,

where Ŝ(0) = (Sobs(0), Ŝlat(0)) ∈ Rn is an initial condition estimate. In general, MNODE is
compatible with any choice of encoder layer as long as the encoder can produce a reasonable estimate
of the initial condition of the system. For the decoder layer, given the directed graph representation
of the mechanistic ODE system GM , future exogenous inputs XF and an initial condition estimate
Ŝ(0) ∈ Rn, MNODE initializes node features in GM as St0 = Ŝ(0), Xt0 = X(0), and evolve state
node features over time using a set of feed-forward neural networks {NNi}ni=1 structured by GM :

dsi(t)

dt
= NNi(Spa(i)(t), Xpa(i)(t), t), S(0) = Ŝlat(0) = Encoder(Spast, Xpast). (1)

3

Published as a conference paper at ICLR 2026

In practice, the solution of equation 1 can be approximated by a forward-Euler style discretization:

s
th+1

i = sthi + (th+1 − th)NNi(S
th
pa(i), X

th
pa(i), th), (2)

where h = 0, 1, . . . , and we switched the notation from Spa(i)(t) to St
pa(i) to emphasize the transition

from continuous time-domain to a discrete time grid. In our implementation, we choose the encoder
layer to be a standard LSTM and the feed-forward neural networks {NNi}ni=1 to be standard MLPs.

2.4 Reduction Algorithm: Hybrid graph sparsification (HGS)

Step 1: merging maximal strongly connected components Given a directed graph representation
of a mechanistic ODE system G = (E, V) (since the dependency on the mechanistic ODE system is
clear from context, we will omit the M subscript to simplify notations), we first collapse all maximal
strongly connected components (MSCCs) in G into super-nodes to make it an RDAG (note that we
allow self loops). This is implemented by first partitioning V into disjoint subsets of MSCCs Ci:

V = ⊔k
i=1Ci, ∀i ̸= j, Ci ∩ Cj = ∅.

Next, we define a super-node set V a by mapping each MSCC in V to a super-node in V a :

V a = {cai | Ci ⊆ V, 1 ≤ i ≤ k}.
Then, to define edges between super-nodes, for each directed edge (u, v) ∈ E, we add (cai , c

a
j) to the

super-edge set Ea, where Ci and Cj are the two (not necessarily different) MSCCs contains u and v,
respectively:

Ea = {(cai , caj) | (u, v) ∈ E, u ∈ Ci, v ∈ Cj}.
We denote the resulting super-graph as Ga = (V a, Ea). Each super-node in V a may collapse
multiple observable state nodes into a single “super-state” node, whose feature is defined as the
concatenation of all observable node features within its MSCC. Let Sa

obs ⊂ V a be the set of super-
nodes whose MSCCs contain at least one observable state node, and Xa ⊂ V a the set corresponding
to X ⊂ V in G. For consistency, we similarly define Sa, Sa

lat, S
a
pa(i), and Xa

pa(i). This yields an
RDAG representation of the mechanistic model, Ga.

Rationale of step 1 Transforming the original graph into an RDAG via collapsing the MSCCs reveals
high-level causal structure of the system, simplifies the interpretation, and provides a topological
ordering with acyclic structure that improves training stability, as feedback loops are known to cause
blow-ups, exploding gradients and stiffness of the ODE system. With cycles, many complicated
constraints on the system parameters are needed to simultaneously control stiffness, blow-ups
and exploding gradients. Without cycles, the system Jacobian is upper triangular after proper
rearrangement, and the corresponding eigenvalues are simply its’ diagonal elements, allowing
substantially fewer and simpler constraints on parameters to ensure system stability. (see Appendix
A8 for detailed discussions and examples). In addition, replacing each MSCC with a self-loop does
not sacrifice much predictive power because neural networks are capable of approximating the effect
of complex intra-component dynamics—a key motivation of hybrid modeling Raissi et al. (2019).

Step 1 Customization: While we have chosen the default set-up of HGS step 1 to collapse all
MSCCs, users may, based on application needs and their own domain knowledge, choose not to
collapse certain MSCCs, and Step 2 and 3 of HGS will still be compatible in these cases. Causal
interpretability can be preserved via temporal unfolding, where feedback loops are resolved into
time-lagged dependencies between distinct temporal instances of the state variables.

Step 2: augmenting graph with simpler shortcuts Next, we identify key mechanistic pathways and
augment them with simpler shortcuts for potential model reduction. To this end, let Dx,s be the set of
nodes, whose removal disconnects x and s in Ga:

Dx,s = {v ∈ V a | v ̸= x, v ̸= s, s no longer reachable from x in Ga after removing v},
and let Ga

x,s be the sub-graph induced by {x, s} ∪Dx,s:

Ga
x,s = (V a

x,s, E
a
x,s), V a

x,s = {x, s} ∪Dx,s, Ea
x,s = {(u, v) ∈ Ea | u, v ∈ V a

x,s}.
Define the partial transitive closure Ga,c

x,s of Ga
x,s to be:

Ga,c
x,s = (V a

x,s, E
a,c
x,s), Ea,c

x,s =

{
Ea

x,s \ {(x, x)} (x, s) ∈ Ea
x,s,

Ea
x,s \ {(x, x), (x, s)} (x, s) /∈ Ea

x,s,

4

Published as a conference paper at ICLR 2026

where Ea
x,s is the edge set of the transitive closure of Ga

x,s using the reachability relation of Ga.
Finally, we augment the original RDAG Ga with the additional edges from partial transitive closures
of pathway sub-graphs to form the augmented RDAG Ga,c:

Ga,c = (V a, Ea,c), Ea,c = Ea ∪x∈Xa,s∈Sa
obs

Ea,c
x,s.

and Ga,c will be the graph used for step 3. Appendix A2.1 shows an example of G vs Ga,c.

Intuition and rationale of step 2 Intuitively, one may think of a physiological path as a student’s
high-school journey moving through grades 9 to 12. Normally, the student progresses step by step—9
→ 10 → 11 → 12. A transitive closure adds all possible “skip-grade” links, letting the student jump
directly from grade 9 to 11 or 12, or from 10 to 12, as long as they always move to a higher grade
(obey the reachability relations). A partial transitive closure is a more cautious version: it allows
some skipping but forbids overly aggressive jumps, like going straight from grade 9 to 12. The idea
is that, just as students progress at different speeds, biological processes/pathways in physiological
systems also vary in how many intermediate states they pass through and can therefore often be better
modeled with fewer latent states. For example, quasi-steady-state approximations in chemical kinetics
eliminate fast variables by assuming equilibrium. By adding shortcuts (transitive closure), the model
gains flexibility to capture these differences without discarding realistic reachability constraints.

Step 2 Customization Using a partial (rather than full) transitive closure is a choice made by the
authors in the context of glucose modeling because it prevents introducing direct input–output edges
unsupported by the mechanistic model, and preserving some latent dynamics has been shown to be
important (Dalla Man et al., 2009). Similar to step 1, rather than following this default set-up, users
may choose to include full transitive closure or omit selected short-cut paths based on their needs.

Step 3: applying a mix of L1 and L2 regularization Given a processed RDAG Ga,c, to automatically
remove redundant edges and nodes, a natural way is to associate a weight with each edge and apply
L1 penalty to shrink weights of redundant edges to zero in the style of LASSO regularized regression.
In the context of MNODE, a straight-forward formulation would be to modify Equation 2 to:

dsai (t)

dt
= NNi(W ⊙ Sa

pa(i)(t),W ⊙Xa
pa(i)(t), t; Θi),

where the ith neural network is parametrized by Θi, W = {w(u,v) | (u, v) ∈ Ea,c} is the set of
edge-specific weights, and ⊙ stands for element-wise multiplications:

W ⊙ Sa
pa(i)(t) = {w(s,si) · s(t) | s ∈ Sa

pa(i)}, W ⊙Xa
pa(i)(t) = {w(x,si) · x(t) | x ∈ Xa

pa(i)}.

Given the mechanistic RDAG Ga,c defining the MNODE structure, NN parameter Θ = (Θ1, . . . ,Θn),
and edge weights W , one may predict the state variable values (i.e. node features) at t1, . . . , tq with
an initial condition estimate Ŝa,t0and future exogenous inputs Xa,Fover time. These predictions can
be recursively calculated based on (2):

ŝ
a,th+1

i = ŝa,thi + (th+1 − th)NNi(W ⊙ Ŝa,th
pa(i),W ⊙Xa,th

pa(i), th; Θi), with ŝa,t0i = sa,t0i .

We denote the resulting prediction of observable states Ŝa
obs at th by Ŝa,th

obs (Sa,t0 , Xa,F; Θ,W,Ga,c)
to emphasize its dependence on relevant model parameters, initial condition and exogenous input.
We estimate encoder and decoder parameters simultaneously by minimizing the mean-squared-error
loss function. To encourage graph sparsity while retaining identifiability, we also place a combination
of L1 and L2 regularization on edge weights W and model weights Θ to form the final loss function:∑

cases,h

∥∥∥Sa,th
obs − Ŝa,th

obs

(
Ŝa,t0(Da,P;β), Xa,F; Θ,W,Ga,c

)∥∥∥2
2
+ λ1

∑
(u,v)∈Ea,c

|wu,v|+ λ2∥Θ∥22. (3)

where Da,P = (Sa,P
obs , X

a,P) are observed data available at time 0, Ŝa,t0(·;β) is the encoder generating
the initial condition of the system, and λ is a penalty parameter. The L1 penalty on edge weight W is
designed to encourage sparsity and the L2 penalty on decoder parameters is to boost identifiablility.

Equivalence to first-layer group LASSO: The above regularization is closely related to the idea of
first-layer group LASSO mentioned in (Cherepanova et al., 2023). It can be shown (see Appendix
A2.2) that Equation 3 is equivalent to∑

cases,h

∥∥∥Sa,th
obs − Ŝa,th

obs

(
Ŝa,t0 , Xa,F; (Γ, Θ̃),1, Ga,c

)∥∥∥2
2
+ λ2∥Θ̃∥22 + λ3

∑
(u,v)∈Ea,c

∥Γ(v,u)∥
2/3
2 ,

5

Published as a conference paper at ICLR 2026

where λ3 = 3 × 2−2/3λ
2/3
1 λ

1/3
2 , Θ̃ represent all non-first-layer weights in the MLPs, and Γv,u =

w(u,v)Θ(u,v) is the w(u,v)−scaled vector consisting of first-layer-multiplication weights associated
with the edge (u, v). The

∑
(u,v)∈Ea,c ∥Γ(v,u)∥

2/3
2 term is a variant of standard group LASSO

penalty encouraging group sparsity, and the vector Γ(u,v) = 0 ⇐⇒ removing edge (u, v) ∈ Ea,c.
Compared to the standard group LASSO penalty that raises ∥Γ(u,v)∥2 to power of 1, a smaller
exponent encourages stronger group sparsity with steeper gradient towards 0. Operationally, the
regularization parameters λ are selected via K-fold cross-validation (CV).

Step 3 Customization In step 3, while the default set-up is to penalize all edge weights W , if
certain edges are deemed indispensable or more important by the user, they can be taken out of the
regularization term or be given separately a customized λ.

2.5 Important note: implausibility of true support recovery It should be pointed out that our
method is not meant for true support recovery (i.e. recover the true underlying causal graph of the data
generating process) because the expressivity of neural networks lead to equivalent MNODE models
whose underlying graphs are different (Xia et al., 2021), and the task of recovering the true graph
structure is therefore theoretically implausible without making strong assumptions about ground truth.
Our goal is to efficiently induce model sparsity and facilitate the generation of data-driven
hypotheses, which require further clinical validation, without making strong assumptions about
the ground truth other than that it is more sparse than the original mechanistic prior.

3 RELATED WORK

Sparsity, LASSO, and Generalization LASSO-style penalties have long been used to induce
sparsity. Applications range from residual networks (Lemhadri et al., 2021), varying-coefficient
models (Thompson et al., 2023), and CNNs via group LASSO (Liu et al., 2015; Wen et al., 2016), to
feature selection in MLPs (Zhao et al., 2015; Sun et al., 2016; Wang et al., 2017) and local linear
sparsity (Ross et al., 2017). However, these methods often yield sparsity patterns that are hard
to interpret. Our approach extends LASSO to MNODE while grounding the learned sparsity in
mechanistic graph structures, providing interpretability and domain-aligned insights. Prior work has
shown that reduced neural networks can generalize as well as, or even better than, their unreduced
counterparts (Gale et al., 2019; Bartoldson et al., 2020; Hoefler et al., 2021). For graph-based
model reduction, You et al. (2020) found that mildly sparse relational graphs often outperform fully
connected ones. Our results support this: MNODEs built from lightly pruned graphs perform better
than those using dense graphs in low-data regimes.

Graph Sparsification via Optimization Our method is related to optimization-based graph sparsifi-
cation approaches for GNNs. For example, Li et al. (2020) constrained the L0 norm of the adjacency
matrix, Jiang et al. (2021) used elastic net penalties, and Jiang et al. (2023) applied exclusive group
LASSO to encourage neighborhood sparsity. Unlike these methods, we do not sparsify the adjacency
matrix directly. Instead, we sparsify edge weights in message passing, reducing influence from less
informative neighbors. Crucially, GNN sparsification methods are typically data-driven and ignore
mechanistic structure. In contrast, our method is structure-aware: it begins with a domain-informed
pruning step that restricts the search to physically plausible graphs. This makes our approach more
suitable for hybrid models like the Graph Network Simulator (Sanchez-Gonzalez et al., 2020) that
require mechanistic consistency. Finally, while Zou et al. (2024) used a greedy, stepwise reduction
scheme, our method is more computationally efficient and yields better performance—analogous to
the gains of LASSO over stepwise selection in linear models (Hastie et al., 2020).

Landscape of Hybrid Modeling and Trade-offs There are many variants of MNODE in the current
landscape of hybrid modeling with different degrees of hybridization and strength of mechanistic

6

Published as a conference paper at ICLR 2026

prior. In Zou et al. (2024), a more general form of mechanistic neural ODE is proposed as:

dS(t)

dt
= c1fm(S(t), X(t), t; β(t)) + (1− c1)fnn1(S(t), X(t), c2Z(t); c3Am + (1− c3)1)

β(t) = c4βm + (1− c4)fnn2(S(t), X(t), t), and
dZ(t)

dt
= fnn3(S(t), X(t), Z(t), t),

where fm, βm and Am represent the functional form, model parameters and dependency structure
(adjacency matrix) of the mechanistic prior, respectively, and fnni, i = 1, 2 are neural networks.
For c1 = c2 = 0, c3 = 1, one recovers MNODE. The deep mechanistic simulator in Miller
et al. (2020) uses c1 = 1, c4 = 0. The neural closure learning model in Gupta & Lermusiaux
(2021) uses c1 = 0.5, c2 = c3 = c4 = 0. The hybrid ODE model in Qian et al. (2021) uses
c1 = 0.5, c2 = 1, c3 = 0, while the standard black-box neural ODE uses c1 = c3 = 0, c2 = 1. In
general, the more mechanistic components, the more constraints on the function space of the resulting
hybrid model. In data-limited regimes, such constraints help the model quickly learn reasonable
representations but also undermine the model’s ability to capture complex real-world dynamics not
represented by the mechanistic prior. On the other hand, the less mechanistic prior, the more flexible
the hybrid model becomes. While the model gains more freedom to learn arbitrary patterns, it is also
exposed to risks of overfitting and high variance. The challenge is to find the sweet spot: using just
enough mechanistic guidance to keep the model grounded without too much constraining.

4 EXPERIMENTS

4.1 Experiments on synthetic data

General Setting We assume the data are generated by an unknown sparse dynamical system (ODE),
but the mechanistic model is overly complex and contains redundant variables. We show that HGS
produces models that are more sparse, predictive and robust than those obtained by existing methods.

Data generation We consider two sparsity regimes: true sparsity–redundant feature have zero effect
size, and quasi sparsity–redundant features have non-zero but small effect sizes. Our synthetic data
are generated from the following two controlled ODE systems respectively:

True Sparsity:
ds1(t)

dt
= 0.5[s1(t)− 1] + 4x1(t),

Quasi Sparsity:
ds1(t)

dt
= 0.5[s1(t)− 1] + 4

|X|∑
j=1

xj(t)

10j−1
.

We generated time series samples of length q = 60 based on the forward Euler numerical integration
scheme with time step ∇t = 0.05 over the domain t ∈ [0, 0.3] with zero initial conditions.

Training Sample Size To study the effect of sample size on our method and validate its effectiveness
in limited data regime, for each sparsity regime, we generated 40 independent training sets of size
100 and 1000 respectively, as well as a held-out test set of size 10,000.

Starting graph Assuming the true data generating process is unknown, we consider two settings
in which the starting “mechanistic” graph contains redundant structures: (1) a refined graph whose
redundant part contains 3 input nodes, 1 latent node, and 1 latent cycle; (2) a comprehensive graph
whose redundant part contains 6 input nodes, 3 latent nodes and 3 latent cycles (See Appendix A4.1
for illustrations). All redundant input variables are generated from independent N (0, 0.5).

Baseline models We selected the following baseline models: (1) Block-box sequence models
including: LSTM, Black-box neural ODE (BNODE), temporal convolution network (TCN) (Lea
et al., 2016), Diagonal S4 (S4D) (Gu et al., 2022) and vanilla transformer (Trans); (2) MNODE
reduced by other reduction methods including: no reduction (NR), NeuralSparse (NS) (Zheng et al.,

7

Published as a conference paper at ICLR 2026

2020), exclusive group LASSO (EGL) (Jiang et al., 2023), elastic net (EN) (Jiang et al., 2021),
random search (RD) and step-wise greedy search (GD). Implementation details are in Appendix A4.

Evaluation and metrics All evaluations are performed on the test set (see Appendix A5). We
report RMSE with 1-sigma standard error (SE) for predictive performance, Peak (worst-case) RMSE
for robustness and Effective Number of Parameters (ENP, average number of parameters whose
magnitude is > 10−3 under CV-selected hyperparameter setting) for model reduction. Additional
metrics including MAPE, Peak MAPE and correlation are reported in A7.1.

Results As shown in Figure 1, HGS outperforms black-box models at small sample sizes, with
the gap narrowing as sample size increases. At n = 1000, TCN surpasses HGS in RMSE, but
HGS retains superior robustness. This reflects a known trade-off: with more data, the bias from
regularization may outweigh its variance reduction benefits, though the latter still improves worst-case
behavior. Compared to other reduction methods, HGS consistently achieves the best performance.
However, when the input graph is already refined, the gains are modest—as expected, since most
reasonable methods perform well in this setting. On graphs with substantial redundancy, HGS’s
advantage becomes both large and statistically significant. In such cases, regularization alone
struggles to recover signal, especially under quasi-sparsity. HGS’s hybrid pruning, when paired with
regularization, addresses this challenge effectively (See Appendix A7.2 for an ablation study). It also
yields the fewest effective nonzero parameters (ENPs), highlighting its strength in inducing sparsity.

4.2 Experiments on real-world data: blood glucose forecasting for T1D patients

Introduction and background For the real-world data experiment, we focus on modeling the
carbohydrate-insulin-glucose dynamics in patients with Type 1 diabetes (T1D). T1D patients have
impaired insulin production and therefore rely on constant external insulin delivery to regulate their
blood glucose level, making their glycemic regulation a challenging dynamical system to model,
especially during periods of physical activities. In this case, the latent states represent different
physiological compartments within the human body and the observed state is blood glucose level.
We choose our mechanistic model to the 2013 Version of the UVA-Padova model (Man et al., 2014)
(Appendix A6), which is FDA-approved for modeling glycemic response in T1D patients.

Data Our data are from the T1D Exercise Initiative (T1DEXI) (Riddell et al., 2023), which is
available to public at https://doi.org/10.25934/PR00008428. After pre-processing (see
Appendix A3), the final data contain 342 time series from 105 patients. Each time series consists
of 54 measurements, taken 5 minutes apart, of a patient’s blood glucose level and exogenous inputs
including carbohydrate intake, insulin injection, heart rate and step count from 210 minutes before to
60 minutes after the onset of an exercise instance. We set the first 210 minutes (42 time stamps) as
historical window and the remaining 60 minutes (12 time stamps) as the prediction window.

Baseline models In additional to baselines in the synthetic experiments, we also consider MNODE
reduced by domain knowledge (DK) (Zou et al., 2024). See Appendix A4 for details.

Evaluation and metrics We adopt repeated CV (see Appendix A5) to estimate various metrics of
interest. Specifically, we split data randomly at the exercise instance level to evaluate the average
predictive performance on both intra- and inter-patient instances, reflecting the likely real-world
deployment of the prediction algorithm to both existing and new patients. In addition, since intra-
patient variability can be as large as inter-patient variability in T1D modeling (Moscoso-Vasquez et al.,
2016; Bell et al., 2021; Laguna et al., 2014), we anticipate similar results from patient-level cross-
validation (see Appendix A4.2 for details and empirical evidence). In addition to all 6 metrics used in
synthetic set-ups, we include model variance for measuring robustness and an clinical significance
metric, Diagnostic Accuracy–accuracy of classifying a patient as hyper (≥ 180 mg/dl), in-range
(80-180 mg/dl) or hypo (≤ 80 mg/dl) using model predictions. All metrics, except Peak RMSE, Peak
MAPE and ENP, are reported with 1-sigma SE.

8

https://doi.org/10.25934/PR00008428

Published as a conference paper at ICLR 2026

HGS S4D LSTM TCN BNODE Trans
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18

Tr
u

e
S

p
ar

si
ty

RMSE

HGS S4D LSTM Trans BNODE TCN

0.5

1.0

1.5

2.0

2.5
PEAK RMSE

S4D HGS BNODE LSTM Trans TCN
0

2000

4000

6000

8000

10000

12000

14000
ENP

HGS S4D LSTM BNODE TCN Trans
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18

Q
u

as
i S

p
ar

si
ty

RMSE

HGS S4D BNODE LSTM Trans TCN

0.5

1.0

1.5

2.0

2.5
PEAK RMSE

S4D HGS BNODE LSTM Trans TCN
0

2000

4000

6000

8000

10000

12000

14000
ENP

(a) Against black-box models (training size = 100)

TCN HGS S4D LSTM BNODE Trans
0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Tr
u

e
S

p
ar

si
ty

RMSE

HGS BNODE S4D LSTM TCN Trans
0.2

0.4

0.6

0.8

1.0

1.2
PEAK RMSE

S4D HGS BNODE LSTM Trans TCN
0

2000

4000

6000

8000

10000

12000

14000
ENP

TCN HGS S4D LSTM BNODE Trans
0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Q
u

as
i S

p
ar

si
ty

RMSE

HGS S4D BNODE LSTM TCN Trans
0.2

0.4

0.6

0.8

1.0

1.2
PEAK RMSE

S4D HGS BNODE LSTM Trans TCN
0

2000

4000

6000

8000

10000

12000

14000
ENP

(b) Against black-box models (training size = 1000)

HGS NS RD GD EGL EN NR
0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130

Tr
ue

 S
pa

rs
ity

RMSE

HGS NS EN EGL NR RD GD
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

PEAK RMSE

HGS NS RD GD NR EN EGL
0

250
500
750

1000
1250
1500
1750
2000

ENP

HGS NS GD RD EN EGL NR
0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130

Qu
as

i S
pa

rs
ity

RMSE

HGS NS EN EGL GD NR RD
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

PEAK RMSE

HGS NS RD GD NR EN EGL
0

250
500
750

1000
1250
1500
1750
2000

ENP

(c) Against other reduction methods
(refined initial graph, training size = 100)

HGS RD GD NS EN EGL NR

0.096

0.098

0.100

0.102

0.104

0.106

0.108

0.110

Tr
ue

 S
pa

rs
ity

RMSE

HGS GD RD NR NS EGL EN
0.0

0.1

0.2

0.3

0.4

0.5
PEAK RMSE

HGS NS RD GD NR EGL EN
0

250
500
750

1000
1250
1500
1750
2000

ENP

HGS RD GD NS EGL EN NR

0.096

0.098

0.100

0.102

0.104

0.106

0.108

0.110

Qu
as

i S
pa

rs
ity

RMSE

HGSEGL EN RD NS NR GD
0.0

0.1

0.2

0.3

0.4

0.5
PEAK RMSE

HGS NS RD GD NR EN EGL
0

250
500
750

1000
1250
1500
1750
2000

ENP

(d) Against other reduction methods
(refined initial graph, training size = 1000)

HGS NR RD EGL EN NS

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Tr
ue

 S
pa

rs
ity

RMSE

HGS NR RD EGL EN NS
0.0

0.2

0.4

0.6

0.8

1.0

1.2
PEAK RMSE

HGS NS RD NR EN EGL
0

1000

2000

3000

4000

5000

6000
ENP

HGS NR RD NS EN EGL

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Qu
as

i S
pa

rs
ity

RMSE

HGS RD NR EGL EN NS
0.0

0.2

0.4

0.6

0.8

1.0

1.2
PEAK RMSE

HGS NS RD NR EN EGL
0

1000

2000

3000

4000

5000

6000
ENP

(e) Against other reduction methods
(comprehensive initial graph, training size = 100)

HGS NR RD EN EGL NS

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Tr
ue

 S
pa

rs
ity

RMSE

HGS NR RD EN EGL NS
0.0

0.2

0.4

0.6

0.8

1.0

1.2
PEAK RMSE

HGS NS RD NR EN EGL
0

1000

2000

3000

4000

5000

6000
ENP

HGS NR RD NS EGL EN

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Qu
as

i S
pa

rs
ity

RMSE

HGS NR RD NS EN EGL
0.0

0.2

0.4

0.6

0.8

1.0

1.2
PEAK RMSE

HGS NS RD NR EN EGL
0

1000

2000

3000

4000

5000

6000
ENP

(f) Against other reduction methods
(comprehensive initial graph, training size = 1000)

Figure 1: Comparison across different evaluation settings. GD is omitted for comprehensive initial
graph as training takes an unreasonable amount of time. Models are sorted from best to worst.

Results As shown in Figure 2(a), MNODE HGS significantly outperforms traditional black-box
models across all metrics, while using fewer parameters. This highlights the benefits of incorporating
mechanistic structure and graph sparsification into model design. Figure 2(b) compares HGS
with alternative reduction methods applied to MNODE. HGS consistently yields better predictive
performance, particularly in peak RMSE, suggesting greater robustness. To visualize the learned
structures, we plot in Figure 2(c) edge-weighted adjacency matrices of the reduced graphs, averaged
over 10 runs. Unlike other methods, HGS not only promotes sparsity but also introduces new
structural shortcuts that are otherwise inaccessible to regularization-based approaches.

Ablation study on model components To assess the contribution of each design step in Section 2,
we conduct an ablation study using models trained with various subsets of the proposed pipeline. As
shown in Figure 2(d), removing any single step leads to a marked drop in performance, underscoring
the importance of all three components for the success of MNODE HGS.

Mechanistic interpretation of results HGS can yield interpretable and biologically plausible new
insights. For example, HGS chooses to eliminate edges corresponding to glucagon feedback loops,
which suggests that impaired glucagon response during hypoglycemia (Seaquist et al., 2013) may
also persist during exercise-induced hypoglycemia—a novel hypothesis that could guide future
investigations.

9

Published as a conference paper at ICLR 2026

HGS BNODE LSTM TCN S4D Trans

34

36

38

40

42

44

46

RMSE

HGS BNODE LSTM TCN S4D Trans
0.20

0.22

0.24

0.26

0.28

MAPE

HGS TCN LSTM BNODE S4D Trans
0.58

0.60

0.62

0.64

0.66

0.68

Correlation

HGS BNODE LSTM TCN S4D Trans
0.66

0.68

0.70

0.72

0.74

0.76

0.78

Diagnostic Accuracy

HGS TCN LSTM BNODE S4D Trans
100

120

140

160

180

200

220

PEAK RMSE

HGS LSTM BNODE S4D TCN Trans
1.0

1.2

1.4

1.6

1.8

2.0
PEAK MAPE

HGS S4D LSTM BNODE TCN Trans
0

100

200

300

400

500

600
Variance

HGS S4D LSTM Trans TCN BNODE
6000

6500

7000

7500

8000

8500

9000
ENP

(a) Comparison against black-box models; the proposed MNODE HGS is in orange.

HGS NS RD EGL EN NR DK GD
34.5

35.0

35.5

36.0

36.5

37.0

37.5
RMSE

HGS RD EGL NS EN NR DK GD
0.220

0.222

0.224

0.226

0.228

0.230

0.232
MAPE

HGS RD DK NS GD EN EGL NR
0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70
Correlation

HGS RD NS DK GD NR EGL EN
0.75

0.76

0.77

0.78

0.79
Diagnostic Accuracy

HGS NS EN EGL DK RD NR GD

120

140

160

180

200

220

240

260
PEAK RMSE

HGS EN EGL RD NS GD NR DK
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

PEAK MAPE

HGS EGL NS EN RD GD NR DK
25

50

75

100

125

150

175

200
Variance

DK HGS EGL EN NS GD RD NR
6000

7000

8000

9000

10000

11000
ENP

(b) Comparison against reduction methods; the proposed MNODE HGS is in orange.

NR DK GD RD

HGS EGL EN NS

(c) Heatmap of weighted adjacency matrices of reduced graphs produced by various reduction methods

123 13 12 23 2 1 3 0
34.5

35.0

35.5

36.0

36.5
RMSE

123 12 13 23 3 1 2 0
0.220

0.222

0.224

0.226

0.228

0.230

0.232

MAPE

123 23 12 13 3 2 0 1
0.63

0.64

0.65

0.66

0.67

0.68

0.69
Correlation

123 13 23 12 3 2 1 0
0.75

0.76

0.77

0.78

0.79
Diagnostic Accuracy

123 23 3 13 1 0 2 12

120

140

160

180

200

220
PEAK RMSE

123 3 13 23 1 0 2 12
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

PEAK MAPE

123 23 13 3 2 12 0 1

40

60

80

100

120

140

160
Variance

123 13 3 23 1 12 2 0
6000

7000

8000

9000

10000

11000
ENP

(d) Ablation study on model components. Red/yellow/green color indicates inclusion of step 1/2/3 of HGS.

Figure 2: Combined Results for Real-world Experiments. Models are sorted from best to worst.

5 BROADER IMPACT

We propose a three-step procedure to simplify the mechanistic graph underlying MNODEs, aiming to
improve prediction, robustness and interpretability. This is especially useful in biomedical domains,
where models often involve complex biological processes and high-quality data are limited. By
leveraging domain-informed graph refinement, structural pruning, and edge-weight sparsification, our
method produces compact and predictive models that align with mechanistic priors while reducing
overfitting. This enables more transparent and data-efficient modeling, potentially accelerating
discovery in systems biology, personalized medicine, and related fields. More broadly, our framework
contributes to the effort to integrate domain knowledge into deep learning in a principled way. It
provides insights into which components (e.g. cycles, delays) of a mechanistic model are predictive,
offering guidance for experimental focus and hypothesis generation.

10

Published as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our data processing pipeline is described in Appendix A3. Model implementation and training
details are provided in Appendix A4.2. Model evaluation details are provided in Appendix A5. The
mechanistic model used is described in Appendix A6. Our code is also submitted as supplementary
materials.

LLM USAGE

LLM is only used to aid and polish the writing of the paper. We did not use LLM for any other
purpose.

REFERENCES

Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Interpretable machine learning
in healthcare. In Proceedings of the 2018 ACM international conference on bioinformatics,
computational biology, and health informatics, pp. 559–560, 2018.

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. Advances in Neural Information Processing Systems, 33:
20852–20864, 2020.

Emily Bell, Sabrina Binkowski, Elaine Sanderson, Barbara Keating, Grant Smith, Amelia J Harray,
and Elizabeth A Davis. Substantial intra-individual variability in post-prandial time to peak in
controlled and free-living conditions in children with type 1 diabetes. Nutrients, 13(11):4154,
2021.

Dieter Bothe and Michel Pierre. Quasi-steady-state approximation for a reaction–diffusion system
with fast intermediate. Journal of Mathematical Analysis and Applications, 368(1):120–132, 2010.

Laetitia Canini and Alan S Perelson. Viral kinetic modeling: State of the art. Journal of pharmacoki-
netics and pharmacodynamics, 41:431–443, 2014.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Valeriia Cherepanova, Roman Levin, Gowthami Somepalli, Jonas Geiping, C Bayan Bruss, Andrew G
Wilson, Tom Goldstein, and Micah Goldblum. A performance-driven benchmark for feature
selection in tabular deep learning. Advances in Neural Information Processing Systems, 36:
41956–41979, 2023.

Chiara Dalla Man, Marc D Breton, and Claudio Cobelli. Physical activity into the meal glu-
cose—insulin model of type 1 diabetes: In silico studies, 2009.

Ting Dang, Jing Han, Tong Xia, Erika Bondareva, Chloë Siegele-Brown, Jagmohan Chauhan,
Andreas Grammenos, Dimitris Spathis, Pietro Cicuta, and Cecilia Mascolo. Conditional neural ode
processes for individual disease progression forecasting: a case study on covid-19. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3914–3925,
2023.

Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning. Communica-
tions of the ACM, 63(1):68–77, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

11

Published as a conference paper at ICLR 2026

Gevik Grigorian, Sandip V George, Sam Lishak, Rebecca J Shipley, and Simon Arridge. A hybrid
neural ordinary differential equation model of the cardiovascular system. Journal of the Royal
Society Interface, 21(212):20230710, 2024.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Abhinav Gupta and Pierre FJ Lermusiaux. Neural closure models for dynamical systems. Proceedings
of the Royal Society A, 477(2252):20201004, 2021.

Daehoon Gwak, Gyuhyeon Sim, Michael Poli, Stefano Massaroli, Jaegul Choo, and Edward Choi.
Neural ordinary differential equations for intervention modeling. arXiv preprint arXiv:2010.08304,
2020.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems, 34
(1):014004, 2017.

Trevor Hastie, Robert Tibshirani, and Ryan Tibshirani. Best subset, forward stepwise or lasso?
analysis and recommendations based on extensive comparisons. Statistical Science, 35(4):579–
592, 2020.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Martin Holz and Alfred Fahr. Compartment modeling. Advanced Drug Delivery Reviews, 48(2-3):
249–264, 2001.

Yuxi Huang, Huandong Wang, Guanghua Liu, Yong Li, and Tao Jiang. Neuralcode: Neural compart-
mental ordinary differential equations model with automl for interpretable epidemic forecasting.
ACM Transactions on Knowledge Discovery from Data, 2024.

Zeshan M Hussain, Rahul G Krishnan, and David Sontag. Neural pharmacodynamic state space
modeling. In International Conference on Machine Learning, pp. 4500–4510. PMLR, 2021.

Bo Jiang, Beibei Wang, Jin Tang, and Bin Luo. Gecns: Graph elastic convolutional networks for data
representation. IEEE transactions on pattern analysis and machine intelligence, 44(9):4935–4947,
2021.

Bo Jiang, Beibei Wang, Si Chen, Jin Tang, and Bin Luo. Graph neural network meets sparse
representation: Graph sparse neural networks via exclusive group lasso. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(10):12692–12698, 2023.

Kenneth A Johnson and Roger S Goody. The original michaelis constant: translation of the 1913
michaelis–menten paper. Biochemistry, 50(39):8264–8269, 2011.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

Suyong Kim, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas. Stiff neural ordinary
differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9), 2021.

12

Published as a conference paper at ICLR 2026

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Alejandro J Laguna, Paolo Rossetti, F Javier Ampudia-Blasco, Josep Vehi, and Jorge Bondia.
Identification of intra-patient variability in the postprandial response of patients with type 1
diabetes. Biomedical Signal Processing and Control, 12:39–46, 2014.

Colin Lea, René Vidal, Austin Reiter, and Gregory D. Hager. Temporal convolutional networks:
A unified approach to action segmentation. In Gang Hua and Hervé Jégou (eds.), Computer
Vision – ECCV 2016 Workshops, pp. 47–54, Cham, 2016. Springer International Publishing. ISBN
978-3-319-49409-8.

Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. Lassonet: A neural network
with feature sparsity. Journal of Machine Learning Research, 22(127):1–29, 2021.

Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Zafarani. Sgcn: A graph
sparsifier based on graph convolutional networks. In Advances in Knowledge Discovery and Data
Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings,
Part I 24, pp. 275–287. Springer, 2020.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 806–814, 2015.

Zirui Liu, Kaixiong Zhou, Zhimeng Jiang, Li Li, Rui Chen, Soo-Hyun Choi, and Xia Hu. Dspar:
An embarrassingly simple strategy for efficient gnn training and inference via degree-based
sparsification. Transactions on Machine Learning Research, 2023.

Chiara Dalla Man, Francesco Micheletto, Dayu Lv, Marc Breton, Boris Kovatchev, and Claudio
Cobelli. The UVA/PADOVA Type 1 diabetes simulator: New features. Journal of diabetes science
and technology, 8(1):26–34, 2014.

Leonor Michaelis and Maud L Menten. Die kinetik der invertinwirkung biochem z 49: 333–369.
Find this article online, 1913.

Andrew C Miller, Nicholas J Foti, and Emily Fox. Learning insulin-glucose dynamics in the wild. In
Machine learning for healthcare conference, pp. 172–197. PMLR, 2020.

Senthilkumar Mohan, Chandrasegar Thirumalai, and Gautam Srivastava. Effective heart disease
prediction using hybrid machine learning techniques. IEEE access, 7:81542–81554, 2019.

Marcela Moscoso-Vasquez, Patricio Colmegna, and Ricardo S Sanchez-Pena. Intra-patient dynamic
variations in type 1 diabetes: A review. In 2016 IEEE Conference on Control Applications (CCA),
pp. 416–421. IEEE, 2016.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

Zhaozhi Qian, William Zame, Lucas Fleuren, Paul Elbers, and Mihaela van der Schaar. Integrating
expert ODEs into neural ODEs: Pharmacology and disease progression. Advances in Neural
Information Processing Systems, 34:11364–11383, 2021.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scientific
machine learning. arXiv preprint arXiv:2001.04385, 2020.

13

Published as a conference paper at ICLR 2026

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Ramiro Rico-Martinez, K Krischer, IG Kevrekidis, MC Kube, and JL Hudson. Discrete-vs.
continuous-time nonlinear signal processing of Cu electrodissolution data. Chemical Engineering
Communications, 118(1):25–48, 1992.

Michael C Riddell, Zoey Li, Robin L Gal, Peter Calhoun, Peter G Jacobs, Mark A Clements, Corby K
Martin, Francis J Doyle III, Susana R Patton, Jessica R Castle, et al. Examining the acute glycemic
effects of different types of structured exercise sessions in Type 1 diabetes in a real-world setting:
The Type 1 diabetes and exercise initiative (T1DEXI). Diabetes care, 46(4):704–713, 2023.

Andrew Ross, Isaac Lage, and Finale Doshi-Velez. The neural lasso: Local linear sparsity for
interpretable explanations. In Workshop on Transparent and Interpretable Machine Learning
in Safety Critical Environments, 31st Conference on Neural Information Processing Systems,
volume 4, 2017.

Matteo Salvador, Marina Strocchi, Francesco Regazzoni, Christoph M Augustin, Luca Dede’,
Steven A Niederer, and Alfio Quarteroni. Whole-heart electromechanical simulations using
latent neural ordinary differential equations. NPJ Digital Medicine, 7(1):90, 2024.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

M Schauer and R Heinrich. Quasi-steady-state approximation in the mathematical modeling of
biochemical reaction networks. Mathematical biosciences, 65(2):155–170, 1983.

Elizabeth R Seaquist, John Anderson, Belinda Childs, Philip Cryer, Samuel Dagogo-Jack, Lisa Fish,
Simon R Heller, Henry Rodriguez, James Rosenzweig, and Robert Vigersky. Hypoglycemia and
diabetes: a report of a workgroup of the american diabetes association and the endocrine society.
The Journal of Clinical Endocrinology & Metabolism, 98(5):1845–1859, 2013.

Bram W Smith, J Geoffrey Chase, Roger I Nokes, Geoffrey M Shaw, and Graeme Wake. Minimal
haemodynamic system model including ventricular interaction and valve dynamics. Medical
engineering & physics, 26(2):131–139, 2004.

Peter D Sottile, David Albers, Peter E DeWitt, Seth Russell, JN Stroh, David P Kao, Bonnie Adrian,
Matthew E Levine, Ryan Mooney, Lenny Larchick, et al. Real-time electronic health record
mortality prediction during the COVID-19 pandemic: A prospective cohort study. Journal of the
American Medical Informatics Association, 28(11):2354–2365, 2021.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pp. 563–568, 2008.

Kai Sun, Shao-Hsuan Huang, David Shan-Hill Wong, and Shi-Shang Jang. Design and application of
a variable selection method for multilayer perceptron neural network with lasso. IEEE transactions
on neural networks and learning systems, 28(6):1386–1396, 2016.

Ryan Thompson, Amir Dezfouli, and Robert Kohn. The contextual lasso: Sparse linear models via
deep neural networks. Advances in Neural Information Processing Systems, 36:19940–19961,
2023.

14

Published as a conference paper at ICLR 2026

Roberto Visentin, Enrique Campos-Náñez, Michele Schiavon, Dayu Lv, Martina Vettoretti, Marc
Breton, Boris P Kovatchev, Chiara Dalla Man, and Claudio Cobelli. The uva/padova type 1 diabetes
simulator goes from single meal to single day. Journal of diabetes science and technology, 12(2):
273–281, 2018.

Jian Wang, Chen Xu, Xifeng Yang, and Jacek M Zurada. A novel pruning algorithm for smoothing
feedforward neural networks based on group lasso method. IEEE transactions on neural networks
and learning systems, 29(5):2012–2024, 2017.

Lu Wang, Wenchao Yu, Wei Wang, Wei Cheng, Wei Zhang, Hongyuan Zha, Xiaofeng He, and
Haifeng Chen. Learning robust representations with graph denoising policy network. In 2019
IEEE International Conference on Data Mining (ICDM), pp. 1378–1383. IEEE, 2019.

Ee Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 1(5):1–11, 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

Joseph M Worsham and Jugal K Kalita. A guide to neural ordinary differential equations: Machine
learning for data-driven digital engineering. Digital Engineering, pp. 100060, 2025.

Kevin Xia, Kai-Zhan Lee, Yoshua Bengio, and Elias Bareinboim. The causal-neural connection:
Expressiveness, learnability, and inference. Advances in Neural Information Processing Systems,
34:10823–10836, 2021.

Jinlin Xiang, Bozhao Qi, Marc Cerou, Wei Zhao, and Qi Tang. Dn-ode: Data-driven neural-ode
modeling for breast cancer tumor dynamics and progression-free survivals. Computers in Biology
and Medicine, 180:108876, 2024.

Alireza Yazdani, Lu Lu, Maziar Raissi, and George Em Karniadakis. Systems biology informed
deep learning for inferring parameters and hidden dynamics. PLoS computational biology, 16(11):
e1007575, 2020.

Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of neural networks. In
International Conference on Machine Learning, pp. 10881–10891. PMLR, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Lei Zhao, Qinghua Hu, and Wenwu Wang. Heterogeneous feature selection with multi-modal deep
neural networks and sparse group lasso. IEEE Transactions on Multimedia, 17(11):1936–1948,
2015.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Bob Junyi Zou, Matthew E Levine, Dessi P Zaharieva, Ramesh Johari, and Emily B Fox. Hybrid
square neural ode causal modeling. arXiv preprint arXiv:2402.17233, 2024.

15

Published as a conference paper at ICLR 2026

A APPENDIX

INDEX OF APPENDIX CONTENTS

• A.2 Additional Details about HGS

• A.3 Real-world Data Pre-processing

• A.4 Experimental Details

• A.5 Evaluation

• A.6 Mechanistic Model for Glycemic Regulation

• A.7 Additional Results

• A.8 Stability Analysis for Cyclic Systems

• A.9 Tabulated Results

A2 ADDITIONAL DETAILS ABOUT HGS

A2.1 ILLUSTRATION OF HGS

Figure 3 shows an illustrative example of step 1 and 2 of HGS for a simple graph.

Sobs

Slat

Slat

Slat

Slat

X1

Slat

X2

CollapseMSCC

Partial Transitive Closure

Sobs

Slat

Slat

X1

Slat

X2

Share
Weight

Figure 3: Step 1 and 2 of the Hybrid Graph Sparsification Algorithm

A2.2 PROOF FOR GROUP LASSO EQUIVALENCE

To make the connection, note that in the context of MLP model computation, applying a scaling
parameter w to an input feature is equivalent to re-scaling all the first-layer weights linked to the
corresponding feature by a factor of w. Therefore, suppose we let Θ(u,v) be the vector consisting
of first-layer-multiplication weights associated with the edge (u, v) ∈ Ea,c, and Θ̃ be the vec-
tor consisting of all non-first-layer-multiplication model parameters in all MLPs, we can rewrite
Ŝa,th

obs (·, ·; Θ,W,Ga,c) and the regularization term in (3) as

Ŝa,th
obs

(
·, ·;
(
{w(u,v)Θ(u,v)|(u, v) ∈ Ea,c}, Θ̃

)
,1, Ga,c

)
16

Published as a conference paper at ICLR 2026

and
∑

(u,v)∈Ea,c

(
λ1|w(u,v)|+ λ2∥Θ(u,v)∥22

)
+ λ2∥Θ̃∥22,

respectively, where 1 is the set of unit edge weights corresponding to the unweighted specification.
Thus, letting Γv,u = w(u,v)Θ(u,v) and Γ = {Γ(u,v)|(u, v) ∈ Ea,c}, the loss function (3) can be
reparametrized as:∑

cases,h

∥∥∥Sa,th
obs − Ŝa,th

obs

(
Ŝa,t0(Da,P;β), Xa,F; (Γ, Θ̃),1, Ga,c

)∥∥∥2
2

+λ2∥Θ̃∥22 +
∑

(u,v)∈Ea,c

(
λ1|w(u,v)|+ λ2

∥Γ(u,v)∥22
w2

(u,v)

)
. (4)

Note that {w(u,v) | (u, v) ∈ Ea,c} only appears in the last term of (4), One may minimize this loss
with respect to W, while fixing all other parameters in 4, and obtain the minimizer

w∗
(u,v) =

(
2λ2∥Γ(u,v)∥22

λ1

) 1
3

.

Substituting w∗
(u,v) back into (4) gives the desired loss function with respect to only Γ, Θ̃ and β :∑

cases,h

∥∥∥Sa,th
obs − Ŝa,th

obs

(
Ŝa,t0 , Xa,F; (Γ, Θ̃),1, Ga,c

)∥∥∥2
2
+ λ2∥Θ̃∥22 + λ3

∑
(u,v)∈Ea,c

∥Γ(v,u)∥
2/3
2 .

If we replace |w(u,v)| in (3) by w2
(u,v), then the same derivation can show that the equivalent loss

function becomes ∑
patients,h

∥∥∥Sth
obs − Ŝth

obs

(
Ŝ0(DP;β), XF; (Γ, Θ̃),1, Ga,c

M

)∥∥∥2
2

+λ2∥Θ̃∥22 + 2
√
λ1λ2

∑
(u,v)∈Ea,c

M

∥Γ(v,u)∥2

with a standard group LASSO penalty on Γ.

A3 APPENDIX: REAL-WORLD DATA PRE-PROCESSING

A3.1 SELECTION

We select patients on open-loop pumps with age under 40 and body mass index (BMI) less than
30. From exercise instances recorded by these patients, we focus on the time window between 210
minutes before exercise onset and 60 minutes after exercise onset, and select those that satisfy the
following conditions:

1. The exercise lasted for at least 30 minutes.

2. There are no missing blood glucose readings (recorded every 5 minutes) or heart rate reading
(recorded every 10 seconds) in the time window of interest.

3. There is at least one carbohydrate intake in the time window of interest.

With the above selection criteria, we end up with 324 exercise instances from 105 patients.

A3.2 FEATURES, UNITS AND INTERPOLATION

For each selected exercise instance, we use the following features derived from the T1DEXI raw data:

17

Published as a conference paper at ICLR 2026

Feature File Data Field Unit UVASim Unit
CGM Reading (Blood Glucose Concentration) FA FATEST mg/dL mg/dL

Basal Insulin Rate FACM FATEST U/hour U/min
Bolus Insulin FACM FATEST U U/min

Dietary Total Carbohydrate FAMLPM FATEST g mg/min
Verily Heart Rate VS VSCAT bmp NA
Verily Step Count FA FATEST count NA

Table 1: Summary of features and their units in T1DEXI and UVA/Padova

Feature Notation Ascending time
i-th entry of CGM reading and its time-stamp (gi, t

g
i) Yes

i-th entry of basal insulin rate and its time-stamp (ai, t
a
i) Yes

i-th entry of bolus insulin and its time-stamp (bi, t
b
i) Yes

i-th entry of carb and its time-stamp (mi, t
m
i) No in original Data, need sorting

i-th entry of Verily HR and its time-stamp (hi, t
h
i) Yes

i-th entry of Verily Step Count and its time-stamp (vi, t
v
i) Yes

Table 2: Notations for various features

A3.3 INTERPOLATING BASAL FLOW RATE

Since the basal flow rate is already RATE, interpolating it is relatively straightforward. We approxi-
mate basal flow rate with a step function where the magnitude and time of jumps are determined by
ai and tai respectively:

fa(t) =


ai/60 tai ≤ t < tai+1, 1 ≤ i < N

aN/60 taN ≤ t

0 otherwise

,

where the unit for fa is U/min, the same as the units used for insulin delivery rate in UVA/Padova;
and N is the total number of basal insulin rate data entries.

A3.4 INTERPOLATING BOLUS INSULIN RATE

The recorded data are dosage and the corresponding time. To convert dosage to rate, we refer
to real-world experiences where most open loop pumps inject a dose of bolus insulin at a rate of
1.5U/min. We ignore basal insulin when computing the effective bolus rates because basal insulin
rates contribute negligibly to the maximum rate

First, to account for cases of overlapping bolus doses (a new dose is applied while the previous dose
has not been completely delivered), we pre-process the bolus insulin data with the following trick:
if two bolus doses (bj , t

b
j), (bj+1, t

b
j+1) overlap (i.e. tbj+1 < tbj + bj/1.5min), it is as if we only

introduced one dose of bolus insulin of bj + bj+1 U at time tbj . We can recursively apply this trick to
combine all overlapping doses (see Algorithm 1 for details), after which we end up with a new list
bolus insulin data (b̂j , t̂

b
j) in which we can assume there are no overlapping doses.

Next, we define the continuous-time bolus delivery function fb(t) as :

fb(t) =

{
1.5 t̂bj ≤ t < t̂bj + (bj/1.5)min

0 otherwise

where the unit for fb(t) is U/min as well.

18

Published as a conference paper at ICLR 2026

Algorithm 1 Pre-process Bolus:

Input: Bolus Insulin Data B = {(bj , tbj)}Nj=1 where bj is in U and tjb is in min.
i = 1
Initialize B̂ as an empty list
while i <= length(B) do

if tbi+1 < +tbi + bi/1.5 then
B(i) = (bi + bi+1, t

b
i)

delete (bi+1, t
b
i+1) from B in place

else
i = i+ 1
Append B(i) to B̂

end if
end while
Return B̂

A3.5 INTERPOLATING CARBOHYDRATE INTAKE RATE

Suppose the patient consumed carbohydrates at a given time in the T1DEXI dataset. We assume a
constant meal consumption rate of 45000 milligrams per minute:

fm(t) = |M |45000, M = {(mi, t
i
m) ∈ Data|tim ≤ t ≤ tim +mi/45}

A3.6 INTERPOLATING HEART RATE AND STEP COUNT

We interpolate heart rate and step count using rolling window average with a window size of 5
minutes:

fh(t) =
1

|H(t)|
∑

(h,th)∈H(t)

h, H = {(hi, t
i
h) ∈ Data|t ≤ tih ≤ t+ 5min}

fv(t) =
1

|V (t)|
∑

(v,tv)∈V (t)

v, V = {(vi, tiv) ∈ Data|t ≤ tiv ≤ t+ 5min}

A3.7 CHOICE OF TIME GRID AND DISCRETIZATION

Since our algorithm uses a forward-Euler style numerical integration scheme to solve the continuous
neural ODE, we need to discretize the continuous, interpolated input features before we can use them.
We first choose a suitable discrete time grid for each exercise instance. For each selected exercise
instance, we focus on the time window from 210 minutes prior to the start of exercise, to 60 minutes
after the start of exercise. We choose our discrete time grid as the CGM measurement time stamps
within the time window of interest, and since CGM measurements are consistently taken in 5 minute
increments, this splits the time window into 5 minute intervals (with each interval containing one
measurement) and we obtain 54 discrete time steps:

ti = tgi = tg0 + i∆t, i = 0, . . . , 53, ∆t = 5min.

Given this time grid, the processed data used by all the models in the main paper are described in
Table 3. Note that we do not interpolate CGM readings and use them as they are recorded, which is
made possible by choosing the time grid to match the CGM recording time stamps ti = ti+48

g . In
conclusion, each exercise instance, after above pre-processing, is turned into a 5-dimensional time
series with 54 time steps of the form:

(Gi, IIRi,Mi, Hi, Vi)
54
i=1.

In Figure 4, we provide a graphical illustration of the data pre-processing pipeline.

19

Published as a conference paper at ICLR 2026

Feature Definition
Time Stamp Ti = ti = tgi

CGM Reading Gi = gi
Average Insulin Injection Rate IIRi =

1
∆t

∫ ti+1

ti
fa(t) + fb(t) dt

Average Carb Intake Rate Mi =
1
∆t

∫ ti+1

ti
fm(t) dt

Average Heart Rate Hi = fh(ti)
Average Step Count Vi = fv(ti)

Table 3: Notations for various features

Figure 4: An illustration of raw and pre-process data of one of the exercise instances.

A4 APPENDIX: EXPERIMENTAL DETAILS

A4.1 SYNTHETIC MECHANISTIC GRAPH

In figure 5, we provide an illustration of the mechanistic graph used in the synthetic experiments.

A4.2 EXPERIMENTAL SET-UPS

Synthetic data set-up Synthetic data are generated with the following script:

def gen_syn_data(seed,exp=1,train_size=100):
rng=np.random.default_rng(seed=seed)
n=60
t=np.linspace(1,n,n).reshape(n,1)
data=[]
for k in range(train_size):

x=[(i+1)/100*np.exp(1-t/n/10/(i+1))\
+rng.normal(0,0.5,(n,1)) for i in range(1)]

for i in range(3): // change to 6 for comprehensive graph
x.append(rng.normal(0,0.5,(n,1)))

x=np.concatenate(x,axis=1)
dt=5e-2

20

Published as a conference paper at ICLR 2026

S1

Slat

Slat

Slat

X1

X2

X4

Refined ”Mechanistic”Graph

S1

X1

True Sparsity Graph

S1

Slat

Slat

Slat

X1

X2

X3

Comprehensive ”Mechanistic”Graph

Slat

Slat

Slat

Slat

Slat Slat

X4

X5

X6
X3

Figure 5: An illustration of the mechanistic vs true graphs used in the synthetic experiments

s1=[0]
s2=[0]
s3=[0]
v=[0]
for i in range(n):

if exp==1:
v.append(v[-1]+dt*(4*x[i,0]-0.5*(v[-1]-1)))

else:
v.append(v[-1]+dt*(4*x[i,0]-0.4*x[i,1]+0.04*x[i,2]\

-0.004*x[i,3]-0.5*(v[-1]-1)))
// use v.append(v[-1]+dt*(4*x[i,0]-4e-1*x[i,1]\

+4e-2*x[i,2]-4e-3*x[i,3]\
+4e-4*x[i,4]-4e-5*x[i,5]\
-0.5*(v[-1]-1)))
for comprehensive graph

sample=np.concatenate([np.reshape(v[1:],(n,1)),x],axis=-1)
data.append(sample)

cases=np.array(data)
noise=rng.standard_normal(size=cases.shape,dtype=’float64’)
cases=np.concatenate([cases,noise[:,:,:1]],axis=-1)
return cases

Real-world data set-up For each model mentioned in the experiment section, here we offer a
detailed description of the corresponding computational method and the hyper-parameters used.
Throughout this section we are given an exercise time series of 54 time steps (corresponding to
54 5 minute intervals that made up the time window starting from 210 minutes prior to exercise
termination, and ending at 30 minutes after exercise termination) and 5 features (corresponding to
CGM reading, insulin, carbohydrate, heart rate, and step count, in that order). We denote the first

21

Published as a conference paper at ICLR 2026

feature (CGM reading) as s1, and the other 4 features as x. We use superscript to indicate discrete
time steps and subscript to indicate feature indices. For example, xt2

1 is the 1st input feature of x
(carbohydrate) at discrete time step t = t2.

Our goal is to predict the CGM trace during the first 60 minutes following exercise onset corresponding
to the output s1:121 ∈ R12 and therefore we set the number of prediction steps q to be 12 for all models.
We further split the given time series into historical context DP = (SP

obs, X
P)t−41:t−1 ∈ R41×5,

starting glucose st01 ∈ R, inputs during exercise Xt0:11 ∈ R12×4 (twelve inputs that are recorded 1
time step ahead of the expected outputs). We use ŝF

1 ∈ R12 to indicate the CGM trace predicted by
models, s for model states and z for black-box latent states, h, c for the final hidden state and cell
state of the LSTM initial condition learner. For ease of computation and without loss of generality,
we set the ∆t term in forward-Euler style discretization to be 1 for all relevant models, and thus we
omit it in the equations.

Data Splits Since synthetic data are generated independently, each training set is split simply by
the default index into 4 subsets for cross-validation, and the first split is used for re-training and
obtaining the final model after the optimal hyper-parameter setting has been obtained. For real-world
data, since there might be correlation between adjacent samples in the original pre-processed data,
for each repetition, we generated a random permutations with:

rng=np.random.default_rng(seed=2024)
perms=np.zeros((repeats,cases.shape[0]),dtype=’int32’)
for i in range(repeats):

perms[i]=rng.permutation(cases.shape[0])
print(cases.shape)

and apply the permutation before the standard index-based 3-fold train-validation split. Again, the
first split is used for obtaining the final model with optimal hyper-parameter setting.

Why Instance Level Random Permutation In real-world deployment, the model is expected to
be applied to both existing patients (with new instances) and new patients, making cross-validation
based on random instance-level splitting more appropriate, as it naturally includes predictions
for both seen and unseen patients. In contrast, splitting strictly at the patient level would ignore
the model’s ability to generalize within the same patient across different instances—a nontrivial
and practically important challenge in diabetes modeling. Furthermore, it is well recognized that
intra-patient variability—the variation in glucose dynamics across different instances of the same
patient—can be as high as inter-patient variability in the diabetes research community. In other
words, predicting future glucose trajectories for an existing patient can be as challenging as predicting
the glucose level for a new, unseen patient. To quantify this phenomenon, we computed the root-
mean-squared difference (RMSD) of mean and standard deviation of glucose levels both within
and across patients in our data. Let ei and si denote the mean and standard deviation of glucose
in instance i, and define Ninter = {(i, j) | i < j, instances i and j are from different patients} and
Nintra = {(i, j) | i < j, instances i and j are from the same patient}. The intra-patient RMSD of
mean glucose values, i.e.,

√
ave(i,j)∈Nintra(ei − ej)2, was 54.24, compared to an inter-patient RMSD

of 55.10, i.e.,
√

ave(i,j)∈Ninter(ei − ej)2. Similiarly, the intra- and inter-patient RMSD of glucose
standard deviations (

√
ave(i,j)∈Nintra(si − sj)2 and

√
ave(i,j)∈Ninter(si − sj)2) were 22.75 and 22.67,

respectively. Those summaries empirically confirming that intra-patient variability is comparable to
inter-patient variability and result from patient-level cross-validation would likely be similar to that
from instance-level cross-validation.

22

Published as a conference paper at ICLR 2026

Initialization and Optimizer For all experiments, we use the Adam optimizer (Kingma & Ba,
2015) to perform stochastic gradient descent. We initialize all model weights with the PyTorch default
setting with seed 2024 + r, where r increases by 1 starting from 0 for each experiment repetition (40
repeats for synthetic and 10 repeats for real-world experiments) unless state otherwise in the detailed
model computation algorithm below.

Training Epochs In synthetic experiments, we train for 600 epochs and pick the epoch with best
validation loss. For real-world experiment, We train for 200 epochs and pick the epoch with best
validation loss.

Hyper-parameter Search We use grid search to tune hyper-parameters including learning rate and
dropout rate. When choosing the grid, we restrict the search space to areas where the models have
less than 20,000 parameters and we also try to limit the number of grid points to be less than 50. This
is to make sure the computational cost of the experiments is capped at a reasonable level for small
data sets and individual users. The grid used for each model in each experiment will be provided
below together with model descriptions.

Weight-sharing We also enforced a constraint to simplify the optimization: if a latent node v has
only one incoming edge and one out-going edge, i.e., u1 → v → u2, then those two edges share a
common weight wu1,v = wv,u2

.

Computing Resources and Time Usage All experiments are performed on machines with Ubuntu
22.04 operating system, Xeon Gold 6148 CPU and single Nvidia 2080 Ti RTX 11GB GPU. Wall-
clock run-time for both real-world and synthetic experiments range from 2 hour per repetition to 12
hours per repetition, depending on the size of the starting graph and the type of algorithm used, with
MNODE GL and S4D being the fastest ones and MNODE GD and transformers being the slowest
ones.

A4.3 MNODE WITHOUT REDUCTION (MNODE NR)

We take the directed graph representation of Muva, denoted as Guva to construct MNODE NR.

Algorithm 2 MNODE NR

Input: historical context DP,starting glucose st01 , exogenous inputs Xt0:q−1 , the directed graph
representation (as defined in Section 2) of the UVA-Padova model Guva, ∆t = 1
h, c = LSTM(DP)

Ŝt0 = h[0]

Ŝt0
1 = st01

for i = 0 : q − 1 do
si+1 = si +∆t·
ŷi+1 = s1t+1

end for
for i = 1 : q do
Ŝti = Ŝti−1 +∆t · MLPs(Sti−1

i , X
ti−1

i ;Guva)
end for
Output: ŝt1:q1

Hyper-parameters for real-world Experiments The LSTM has 2 layers and |Vuva| hidden dimen-
sion (i.e. this corresponds to the number of nodes in the directed graph) and for the same reason we
set the 1st features of the initial condition state vector to be observed initial glucose level st01 . All
MLPs have 2 hidden layers and 16 hidden units with dropout 0 and activation ReLu. We place L2

23

Published as a conference paper at ICLR 2026

regularization on all MLP parameters with penalty hyper-parameter λ2, and train the model with
learning rate lr. We tune these hyper-pameters with grid search on the following grid:

λ2 = {10−i | i = 3, . . . , 8} × lr = {10−2, 10−3}.

A4.4 MNODE REDUCED BY DOMAIN KNOWLEDGE (MNODE DK)

We take the reduced UVA-Padova model from Appendix C of Zou et al. (2024), and use its directed
graph representation denoted as Gruva to construct MNODE DKR. Other than the graph used by
MNODE, model computation is exactly the same the MNODE NR.

Hyper-parameters for real-world Experiments The LSTM has 2 layers and |Vruva| hidden dimen-
sion (i.e. this corresponds to the number of nodes in the reduced graph) and for the same reason we
set the 1st features of the initial condition state vector to be observed initial glucose level st01 . All
MLPs have 2 hidden layers and 16 hidden units with dropout 0 and activation ReLu. We place L2

regularization on all MLP parameters with penalty hyper-parameter λ2, and train the model with
learning rate lr. We tune these hyper-pameters with grid search on the following grid:

λ2 = {10−i | i = 3, . . . , 8} × lr = {10−2, 10−3}.

A4.5 MNODE WITH HYBRID GRAPH SPARSIFICATION (MNODE HGS)

We omit the implementation detail of MNODE HGS here as it is already discussed in great detail in
section 2.

Hyper-parameters for real-world Experiments The LSTM has 2 layers and |V a
uva| hidden dimen-

sion (i.e. this corresponds to the number of nodes in Ga,c
uva) and for the same reason we set the 1st

features of the initial condition state vector to be observed initial glucose level st01 . All MLPs have 2

hidden layers and 16 hidden units with dropout 0 and activation ReLu. We place L1 regularization on
all the edge weights with penalty hyper-parameter λ1, L2 regularization on all MLP parameters with
penalty hyper-parameter λ2, and train the model with learning rate lr. We tune these hyper-pameters
with grid search on the following grid:

λ1 = {10−5, 10−6, 10−7} × λ2 = {10−i | i = 6, . . . , 8} × lr = {10−2, 10−3}.

Synthetic Experiments We also set ŝt01 = st01 and uses the modified graph obtained from the given
mechanistic graph. We keep everything else the same and the hyper-parameter search grid is:

λ1 = {10−6, 10−7} × λ2 = {10−i | i = 6, . . . , 8} × lr = {10−2, 10−3}.

A4.6 MNODE REDUCED BY EXCLUSIVE GROUP LASSO (MNODE EGL)

MNODE EGL uses the same model architecture as MNODE HGS except (1) MNODE EGL uses
Guva = (Vuva, Euva) instead of Ga,c

uva , (2) the regularization term is defined as:

λ
∑

v∈Vuva

 ∑
(u,v)∈Euva

|w(u,v)|

2

We tune hyper-pameters with grid search on the following grid:

λ = {10−i | i = 3, . . . , 8} × lr = {10−2, 10−3}.

24

Published as a conference paper at ICLR 2026

A4.7 MNODE REDUCED BY ELASTIC NET (MNODE EN)

MNODE EN uses the same model architecture as MNODE HGS except (1) MNODE EGL uses
Guva = (Vuva, Euva) instead of Ga,c

uva , (2) the regularization term is defined as:∑
(u,v)∈Euva

λ1|w(u,v)|+ λ2w
2
(u,v)

Hyper-parameters for real-world Experiments We tune these hyper-pameters with grid search
on the following grid:

λ1 = {10−5, 10−6, 10−7} × λ2 = {10−i | i = 6, . . . , 8} × lr = {10−2, 10−3}.

A4.8 MNODE REDUCED BY NEURAL SPARSE (MNODE NS)

The neural sparse algorithm tries to learn a distribution (parameterized by a neural networks) form
which good sub-graphs are samples. Its computation is given below:

Algorithm 3 MNODE NS

Input: historical context DP,starting glucose st01 , exogenous inputs Xt0:q−1 , the directed graph
representation (as defined in Section 2) of the UVA-Padova model Guva, ∆t = 1, K size of the
sub-graphs to be sampled
Index edges in Euva by some order
Initialize model parameter α ∼ N (0, 1), α ∈ R|Euva|

Initialize model parameter ϵ ∼ N (0, 1), ϵ ∈ RK×|Euva|

π = softmax(α)
w = exp ((log(π)− log(− log(ϵ))) · 10)
w = w∑

i wi

Round w to 2 decimal places
Construct E′

uva = {ei ∈ Euva | wi > 0}, and construct G′
uva = (Vuva, E

′
uva)

Run MNODE NR with DP, st01 , Xt0:q−1 , G′
uva and return its output

Hyper-parameters for real-world Experiments The hyper-parameters and model configuration
for the MNODE NR part of the model is identical to the implementation of MNODE NR above.
In addition to λ2 and lr, we tune K, the maximal number of edges to be included in the sampled
sub-graph. These hyper-parameters are tuned with grid search on the following grid:

λ2 = {10−i | i = 3, . . . , 8} × lr = {10−2, 10−3} ×K = {12, 16, 20, 24}.

Hyper-parameters for Synthetic Experiments We keep everything else the same and the hyper-
parameter search grid is:

λ2 = {10−3} × lr = {10−2, 10−3} ×K = {2, 4, . . . , 10}.

A4.9 MNODE REDUCED BY GREEDY SEARCH (MNODE GD)

The greedy search is implemented in the standard step-wise backward way: at each iteration, the algo-
rithm considers all existing edges and choose the one whose removal leads to the most improvement
in validation loss, and stop when no edge’s removal improves validation loss. Specifically: Since
the greedy algorithm can be extremely slow, we do not tune hyper-parameters and instead fix the L2

penalty hyper-parameter to be 10−6 and learning rate to be 10−3. All other settings are the same as
MNODE NR.

25

Published as a conference paper at ICLR 2026

Algorithm 4 MNODE GD

Input: historical context DP,starting glucose st01 , exogenous inputs Xt0:q−1 , the directed graph
representation of the UVA-Padova model Guva, ∆t = 1
Index edges e in Euva by some order
Stop=FALSE
MinLoss= 107

while Stop = FALSE do
for ei ∈ Euva do

Construct G′ = (Vuva, Euva \ {ei})
Run MNODE NR with DP, st01 , Xt0:q−1 , G′, record validation loss as li

end for
if min({li}|Euva|

i=1) < MinLoss then
MinLoss= min({li}|Euva|

i=1)
Euva = Euva \ {eargmin{li}}

else
Stop=TRUE

end if
end while
Construct G∗ = (Vuva, Euva)
Run MNODE NR with DP, st01 , Xt0:q−1 , G∗ and return its output

A4.10 MNODE REDUCED BY RANDOM SEARCH (MNODE RD)

The random search randomly picks 5 sub-graphs that has contains 1− p percent of edges and select
the best one. Specifically:

Algorithm 5 MNODE RD

Input: historical context DP,starting glucose st01 , exogenous inputs Xt0:q−1 , the directed graph
representation of the UVA-Padova model Guva, number of random sub-graphs R = 5, sub-graph
edge ratio P = {0.1, 0.2, 0.4}, ∆t = 1
for p ∈ P do

Uniformly sample R sub-graphs of Guva that have the same number of nodes and (1− p)|Euva|
number of edges, denote them as Gp,1, . . . , Gp,R

for r = 1 : R do
Run MNODE NR with DP, st01 , Xt0:q−1 , Gp,r, record validation loss as lp,r

end for
end for
Return the output of MNODE NR with Gargmin{lp,r}

Hyper-parameters for real-world Experiments As in greedy search, random search is also slow
on real-world data. Therefore, we do not tune hyper-parameters and instead fix the L2 penalty hyper-
parameter to be 10−3 and learning rate to be 0.02. All other settings are the same as MNODE NR.

Hyper-parameters for Synthetic Experiments In the synthetic case, the graph is smaller and we
can afford to tune λ2 over {10−6}. The learning rate is fixed to 10−3. All other settings are the same
as real-data.

A4.11 BNODE

For BNODE and the subsequent black-box models, we point the reader to implementations referenced
in the associated citations in the main paper. Here we describe our implementation.

26

Published as a conference paper at ICLR 2026

Algorithm 6 Black-box Neural ODE Model

Input: historical context DP,starting glucose st01 , exogenous inputs Xt0:q−1 , ∆t = 1
h, c = LSTM(DP)

Ŝt0 = h[0]

Ŝt0
1 = st01

for i = 1 : q do
Ŝti = Ŝti−1 +∆t · MLPs(Sti−1 , Xti−1)

end for
Output: ŝt1:q1

Hyper-parameters for real-world Experiments The LSTM has 2 layers and d hidden dimension.
Note that here the hidden dimension of LSTM also determines the state dimension of the neural ODE,
which is a tunable hyperparameter. All MLPs have 2 hidden layers and 16 hidden units with dropout
a and activation ReLU, trained with learning rate of lr we tune these hyper-parameters with grid
search on the following grid:

d = {6, 12, 18} × a = {0, 0.1, 0.2} × lr = {10−2, 10−3, 10−4}.

Hyper-parameters for Synthetic Experiments We keep all the settings the same as the real-world
experiments

A4.12 TCN

Algorithm 7 Temporal Convolutional Network Model

Input: historical context DP,starting glucose st01 , exogenous inputs Xt0:q−1 ,
X̃t0:q=1 = 0 ∈ Rq

X̃t0 = st01
X ′ = concatenate(X̃,X, dim = features)
seqin = concatenate(DP, X ′, dim = time)
seqout = TCN(seqin)

ŝ
t1:q
1 = Linear(seqout)

Output: ŝt1:q1

Hyper-parameters for real-world Experiments The TCN model is taken directly from the code
repository posted on https://github.com/locuslab/TCN/blob/master/TCN/tcn.
py, with input size set to 5, number of channels set to a list of n copies of m, kernel size set to l and
dropout set to a, trained with learning rate lr. We tune these hyper-parameters with grid search on
the following grid:

n = {2, 3} ×m = {16, 32} × l = {2, 3, 4} × a = {0, 0.1, 0.2} × lr = {10−2, 10−3, 10−4}.

A4.13 LSTM

Algorithm 8 Long Short Term Memory Model

Input: historical context DP,starting glucose st01 , exogenous inputs Xt0:q−1 ,
h, c = Encoder LSTM(DP)
Set initial hidden state and cell state of Decoder LSTM to h, c respectively
seqout, hq, cq = Decoder LSTM(Xt0:5)

ŝ
t1:q
1 = Linear(seqout)

Output: ŝt1:q1

27

https://github.com/locuslab/TCN/blob/master/TCN/tcn.py
https://github.com/locuslab/TCN/blob/master/TCN/tcn.py

Published as a conference paper at ICLR 2026

Hyper-parameters for real-world Experiments Both Encoder and Decoder LSTM have n layers
and d hidden states with dropout set to a, trained with learning rate lr. We tune these hyper-parameters
with grid search on the following grid:

n = {2, 3} ×m = {6, 12, 18} × a = {0, 0.1, 0.2} × lr = {10−2, 10−3, 10−4}.

Hyper-parameters for Synthetic Experiments The settings are the same as real-world experi-
ments.

A4.14 TRANSFORMER

Algorithm 9 Transformer Model

Input: historical context DP, starting glucose st01 , exogenous inputs Xt0:q−1 , true output st1:q−1

1
(needed during training)
X̃ = 0 ∈ Rq

X̃t0 = st01
X ′ = concatenate(X̃,X, dim = features)
encoder in = concatenate(DP, X ′, dim = time) (concatenating all inputs to form a masked
context)
if Model in Training Mode then

decoder in = concatenate(st01 , s
t1:q−1

1) (expected output shifted to the right)
decode out = Transformer(encoder in, decoder in, decoder causal mask)

end if
if Model in Evaluation Mode then

decoder in = concatenate(st01 ,0 ∈ Rq−1)
for i = 1 : q − 1 do

decode out = Transformer(encoder in, decoder in)
decoder ini+1 = decode outi

end for
decode out = Transformer(encoder in, decoder in)

end if
ŝ
t1:q
1 = Linear(decode out)

Output: ŝt1:q1

Hyper-parameters for real-world Experiments We use the transformer model provided by
the pytorch nn class, and its hyper-parameters are set as follows: d model set to d, number of
attention heads set to n, number of encoder layers set to 2, number of decoder layers set to 2, the
dim feedforward is set to m and dropout is set to a, trained at a learning rate of 10−3. We tune the
hyper-parameters with the following grid:

d = {8, 16} × n = {4, 8} ×m = {16, 32} × a = {0, 0.1}

28

Published as a conference paper at ICLR 2026

A4.15 S4D

Algorithm 10 S4 Diagonal Model

Input: historical context DP, starting glucose st01 , exogenous inputs Xt0:q−1

X̃ = 0 ∈ Rq

X̃t0 = st01
X ′ = concatenate(X̃,X, dim = features)
seqin = concatenate(DP, X ′, dim = time)
seqin = Linear(Seqin)
seqin = Transpose(Seqin, 1, 2)
seqout = S4D(seqin)
seqout = Transpose(Seqout, 1, 2)
ŝ
t1:q
1 = Linear(seqout)−q:

Output: ŝt1:q1

T1DEXI Experiments We take the S4D model directly from the following github repos-
itory https://github.com/thjashin/multires-conv/blob/main/layers/s4d.
py, and its hyper-parameters are set as: d model set to d, d state set to m, dropout set to a, trained at
a learning rate of lr. We tune the hyper-parameters with the following grid:

d = {4, 6, 8} × {m = {32, 64} × a = {0, 0.1, 0.2} × lr = {10−2, 10−3, 10−4}

A5 APPENDIX: EVALUATION

In this section we describe how we evaluate the performance of various learning algorithms. Suppose
our training data D = {z1, . . . , zN} ⊂ Z are i.i.d. samples from some distribution P , and a learning
algorithm M : Z → F maps D of arbitrary size to a function fD. We also have an evaluation loss
function (which may not be the training loss function) L : F × Z → R+ ∪ {0} that maps a learned
function and a test sample to a non-negative value. We are primarily interested in evaluating the
expected prediction error (also known as generalization error) of the algorithms on unseen training
and test data:

EPE(M,L, P) = EZ∼P,D∼P [L(f̂D, Z)].

In our setting, Z can be written as (Sa,P
obs , X

a,P, Xa,F, Sa,F
obs) and the learned function maps the input

(Sa,P
obs , X

a,P, Xa,F) to the output f̂D(Sa,P
obs , X

a,P, Xa,F) to approximate Sa,P
obs .

A5.1 SYNTHETIC EXPERIMENTS

In the synthetic experiment, we first generate a test set D̃ = {z̃1, · · · , z̃M} with a sufficiently
large sample size M = 10000, where z̃1, · · · , z̃M are i.i.d samples from distribution P. We then
generate K = 40 copies of training data, Dk, k = 1, · · ·K, of size N = 100/1000 each, perform
the experiment K rounds with the K training sets and K different random seeds, and obtain the
corresponding prediction function f̂Dk

. We choose L to be the standard mean squared error loss
function and our RMSE estimator for the k-th experiment round is computed as:

R̂MSEk =

√√√√ 1

M

M∑
m=1

∥f̂Dk
(Sa,P

obs,m, Xa,P
m , Xa,F

m)− Sa,F
obs,m∥22.

The reported RMSE is the average RMSE over the K rounds:

R̂MSE =
1

K

K∑
k=1

R̂MSEk,

29

https://github.com/thjashin/multires-conv/blob/main/layers/s4d.py
https://github.com/thjashin/multires-conv/blob/main/layers/s4d.py

Published as a conference paper at ICLR 2026

and the 1σ Monte carlo standard error is computed as

ŝ.e. =

√√√√ 1

K(K − 1)

K∑
k=1

(R̂MSE − R̂MSEk)2.

A5.2 REAL WORLD EXPERIMENT

In this section we describe how we evaluate the performance of a learning algorithm using observed
data only.

Note that when the loss is the mean squared error, we have the following variance-bais decomposition
of EPE:

EPE = EZ,D[∥fD(Sa,P
obs , X

a,P, Xa,P)− Sa,P
obs ∥

2
2] = variance + bias2 + noise

variance = EZ,D

{∥∥∥f̂D(Sa,P
obs , X

a,P, Xa,P)− ED[f̂D(Sa,P
obs , X

a,P, Xa,P)]
∥∥∥2
2
]

}
bias2 = EZ

{∥∥∥ED[f̂D(Sa,P
obs , X

a,P, Xa,P)]− E[Sa,P
obs | Sa,P

obs , X
a,P, Xa,P]

∥∥∥2
2

}
noise = EZ

{∥∥∥E[Sa,P
obs | Sa,P

obs , X
a,P, Xa,P]− Sa,P

obs

∥∥∥2
2

}
.

In a synthetic experiment, one may sample from P as much as possible and estimate all the above
quantities as described in section A5.1. In reality, however, P is unknown and we only have limited
data. Therefore, we have to resort to techniques such as cross validation or bootstrap. While the
standard K-fold cross validation can give unbiased estimator for EPE, it cannot estimate variance
or bias because each sample only enters the test set once. Due to the implausibility of observing
repeated samples with the same input in this case, we make the ideal assumption that there is no noise
in predicting state variables, i.e.,

E[Sa,P
obs |S

a,P
obs , X

a,P, Xa,P] = Sa,P
obs ,

so that we can estimate bias and variance separately. Under this assumption, noise is zero and
EPE = bias2 + variance. Specifically, in this paper we use a modified K-fold cross-validation to
construct unbiased estimators for variance and bias. First, split D into K disjoint subsets of equal
size D =

⊔K
k=1 Dk, denote D(−k) = D \Dk. Then, each D(−k) consists of K − 1 disjoint subsets

Di :

D(−k) =
⊔

i∈I
(−k)
K

Di,

where I
(−k)
K = {i | 1 ≤ i ≤ K, i ̸= k}. Our estimator for variance is:

̂variance =
1

|D|

K∑
k=1

∑
(S,X)∈Dk

1

K − 1

∑
i∈I

(−k)
K

∥∥∥f̂Di
(Sa,P

obs , X
a,P, Xa,P)− fD(−k)(S

a,P
obs , X

a,P, Xa,P)
∥∥∥2
2

fD(−k)(S
a,P
obs , X

a,P, Xa,P) =
1

K − 1

∑
i∈I

(−k)
K

f̂Di
(Sa,P

obs , X
a,P, Xa,P)

b̂ias2 =
1

|D|

K∑
k=1

∑
(S,X)∈Dk

∥∥∥fD(−k)(S
a,P
obs , X

a,P, Xa,P)− Sa,P
obs

∥∥∥2
2

M̂SE = ̂variance + b̂ias2 =
1

N(K − 1)

K∑
k=1

∑
(S,X)∈Dk

∑
i∈I

(−k)
K

∥∥∥f̂Di(S
a,P
obs , X

a,P, Xa,P)− Sa,P
obs

∥∥∥2
2
.

30

Published as a conference paper at ICLR 2026

Figure 6: UVA/Padova Simulator S2013, taken from Figure 1 of Man et al. (2014)

R̂MSE =

√
M̂SE

We perform the experiment R = 10 rounds using the above procedure, each round with a different
permutation of training data and a new random seed, to obtain R estimates of variance and RMSE, and
report their average. Note that this method effectively estimates the variance and bias of prediction
algorithm trained with N/K rather than N samples. As a consequence, it tends to underestimate
the prediction performance. Standard errors are computed in the same way by deviding standard
deviation by the square root of R.

A6 UVA-PADOVA SIMULATOR S2013

Here we provide the exact full UVA-Padova S2013 model equations. Variables that are not given
meaningful interpretations are model parameters.

A6.1 SUMMARY DIAGRAM

At a high level, UVA-Padova can be summarized by the diagram in Figure 6, which is taken from
Figure 1 in Man et al. (2014). It divides the complex physiological system into 10 subsystems, which
are linked by key causal states such as Rate of Appearance, Endogenous Glucose Production and
Utilization. Next, we will introduce each subsystem one by one and also explain the physiological
meanings behind state variables.

31

Published as a conference paper at ICLR 2026

A6.2 GLUCOSE SUBSYSTEM

Ġp = EGP +Ra− Uii − E − k1Gp + k2Gt (5)

Ġt = −Uid + k1Gp − k2Gt (6)

G = Gp/VG (7)

Gp: Plasma Glucose, Gt Tissue Glucose, EGP : Endogenous Glucose Production Rate, Ra Rate of
Glucose Appearance, Uii: Insulin-independent Utilization Rate, Uid: Insulin-dependent Utilization
Rate, E Excretion Rate, VG Volume Parameter, G Plasma Glucose Concentration

A6.3 INSULIN SUBSYSTEM

İp = −(m2 +m4)Ip +m1Il +Rai (8)

İt = −(m1 +m3)It +m2Ip (9)

I = Ip/VI (10)

Ip Plasma Insulin, Il Liver Insulin, Rai Rate of Insulin Appearance, Vl Volume Parameter, I Plasma
Insulin Concentration

A6.4 GLUCOSE RATE OF APPEARANCE

Qsto = Qsto1 +Qsto2 (11)

Q̇sto1 = −kgriQsto1 +D · δ (12)

Q̇sto2 = −kempt(Qsto) ·Qsto2 + kgriQsto1 (13)

Q̇gut = −kabsQgut + kempt(Qsto) ·Qsto2 (14)

Ra = fkabsQgut/(BW) (15)

kempt(Qsto) = kmin + (kmax − kmin)(tanh (αQsto − αbD)− tanh (βQsto − βcD) + 2)/2

(16)

Qsto1: First Stomach Compartment, Qsto2: Second Stomach Compartment, Qgut: Gut Compartment,
δ Carbohydrate Ingestion Rate

A6.5 ENDOGENOUS GLUCOSE PRODUCTION

EGP = kp1 − kp2Gp − kp3X
L + ξXH (17)

ẊL = −ki(X
L − Ir] (18)

İr = −ki(Ir − I) (19)

ẊH = −kHXH + kH max(H −Hb) (20)

XL: Remote Insulin Action on EGP, XH : Glucagon Action on EGP, Ir Remote Insulin Concentration,
H Plasma Glucagon Concentration, Hb: Basal Glucagon Concentration Parameter

32

Published as a conference paper at ICLR 2026

A6.6 GLUCOSE UTILIZATION

Uii = Fcns (21)

Uid =
(Vm0 + VmxX(1 + r1 · risk))Gt

Km0 +Gt
Km0 +Gt (22)

Ẋ = −p2UX + p2U (I − Ib) (23)

risk =


0 Gb ≤ G

10(log(G)− log(Gb))
2r2 Gth ≤ G < Gb

10(log(Gth)− log(Gb))
2r2 G < Gth

(24)

Fcns: Glucose Independent Utilization Constant, X: Insulin Action on Glucose Utilization, Ib Basal
Insulin Concentration Constant, risk Hypoglycemia Risk Factor, Gb Basal Glucose Concentration
Parameter, Gth Hypoglycemia Glucose Concentration Threshold.

A6.7 RENAL EXCRETION

Ė = ke1 max(Gp − ke2, 0) (25)

A6.8 SUBCUTANEOUS INSULIN KINETICS

Rai = ka1Isc1 + ka2Isc2 (26)

İsc1 = −(kd + ka1)Isc1 + IIR (27)

İsc2 = kdIsc1 − ka2Isc2 (28)

Isc1: First Subcutaneous Insulin Compartment, Isc2: Second Subcutaneous Insulin Compartment,
IIR Exogenous Insulin Delivery Rate

A6.9 SUBCUTANEOUS GLUCOSE KINETICS

Ġs = −TsGs + TsG (29)

Gs: Subcutaneous Glucose Concentration

A6.10 GLUCAGON SECRETION AND KINETICS

Ḣ = −nH + SRH +RaH (30)

SRH = SRs
H + SRd

H (31)

˙SR
s

H =

−ρ
[
SRs

H −max
(
σ2(Gth −G) + SRb

H , 0
)]

G ≥ Gb

−ρ
[
SRs

H −max
(

σ(Gth−G)
I+1 + SRb

H , 0
)]

G < Gb

(32)

˙SR
d

H = ηmax(−Ġ, 0) (33)

SRs
H : First Glucagon Secretion Compartment, SRd

H : Second Glucagon Secretion Compartment,
SRb

H : Basal Glucagon Secretion Parameter, RaH : Rate of Glucagon Appearance

A6.11 SUBCUTANEOUS GLUCAGON KINETICS

Ḣsc1 = −(kh1 + kh2)Hsc1 +Hinf (34)

Ḣsc2 = kh1Hsc1 − kh3Hsc2 (35)

RaH = kh3Hsc2 (36)

33

Published as a conference paper at ICLR 2026

Hsc1: First Subcutaneous Glucagon Compartment, Hsc2: Second Subcutaneous Glucagon Compart-
ment, Hinf Subcutaneous Glucagon Infusion Rate.

A7 EXTRA RESULTS

A7.1 ADDITIONAL METRICS FOR SYNTHETIC EXPERIMENTS

Comments As shown in Figure 7 to Figure 12, we observed similar trends and patterns in model
performance for metrics including MAPE, Peak MAPE and Pearson Correlation as those observed in
main text for RMSE.

HGS S4D BNODE LSTM Trans TCN

0.00

0.25

0.50

0.75

1.00

1.25

Tr
ue

 S
pa

rs
it

y

MAPE

HGS S4D BNODE LSTM Trans TCN
0

1000

2000

3000

4000

5000

PEAK MAPE

HGS S4D BNODE LSTM TCN Trans
0.0

0.1

0.2

0.3

0.4

0.5

0.6

CORR

HGS S4D BNODE LSTM Trans TCN
0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

si
 S

pa
rs

it
y

MAPE

HGS S4D LSTM BNODE Trans TCN
0

500

1000

1500

2000

PEAK MAPE

HGS S4D BNODE TCN LSTM Trans
0.0

0.1

0.2

0.3

0.4

0.5

0.6

CORR

Figure 7: Comparing against black-box models, training size = 100

TCN HGS LSTM S4D BNODE Trans
0.5

0.0

0.5

1.0

1.5

2.0

Tr
ue

 S
pa

rs
it

y

MAPE

TCN HGS S4D LSTM BNODE Trans
0

500

1000

1500

2000

2500

3000

3500

PEAK MAPE

TCN HGS S4D BNODE LSTM Trans
0.0

0.2

0.4

0.6

0.8

CORR

TCN HGS S4D LSTM BNODE Trans
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
ua

si
 S

pa
rs

it
y

MAPE

TCN HGS S4D LSTM BNODE Trans
0

100

200

300

400

500

600

700
PEAK MAPE

TCN HGS S4D BNODE LSTM Trans
0.0

0.2

0.4

0.6

0.8

CORR

Figure 8: Comparing against black-box models, training size = 1000

HGS NS GD RD EGL EN NR

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Tr
ue

 S
pa

rs
it

y

MAPE

HGS NS GD RD EN EGL NR
0

500

1000

1500

2000

2500
PEAK MAPE

NS HGS RD EGL EN GD NR
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700

CORR

NS HGS EGL EN GD RD NR
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
ua

si
 S

pa
rs

it
y

MAPE

HGS EGL NS EN RD GD NR
0

200

400

600

800

PEAK MAPE

NS HGS EN EGL GD RD NR
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700

CORR

Figure 9: Comparing against other reduction methods, refined graph, training size = 100

A7.2 ABLATION STUDY ON HGS UNDER LIMITED DATA, TRUE SPARSITY REGIME WITH
COMPREHENSIVE STARTING GRAPH

Comments To better understand why regularization based methods perform poorly on comprehensive
graph, we also performed ablation study on HGS model components and the results are shown in
Figure 13. We can see that graph modification (step 1 + step 2) alone or regularization (step 3) alone

34

Published as a conference paper at ICLR 2026

HGS GD RD EN NS EGL NR

0.0

0.2

0.4

0.6

0.8

Tr
ue

 S
pa

rs
it

y

MAPE

HGS GD NS EGL EN RD NR
0

200

400

600

800

1000

1200

PEAK MAPE

HGS NS EN EGL RD GD NR
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700

CORR

HGS NS EGL EN GD RD NR
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Q
ua

si
 S

pa
rs

it
y

MAPE

HGS EN EGL NS NR RD GD
0

100

200

300

400

500

600

700

PEAK MAPE

HGS NS EN EGL GD NR RD
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700

CORR

Figure 10: Comparing against other reduction methods, refined graph, training size = 1000

HGS NR RD EGL EN NS

0.5

0.0

0.5

1.0

1.5

2.0

Tr
ue

 S
pa

rs
it

y

MAPE

HGS NR RD EGL NS EN
0

1000

2000

3000

4000

PEAK MAPE

HGS RD NR EGL EN NS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

CORR

HGS RD NR EN EGL NS
0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

si
 S

pa
rs

it
y

MAPE

HGS RD NR NS EGL EN
0

100

200

300

400

500

600

700
PEAK MAPE

HGS RD NR EN NS EGL
0.0

0.1

0.2

0.3

0.4

0.5

0.6

CORR

Figure 11: Comparing against other reduction methods, comprehensive graph, training size = 100

HGS EN EGL NR RD NS

0.0

0.5

1.0

1.5

Tr
ue

 S
pa

rs
it

y

MAPE

HGS NR EN EGL RD NS
0

500

1000

1500

2000

PEAK MAPE

HGS NR RD EN EGL NS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

CORR

HGS NR RD NS EN EGL
0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

si
 S

pa
rs

it
y

MAPE

HGS NR EN EGL NS RD
0

250

500

750

1000

1250

1500

PEAK MAPE

HGS NR RD EGL EN NS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

CORR

Figure 12: Comparing against other reduction methods, comprehensive graph, training size = 1000

is not effective (and even worse than no reduction) at improving predictive performance or robustness.
It requires both to achieve the desired outcome.

123 0 12 3
0.08

0.10

0.12

0.14

0.16

RMSE

123 0 12 3
0.0

0.2

0.4

0.6

0.8

1.0
PEAK RMSE

123 12 3 0
0

1000

2000

3000

4000

5000
ENP

Figure 13: Ablation study on model components, training size = 100, true sparsity, comprehensive
graph

A8 INSTABILITY OF DYNAMICAL SYSTEMS WITH CYCLES: A TOY EXAMPLE

Here we discuss how cycles/loops in dynamical systems can lead to instability. There are three
sources of numerical stability: blowing-up, exploding gradient and stiffness.

35

Published as a conference paper at ICLR 2026

A8.1 BLOWING-UP

Consider a simple 2 state system with a circular dependence:

ds1(t)

dt
= as1(t) + bs2(t)

ds2(t)

dt
= cs1(t) + ds2(t)

The system will blow up when the Jacobian of the system,

J =

[
a b

c d

]
,

has eigenvalues with positive real parts. That means that if one solves the system using the forward
Euler method with a step size h, then the system with the update rule(

s1(t+ kh)

s2(t+ kh)

)
= (hJ + I)

k

(
s1(t)

s2(t)

)
would blow up as k increases. Let us then consider the two eigenvalues of J :

λ±(J) =
1

2

(
a+ d±

√
(a− d)2 + 4bc

)
.

If bc > max(0, ad), then λ+(J) is a positive number making the system unbounded, even if a and d

are negative.

On the other hand, suppose the system is acyclic except for self-loops (exactly what our step 1 is
doing), say ds1(t)/dt depends on s2(t) but ds2(t)/dt does not depend on s1(t) anymore, then J

becomes

J =

[
a b

0 d

]
with a and d as its eigenvalues. Then, the system is allowed to freely model how s2(t) affects
ds1(t)/dt without concerns of explosion (no constraint on b), as long as a and d are negative.

A8.2 EXPLODING GRADIENT

Now suppose we discretize the system and solve it with RNNs, then the gradient will also behave
like (J + I)

k
, which will cause the RNNs to have exploding gradients when k is large.

A8.3 STIFFNESS

It is also well-known in both the physics and the neural ODE community that stiffness of the system
can also cause numerical instability (Kim et al., 2021; Worsham & Kalita, 2025).

Consider the dissipative version of the 2-state system with a circular dependence:

ds1(t)

dt
= −s1(t) + bs2(t)

ds2(t)

dt
= cs1(t)− s2(t)

The eigenvalues of the system are
λ±(J) = −1±

√
bc.

If 0 < bc < 1, then λ± < 0 and the system blowing-up/exploding gradient are under control.
However, the system can still suffer from stiffness, which is often defined as the ratio between the
magnitude of the fastest to slowest stable rates:

κ ≡ |λ−|
|λ+|

=
1 +

√
bc

1−
√
bc
.

36

Published as a conference paper at ICLR 2026

Table 4: Black-box comparison (mean ± standard error over 40 trials) (Sample Size N = 100)
Model RMSE Peak RMSE ENP

True Sparsity
MNODE 0.1039± 0.0013 0.4124 757.55
BNODE 0.1237± 0.0021 1.2451 3686.78
S4D 0.1130± 0.0012 0.8247 452.78
TCN 0.1214± 0.0049 1.8787 13671.23
Transformer 0.1699± 0.0039 1.2015 10892.65
LSTM 0.1191± 0.0021 0.9048 8510.78

Quasi Sparsity
MNODE 0.1056± 0.0014 0.4971 760.73
BNODE 0.1249± 0.0021 0.7979 3441.73
S4D 0.1137± 0.0012 0.6873 456.38
TCN 0.1274± 0.0056 2.4566 13154.93
Transformer 0.1698± 0.0039 1.1801 10929.17
LSTM 0.1194± 0.0021 0.8659 8338.50

Table 5: Black-box comparison (mean ± standard error over 40 trials) (Sample Size N = 1000)
Model RMSE Peak RMSE ENP

True Sparsity
MNODE 0.0981± 0.0010 0.2369 730.25
BNODE 0.1009± 0.0011 0.5123 2219.60
S4D 0.0986± 0.0010 0.5624 602.63
TCN 0.0875± 0.0010 0.7938 14360.29
Transformer 0.2437± 0.0066 1.2028 10696.88
LSTM 0.1003± 0.0011 0.7060 8982.25

Quasi Sparsity
MNODE 0.0987± 0.0010 0.2377 727.25
BNODE 0.1014± 0.0011 0.5887 2330.20
S4D 0.0991± 0.0010 0.4444 647.00
TCN 0.0896± 0.0011 0.6814 14173.83
Transformer 0.1420± 0.0027 0.8703 10576.15
LSTM 0.1008± 0.0011 0.6457 8981.73

Therefore, the system stiffness can still blow up, if bc ↑ 1. On the other hand, without circular
dependence, both eigenvalues are −1 and the stiffness is always 1 regardless of the value of b.

In summary, to ensure the stability of the ODE system, more complex constraints on model parameters
are needed for a system with cycles than for a system without cycles.

A9 TABULATED RESULTS

A9.1 SYNTHETIC DATA EXPERIMENTS

We attach the tabulated version of experiment results on synthetic data in Table 4 to Table 9.

A9.2 REAL-WORLD DATA EXPERIMENTS

We attach the tabulated version of experiment results on real-world data in Table 10 and Table 11

37

Published as a conference paper at ICLR 2026

Table 6: Reduction method comparison (mean ± standard error over 40 trials)
(Sample Size N = 100) Refined Initial Graph.

Model RMSE Peak RMSE ENP
GL 0.1039± 0.0013 0.3124 757.55
EGL 0.1225± 0.0021 0.4826 1771.40
NS 0.1070± 0.0014 0.3833 1046.95
EN 0.1225± 0.0021 0.4820 1770.38
RD 0.1098± 0.0016 0.6919 1208.05
GD 0.1114± 0.0016 0.7097 1425.48
NR 0.1233± 0.0020 0.6476 1643.83

Table 7: Reduction method comparison (mean ± standard error over 40 trials)
(Sample Size N = 1000) Refined Initial Graph.

Model RMSE Peak RMSE ENP
GL 0.0987± 0.0010 0.2377 727.25
EGL 0.1058± 0.0013 0.3055 1772.03
NS 0.1045± 0.0012 0.3492 1034.40
EN 0.1066± 0.0013 0.3101 1771.90
RD 0.1038± 0.0012 0.3423 1154.30
GD 0.1040± 0.0011 0.5046 1420.48
NR 0.1078± 0.0013 0.3805 1641.48

Table 8: Reduction method comparison (mean ± standard error over 40 trials)
(Sample Size N = 100) Comprehensive graph.

Model RMSE Peak RMSE ENP
GL 0.1040± 0.0013 0.3892 1468.25
EGL 0.1415± 0.0031 0.8537 5098.98
NS 0.1845± 0.0039 1.1209 3565.75
EN 0.1794± 0.0050 0.9047 5094.78
RD 0.1236± 0.0022 0.5097 3905.25
GD 0.3129± 0.0063 1.8013 5053.78
NR 0.1235± 0.0020 0.4509 4933.95

Table 9: Reduction method comparison (mean ± standard error over 400 trials)
(Sample Size N = 1000) Comprehensive graph.

Model RMSE Peak RMSE ENP
GL 0.0992± 0.0010 0.2339 1415.03
EGL 0.1287± 0.0022 0.5938 5097.38
NS 0.1758± 0.0035 0.6184 3881.53
EN 0.1287± 0.0022 0.5397 5095.23
RD 0.1278± 0.0021 0.4183 4410.73
GD 0.3415± 0.0058 1.5982 5048.73
NR 0.1165± 0.0017 0.3507 4946.93

38

Published as a conference paper at ICLR 2026

Table 10: Predictive performance (mean ± standard error over 10 trials).
Model RMSE MAPE Corr Acc.

MNODE NR 36.19± 0.33 0.230± 0.002 0.649± 0.006 0.760± 0.004
MNODE DK 36.58± 0.60 0.229± 0.003 0.657± 0.006 0.765± 0.004
MNODE HGS12 35.92± 0.31 0.227± 0.002 0.657± 0.004 0.768± 0.002
MNODE HGS1 36.12± 0.40 0.229± 0.003 0.648± 0.005 0.764± 0.005
MNODE HGS2 35.96± 0.30 0.229± 0.002 0.650± 0.005 0.766± 0.002
MNODE HGS 35.22± 0.25 0.223± 0.002 0.682± 0.003 0.786± 0.002
MNODE HGS3 36.13± 0.41 0.229± 0.002 0.651± 0.005 0.768± 0.003
MNODE HGS13 35.82± 0.37 0.227± 0.002 0.654± 0.007 0.773± 0.004
MNODE HGS23 35.95± 0.27 0.228± 0.002 0.669± 0.003 0.769± 0.003
MNODE EGL 35.86± 0.25 0.227± 0.001 0.650± 0.005 0.760± 0.003
MNODE EN 35.93± 0.29 0.227± 0.002 0.651± 0.005 0.760± 0.002
MNODE NS 35.55± 0.28 0.227± 0.002 0.655± 0.005 0.768± 0.003
MNODE GD 36.70± 0.44 0.229± 0.002 0.655± 0.007 0.765± 0.003
MNODE RD 35.78± 0.41 0.227± 0.003 0.662± 0.002 0.769± 0.003
BNODE 37.08± 0.25 0.260± 0.002 0.666± 0.003 0.759± 0.003
S4D 42.91± 0.39 0.283± 0.003 0.629± 0.005 0.724± 0.002
LSTM 40.69± 0.39 0.266± 0.003 0.666± 0.003 0.733± 0.003
TCN 41.09± 0.44 0.277± 0.003 0.672± 0.003 0.725± 0.002
Transformer 46.29± 0.51 0.283± 0.003 0.592± 0.004 0.664± 0.009

Table 11: Complexity and peak-error metrics. Variance shows mean ± standard error over 10 trials;
ENP and peak metrics are means only.

Model Variance ENP Peak RMSE Peak MAPE

MNODE NR 125.8± 17.9 10684 189.6 1.401
MNODE DK 149.2± 34.3 6956 183.3 1.464
MNODE HGS12 119.9± 17.1 9033 202.7 1.469
MNODE HGS1 136.1± 21.5 8848 177.9 1.398
MNODE HGS2 115.4± 20.5 10643 193.7 1.426
MNODE HGS 76.4± 17.9 7551 123.4 1.222
MNODE HGS3 101.5± 23.8 7966 167.8 1.313
MNODE HGS13 96.6± 17.2 7735 169.3 1.354
MNODE HGS23 96.4± 19.9 8054 166.6 1.354
MNODE EGL 92.0± 12.4 8326 169.4 1.321
MNODE EN 101.7± 19.0 8548 169.0 1.239
MNODE NS 96.8± 21.5 8730 161.3 1.330
MNODE GD 124.7± 23.8 8861 260.6 1.349
MNODE RD 107.0± 22.4 8955 184.8 1.322
BNODE 332.5± 17.4 8596 190.9 1.541
S4D 291.4± 11.3 8099 194.3 1.667
LSTM 317.8± 27.9 8102 178.6 1.437
TCN 384.5± 23.4 8261 161.6 1.803
Transformer 509.0± 27.8 8122 210.2 1.953

39

	Introduction
	Methodology
	Related work
	Experiments
	Broader impact
	Appendix
	Appendix
	Additional Details about HGS
	Illustration of HGS
	Proof for Group LASSO Equivalence

	APPENDIX: Real-World Data Pre-processing
	Selection
	Features, Units and Interpolation
	Interpolating Basal Flow Rate
	Interpolating Bolus Insulin Rate
	Interpolating Carbohydrate Intake Rate
	Interpolating Heart Rate and Step Count
	Choice of Time Grid and Discretization

	 APPENDIX: Experimental Details
	Synthetic Mechanistic Graph
	Experimental Set-ups
	MNODE without Reduction (MNODE_NR)
	MNODE reduced by domain knowledge (MNODE_DK)
	MNODE with Hybrid Graph Sparsification (MNODE_HGS)
	MNODE reduced by exclusive group LASSO (MNODE_EGL)
	MNODE reduced by elastic net (MNODE_EN)
	MNODE reduced by Neural Sparse (MNODE_NS)
	MNODE reduced by greedy search (MNODE_GD)
	MNODE reduced by random search (MNODE_RD)
	BNODE
	TCN
	LSTM
	Transformer
	S4D

	Appendix: Evaluation
	Synthetic Experiments
	Real World Experiment

	UVA-Padova Simulator S2013
	Summary Diagram
	Glucose Subsystem
	Insulin Subsystem
	Glucose Rate of Appearance
	Endogenous Glucose Production
	Glucose Utilization
	Renal Excretion
	Subcutaneous Insulin Kinetics
	Subcutaneous Glucose Kinetics
	Glucagon Secretion and Kinetics
	Subcutaneous Glucagon Kinetics

	Extra results
	Additional metrics for synthetic experiments
	Ablation study on HGS under limited data, true sparsity regime with comprehensive starting graph

	Instability of Dynamical Systems with Cycles: A toy example
	Blowing-up
	Exploding gradient
	Stiffness

	Tabulated Results
	Synthetic data experiments
	Real-world data experiments

