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ABSTRACT

It is commonly believed that the implicit regularization of optimizers is needed
for neural networks to generalize in the overparameterized regime. In this paper,
we observe experimentally that this implicit regularization behavior is generic,
i.e. it does not depend strongly on the choice of optimizer. We demonstrate this
by training neural networks using several gradient-free optimizers, which do not
benefit from properties that are often attributed to gradient-based optimizers. This
includes a guess-and-check optimizer that generates uniformly random parame-
ter vectors until finding one that happens to achieve perfect train accuracy, and
a zeroth-order Pattern Search optimizer that uses no gradient computations. In
the low sample and few-shot regimes, where zeroth order optimizers are most
computationally tractable, we find that these non-gradient optimizers achieve test
accuracy comparable to SGD. The code to reproduce results can be found at
https://github.com/Ping-C/optimizer.

1 INTRODUCTION

The impressive generalization of deep neural networks continues to defy prior wisdom, where over-
parameterization relative to the number of data points is thought to hurt model performance. From
the perspective of classical learning theory, using measures such as Rademacher complexity and
VC dimension, as one increases the complexity of a model class, the generalization performance
of learned models should eventually deteriorate. However, in the case of deep learning models, we
observe the exact opposite phenomenon – as one increases the number of model parameters, the
performance continues to improve. This is particularly surprising since deep neural networks were
shown to easily fit random labels in the overparameterized regime (Zhang et al., 2017). This combi-
nation of empirical and theoretical pointers shows a large gap in our understanding of deep learning,
which has sparked significant interest in studying various forms of implicit bias which could explain
generalization phenomena.

Perhaps the most widely-held hypothesis posits that gradient-based optimization gives rise to im-
plicit bias in the final learned parameters, leading to better generalization (Arora et al., 2019; Advani
et al., 2020; Liu et al., 2020; Galanti & Poggio, 2022). For example, (Arora et al., 2019) showed
that deep matrix factorization, which can be viewed as a highly simplified neural network, is biased
towards solutions with low rank when trained with gradient flow. Indeed, (Galanti & Poggio, 2022)
shows theoretically and empirically that stochastic gradient descent (SGD) with a small batch size
can implicitly bias neural networks towards matrices of low rank. A related concept was used by
(Liu et al., 2020) to show that gradient agreement between examples is indicative of generalization
in the learned model.

In this paper, we empirically examine the hypothesis that gradient dynamics is a necessary source
of implicit bias for neural networks. Our investigation is based on a comparison of several zeroth
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order optimizers, which require no gradient computations, with the performance of SGD. We focus
our studies on the small sample regime where zeroth order optimizations are tractable. Interestingly,
we find that all the gradient-free optimizers we try generalize well compared to SGD in a variety
of settings, including MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky, 2009), and few-shot
problems (Bertinetto et al., 2019; Vinyals et al., 2016).

Even though we use fewer samples in our experiments compared to standard settings, this low-data
regime highlights the role of model bias, where the generalization behavior of neural networks is
particularly intriguing. The model we test has more than 10, 000 parameters, but it has to generalize
with fewer than 1, 000 training samples. Without implicit bias, such a feat is nearly impossible in
realistic use cases like the ones we consider. Our work shows empirically that generalization does
not require the implicit regularization of gradient dynamics, at least in the low-data regime. It is
still an open question whether gradient dynamics play a larger role in other regimes, namely, where
more data is available.

We need to caution that we are not claiming that gradient dynamics have no effect on generalization,
as it has been clearly shown both theoretically and empirically that it has a regularizing effect (Arora
et al., 2019; Galanti & Poggio, 2022). Instead, we argue that the implicit regularization of gradient
dynamics is only secondary to the observed generalization performance of neural networks, at least
in the low-data regimes we study.

The observations in this paper support the idea that implicit bias can come from properties of the loss
landscape rather than the optimizer. In particular, they support the volume hypothesis for generaliza-
tion: The implicit bias of neural networks may arise from the volume disparity of different basins in
the loss landscape, with good hypothesis classes occupying larger volumes. The conjecture is empir-
ically supported by the observation that even a “guess & check” algorithm, which randomly samples
solutions from parameter space until one is found with low training error, can generalize well. The
success of this optimizer strongly suggests that generalizing minima occupy a much larger volume
than poorly generalizing minima in neural loss functions, and that this volume disparity alone is
enough to explain generalization in the low-shot regime.

Finally, we show in a previously studied toy example that volume implicitly biases the learned
function towards good minima, regardless of the choice of optimizer.

2 RELATED WORK

The capability of highly overparametrized neural networks to generalize remains a puzzling topic
of theoretical investigations. Despite their high model complexity and lack of strong regularization,
neural networks do not overfit to badly generalizing solutions. From a classical perspective, this
is surprising. Bad global solutions do exist (Zhang et al., 2017; Huang et al., 2020b), yet usual
training routines which optimize neural networks with stochastic gradient descent never find such
worst-case solutions. This has led a flurry of work re-characterizing and investigating the source of
the generalization ability of neural networks. In the following we highlight a few angles.
High-dimensional optimization Before reviewing the literature on gradient dynamics, we want
to review the underlying reasons why gradient-based (first-order) optimization is so central to deep
neural networks: The core reasons for this is often dubbed the curse of dimensionality: For arbi-
trary optimization problems (with minimal conditions, i.e. (Noll, 2014)) a first-order optimizer will
converge to a local minimal solution in polynomial time in the worst-case, independent of the dimen-
sionality of the problem. However, a zeroth order algorithm without gradient information will have
to, in the worst-case, evaluate a number of queries that increases exponentially with the dimension-
ality of the problem, even for smooth, convex optimization problems (Nesterov, 2004). However as
we will discuss, neural networks are far from a worst-case scenario, given that many solutions exist
due to the flatness of basins and the inter-connectedness of minima in neural networks.
Gradient dynamics Here we briefly review literature that argues for gradient descent as the main
implicit bias for generalization of neural networks. In Liu et al. (2020), they argue that deep net-
works generalize well because of the large agreement of gradients among training examples using
a quantity called gradient signal-to-noise ratio (GSNR). They found both empirically and theoreti-
cally that a large GSNR would lead to better generalization and that deep networks induce a large
GSNR during training, leading to better generalization. Arora et al. (2019) show that the dynamics
of gradient-based optimization induce implicit bias that is stronger than typical norm-based bias in
the setting of deep matrix factorization, and raise the question whether implicit biases can be induced
from first-order optimization that cannot be captured by any explicit regularization. Advani et al.

2



Published as a conference paper at ICLR 2023

(2020) argues that in the overparameterized regime, the gradient dynamics prevent learning from
happening in a certain subspace of the weights, which effectively works as implicit regularization.
A recent paper by (Galanti & Poggio, 2022) proves that SGD trained networks have a low-rank im-
plicit bias and hypothesizes that such an implicit bias may be the source of superior generalization
for deep neural networks.

Non-gradient based explanation of implicit bias Several works have tried to explain the gener-
alization behavior of neural networks with other forms of implicit regularization. Neyshabur et al.
(2015) argues weight norms to be the main measure of capacity control that allows neural networks
to generalize. Keskar et al. (2016) suggests that flatness in the parameter space corresponds to sim-
pler functions, thus allowing neural networks to generalize. However, Dinh et al. (2017) later show
that when the flatness measure is not scale-invariant, sharp solutions can generalize just as well with
appropriate rescaling of the network parameters. Valle-Perez et al. (2018) argue that the parameter-
function map is exponentially biased towards simple functions. Rahaman et al. (2019) shows that
neural networks are biased toward low frequency functions that vary globally without local fluctu-
ation. Among all works that try to explain neural network generalization, most recent works argue
gradient descent or stochastic gradient descent as the main implicit bias of neural network training
that allows deep overparameterized networks to generalize.

Volume and Bayesian modeling From a Bayesian perspective, flat minima of the loss surface are
highly represented in the Bayesian model average, especially when they contain functional diversity
(Wilson & Izmailov, 2020). The size of a posterior peak has also been connected to Occam factors
indicating that they represent simpler solutions which are more compressible and generalize well
(MacKay et al., 2003). Smith & Le (2017) studies generalization behavior of overparameterized
linear models where they find that the Bayesian evidence or marginal likelihood, which is connected
to generalization, strongly favors flat minima. A line of work on PAC-Bayes generalization bounds,
which is related to compressibility and the Bayesian evidence, uses compressibility to guarantee
generalization and finds the flat minima are more compressible as they yield more bits back from
the KL-divergence term in the bound (Dziugaite & Roy, 2017). In contrast to these works, our
findings focus not on why flat minima generalize well but rather how their large volume makes them
likely to be found by optimizers.

Similar Lines of Inquiry Mingard et al. (2021) empirically show that when sampling from wide
networks conditioned on the training set, the sampled models behave similarly to finite width net-
works trained with SGD. They approximate the posterior with Neural Network Gaussian Process,
which is not exact in finite width networks. Geiping et al. (2022) show that full batch gradient
descent, when coupled with explicit regularization can perform comparably to model trained with
SGD, thus bringing into question the importance of SGD for generalization. Similar in spirit, we
argue that SGD and all gradient-based optimizers are not the main source of generalization behavior
of neural networks. Huang et al. (2020a) provide intuitive explanations for the volume hypothesis,
and empirically measure the volume of both good and bad minima. While they show that individual
good minima tend to have much larger volume than individual bad ones, their experiments do not
show that the total volume of all good minima is large. Experiments below address this weakness.

3 THE MYSTERY OF GENERALIZATION WITH OVERPARAMETERIZATION

Figure 1: On the left, we have the true
underlying distribution of the toy prob-
lem. On the left, we have the sampled
training data.

In this section, we illustrate how the complexity of a hy-
pothesis class increases with the number of parameters in
the context of a simple classification problem. Specifi-
cally, we increase the number of hidden units of a two
layer neural network and showcase the increasing com-
plexity of the model class. Despite this increased com-
plexity, SGD often consistently finds good classifiers.
Then, we proceed to show that a similar generalization
behavior can be achieved without any gradient dynamics.

We begin with a toy classification problem defined over
two classes where the data distribution is a wedge “Λ”
with a vertical margin separating the two classes (see Fig-
ure 1). Throughout this section, our training and testing
data consist of 11 points and 5 points, respectively, each
sampled uniformly at random.
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Figure 2: In this figure, we show that even though the model becomes much more expressive as we
increase the number of parameters, as shown in the possible decision boundaries of the poisoned net-
work of various sizes, both SGD and Guess & Check produce decision boundaries that are relatively
stable as we increase the number of parameters. From left to right, we have decision boundaries pro-
duced by 2, 4, 10, 15, 20 hidden units single layer neural networks with different training methods.
For each (training method, model size) pair, we show 9 randomly sampled decision boundaries of
the trained network. We showed even more samples of the decision boundaries in Appendix A

(a) Decision boundaries of a poisoned neural network

(b) Decision boundaries of SGD trained models

(c) Decision boundaries of Guess & Check trained models

3.1 OVERPARAMETERIZATION INCREASES MODEL COMPLEXITY

To illustrate how the model complexity increases with number of parameters, we first poison a model
by minimizing the loss on the training data while maximizing the loss on the testing data. Given
we only examine cases where the model (trained by SGD) achieves 100% training accuracy, this
represents the worst-case decision boundary for the unpoisoned loss. As we increase the number of
hidden units from 2 to 20, the decision boundary becomes much more ill-behaved (see Figure 2a).
When the hypothesis class is restricted to 2 hidden units (the left most plots in Figure 2a), the model
can only fit the data by using a single kink in the decision boundary, so it has to trade off either
fitting the training examples to 100% accuracy or performing badly on the poison objective. Given
that the model fits training data, it has to perform well on testing data. This is consistent with the
under-parameterized regime and with classical learning theory.

As we increase the model size, the model class now contains strange decision boundaries that can
fit the training data while performing poorly on the testing data. From the perspective of classical
learning theory, we would expect models with 20 hidden units to perform much worse than the model
with 2 hidden units. Surprisingly, even though more complicated decision boundaries are available
as we increase the model size, we never see such boundaries when optimizing the (unpoisoned)
training objective with SGD. For example, in Figure 2b, as we increase the number of hidden units,
the decision boundary remains relatively consistent. Given that both the weird and nice decision
boundaries exist in the model class, it is natural to ask what biases the learned network towards
good vs. bad optima.

Due to the consistent behavior of SGD trained networks in the overparameterized regime, it is only
reasonable that people started investigating gradient dynamics as a source of implicit regularization
(Galanti & Poggio, 2022; Arora et al., 2019; Advani et al., 2020; Liu et al., 2020). However, we show
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below that, rather surprisingly, we can obtain similar generalization behavior on the toy problem by
using a Guess & Check algorithm that is completely free of gradient dynamics.

3.2 GENERALIZING ON TOY PROBLEM WITHOUT GRADIENTS

In our toy setting, we find that generalization is surprisingly generic with respect to the dynamics
of optimizers. To avoid using optimizers with the same inductive biases as gradient methods, we
experiment with Guess & Check: we repeatedly sample parameters until a model achieves 100%
training accuracy with train loss below a certain threshold. Unlike other optimizers, we do not use
any gradient information, and we also do not take any iterative steps. Surprisingly, even with Guess
& Check, we often end up with a well-behaving decision boundary like the one that we trained with
regular SGD, see Figure 2c.

From the simple two class toy problem, we can see clearly that Guess & Check solutions already
endow the learned model with a very strong implicit bias that does not originate from gradient
dynamics. In the next section, we extend a similar analysis to common datasets such as MNIST &
CIFAR10 to see whether this observation continues to hold in more practical settings.

4 EXPERIMENTS

4.1 NON-GRADIENT BASED OPTIMIZERS

In our experiments, we test three different non-gradient based optimizers: Guess & Check, Pattern
Search, and Greedy Random Search on varying scales of MNIST & CIFAR-10 and on different
architectures. Here, we explain each optimizer.

4.1.1 GUESS & CHECK

The Guess & Check algorithm optimizer randomly generates parameter vectors with entries sampled
independently and uniformly from [−1, 1]1. If the randomly sampled model achieves 100% training
accuracy and has training loss below a chosen threshold, then the model is kept and the optimizer
terminates. If not, the vector is thrown away and we keep guessing new vectors until our conditions
are met.

Guess & Check is of theoretical value because its only implicit bias comes from the geometry of the
loss landscape, and its success implies the volume hypothesis. With this optimizer, the likelihood
that a set of solutions are selected is exactly proportional to the volume of the set in parameter space.
If a model consistently generalizes well when trained with Guess & Check, then this means the set
of “good” minima has large volume among low-loss parameters. We do want to make a distinction
between flat solutions (Keskar et al., 2016) and solutions with large volumes. It is possible that a
collection of solutions has a very large volume but is not itself a flat basin but rather a collection of
many small volume regions that have large volume in aggregate.

When we train with Guess & Check, we can be confident that gradient-based implicit regularization
plays no role in the final performance – the volume hypothesis is the only source of implicit regular-
ization. Unfortunately, Naı̈ve guess-and-check suffers from the problem that the cost of interpolating
the training data grows exponentially as the number of training examples or classes increase, so we
have restricted experiments with Guess & Check to few-shot problems with smaller sample sizes.

4.1.2 LOCAL NON-GRADIENT BASED OPTIMIZER

Due to the difficulty of scaling Guess & Check to large problems, we explore two alternative non-
gradient based optimizers, Pattern Search and Random Greedy Search, that work for bigger datasets.
Like SGD, both approaches update the model using a local search and may have biases that originate
from factors other than volume alone. The success of Pattern Search and Random Greedy demon-
strates that gradient optimization is not strictly needed to observe implicit regularization, but they
may exploit regularization properties of local search that are also exploited by SGD.

Pattern Search Pattern Search randomly selects a parameter in the model and takes a step of fixed
size that is randomly chosen to be either positive or negative, if the model achieves lower loss after

1See Appendix C for experiments with other sampling intervals.
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Table 2: On the two class MNIST problem, G&C performs comparably to SGD across different train
loss level and number of samples. This shows us that despite the large number of parameters, G&C
solutions are implicitly regularized. To show that the degree of generalization of G&C is indeed
substantial, we train an additional linear model, which has a much more restricted hypothesis class,
but has on average 10% worse generalization performance. The empty cells correspond to linear
models where we could not find solutions with 100% training accuracy. We also show the estimated
standard deviations of the averages computed over 175 random data split and training seeds. For
most cells, the standard deviation is less than 1%.

Sample
Count

Arch Optimizer Best Test Acc Train Loss
(0.3, 0.35) (0.35, 0.4) (0.4, 0.45) (0.45, 0.5) (0.5, 0.55) (0.55, 0.6) (0.6, 0.65)

32 LeNet G&C 93.02%±0.27% 93.02%±0.27% 92.39%±0.29% 90.59%±0.34% 89.18%±0.38% 87.22%±0.43% 86.23%±0.44% 83.15%±0.51%
LeNet SGD 94.04%±0.25% - - 94.04%±0.25% 93.49%±0.28% 92.54%±0.28% 91.63%±0.33% 88.60%±0.35%
Linear SGD 84.75%±0.47% 84.75%±0.47% 82.69%±0.43% 81.24%±0.44% 79.04%±3.14% 78.94%±4.74% - -

16 LeNet G&C 89.21%±0.47% 89.21%±0.47% 87.01%±0.50% 85.18%±0.56% 84.69%±0.54% 81.91%±0.62% 78.61%±0.65% 75.37%±0.63%
LeNet SGD 91.24%±0.40% 91.24%±0.40% 90.87%±0.41% 90.84%±0.38% 88.77%±0.48% 87.93%±0.48% 86.98%±0.47% 83.90%±0.49%
Linear SGD 80.68%±0.55% 80.68%±0.55% 78.50%±0.56% 75.69%±0.60% 72.09%±0.56% 67.16%±0.67% 69.51%±3.40% -

8 LeNet G&C 83.05%±0.67% 83.05%±0.67% 80.72%±0.75% 78.23%±0.81% 78.05%±0.72% 76.40%±0.79% 70.76%±0.74% 67.48%±0.78%
LeNet SGD 84.82%±0.63% 83.63%±0.63% 84.82%±0.63% 82.62%±0.74% 81.85%±0.72% 79.70%±0.70% 79.74%±0.63% 76.51%±0.71%
Linear SGD 74.29%±0.72% 74.29%±0.72% 71.72%±0.75% 67.79%±0.69% 67.36%±0.76% 63.46%±0.75% 58.65%±0.79% 54.87%±0.75%

4 LeNet G&C 76.28%±0.90% 76.28%±0.90% 73.93%±0.92% 72.63%±0.86% 70.89%±0.90% 68.27%±0.83% 65.63%±0.92% 62.38%±0.91%
LeNet SGD 77.35%±0.81% 77.35%±0.81% 75.01%±0.85% 75.61%±0.83% 73.95%±0.85% 73.28%±0.85% 69.15%±0.84% 67.65%±0.84%
Linear SGD 65.12%±0.81% 65.12%±0.81% 61.94%±0.82% 62.14%±0.78% 58.11%±0.88% 57.21%±0.91% 55.38%±0.88% 53.60%±0.83%

2 LeNet G&C 66.89%±1.04% 66.89%±1.04% 65.87%±1.05% 64.03%±0.92% 62.81%±0.90% 61.02%±0.84% 59.90%±0.91% 56.82%±0.95%
LeNet SGD 69.67%±0.98% 69.67%±0.98% 67.11%±0.93% 64.94%±0.95% 63.42%±0.87% 64.38%±0.88% 63.82%±0.89% 62.33%±0.87%
Linear SGD 58.93%±0.94% 58.93%±0.94% 58.45%±0.92% 56.59%±0.89% 54.11%±0.91% 54.21%±0.87% 53.13%±0.93% 51.59%±0.89%

taking the step, then the parameter is accepted as the new starting point. If Pattern Search fails to find
a step that decreases the loss after going through all the parameters, then the step size is decreased
by a constant factor. We repeat this procedure until a solution is found that achieves 100% training
accuracy. In our experiments, we use a starting radius of 1, and we decrease the radius by a factor
of 2 when it fails to find a descent direction.

Random Greedy Search Random Greedy Search adds Gaussian noise to the initial parameter
vector with standard deviation of σ. If the noised solution improves training loss, then the noised
solution is accepted as a new starting point. If no solution is found after a fixed number of steps,
then σ is decreased by a chosen factor before the search continues. Again, we repeat this procedure
until a parameter is found that achieves 100% training accuracy. In our experiment, we start the
procedure with σ = 1. If we fail to find a perturbation that decreases loss after 30000 random steps,
then we decrease σ by a factor of 2.

4.2 RESULTS ON 2-CLASS CIFAR-10/MNIST MNIST CIFAR
# Samples Val. Acc. # Samples Val. Acc.

32 0% 24 0%
16 0% 16 0%
8 0% 8 0%
4 0% 4 0%
2 0% 2 0%

Table 1: Comparing poisoned valida-
tion error. In this table, we attempt to fit
the training data of various sizes while
poisoning LeNet with the wrong vali-
dation labels. We find that the LeNet
we use is of sufficient capacity that
it can completely fit the training data
while failing to classify the validation
set.

In this section, we apply the Guess & Check algorithm
on a conventional LeNet model on MNIST (LeCun et al.,
2010) and CIFAR-10 (Krizhevsky, 2009). Due to the ex-
ponential time complexity of the Guess & Check algo-
rithm, we stick with 2-class problems with fewer than 32
total training samples. To enable fair comparisons be-
tween G&C and SGD optimized models, we compare the
performance of the models across different train loss lev-
els after the model’s weights have been normalized. This
is crucial for a fair comparison because it has been ob-
served that lower loss levels corresponds to better gener-
alization even after train accuracy has reached 100%.

We find that given the same loss level and number of sam-
ples, Guess & Check performs comparably to SGD, espe-
cially at lower loss levels. In the case of CIFAR-10, Guess & Check even outperforms SGD solutions
by a substantial margin. This result is made even more interesting given that the models are capable
of pathological overfitting: they are able to completely misclassify the validation set while achieving
100% training accuracy (see Table 1).

To illustrate how well G&C performs, we also train a linear model on MNIST for comparison. Even
though the hypothesis class is now restricted to only linear solutions, a significantly smaller hypoth-
esis class compared to LeNet, the linear model still underperforms the Guess & Check solution on
LeNet by more than 10% in many cases. Note that, despite being convex, solutions of the linear
problem vary because we use SGD and apply early stopping when the desired loss level is achieved.
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Table 3: On the two class CIFAR10 problem, G&C performs comparably to SGD across different
training losses and numbers of samples. This shows us that, despite the large number of parameters,
G&C solutions are implicitly regularized. We do note that G&C in this low data regime consistently
performs better than SGD though. We computed the standard deviation over 75 random data splits
and training seeds.

Sample
Count

Optimizer Best Test Acc Train Loss
(0.55, 0.57) (0.57, 0.59) (0.59, 0.61) (0.61, 0.63) (0.63, 0.65) (0.65, 0.67)

24 G&C 66.59%±0.74% 66.59%±0.74% 65.91%±0.80% 64.09%±0.96% 61.08%±0.89% 59.33%±0.88% 57.18%±0.89%
SGD 63.16%±0.87% 63.16%±0.87% 62.02%±0.84% 60.74%±0.73% 58.21%±0.75% 57.62%±0.69% 56.24%±0.55%

16 G&C 61.10%±0.98% 61.10%±0.98% 59.54%±0.98% 59.21%±0.90% 57.53%±0.86% 57.71%±0.81% 55.06%±0.70%
SGD 58.98%±0.69% 58.58%±0.77% 58.98%±0.69% 57.86%±0.79% 57.11%±0.61% 56.77%±0.62% 53.90%±0.50%

8 G&C 57.17%±0.94% 54.39%±0.80% 53.99%±0.76% 57.17%±0.94% 54.61%±0.68% 52.66%±0.66% 52.82%±0.62%
SGD 56.76%±0.71% 56.76%±0.71% 55.02%±0.62% 54.79%±0.72% 54.62%±0.68% 53.39%±0.66% 53.53%±0.55%

4 G&C 55.51%±0.84% 55.51%±0.84% 53.59%±0.96% 52.78%±0.82% 52.30%±0.67% 52.38%±0.63% 54.07%±0.72%
SGD 53.75%±0.62% 53.49%±0.68% 52.14%±0.51% 53.75%±0.62% 51.53%±0.63% 52.18%±0.66% 50.44%±0.55%

2 G&C 52.39%±0.67% 51.66%±0.74% 52.39%±0.67% 52.00%±0.60% 51.37%±0.56% 50.01%±0.71% 50.66%±0.62%
SGD 51.98%±0.59% 51.93%±0.66% 51.39%±0.47% 51.98%±0.59% 51.16%±0.48% 50.65%±0.45% 50.05%±0.43%

Table 4: In this table, we trained the same LeNet, but with more examples and more classes. We
found that the generalization performance is still fairly similar between SGD and alternative zeroth
order optimizers that do not use any gradient information. The empty cells indicate the experiment
has timed out, and we failed to find models achieving 100% training accuracy within a reasonable
time limit.

Sample Count 1000 500 300 100

MNIST SGD 93.46%±0.11% 90.15%±0.22% 87.48%±0.26% 78.67%±0.51%
Pattern Search 93.68%±0.12% 90.33%±0.12% 87.26%±0.30% 78.43%±0.46%
Random Greedy 93.34%±0.08% 90.35%±0.10% 87.33%±0.21% 78.51%±0.50%

CIFAR-10 SGD 36.01%±0.25% 29.91%±0.31% 25.88%±0.34% 19.86%±0.27%
Pattern Search - 30.00%±0.69% 25.04%±0.66% 18.70%±1.22%
Random Greedy 34.44%±0.54% 27.06%±0.75% 24.04%±0.58% 16.80%±0.13%

Even though the number of samples is small, we do note that this regime highlights the effects of
overparametrization. For example, in our LeNet for MNIST, we have 11074 parameters, which is
orders of magnitude larger than the number of examples. Yet the model continues to generalize well
relative to SGD, showing us that the large volume of the good solution set is on its own enough to
bias the optimizer towards favorable generalization.

Even though the generalization performance is similar between the SGD and G&C solutions, we do
note that the test accuracies are not exactly the same between models trained with both methods, im-
plying that SGD may have additional bias that G&C does not take into account. However, our main
argument is that optimizer-specific bias is not needed to explain generalization, and may not even
be the primary cause of generalization behavior; in our experiments here, the bulk of generalization
can be explained by the geometry of the loss landscape.

4.3 RESULTS ON 10-CLASS CIFAR-10/MNIST

In this section, we evaluate the importance of gradient-based optimizers in the setting where more
classes are involved. However, the Guess & Check algorithm is no longer feasible due to the expo-
nential time complexity. Instead of Guess & Check, we employ Pattern Search and Greedy Random
Search to evaluate the dependence of generalization on gradient based optimizers. Again, we find
that these non-gradient based optimizers offer similar levels of generalization benefits as SGD de-
spite not using any gradient information at all.

In Table 4, we see that Greedy Random Search and Pattern Search both generalize comparably
to SGD. The average performance difference is only 0.9% across different sample sizes, datasets,
and optimizer combinations. In several cases, Pattern Search even performs better than SGD. Even
though 0.9% may seem large when viewed from the perspective of achieving state-of-the-art accu-
racy, we note that a performance difference of 0.9% is within the margin that can be expected from
hyperparameter tuning, and that we have not tuned either of the zeroth order optimizers, and yet
they still achieve a comparable level of generalization to SGD.
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Loss Level
width (0.3, 0.35) (0.35, 0.4) (0.4, 0.45) (0.45, 0.5) (0.5, 0.55) (0.55, 0.6) (0.6, 0.65)

1 n/a n/a n/a n/a n/a 92.11%±1.35% 93.44%±n/a
0.9 n/a n/a n/a n/a 90.89%±n/a 86.33%±6.81% 90.90%±3.03%
0.8 n/a n/a 93.34%±n/a 83.89%±8.97% 87.71%±n/a 93.29%±n/a 81.94%±7.35%
0.7 97.73%±n/a 96.32%±n/a 95.20%±0.42% 92.30%±1.21% 86.10%±6.24% 80.59%±2.96% 87.37%±n/a
0.6 91.20%±1.40% 89.66%±1.88% 87.76%±2.22% 85.45%±2.07% 83.64%±2.78% 82.76%±3.33% 79.43%±3.06%
0.5 89.21%±0.47% 87.01%±0.50% 85.18%±0.56% 84.69%±0.54% 81.91%±0.62% 78.61%±0.65% 75.37%±0.63%
0.4 85.82%±0.53% 83.78%±0.61% 81.43%±0.61% 79.63%±0.65% 77.50%±0.64% 75.98%±0.66% 72.30%±0.77%
0.3 79.55%±0.60% 79.13%±0.60% 76.63%±0.72% 75.43%±0.63% 74.22%±0.66% 72.28%±0.72% 71.75%±0.67%
0.2 77.39%±0.56% 76.08%±0.63% 74.70%±0.56% 73.40%±0.60% 71.84%±0.60% 69.66%±0.64% 68.49%±0.58%

Table 6: Performance of G&C on MNIST with 16 samples as we scale up the model. The n/a
indicates that a model has not been found for the cell.

4.4 FEW-SHOT LEARNING WITH RESNETS

In this section, we evaluate the importance of gradient-based optimizers in the few-shot setting.
This setting enables us to compare gradient methods to zeroeth order optimization using industrial-
scale models. For the most part, we find that the gradient-free Pattern Search optimizer performs
comparably to SGD in the 1-shot setting.

Few-shot learning is usually used to test the ability of models to generalize to unseen tasks given
limited training examples. This is a perfect evaluation task for our hypothesis for the following
reasons: First, in few-shot learning, we only use 1 or 5 training images per class during the evaluation
stage, which makes zeroth order optimization possible. Second, few-shot learners usually utilize a
pre-trained feature extractor on the base classes, and only learn a new classification head by SGD or
other solvers such as SVM and ridge regression (Lee et al., 2019; Bertinetto et al., 2019) given the
unseen tasks. This setting limits the dimension of learnable parameters, thus making training deeper
networks such as ResNet possible with these non-gradient based optimizers. Finally, although we
only attempt to learn a single layer, due to the few training examples (1 or 5 per class), we will still
have an overparameterized model, which is the setting we are interested in.

Table 5: 1-shot-5-way classification performance
on both CIFAR-FS and mini-ImageNet with
ResNet-12 backbone. We provide mean test ac-
curacy over 600 episodes and the one standard er-
ror. Compared to SGD, Pattern Search can always
achieve better performance by a large margin.

Optimizer CIFAR-FS mini-ImageNet

SGD 68.35 ± 0.46 55.76 ± 0.42
Pattern Search 70.25 ± 0.45 58.53 ± 0.41

We evaluate the effectiveness of non-gradient
based optimizers on CIFAR-FS (Bertinetto
et al., 2019) and mini-ImageNet (Vinyals et al.,
2016) with ResNet-12, a commonly used archi-
tecture in the few-shot classification literature.
During the training stage, we pre-train a fea-
ture extractor on the base classes and evaluate
the generalization on unseen tasks via 1-shot-
5-way episodes, where each episode is a 5-way
classification problem and each class contains
1 training image. During the evaluation stage,
given the unseen episodes and pre-trained fea-
ture extractor, we learn a new classification
head with a specific optimizer and evaluate the
performance on the testing images. We compare the testing accuracy on 600 different episodes be-
tween SGD, and Pattern Search in Table 5. For Pattern Search, instead of stopping optimization
immediately after fitting all the training examples, we keep updating the model until t steps, where
we set t = 3000 for both CIFAR-FS and mini-ImageNet. As showed in Table 5, Pattern Search
always outperforms SGD by a large margin, i.e., over 2% for both CIFAR-FS and mini-ImageNet,
which suggests that gradient-based optimizers are not necessary in the few-shot setting.

5 HOW DOES G&C BEHAVE AS WE SCALE UP THE MODEL?

People have observed that increasing the size of neural networks trained with SGD can lead to either
double descent behavior Nakkiran et al. (2021) or increasing performance Kaplan et al. (2020). This
phenomenon has been previously attributed to the regularization effect of SGD. However, given
the similarity of performance between G&C models and SGD-trained models, it is natural to ask
whether we observe similar behaviors in G&C models as we increase the number of parameters.
Here, we show that G&C models continue to improve as we increase their size, without using SGD.

8
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To investigate this further, we conducted experiments on 2-class MNIST using G&C with varying
widths of LeNet (Table 6). Surprisingly, we found that as we increased the width of the model, its
validation accuracy also increased. This observation contradicts generalization theories based on
model capacity, which suggest that increasing model size beyond a certain point leads to overfitting
and reduced generalization performance.

The observation points to the hypothesis that increasing the width of a neural network can expand
the volume of the good function class. If we can identify the specific function within this class
that experiences an increase in volume with more parameters, it may be possible to achieve similar
benefits with a smaller model that captures the favorable properties of the function. This could
lead to more efficient and effective deep learning models that perform better without unnecessary
parameter bloat. However, further research is required to investigate this hypothesis and identify the
specific functions that contribute to the observed increase in volume.

6 A TOY EXAMPLE: SIMPLICITY BIAS MAY ORIGINATE FROM THE VOLUME
BIAS AS OPPOSED TO SGD

In this section, we study whether volume may explain the simplicity bias previously observed in
Shah et al. (2020).

Figure 3: The volume of the decision boundary
on the left as measured by G&C is 10−4 whereas
the volume of the robust/complex decision bound-
ary has volume smaller than 10−10. The large
volume disparity may explain trained network’s
strong preference for the linear solution.

While we have mostly measured bias in terms
of generalization in this paper, we think it is a
promising future direction to quantify whether
other forms of bias can be attributed to the
volume hypothesis instead. One example is
simplicity bias, where trained neural networks
strongly prefer linear decision boundaries com-
pared to robust ones. We provide a toy illus-
tration on why this may be attributed to the vol-
ume hypothesis, but leave further exploration of
this as future work.

Consider the following example: a trained neu-
ral network on the slab dataset ignores the more
complex y-axis, as shown on the left of Figure
3, and uses a linear decision boundary drawn
along the x-axis only as opposed to the robust
decision boundary shown on the right of Fig-
ure 3. While Shah et al. (2020) has attributed
the simplicity bias in this example to SGD, we
found that the simplicity bias may simply orig-
inate from the large disparity in volumes between the linear and robust functions in the loss land-
scape. In fact, when we used G&C to measure the volume of the two respective decision boundaries
in the parameter space, we found that the linear decision boundary has volume that is 6 orders of
magnitude larger than that of the robust decision boundary. Specifically, we estimate the volume
of the solution by taking the reciprocal of the number of guesses before a solution is obtained. The
volume disparity may explain why the simple decision boundary is strongly preferred compared to
the alternative.

7 CONCLUSION

In this paper, we empirically show that gradient-based implicit regularization of training dynamics
is not required for generalization. Instead, we consider non-gradient optimizers that lack gradient
dynamics, yet still perform well. The strong performance of gradient-free optimizers, in particular
Guess & Check, strongly suggests that the disparate volume of good and bad hypothesis classes is
the main implicit bias that enables these optimizers to succeed. For future work, we think more
critically examining the role of volume as implicit bias in neural networks will be a fruitful and
interesting direction.
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8 REPRODUCIBILITY STATEMENT

We ran all the experiments with prespecified random seeds, so all of the tables will be reproducible
by running the respective scripts in our included code base.
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A ADDITIONAL EXPERIMENTS FOR TOY EXAMPLES

(a) Decision boundaries of a poisoned neural network - seed 0

(b) Decision boundaries of SGD trained models - seed 0

(c) Decision boundaries of Guess & Check trained models - seed 0
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(a) Decision boundaries of a poisoned neural network - seed 1

(b) Decision boundaries of SGD trained models - seed 1

(c) Decision boundaries of Guess & Check trained models - seed 1

(a) Decision boundaries of a poisoned neural network - seed 2

(b) Decision boundaries of SGD trained models - seed 2

(c) Decision boundaries of Guess & Check trained models - seed 2
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(a) Decision boundaries of a poisoned neural network - seed 3

(b) Decision boundaries of SGD trained models - seed 3

(c) Decision boundaries of Guess & Check trained models - seed 3
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(a) Decision boundaries of a poisoned neural network 32 samples

(b) Decision boundaries of a poisoned neural network 64 samples

(c) Decision boundaries of SGD trained models 32 samples

(d) Decision boundaries of SGD trained models 64 samples

(e) Decision boundaries of Guess & Check trained models 32 samples

(f) Decision boundaries of Guess & Check trained models 64 samples

Figure 8: Decision boundaries as we increase the number of samples
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B INFLUENCE OF SAMPLING RANGE FOR GUESS & CHECK OPTIMIZER

Loss Level
L2 Norm (0.3, 0.35) (0.35, 0.4) (0.4, 0.45) (0.45, 0.5) (0.5, 0.55) (0.55, 0.6) (0.6, 0.65)

Uniform (-1,1) 60 93.02% 92.39% 90.59% 89.18% 87.22% 86.23% 83.15%
Uniform (-2,2) 120 92.52% 90.16% 89.06% 89.89% 87.89% 85.17% 82.17%
Uniform (-5,5) 300 92.79% 92.04% 91.18% 87.59% 87.16% 86.42% 82.40%
Sphere 100 92.87% 92.20% 89.79% 89.84% 87.91% 86.70% 82.81%

Table 7: Comparing performance of models given different sampling methods on MNIST with 24
samples. We tested uniform sampling between (-2, 2) and (-5, 5). We also tested sampling from a
sphere with L2 norm of 100. For the most part, we found that the sampling range does not materially
change the performance of the model.

Loss Level
L2 Norm (0.55, 0.57) (0.57, 0.59) (0.59, 0.61) (0.61, 0.63) (0.63, 0.65) (0.65, 0.67)

Uniform (-1,1) 60 66.59% 65.91% 64.09% 61.08% 59.33% 57.18%
Uniform (-2,2) 120 65.93% 65.14% 64.93% 61.31% 61.85% 57.22%
Uniform (-5,5) 300 67.63% 61.69% 63.63% 62.19% 60.33% 58.41%
Sphere 100 61.81% 64.31% 59.30% 62.01% 56.72% 60.77%

Table 8: Comparing performance of models given different sampling methods on CIFAR with 36
samples. We tested uniform sampling between (-2, 2) and (-5, 5). We also tested sampling from a
sphere with L2 norm of 100. For the most part, we found that the sampling range does not materially
change the performance of the model.
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